
Journal of Computational Physics 230 (2011) 1084–1099
Contents lists available at ScienceDirect

Journal of Computational Physics

journal homepage: www.elsevier .com/locate / jcp
A numerical solver for a nonlinear Fokker–Planck equation
representation of neuronal network dynamics

María J. Cáceres a,⇑, José A. Carrillo b, Louis Tao c

a Departamento de Matemática Aplicada, Universidad de Granada, 18071 Granada, Spain
b ICREA and Departament de Matemàtiques, Universitat Autònoma de Barcelona, E-08193 Bellaterra, Spain
c Center for Bioinformatics, National Laboratory of Protein Engineering and Plant Genetics Engineering, College of Life Science,
Peking University, 100871 Beijing, PR China

a r t i c l e i n f o
Article history:
Received 18 March 2010
Received in revised form 18 October 2010
Accepted 20 October 2010
Available online 2 November 2010

Keywords:
Neuronal network
Kinetic equations
Fokker-Planck equation
Direct simulation Monte Carlo
Deterministic simulations
WENO methods
Chang-Cooper method
0021-9991/$ - see front matter � 2010 Elsevier Inc
doi:10.1016/j.jcp.2010.10.027

⇑ Corresponding author. Fax: +34 958248596.
E-mail addresses: caceresg@ugr.es (M.J. Cáceres)
a b s t r a c t

To describe the collective behavior of large ensembles of neurons in neuronal network, a
kinetic theory description was developed in [15,14], where a macroscopic representation
of the network dynamics was directly derived from the microscopic dynamics of individual
neurons, which are modeled by conductance-based, linear, integrate-and-fire point neu-
rons. A diffusion approximation then led to a nonlinear Fokker–Planck equation for the
probability density function of neuronal membrane potentials and synaptic conductances.
In this work, we propose a deterministic numerical scheme for a Fokker–Planck model of
an excitatory-only network. Our numerical solver allows us to obtain the time evolution
of probability distribution functions, and thus, the evolution of all possible macroscopic
quantities that are given by suitable moments of the probability density function. We show
that this deterministic scheme is capable of capturing the bistability of stationary states
observed in Monte Carlo simulations. Moreover, the transient behavior of the firing rates
computed from the Fokker–Planck equation is analyzed in this bistable situation, where
a bifurcation scenario, of asynchronous convergence towards stationary states, periodic
synchronous solutions or damped oscillatory convergence towards stationary states, can
be uncovered by increasing the strength of the excitatory coupling. Finally, the computa-
tion of moments of the probability distribution allows us to validate the applicability of
a moment closure assumption used in [15] to further simplify the kinetic theory.

� 2010 Elsevier Inc. All rights reserved.
1. Introduction

As large-scale neuronal networks models in computational neuroscience become more common [52,56,54,31,44,26], the
need to develop efficient methods and effective representations for simulating and analyzing the dynamics of large-scale
networks becomes urgent. The multitude of spatial and temporal scales of brain phenomena presents a challenge for model
simulation and reduction. While the modularity of brain regions motivates simplification via spatial coarse-graining, irreg-
ular temporal fluctuations in the neuronal membrane potentials and the synaptic inputs [53,49,4,48] suggest time-scales for
temporal coarse-graining. Various theoretical approaches, based on spatial and temporal coarse-graining assumptions, have
led to the development of dimensionally-reduced descriptions of the network dynamics through examining a probabilistic
representation of the network dynamics and deriving an evolution equation governing a probability density function (pdf)
[28,58,1,55,20,6,41,9,22,40,39,37,38,24,21]. In this work, we propose an efficient numerical scheme for the simulation of a
nonlinear Fokker–Planck equation representation for neuronal network dynamics.
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The starting point for our description of neuronal network dynamics is a system of ordinary differential equations (ODEs)
for a network of recurrently coupled, single compartment, conductance-based, linear integrate-and-fire (LIF) point neurons.
In this work, we restrict the discussion to all-to-all coupled, excitatory neuronal networks. We consider the following
dynamical system governing the temporal evolution of the membrane potential Vi and the excitatory conductance Gi P 0
of the ith neuron in a pool PE of N excitatory neurons,
sdVi

dt
¼ �ðVi � VRÞ � GiðVi � VEÞ ð1Þ

rE
dGi

dt
¼ �Gi þ

X
l

fE dðt � ti
lÞ þ

SEE

NE

X
j2PE

X
l

pE
jldðt � tj

lÞ ð2Þ
where VE is the (excitatory) reversal potential, s is a typical leak (i.e., relaxation) time for the membrane potential, and rE is
the decay time constant of the excitatory conductance. To complete the LIF dynamical system, whenever a membrane po-
tential, Vi, reaches the spiking threshold (VT), the spike time is recorded and Vi is immediately set to the reset potential VR. We
set the absolute refractory period to zero.

The first sum in Eq. (2) is due to incoming spikes (i.e., spikes from neurons external to the network): ti
l is the time of the

lth incoming spike received by the ith neuron. We model each incoming spike train with independent realizations of a Pois-
son process with rate m0E(t). The second sum in Eq. (2) describes the recurrent interaction with the other neurons in the pool
via neuronal action potentials, i.e., tj

l is the time of the lth spike of the jth neuron. The parameter SEE describes the strength
of network excitatory couplings. The factor of NE provides the overall normalization of the coupling strength. pE

jl is the prob-
ability of synaptic release after the arrival of each spike. We model each synaptic release as a Bernoulli process, with prob-
ability equal to p = NE/N, that is, pE

jl ¼ 1 with probability p; and 0, otherwise.
Following [15,14], by assuming that the spike trains contributing to the second sum in Eq. (2) to be Poisson, the collective

behavior of this network can be described in terms of a partial differential equation (PDE) for the time evolution of the prob-
ability density function (pdf), q(t,v,g), of finding a neuron with a potential v 2 [VR,VT] and conductance g P 0 at time t P 0. A
diffusive approximation, by assuming that fE and SEE/NE to be small, then leads to the following Fokker–Planck equation [14]:
@tq ¼ @v
v � VR

s

� �
þ g

v � VE

s

� �� �
q

� �
þ @g

1
rE
ðg � �gEðtÞÞqþ

r2
gðtÞ
rE

@gq

( )
ð3Þ
which can be rewritten as a continuity equation
@tqðt;v ; gÞ þ @v JV ðt;v ; gÞ þ @gJGðt;v ; gÞ ¼ 0
where the fluxes are
JV ðt; v; gÞ ¼
VR � v

s

� �
þ g

VE � v
s

� �� �
qðt; v; gÞ
and
JGðt; v; gÞ ¼
1
rE
ð�gEðtÞ � gÞqðt; v; gÞ �

r2
gðtÞ
rE

@gqðt;v ; gÞ:
The effective drift and effective diffusivity in the conductance variable are given by:
�gEðtÞ ¼ fEm0EðtÞ þ SEE mEðtÞ and r2
gðtÞ ¼

1
2rE

f 2
E m0EðtÞ þ

S2
EE

NE
mEðtÞ

 !

and are dependent on mE(t), the firing rate per neuron, averaged over the network. The firing rate is the probability per unit
time that a neuron at time t crosses the voltage threshold value VT, and thus, can be computed as the probability flux at VT,
regardless of the value of the conductance, g,
mEðtÞ ¼
Z 1

0
JV ðt;VT ; gÞ dg: ð4Þ
All neurons arriving at the threshold voltage VT emit a spike and we assume that they instantaneously relax to their rest va-
lue VR. Therefore, we need to supply boundary conditions for the PDE consistent with the evolution of a pdf for the trajec-
tories of the ODE system (1) and (2) with a reset boundary condition in the membrane potential variable:
JV ðt;VT ; gÞ ¼ JV ðt;VR; gÞ for all g 2 ½0;1Þ ð5Þ

JGðt; v;0Þ ¼ JGðt; v;1Þ ¼ 0 for all v 2 ½VR;VTÞ ð6Þ
That is, the flux of spiking neurons at the threshold voltage re-enters instantaneously through the reset voltage (5) and that
no neuron can have negative conductances or a non-decaying conductance distribution at large conductance values (6). We
point out that the g-boundary condition (6) can be rewritten as q(t,v,0) = 0 and q(t,v,g) ? 0 for all v 2 [VR,VT) as g ?1. Let
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us also remark that the v-boundary condition (5) on the threshold voltage implies that q(t,VT,g) = q(t,VR,g) = 0 for 0 6 g 6 gT

with the critical conductance determined by VT � VR = gT(VE � VT) since for excitatory neurons we have VR < VT < VE. For
g P gT, the boundary condition (5) imposes a relation between q(t,VT,g) and q(t,VR,g). Let us finally mention that this kinetic
model (3) generalizes other Fokker–Planck equations derived from some current-based LIF neuronal networks where one
considers only the evolution of the voltage (see, for instance, [9,8,32]).

Most studies of the behavior of neuronal networks as described by (1) and (2) through a kinetic theory
[14,47,15,13,45,35,36] have approached the computational simulation of this neuronal ensemble through direct Monte-
Carlo simulations of the stochastic differential system (see also [50,43], for details of the numerical schemes). Based on this
Fokker–Planck equation, further dimensional reduction was obtained by a moment closure method [14] and then analyzed
both numerically and theoretically [46,30].

The direct simulation of the (2 + 1)-dimensional nonlinear Fokker–Planck equation (3) for a neuronal network has not
been tackled thus far. Furthermore, our simulation has several advantages over direct Monte-Carlo simulations due to the
results being deterministic (for instance, the accurate resolution of transients and the possibility of obtaining all macroscopic
quantities of interest directly from suitable moments of the pdf, q(t,v,g)). A similar strategy was adopted for obtaining highly
accurate resolution of the charged particle transport in semiconductors (see [16,17,12] and references therein). One of the
possible drawbacks of the deterministic simulation of the Fokker–Planck equation (3) is its computational cost. However,
if one wants to resolve (1) and (2) by direct Monte-Carlo simulation and obtain good statistics for distribution functions
and for both dynamical transients and stationary states, the number of different realizations needed can be large, thus mak-
ing the direct deterministic simulation of (3) competitive with the Monte-Carlo approach. We will comment on computa-
tional costs in Section 3.

The main objectives of this work are then: to propose a highly accurate finite differences scheme for the solutions of the
Fokker–Planck equation (3), to cross-validate it against direct Monte-Carlo simulations, to analyze its performance, and to
study numerically the transients of the ensemble dynamics showing the appearance of synchronous and asynchronous solu-
tions. Concerning deterministic methods for related kinetic models, we are only aware of the results in [5]. There the authors
proposed a deterministic scheme to directly solve an integro-differential equation for a model system that included
refractory effect, that is, the spiking neurons went into a refractory state which could also described by another kinetic inte-
gro-differential equation. The authors also proposed two deterministic methods: One based on a direct upwind first-order
discretization of the advection derivatives together with an implicit time-stepping; the other based on splitting methods
to decrease the computational time, though some time-steps are done implicitly.

In our deterministic scheme for the Fokker–Planck equation (3), we approximate the advection derivatives in voltage by
finite-differences WENO (weighted essentially non-oscillatory) methods developed in [51,27] for nonlinear systems of con-
servation laws. Since the voltage variable does not have diffusion terms (second derivatives in the voltage), a high-order
method is important for the accuracy and stability for the cases where sharp fronts in the voltage develop. Both the advec-
tion and the diffusion term in the conductance variable are approximated together, as is usually done in drift–diffusion equa-
tions for semiconductors or in granular media models [11]; keeping good stability properties of the g-discretization leads to
an approximation scheme known as the Chang–Cooper method. Both approximations are assembled in an ODE system
which is solved by explicit third-order Runge–Kutta methods as in [51]. The accurate approximation of the v and g deriva-
tives allows us to use explicit time integrators with a fairly moderate CFL condition. The derivation of this scheme follows
similar ideas as in work done in Boltzmann–Poisson kinetic systems for semiconductors [16,17,12]. Also, splitting schemes
were developed for plasmas and semiconductor modelling [19,18], which may be applied to the present situation for further
computational savings.

After cross-validating our numerical results by direct comparisons to Monte-Carlo simulations, we focus on simulating
two phenomena commonly observed in neuronal network models. We first examine the appearance of bistability. Bi- and
multi-stable networks have been used in models of short term working memory [57], of oculomotor integrators [29], of vi-
sual perception [34] and of neuronal populations involved in decision making [3]. We then examine a model that exhibits
periodic solutions even when driven with inputs that are steady in time. Periodic or oscillatory solutions have been used
to model synchronous behavior and oscillations observed during cortical processing (for instance, [23,25]). Various studies
have examined how oscillatory solutions may arise in networks (see, for instance, [1,9,8,10] and references therein). With
our Fokker–Planck solver, we examine the transients as we increased the connectivity strength as we keep the strength
of the time-steady input fixed. We observe a transition from asynchronous behavior (signified by convergence towards sta-
tionary states) to synchronous behavior (signified by periodic solutions) and back to asynchronous behavior. Finally, one
advantage of the full deterministic simulation of the Eq. (3) is that we can compute accurately the evolution of the macro-
scopic moments of the pdf and their form in stationary states. Using these solutions, we validate the moment closure
assumptions as proposed in [14].

Let us finally comment that the well-posedness of the Cauchy problem for Eq. (3) with the boundary conditions (5) and
(6) has not been studied analytically yet, to the best of our knowledge. Furthermore, it is a difficult mathematical problem
since it is not clear how to obtain good estimates on the flux of spiking neurons going over the threshold voltage. As a con-
sequence, we do not know how to estimate analytically the firing rate of the neuron population (4) which is the source of
nonlinearity. For this reason, a numerical analysis of the proposed algorithm remains an open issue.

The paper is structured as follows. In Section 2, we present a derivation of the deterministic scheme and compare its
results to direct Monte-Carlo simulations. Section 3 details the simulation results obtained for the bistability issue, the
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transients synchronous versus asynchronous behavior and the validation of moment closures. We offer concluding remarks
in Section 4.

2. Numerical scheme for the kinetic equation

Our deterministic scheme for the Fokker–Planck equation (3) is based on a fifth order WENO-finite differences approx-
imation for the advection part in the voltage variable and an ‘‘upwind’’ scheme mixed with a ‘‘h-scheme’’, known as the
Chang–Cooper method, for the advection and the diffusion term in the conductance variable. The evolution in time is done
by means of a TVD third-order Runge–Kutta method. Both finite differences schemes (WENO and Chang–Cooper methods)
produce very accuracy and stable approximations of derivatives on v and g and allow us to use explicit TVD third-order
Runge–Kutta method with a fairly moderate CFL condition.

To discretize the Fokker–Planck equation, we rewrite (3) as follows:
@tqðt;v ; gÞ ¼ �@v JV ðt; v; gÞ þ
r2

gðtÞ
rE

@g MðgÞ@g
qðt; v; gÞ

MðgÞ

� �� �
ð7Þ
where
MðgÞ ¼ exp � j g �
�gEðtÞj2

2r2
gðtÞ

( )
:

and consider uniform meshes in v and g:
v i ¼ VR þ iDv i ¼ 0; . . . ;Nv

gj ¼ jDg j ¼ 0; . . . ;Ng
where Dv ¼ VT�VR
Nv

and Dg ¼ gmax
Ng

. The maximum value of the conductance gmax is adjusted in the numerical experiments in

such a way that for all t, v, q(t,v,g) � 0 for g P gmax. The approximations to the point values of the solution q(tn,vi,gj) (de-
noted by qn

i;j) are obtained with a dimension by dimension approximation to the derivatives on v and g.
Let us finally comment that although there are many numerical methods developed for classical Fokker–Planck equations,

see for instance [2] where Hermite polynomial expansions are used, they do not adapt well to our situation. The main dif-
ficulty being that the diffusion term only acts on one of the two variables, as is the case for kinetic Fokker–Planck equations,
see [7] for instance.

2.1. WENO-scheme

The advection term of Eq. (7) in the voltage variable is approximated using a fifth order conservative finite difference
WENO scheme [51,27]. The weighted essentially non-oscillatory scheme was originally developed for hyperbolic conserva-
tion laws. These finite difference methods combine the high accuracy for the smooth parts of the evolution together with a
nice treatment of possible steep fronts by locally weighting the best stencils. We remark that here, the flux in the voltage is
completely linear and thus, this choice of finite differences approximation is just a simple high-order choice which adapts
itself, when the need arises, to the nonlinear effect in the g variable and its possible transmission to the voltage variable
through the drift JV(t,v,g). We give a summary of the WENO method below for the sake of completeness. The variable g is
fixed and we consider the approximation in the v variable:
@v ðaðv i; gjÞqðtn;v i; gjÞÞ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
JV ðtn ;v i ;gjÞ

� 1
Dv ðĥiþ1=2 � ĥi�1=2Þ ð8Þ
where aðv i; gjÞ ¼ VR�v i
s

	 

þ gj

VE�v i
s

	 

. To explain the WENO scheme, here we assume that a(vi,gj) > 0, without loss of generality

(otherwise the procedure would just be mirror symmetric with respect to i + 1/2 when computing ĥiþ1=2). We denote
hi ¼ aðv i; gjÞqðtn;v i; gjÞ; i ¼ �2;�1; . . . ;Nv þ 2 ð9Þ
where j and n are all fixed. We obtain the numerical flux by
ĥiþ1=2 ¼ x1ĥð1Þiþ1=2 þx2ĥð2Þiþ1=2 þx3ĥð3Þiþ1=2
where ĥðmÞiþ1=2 are the three third order fluxes on three different stencils given by
ĥð1Þiþ1=2 ¼
1
3

hi�2 �
7
6

hi�1 þ
11
6

hi;

ĥð2Þiþ1=2 ¼ �
1
6

hi�1 þ
5
6

hi þ
1
3

hiþ1;

ĥð3Þiþ1=2 ¼
1
3

hi þ
5
6

hiþ1 �
1
6

hiþ2;
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The nonlinear weights xm are given by
xm ¼
~xmP3
l¼1 ~xl

; ~xl ¼
cl

ðeþ blÞ
2 ;
with e = 10�6, the linear weights cl are given by
c1 ¼
1

10
; c2 ¼

3
5
; c3 ¼

3
10

;

and the smoothness indicators bl are given by
b1 ¼
13
12
ðhi�2 � 2hi�1 þ hiÞ2 þ

1
4
ðhi�2 � 4hi�1 þ 3hiÞ2

b2 ¼
13
12
ðhi�1 � 2hi þ hiþ1Þ2 þ

1
4
ðhi�1 � hiþ1Þ2

b3 ¼
13
12
ðhi � 2hiþ1 þ hiþ2Þ2 þ

1
4

3hi � 4hiþ1 þ hiþ2ð Þ2:
As usual with this kind of schemes, some ghost points are necessary to impose numerically the boundary conditions (5).
This condition for the flux in v means that for every g if a(t,VT,g) < 0 then JV(t,VT,g) = 0 and consequently JV(t,VR,g) = 0, other-
wise JV(t,VR,g) = JV(t,VT,g). Therefore, for n, j fixed, the values at the ghost points are defined as: if a(tn,VT,gj) < 0 then h�i = 0
and hNvþi ¼ 0 for i = 1, 2, 3, otherwise if a(tn,VT,gj) P 0 thus h�i ¼ hNvþ1 and hNvþi ¼ hNvþ1 for i = 1, 2, 3, using the notation (9).

2.2. Chang–Cooper method

For the derivatives of the conductance variable in Eq. (7) we follow the Chang–Cooper method as considered in [11]. Orig-
inally, the Chang–Cooper method was designed to preserve the equilibrium state of the Fokker–Plank equation. This feature
is important to get accurate behavior of the discretization scheme in g at long times. In fact, it ensures that the Maxwellian
equilibria M(g) are preserved for the discretized scheme in the absence of the external time dependent inputs and for homo-
geneous data in v. In the jargon of the numerical conservation law community, this property is known as ‘‘well-balanced.’’
Moreover, this scheme is also an entropy decay preserving method, i.e., it keeps the associated Liapunov functional (called
entropy in statistical mechanics) decreasing in time for the semidiscrete scheme. As in the voltage variable we approximate
the term of conductance using finite differences:
@g
r2

gðtnÞ
rE

MðgjÞ@g
qðtn;v i; gjÞ

MðgjÞ

 !( )
� Fjþ1=2 � Fj�1=2

Dg
ð10Þ
where, for n and i fixed, the numerical flux is
Fjþ1=2 ¼
r2

gðtnÞ
rEDg

eMjþ1=2
qjþ1

Mjþ1
�

qj

Mj

� �

and
eMjþ1=2 ¼
MjMjþ1

Mjþ1 �Mj
ðlnðMjþ1Þ � lnðMjÞÞ
is a value between Mj and Mj+1. We have used the following notation: Mj = M(gj) and qj = q(tn,vi,gj). After some computations,
see [11] for details, Fj+1/2 can be rewritten as:
Fjþ1=2 ¼
r2

gðtÞ
rEDg

ðqjþ1 � qjÞ þ
r2

gðtÞx
rEDg

ðhqj þ ð1� hÞqjþ1Þ ð11Þ
where x = ln(Mj/Mj+1) and h ¼ 1
x� 1

ex�1. Now we observe, as we noted above, that (11) is an ‘‘upwind’’ scheme, mixed with a
‘‘h-scheme’’. To conclude this description of the numerical approximation in g, we remark that the ghost flux for j = �1 and
j = Ng + 1 are considered null, taking into account the boundary condition for g flux in (6). We finally remark that this method
is only known to preserve the entropy decreasing property when an implicit-in-time discretization is used.

2.3. TVD third-order RK

The evolution in time is implemented by means of the third order TVD Runge–Kutta method as in [51]:
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qð1Þ ¼ qn þ DtLðqn; tnÞ

qð2Þ ¼ 3
4
qn þ 1

4
qð1Þ þ 1

4
DtLðqð1Þ; tn þ DtÞ

qnþ1 ¼ 1
3
qn þ 2

3
qð2Þ þ 2

3
DtL qð2Þ; tn þ 1

2
Dt

� �
;

where L is the approximation to the advection and diffusion terms given by adding (8) and (10):
Lðqðt; g;vÞ; tÞ � �@v JV ðt;v ; gÞ þ
r2

gðtÞ
rE

@g MðgÞ@g
qðt; v; gÞ

MðgÞ

� �� �

and Dt is the time step, which is conditioned on the following CFL restriction since an explicit scheme is considered:
Dt 6 CFL min
Dv

maxi;j j aðv i; gjÞ j
;

ðDgÞ2
r2

g ðtnÞ
r þ Dg maxj j Fjþ1=2 j

8<:
9=;
where we recall that aðv; gÞ ¼ VR�v
s

� �
þ g VE�v

s

� �
. Due to the accurate approximations of the WENO-scheme and the Chang–

Cooper method of the fluxes, the CFL condition does not yield restrictive time-stepping.
Finally, since the system is nonlinear due to the firing rate:
mEðtÞ ¼
Z 1

0
JV ðt;VT ; gÞ dg;
which need to be incorporated, in a self-consistent fashion, at each time step, we approximate mE by the composite mid-
point rule and re-inject it in the next step. In our simulations we consider as initial data the product of two different Max-
wellian functions in g and v both normalized to be probability densities, i.e., unit numerical mass. For the bistable systems
we proceed in a different way, as we explain below in Section 3.

3. Simulation results

Here we illustrate the use of our numerical Fokker–Planck solver first through simple test cases and then by examining
the solutions to the following problems, produced by different choices of input forcing, m0E: stationary case with a unique
steady state, non-stationary solutions and a case exhibiting bistability. Finally, using our numerical solver we check the clo-
sure condition (12) in a variety of circumstances.

3.1. Test cases

We solve the set of Eqs. (1) and (2) with a modified second-order Runge–Kutta scheme [50] with a numerical time-step of
0.01 ms. In a few cases, runs with a numerical time-step of 0.001 ms were performed and no significant quantitative differ-
ences were observed. We note that Eqs. (1) and (2) are already written in reduced-dimensional units, in which only time has
dimensions, in ms; see, for instance, [33]. We set the network pool size to be N = 100,000 neurons, each one connected to
NE = 100 neurons in the direct Monte-Carlo simulations. The parameters of the system are as follows: s = 20 ms, rE = 3 ms,
VE = 14/3, VT = 1, VR = 0 and we set equal the rest and reset potentials. We set fE = 10 ms and SEE = 0.05 for our comparison
between the Monte-Carlo and Fokker–Planck solvers.

We compare our numerical Fokker–Planck solver to direct Monte Carlo simulations via the following examples, going
from stationary to non-stationary cases.

Stationary case. Case A: We consider a network in which the rate of input Poisson process m0E(t) = A with constant
A 2 [1000,1500].

Fig. 1 compares the network firing rate versus mean ginp = fEm0E between the Monte-Carlo and the Fokker–Planck simula-
tions. We observe very good agreement between the simulations. In Fig. 2 we compare the pdfs between the two simula-
tions. We fix A = 1400 and we display marginal probability distribution functions qv and qg for the stationary solutions.
Again we observe that the numerical results from the two solvers are in excellent agreement. We would like to point out
that for the results from the deterministic Fokker–Planck simulations, the distribution functions qv and qg were obtained
by numerical integrations of q, therefore we did not need to consider other, possibly simpler, derived Fokker–Planck systems
(say, by assuming a closure hypothesis) for qv or for qg. The time evolution of these distribution functions is shown in Fig. 3,
specifically, both at times 0.05. In our simulations we observe that qg at time 0.05 has achieved steady state; however, at
time 0.05, qv has yet to achieve steady state (attained before t = 0.1).

Non stationary case. We also analyze cases where the rate of Poisson process is not constant in time. We consider the two
following cases:

� Case B: The input Poisson process has a rate that depends on time continuously
m0EðtÞ ¼ Að1þ � sinðxtÞÞ
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Fig. 1. Evolution in time of the firing rate for Case A. Comparison between Monte Carlo and deterministic simulations.
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B1 : A ¼ 1500; � ¼ 300; x ¼ 8p
B2 : A ¼ 1000; � ¼ 200; x ¼ 8p
B3 : A ¼ 1500; � ¼ 300; x ¼ 80p
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� Case C: The input Poisson process has a rate that has a discrete jump in time
m0EðtÞ ¼ Ahðt � t0Þ þ B; h being the Heaviside function
A = 500, B = 1000, t0 = 1.

Figs. 4–6 compare the time evolution of the firing rate for the Case B (B1, B2 and B3), whereas Fig. 7 shows the firing rate in
the Case C. Comparing these figures we observe how the shape of the external input is reflected in the evolution of the firing
rate.

We note that simulating accurately ensembles of 100,000 or more LIF neurons are often needed to get good statistics for
the PDFs and for convergence of the instantaneous network firing rate. For instance, in the non-stationary cases (Cases B and
C), to capture individual spikes, we need to run the LIF simulations at a time-step of 0.1 ms or less and to get good conver-
gence of the firing rate, which, in all cases, took 20–50 times longer than solving the corresponding Fokker–Planck equation.
Furthermore, the difference between the LIF simulations and the corresponding Fokker–Plank results is more pronounced in
the cases where we are interested in the dynamical transients (for instance, in Case C), when a larger number of ensembles
(and/or realizations) are needed for a accurate resolution of the pdfs.

3.2. Bistability

Bistability is typical of systems with strong excitatory feedback. Even in situations as in Case A above, there are circum-
stances, when the recurrent excitatory coupling is sufficiently strong, that exhibit two distinct steady state solutions (with
different firing rates) for the same input forcing. For instance, let us consider an example with the following parameters:
fE = 1/200 s, SEE = 0.2, NE = 200 and rE = 2 ms. Fig. 8 shows bistability in the firing rate vs. input strength diagram. Here the
two different branches have different firing rates and can be distinguished by the choice of initial data. To obtain this firing
rate diagram we fit for an input of fEm0E = 11 as initial data the product of two different Maxwellian functions: one for the
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Fig. 4. Evolution in time of the firing rate for Case B1. Comparison between Monte Carlo and deterministic simulations.
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variable g and other one for the variable v, each normalized to have unit numerical integral (since q(v,g) is a probability dis-
tribution). Then the stationary solution of this problem is considered as initial data for the system with fEm0E = 10.9, whose
stationary state is taken as initial data for the case fEm0E = 10.8 and so on, to obtain the firing rates of the top branch. However,
to obtain the lower branch, it is not necessary to proceed in the same fashion, since this branch appears considering the same
initial data for all the input fEm0E.

In Figs. 9 and 10, we display temporal evolution (of network firing rates) and the (eventual) steady-state pdf for
fEm0E = 10.8 which is in the parameter regime exhibiting bistability. Fig. 9 shows the evolution of the firing rate and the sta-
tionary solution for the lower branch, whereas Fig. 10 shows the same for the upper branch. Note that we needed to start
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with initial data with high firing rates to access the upper branch. We also remark that there are damped, oscillatory tran-
sients in the latter case. Let us next turn to the development of oscillatory solutions.
3.3. Synchronous versus asynchronous solutions

In Fig. 11 we exhibit the firing rate for fEm0E = 11 where there is no bistability. (Thus any initial data will eventually ap-
proach the unique, high firing rate, steady state solution.) The damped oscillatory transients may be the signature of oscil-
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Fig. 11. Comparison between Monte Carlo and deterministic simulations for the evolution in time of the firing rate in Case A where fE = 1/200 s, SEE = 0.2,
NE = 200, rE = 2 ms and fEm0E = 11.
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latory solutions that are nearby in parameter space. Therefore, let us now consider the following case, SEE = 0.15, NE = 500,
fE = 0.002 s and fEm0E = 12, where firing rate is periodic in time; see Fig. 12. In fact, if we fix NE = 500, fE = 0.002 s and fEm0E = 12
and vary SEE, we obtain Fig. 13, which shows that there is a range in the excitatory coupling strength, SEE, approximately,
between 0.13 and 0.17 where periodic solutions appear (and outside of this interval oscillations do not happen). For small
SEE, solutions go quickly to the steady state but for slightly larger values over this interval (SEE P 0.17), the solution reaches
the steady state in an oscillatory way, starting with huge oscillations which vanish after some time.

In the case where 0.13 6 SEE 6 0.17 and periodic solutions appear, we also observe that maximum firing rate increases
when SEE is increased. Fig. 13 shows that the maximum value for SEE = 0.13 is around 250 spikes/s, while for SEE = 0.14 is
around 350 spikes/s, for SEE = 0.16 is less than 500 spikes/s and for SEE = 0.17 is more than 500 spikes/s. At the same time,
as we increase SEE the frequency of oscillations increases also. However, eventually the oscillations damp out again and stea-
dy state solutions are obtained and asynchronous behavior is observed again (see last panel of Fig. 13).

We note that the same sequence of asynchronous and synchronous behavior is observed in the Monte Carlo simulations,
i.e., an asynchronous convergence to stationary states at small values of SEE; periodic synchronous solutions at intermediate
values of SEE (with a decreasing period accompanied with an increase in the peak firing rates, as SEE is increased); and finally,
at high SEE, to a damped oscillatory convergence towards a stationary states with high firing rates (P100 spikes/s). However,
while the same sequence is observed, the precise bifurcation values of SEE are different. In fact, some of the Monte Carlo sim-
ulations show a sensitivity to initial conditions, even for statistically similar initial conditions (i.e., similar initial distribu-
tions of voltage and conductances), making a direct comparison difficult. Therefore, we are content with a qualitative
comparison as we detailed above.

3.4. Validation of moment closure assumptions

Eq. (3) is a nonlinear (2 + 1) dimensional problem and requires a numerical solver, one of which has been the subject of
this paper. To simplify the mathematical representation further, one can project out the g variable by defining the condi-
tional moments lnðvÞ ¼

R1
0 gnqðgjvÞdg, for n = 1, 2, . . . where q(gjv) is the (conditional) pdf of g given v and can be computed

from q(t,v,g) = q(gjv)qv(t,v). However, this will lead to a hierarchy of moment equations, where the dynamical equations for
lower order moments depend on higher order moments. To close this hierarchy, in [42,14] the authors postulated a closure
condition
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Fig. 13. Evolution in time of the firing rates for different values of SEE for Case A with constant: NE = 500, fE = 0.002 s and fEm0E = 12. From top to bottom and
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R2ðt; vÞ ¼ r2
gðtÞ ð12Þ
for the conditional variance, R2ðt;vÞ � l2ðt; vÞ � l2
1ðt;vÞ, and derived a system of two (1 + 1) dimensional PDEs for
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With our numerical scheme we can validate the closure assumption R2ðt;vÞ ¼ r2
gðtÞ (12) since we can easily compute

moments of the distribution function. Fig. 14 compares the conditional variance R2(t,v) with the variance r2
gðtÞ for different
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values of A in Case A where unique, steady state solutions exist. We note that, in the steady state, the closure condition is
satisfied, on average, away from the v-boundaries (the boundary presents the maximum percent relative error which is
around 60%). More precisely, the maximum L1 difference of the two variances occurs at v = 1 (for all but the briefest of initial
transients). In Fig. 15 we observe similar behavior in the case of where bistable solutions exist. Comparing both branches and
the considered cases in Fig. 14, we realize that the percent relative error for the upper branch is the lowest, less than 9%. In
general, we obtain that the closure assumption is reasonable for most values of v, away from the boundaries.
4. Conclusions

Our numerical Fokker–Planck solver is an efficient and accurate way of simulating the effective dynamics of a large-scale
LIF neuronal network. This deterministic representation of the dynamics at the macroscopic level allows us to efficiently
track the temporal evolution of the pdfs and to obtain any macroscopic quantities of the network dynamics. In this work,
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we have validated our numerical scheme by comparing it with stochastic Monte Carlo simulations. We have also used our
numerical solver to analyze a series of numerical examples. While a direct comparison between networks with physiological
parameters and our numerical simulations is not technically feasible at this point, we have chosen to examine results from
model networks with firing rates that are physiological realistic, i.e., with firing rates that range from a few spikes a second to
a hundred spikes a second. In future work, we will extend our numerical scheme to networks with both excitatory and inhib-
itory couplings and to networks with spatial dependencies. This future project is not a direct nor obvious modification of the
scheme developed in this paper: the boundary conditions in voltage are more complicated in cases where networks with
both excitatory and inhibitory couplings; more variables (and thus more equations) are needed; the spatial dependence
has to be clarified at the level of the Fokker–Plank equation, etc. Therefore, the work described in this paper is an essential
step towards simulating realistic, large-scale neuronal network behavior.
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