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We present a benchmark problem and a loosely-coupled partitioned scheme for fluid–
structure interaction with composite structures. The benchmark problem consists of an 
incompressible, viscous fluid interacting with a structure composed of two layers: a thin 
elastic layer with mass which is in contact with the fluid and modeled by the Koiter 
membrane/shell equations, and a thick elastic layer with mass modeled by the equations 
of linear elasticity. An efficient, modular, partitioned operator-splitting scheme is proposed 
to simulate solutions to the coupled, nonlinear FSI problem, without the need for sub-
iterations at every time-step. An energy estimate associated with unconditional stability is 
derived for the fully nonlinear FSI problem defined on moving domains. Two instructive 
numerical benchmark problems are presented to test the performance of numerical FSI 
schemes involving composite structures. It is shown numerically that the proposed scheme 
is at least first-order accurate both in time and space. This work reveals a new physical 
property of FSI problems involving thin interfaces with mass: the inertia of the thin fluid–
structure interface regularizes solutions to the full FSI problem.

© 2014 Elsevier Inc. All rights reserved.

1. Introduction

Composite materials are materials made from two or more constituent materials with different physical properties that 
when combined, produce a material with characteristics different from the individual components [75]. The new material 
may be preferred for many reasons: common examples include materials which are stronger, lighter or less expensive 
when compared to traditional materials. Composite materials have been used in virtually all areas of engineering. Examples 
include marine structures such as boats, ships, and offshore structures, in aerospace industry such as aircraft design, in the 
design of wind and marine turbines, and in the design of sports’ equipment such as skis and tennis racquets. They also 
appear everywhere in nature. Examples include bones, horns, wood, and biological tissues such as blood vessels of major 
human arteries. These materials are exposed to a wide spectrum of dynamic loads. In marine structures, aerospace industry, 
and in many biological constructs, wether natural or man-made, the dynamic loading comes from the surrounding fluid 
such as water, air, or blood flow. Understanding the interaction between composite materials and the surrounding fluid 
is important for the understanding of the normal function of the coupled fluid–structure system, as well as the detection 
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Fig. 1. Arterial wall layers.

of damage and/or pathologies in their function. Prevention of catastrophic events in engineered constructs, or the design 
of medical treatments to prevent further biological tissue damage, is aided by computational and experimental studies of 
fluid–composite structure interaction.

In problems in which the fluid and structure have comparable densities, which is the case with most biological tissues 
(e.g., arterial walls and blood), or in problems in which the structure density is less than the density of water, which is 
the case in several sandwich composite materials immersed in water [46], the exchange in energy between the fluid and 
structure is so significant that classical Dirichlet–Neumann loosely-coupled partitioned schemes for numerical simulation of 
these kinds of problems are unconditionally unstable [15,56]. This is due to the so called added mass effect, also known as 
virtual mass, or hydrodynamic mass. As the structure vibrates, its mass is increased by the mass of the surrounding fluid, 
consequently decreasing its natural frequency. This is due to the increase of total kinetic energy of the structure and fluid 
from the addition of the kinetic energy of the fluid, which significantly impacts the structure vibrations when the structure 
is “light” relative to the fluid. A comprehensive study of these problems remains to be a challenge due to their significant 
energy exchange leading to strong nonlinearities in the coupled FSI problem, and due to the intrinsic multi-physics nature 
of the problem.

The motivation for this paper comes from fluid–structure interaction between blood flow and cardiovascular tissue. 
Arterial walls of major human arteries are composite materials consisting of three main layers: the intima, media and 
adventitia, separated by thin elastic laminae, see Fig. 1. Arterial walls interact with blood flow. This interaction plays a 
crucial role in the normal physiology and pathophysiology of the human cardiovascular system.

In medium-to-large human arteries, such as the aorta or coronary arteries, blood can be modeled as an incompressible, 
viscous, Newtonian fluid. Due to the fact that density of blood is comparable to that of arterial wall tissue, the corresponding 
fluid–structure interaction problem suffers from the added mass effect, discussed above. Except for the Immersed Bound-
ary Method approaches, to this date, there have been no FSI numerical solvers based on the Arbitrary Lagrangian–Eulerian 
approaches, that would take into account the multi-layered structure of arterial walls, and the full nonlinear (two-way) cou-
pling with blood flow. In this manuscript we take a first step in this direction by proposing to study a benchmark problem 
in fluid–multi-layered-structure interaction in which the structure consists of two layers, a thin and a thick layer, where 
the thin layer serves as a fluid–structure interface with mass. The thin layer is modeled by the cylindrical Koiter membrane 
equations, while the thick layer by the equations of linear elasticity. The proposed problem is a nonlinear moving-boundary 
problem of parabolic–hyperbolic type.

Our computational method is based on an operator-splitting approach, introduced in [62] to study the existence of solu-
tions to an associated fluid–multi-layered structure interaction problem. To achieve stability and convergence, the splitting is 
performed in a special way in which the fluid sub-problem includes the thin structure inertia via a “Robin-type” boundary 
condition. The fact that the thin structure inertia is included implicitly in the fluid sub-problem, gives rise to the appropriate 
energy estimates for the approximate solutions, independent of the size of the time discretization, that provide uncondi-
tional stability of the underlying scheme. A couple of numerical examples are presented showing convergence and stability 
of the scheme. Although the benchmark problem and numerical examples are given in 2D, there is nothing in the method-
ology that depends on the spatial dimension. An application of the splitting to a problem in 3D can be found in [63], where 
a FSI with a single thin structure was considered.

The work presented in this manuscript reveals a new physical phenomenon which is related to the smoothing effects 
provided by the purely elastic fluid–structure interface with mass. The computational results presented in Example 2 of 
this manuscript show that the fluid–structure interface inertia regularizes the motion of the fluid–structure interface, and 
provides a new regularizing mechanism for solutions of FSI problems involving interfaces with mass.
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1.1. Literature review

The development of numerical solvers for fluid–structure interaction problems has become particularly active since the 
1980’s [67,68,22,30,51,47,35,34,37,36,19,41,40,48,50,70,69,3,72,20,23,44,45,16,29].

Until recently, only monolithic algorithms seemed applicable to blood flow simulations [29,32,66,77,8,9]. These algo-
rithms are based on solving the entire nonlinear coupled problem as one monolithic system. They are, however, generally 
quite expensive in terms of computational time, programming time and memory requirements, since they require solving a 
sequence of strongly coupled problems using, e.g., the fixed point and Newton’s methods [52,66,18,24,40,55].

The multi-physics nature of the blood flow problem strongly suggests to employ partitioned (or staggered) numerical 
algorithms, where the coupled fluid–structure interaction problem is separated into a fluid and a structure sub-problem. 
The fluid and structure sub-problems are integrated in time in an alternating way, and the coupling conditions are enforced 
asynchronously. When the density of the structure is much larger than the density of the fluid, as is the case in aeroe-
lasticity, it is sufficient to solve, at every time step, just one fluid sub-problem and one structure sub-problem to obtain a 
solution. The classical loosely-coupled partitioned schemes of this kind typically use the structure velocity in the fluid sub-
problem as Dirichlet data for the fluid velocity (enforcing the no-slip boundary condition at the fluid–structure interface), 
while in the structure sub-problem the structure is loaded by the fluid normal stress calculated in the fluid sub-problem. 
These Dirichlet–Neumann loosely-coupled partitioned schemes work well for problems in which the structure is much heav-
ier than the fluid. Unfortunately, when fluid and structure have comparable densities, which is the case in the blood flow 
application, the simple strategy of separating the fluid from the structure suffers from severe stability issues [15,56] associ-
ated with the added mass effect, discussed in the introduction. The added mass effect reflects itself in Dirichlet–Neumann 
loosely coupled partitioned schemes by having a poor approximation of the total energy of the coupled problem at ev-
ery time step of the scheme. A partial solution to this problem is to iterate several times between the fluid and structure 
sub-solvers at every time step until the energy of the continuous problem is well approximated. These strongly-coupled 
partitioned schemes, however, are computationally expensive and may suffer from convergence issues for certain parameter 
values [15].

To get around these difficulties, and to retain the main advantages of loosely-coupled partitioned schemes such as mod-
ularity, simple implementation, and low computational costs, several new loosely-coupled algorithms have been proposed 
recently. In general, they behave quite well for FSI problems containing a thin fluid–structure interface with mass [4,10,12,
38,66,25,28,26,27,1,2,6,69,64,18,17].

For FSI problem in which the structure is “thick” relative to the fluid, i.e., the thickness of the structure is comparable 
to the transverse dimension of the fluid domain, partitioned, loosely-coupled schemes are more difficult to construct. In 
fact, to the best of our knowledge, there have been no loosely-coupled, partitioned schemes proposed so far in literature 
for a class of FSI problems in hemodynamics that contain thick structure models to study the elastodynamics of arterial 
walls. The closest works in this direction include a strongly-coupled partition scheme by Badia et al. in [5], a coupled mo-
mentum method by Figueroa et al. in [29], an explicit scheme by Burman and Fernández where certain “defect-correction” 
sub-iterations are necessary to achieve optimal accuracy [14], and an operator-splitting scheme by Bukač et al. [13] where 
a version of Lie splitting was used to design a modular, “semi-partitioned” scheme.

Recently, a novel loosely coupled partitioned scheme, called the Kinematically Coupled β-Scheme, was introduced by 
Bukač, Čanić et al. in [10,12], and applied to FSI problems with thin elastic and viscoelastic structures, modeled by the 
membrane or shell equations. It was shown in [74] that the scheme is unconditionally stable even for the parameters asso-
ciated with the blood flow applications. Stability is achieved by combining the structure inertia with the fluid sub-problem 
as a Robin boundary condition, to mimic the energy balance of the continuous, coupled problem, while the structure prob-
lem is treated separately. The Robin boundary condition in the fluid sub-problem only depends on the structure thickness 
and density, in contrast with the coupled momentum method by Figueroa [29], where the whole structure equation is 
included in the fluid problem, leading to an ill-conditioned system more comparable to the one obtained by a mono-
lithic formulation. Additionally, Muha and Čanić showed that a version of the kinematically-coupled scheme with β = 0
converges to a weak solution of the fully nonlinear FSI problem [61]. The case β = 0 considered in [61] corresponds to 
the classical kinematically-coupled scheme, first introduced in [38]. Parameter β was introduced in [10] to increase the 
accuracy of the scheme. It was shown in [10] that the accuracy of the kinematically-coupled β-scheme with β = 1 was 
comparable to that of monolithic scheme by Badia, Quaini, and Quarteroni in [6] when applied to the nonlinear benchmark 
FSI problem in hemodynamics, introduced by Formaggia et al. in [31]. A different approach to increasing the accuracy of the 
classical kinematically-coupled scheme was recently proposed by Fernández et al. [25,28,26]. Their modified kinematically-
coupled scheme, called “the incremental displacement-correction scheme” treats the structure displacement explicitly in the 
fluid sub-step and then corrects it in the structure sub-step. Fernández et al. showed that the accuracy of the incremental 
displacement-correction scheme is first-order in time. The results were obtained for a FSI problem involving a thin elastic 
structure.

These recent results indicate that the kinematically-coupled scheme and its modifications provide an appealing way to 
study multi-physics problems involving FSI. Indeed, due to its simple implementation, modularity, and very good perfor-
mance, modifications of this scheme have been used by several authors to study different multi-physics problems involving 
FSI, such as FSI between artery, blood flow, and cardiovascular device called stent [60], FSI with poroelastic structures [11], 
and FSI involving non-Newtonian fluids [42,53].
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Fig. 2. Deformed domains Ω f (t) ∪ Ω s(t).

The main new results of this manuscript are:

• A benchmark problem is proposed for FSI with composite structures motivated by hemodynamics.
• A fully decoupled, stable kinematically-coupled scheme is designed to study this class of composite FSI problems. The 

novelty lies in the fact that due to the presence of a thin fluid–structure interface with mass the resulting numerical 
scheme can be fully decoupled and the fluid and structure sub-problems can be solved on separate domains. This is not 
the case with FSI problems involving massless interfaces which occurs when only “thick” structures are considered, in 
which case the fluid sub-problem has to be solved on the union of the fluid and structure domains, which is similar in 
spirit to monolithic schemes [13].

• For the first time, an energy estimate associated with unconditional stability of a loosely-coupled FSI scheme for the 
fully nonlinear composite FSI problem is derived (accounting for the fluid advection and fluid–structure coupling at the 
moving FSI interface with mass).

• A new physical property of FSI problems containing fluid–structure interfaces with mass is discovered: it is shown that 
interfaces with inertia regularize solutions of FSI problems, giving rise to the structural wave damping not observed in 
the case of massless interfaces.

2. Description of the fluid–structure interaction problem

We consider the flow of an incompressible, viscous fluid in a two-dimensional channel of reference length L, and refer-
ence width 2R , see Fig. 2. The channel is bounded by a deformable wall, which is composed of two layers: a thin elastic 
layer with thickness h, and a thick elastic layer with thickness H . The thin layer serves as a fluid–structure interface with 
mass. We are interested in simulating a pressure-driven flow through the deformable 2D channel with a two-way coupling 
between the fluid and structure. The structure deforms because of the fluid loading onto the structure, while the fluid flow 
and the fluid domain are affected by the motion of the elastic structure. Deformation of the structure will be given with 
respect of a reference configuration, i.e., in Lagrangian framework, where the reference structural domain is assumed to be a 
uniform cylindrical annulus with constant radius and thickness. Without loss of generality, we consider only the upper half 
of the fluid domain supplemented by a symmetry condition at the axis of symmetry. Thus, the reference fluid and structure 
domains in our problem are given, respectively, by

Ω̂ f := {
(z, r)

∣∣ 0 < z < L, 0 < r < R
}
,

Ω̂ s := {
(z, r)

∣∣ 0 < z < L, R < r < R + H
}
.

Here z and r denote the horizontal and vertical Cartesian coordinates, respectively (see Fig. 2). The reference configuration 
of the fluid–structure interface is given by

Γ̂ := {
(z, R)

∣∣ 0 < z < L
}
.

The flow of an incompressible, viscous fluid is modeled by the Navier–Stokes equations:

ρ f

(
∂ v

∂t
+ v · ∇v

)
= ∇ · σ f (v, p) in Ω f (t) × (0, T ), (1)

∇ · v = 0 in Ω f (t) × (0, T ), (2)

where v = (vz, vr) is the fluid velocity, p is the fluid pressure, ρ f is fluid density, and σ f is the fluid stress tensor. For 
a Newtonian fluid the stress tensor is given by σ f (v, p) = −p I + 2μ f D(v), where μ f is the fluid viscosity and D(v) =
(∇v + (∇v)τ )/2 is the rate-of-strain tensor.

The inlet to the fluid domain will be denoted by Γ f
in = {0} × (0, R), and the outlet by Γ f

out = {L} × (0, R). The flow will 
be driven by the inlet and outlet “pressure” data. Two sets of inlet and outlet boundary conditions will be considered.

BC1. The normal stress inlet and outlet data:

σn f = −pin/out(t)n
f on Γ

f × (0, T ), (3)
in/out in/out in/out
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where n f
in and n f

out are the corresponding outward unit normals. Even though not physiologically optimal, these bound-
ary conditions are common in blood flow simulations [4,58,65].

BC2. The dynamic pressure inlet and outlet data:

p + ρ f

2
|u|2 = pin/out(t)

ur = 0

}
on Γ

f
in/out × (0, T ), (4)

where pin/out ∈ L2
loc(0, ∞) are given. This set of boundary conditions will be used in energy estimates and in the proof 

of stability of the proposed scheme.

At the bottom fluid boundary denoted by Γb , defined by (0, L) × {0}, the following symmetry conditions are prescribed:

∂vz

∂r
(z,0, t) = 0, vr(z,0, t) = 0 on (0, L) × (0, T ). (5)

The lateral fluid boundary is bounded by a deformable, composite structure. The thin layer, which is in contact with the 
fluid, is modeled by the linearly elastic Koiter membrane model:

ρmh
∂2η̂z

∂t2
− C2

∂η̂r

∂ ẑ
− C1

∂2η̂z

∂ ẑ2
= f̂ z on Γ̂ × (0, T ), (6)

ρmh
∂2η̂r

∂t2
+ C0η̂r + C2

∂η̂z

∂ ẑ
= f̂ r on Γ̂ × (0, T ), (7)

where η̂(ẑ, t) = (η̂z(ẑ, t), η̂r(ẑ, t)) denotes the axial and radial components of displacement, f̂ = ( f̂ z, f̂ r) is the surface den-
sity of the force applied to the shell, ρm denotes membrane density, and

C0 = h

R2

(
2μmλm

λm + 2μm
+ 2μm

)
, C1 = h

(
2μmλm

λm + 2μm
+ 2μm

)
, C2 = h

R

2μmλm

λm + 2μm
, (8)

where μm and λm are the Lamé constants. In terms of the Young’s modulus of elasticity and Poisson ratio, coefficients C0 , 
C1, and C2 can be written as

C0 = hE

R2(1 − σ 2)
, C1 = hE

1 − σ 2
, C2 = hEσ

R(1 − σ 2)
.

The thick layer of the wall will be modeled by the equations of linear elasticity with an (artificially) added extra term γ Û, 
where Û denotes the thick structure displacement. This term accounts for the circumferential strain whose effects are lost 
in the transition from 3D to 2D [4,54,7]. Although γ , in general, should be a matrix (to account for the different stresses in 
different directions), we take γ to be a scalar, as in [4,54,7], for easier comparison with the available FSI results presented 
in those publications. The model reads:

ρs
∂2Û

∂t2
+ γ Û = ∇ · σ s(Û ) in Ω̂ s × (0, T ), (9)

where Û = (Û z, Ûr) is the structure displacement and ρs is the structure density. We will be assuming that the thick 
structure behaves as a linearly elastic Saint-Venant Kirchhoff material, in which case the stress–displacement relationship is 
given by

σ s(Û ) = 2μs D(Û ) + λs(∇ · Û )I ,

where μs and λs are the Lamé coefficients for the thick layer. In the simulations presented in Sections 6.1 and 6.2 the Lamé 
constants of the thin and thick structural layer will be assumed to be the same:

λm = λs, μm = μs.

The thick structure will be assumed to be fixed at the inlet and outlet boundaries:

Û (0, r, t) = Û (L, r, t) = 0 on [R, R + H] × (0, T ). (10)

Furthermore, at the external structure boundary Γ̂ s
ext = {R + H} × (0, L) the structure will be exposed to zero external 

ambient pressure with zero axial displacement:

ns
ext · σ sns

ext = 0 on Γ̂ s
ext × (0, T ), (11)

Û z = 0 on Γ̂ s
ext × (0, T ), (12)

where ns
ext is the outward unit normal vector on Γ̂ s

ext .
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Initially, the fluid and the structure are assumed to be at rest, with zero displacement from the reference configuration

v = 0, η̂ = 0,
∂η̂

∂t
= 0, Û = 0,

∂ Û

∂t
= 0, at t = 0. (13)

The fluid and the composite structure are coupled via the following kinematic and dynamic boundary conditions [73,57]:

• Kinematic coupling conditions describe continuity of velocity at the fluid–structure interface (no-slip)

v
(
ẑ + η̂z(ẑ, t), R + η̂r(ẑ, t), t

) = ∂η̂

∂t
(ẑ, t) on (0, L) × (0, T ), (14)

and continuity of displacement

η̂(ẑ, t) = Û (ẑ, R, t) on (0, L) × (0, T ); (15)

• Dynamic coupling condition describes the second Newton’s law of motion of the fluid–structure interface, which is 
loaded by the normal stresses exerted by both the fluid and thick structure. The condition reads:(

ρmh ∂2η̂z

∂t2 − C2
∂η̂r
∂ ẑ

− C1
∂2η̂z

∂ ẑ2

ρmh ∂2η̂r

∂t2 + C0η̂r + C2
∂η̂z
∂ ẑ

)
= J ̂σ f n f

∣∣
Γ (t) + σ sns

∣∣
Γ̂

, (16)

on (0, L) × (0, T ), where J denotes the Jacobian of the transformation from Eulerian to Lagrangian coordinates, and 
σ̂ f n f |Γ (t) denotes the normal fluid stress at the deformed fluid–structure interface, evaluated on the reference configu-
ration, namely at the points (ẑ + η̂z(ẑ, t), R + η̂r(ẑ, t)) for ẑ ∈ (0, L) and t ∈ (0, T ). Vector n f is the outward unit normal 
to the deformed fluid domain, and ns is the outward unit normal to the structure domain.

2.1. The energy of the coupled problem

The coupled fluid–composite structure interaction problem (1)–(16) with dynamic pressure inlet and outlet data, satisfies 
the following energy equality:

d

dt

{
ρ f

2
‖v‖2

L2(Ω f (t))
+ ρmh

2

∥∥∥∥∂η̂z

∂t

∥∥∥∥2

L2(0,L)

+ ρmh

2

∥∥∥∥∂η̂r

∂t

∥∥∥∥2

L2(0,L)

+ ρs

2

∥∥∥∥∂ Û

∂t

∥∥∥∥2

L2(Ω̂ s)︸ ︷︷ ︸
Kinetic energy of the coupled problem

+ h

[
4μm

∥∥∥∥ η̂r

R

∥∥∥∥2

L2(0,L)

+ 4μm

∥∥∥∥∂η̂z

∂ ẑ

∥∥∥∥2

L2(0,L)

+ 4μmλm

λm + 2μm

∥∥∥∥∂η̂z

∂ ẑ
+ η̂r

R

∥∥∥∥2

L2(0,L)

]
︸ ︷︷ ︸

Membrane elastic energy

+ γ

2
‖Û‖2

L2(Ω̂ s)
+ μs

∥∥D(Û )
∥∥2

L2(Ω̂ s)
+ λs

2
‖∇ · Û‖2

L2(Ω̂ s)︸ ︷︷ ︸
Thick structure elastic energy

}
+ 2μ f

∥∥D(v)
∥∥2

L2(Ω f (t))︸ ︷︷ ︸
Fluid viscous energy

=
R∫

0

pin(t)vz
∣∣

z=0dr −
R∫

0

pout(t)vz
∣∣

z=Ldr. (17)

The derivation of the energy equality above is similar to that in [62] where the proof of existence of a weak solution to 
the coupled problem was proved. The energy equality (17) states that if a smooth solution to the coupled fluid–structure 
interaction problem (1)–(16) exists, then the rate of change of the kinetic energy of the fluid, the kinetic energy of the 
multilayered structure, and the elastic energy of the structure, plus the viscous dissipation of the fluid, are counter-balanced 
by the work done by the inlet and outlet data.

2.2. The ALE framework

To circumvent the difficulty associated with the fact that the fluid domain changes in time, we adopt the Arbitrary 
Lagrangian Eulerian (ALE) method [41,19,65]. The ALE approach is based on introducing a family of arbitrary, smooth, 
homeomorphic mappings At defined on the reference domain Ω̂ f such that, for each t ∈ (t0, T ), At maps the reference 
domain Ω̂ f into the current domain Ω f (t):

At : Ω̂ f → Ω f (t) ⊂ R2, x = At(x̂) ∈ Ω f (t), for x̂ ∈ Ω̂ f .

Written in ALE framework, system (1)–(2) reads as follows: Find v = (vz, vr) and p, with v̂(x̂, t) = v(At(x̂), t) such that
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ρ f

(
∂ v

∂t

∣∣∣∣
x̂
+ (v − w) · ∇v

)
= ∇ · σ f (v, p), in Ω f (t) × (0, T ), (18)

∇ · v = 0 in Ω f (t) × (0, T ), (19)

where w = ∂At (x̂)
∂t denotes the domain velocity. Note that ∂ f

∂t |x̂ denotes the time derivative of f evaluated on the reference 
domain.

2.3. Weak formulation of the coupled FSI problem

For all t ∈ [0, T ) define the following test function spaces

V f (t) = {
ϕ : Ω f (t) →R2

∣∣ ϕ = ϕ̂ ◦ (At)
−1, ϕ̂ ∈ (

H1(Ω̂ f ))2
, ϕr |r=0 = 0, ϕ|z=0,L = 0

}
, (20)

Q (t) = {
q : Ω f (t) →R

∣∣ q = q̂ ◦ (At)
−1, q̂ ∈ L2(Ω̂ f )}, (21)

V̂ m = {
ζ̂ : (0, L) →R2

∣∣ ζ̂ ∈ (
H1

0(Γ̂ )
)2}

, (22)

V̂ s = {
ψ̂ : Ω̂ s →R2

∣∣ ψ̂ ∈ (
H1(Ω̂ s))2

, ψ̂ |z=0,L = 0, ψ̂z|Γ̂ s
ext

= 0
}
, (23)

and introduce the function space

V f si = {
(ϕ, ζ̂ , ψ̂) ∈ V f (t) × V̂ m × V̂ s

∣∣ ϕ|Γ (t) = ζ , ζ̂ = ψ̂ |
Γ̂

}
, (24)

where ζ := ζ̂ ◦ (A−1
t |Γ (t)). The variational formulation of the coupled fluid–structure interaction problem now reads: given 

t ∈ (0, T ), find (v, η̂, Û , p) ∈ V f (t) × V̂ m × V̂ s × Q (t) such that (14) and (15) hold and such that for all (ϕ, ̂ζ , ψ̂, q) ∈
V f si × Q (t)

ρ f

∫
Ω f (t)

∂ v

∂t
· ϕdx +

∫
Ω f (t)

(v · ∇)v · ϕdx + 2μ f

∫
Ω f (t)

D(v) : D(ϕ)dx

−
∫

Ω f (t)

p∇ · ϕdx +
∫

Ω f (t)

q∇ · vdx + ρmh

L∫
0

∂2η̂z

∂t2
ζ̂zdẑ + ρmh

L∫
0

∂2η̂r

∂t2
ζ̂rdẑ

− C2

L∫
0

∂η̂r

∂ ẑ
ζ̂zdẑ + C1

L∫
0

∂η̂z

∂ ẑ

∂ζ̂z

∂ ẑ
dẑ + C0

L∫
0

η̂r ζ̂rdẑ + C2

L∫
0

∂η̂z

∂ ẑ
ζ̂rdẑ + ρs

∫
Ω̂ s

∂2Û

∂t2
· ψdx̂

+ 2μs

∫
Ω̂ s

D(Û ) : D(ψ̂)dx̂ + λs

∫
Ω̂ s

(∇ · Û )(∇ · ψ̂)dx̂ + γ

∫
Ω̂ s

Û · ψ̂dx̂

=
R∫

0

pin(t)ϕz|z=0dr −
R∫

0

pout(t)ϕz|z=Ldr, (25)

supplemented with initial conditions.

3. The splitting algorithm

To numerically solve the fluid–multilayered structure interaction (1)–(16) we propose a loosely coupled scheme based 
on the Lie operator splitting algorithm [33].

3.1. The Lie scheme and the first-order system

To apply the Lie splitting scheme the problem must first be written as a first-order system in time:

∂φ

∂t
+ A(φ) = 0, in (0, T ), (26)

φ(0) = φ0, (27)

where A is an operator from a Hilbert space into itself. Operator A is then split, in a non-trivial decomposition, as

A =
I∑

Ai . (28)

i=1
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The time discretization via Lie splitting consists of the following. Let �t > 0 be a time discretization step. Denote tn = n�t
and let φn be an approximation of φ(tn). Set φ0 = φ0. Then, for n ≥ 0 compute φn+1 by solving

∂φi

∂t
+ Ai(φi) = 0 in

(
tn, tn+1), (29)

φi
(
tn) = φn+(i−1)/I , (30)

and then set φn+i/I = φi(tn+1), for i = 1, . . . , I .
This method is first-order accurate in time. More precisely, if (26) is defined on a finite-dimensional space, and if the 

operators Ai are smooth enough, then ‖φ(tn) − φn‖ = O (�t) [33]. In our case, operator A that is associated with problem 
(1)–(16) will be split into a sum of three operators:

A1. The thick structure elastodynamics problem with thin structure elastodynamics included as Robin-type boundary 
condition.

A2(a). A time-dependent Stokes problem with thin structure inertia included as Robin boundary condition.
A2(b). The fluid advection problem.

Operator A1 defines a structure problem. Operators A2(a) and A2(b) define a fluid problem.
To rewrite system (1)–(16) in first-order form, we introduce two new variables denoting the thin and thick structure 

velocities:

ξ̂ = ∂η̂

∂t
and V̂ = ∂ Û

∂t
.

System (1)–(16) can be written in first-order ALE form as follows: Find v = (vz, vr), p, η̂ = (η̂z, η̂r), ξ̂ = (ξ̂z, ̂ξr), Û = (Û z, Ûr)

and V̂ = (V̂ z, V̂ r), with v̂(x̂, t) = v(At(x̂), t), such that

ρ f

(
∂ v

∂t

∣∣∣∣
x̂
+ (v − w) · ∇v

)
= ∇ · σ f (v, p) in Ω f (t) × (0, T ), (31a)

∇ · v = 0 in Ω f (t) × (0, T ), (31b)

ρmh
∂ξ̂z

∂t
− C2

∂η̂r

∂ ẑ
− C1

∂2η̂z

∂ ẑ2
= f̂ z on Γ̂ × (0, T ), (31c)

ρmh
∂ξ̂r

∂t
+ C0η̂r + C2

∂η̂z

∂ ẑ
= f̂ r on Γ̂ × (0, T ), (31d)

∂η̂

∂t
= ξ̂ on Γ̂ × (0, T ), (31e)

ρs
∂ V̂

∂t
+ γ Û = ∇ · σ s(Û ) in Ω̂ s × (0, T ), (31f)

∂ Û

∂t
= V̂ in Ω̂ s × (0, T ), (31g)

with the following coupling conditions at the fluid–structure interface:

ξ = v|Γ (t), η̂ = Û |
Γ̂

, (32)

ρmh
∂(v̂ z|Γ (t))

∂t
− C2

∂η̂r

∂ ẑ
− C1

∂2η̂z

∂ ẑ2
+ J ̂σn f

∣∣
Γ (t) · ez + σ sns

∣∣
Γ̂

· ez = 0, (33)

ρmh
∂(v̂r |Γ (t))

∂t
+ C0η̂r + C2

∂η̂z

∂ ẑ
+ J ̂σn f

∣∣
Γ (t) · er + σ sns

∣∣
Γ̂

· er = 0. (34)

This problem is supplemented with the boundary and initial conditions presented in Section 2.

3.2. Details of the operator-splitting scheme

The following splitting of the fluid stress σ̂ f n f will be used in the splitting algorithm:

σ̂ f n f = σ̂ f n f + β p̂n f︸ ︷︷ ︸
(Part I)

−β p̂n f︸ ︷︷ ︸
(Part II)

,

where β ∈ [0, 1]. Part I of the fluid stress will be included in the Robin-type boundary condition for the fluid sub-problem, 
while Part II of the fluid stress will be included in the Robin-type boundary condition for the thick structure equations. 
Details of the scheme are as follows.
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Problem A1. This problem involves solving the thick structure problem on Ω̂S , with membrane elastodynamics serving 
as a Robin-type boundary condition on Γ̂ . The Robin boundary condition also includes Part II of the normal fluid stress, 
evaluated at the previous time-step, as part of the loading for the elastodynamics of the thin structure.

The problem reads: Find v , η̂, ξ̂ , V̂ , and Û , with v̂(x̂, t) = v(At(x̂), t) such that:

ρs
∂ V̂

∂t
+ γ Û = ∇ · σ s(Û )

∂ Û

∂t
= V̂

⎫⎪⎪⎬⎪⎪⎭ in Ω̂ s × (
tn, tn+1), (35)

satisfying the following conditions on Γ̂ × (tn, tn+1):

ρmh
∂(v̂ z|Γ (t))

∂t
− C2

∂η̂r

∂ ẑ
− C1

∂2η̂z

∂ ẑ2
+ σ sns

∣∣
Γ̂

· ez = Jn(β ̂pnn f
∣∣
Γ (t)

) · ez,

ρmh
∂(v̂r |Γ (t))

∂t
+ C0η̂r + C2

∂η̂z

∂ ẑ
+ σ sns

∣∣
Γ̂

· er = Jn(β ̂pnn f
∣∣
Γ (t)

) · er,

∂η̂

∂t
= ξ̂ , ξ = v|Γ (t), η̂ = Û |

Γ̂
,

and satisfying the following boundary conditions at z = 0, L and at Γ̂ s
ext:

Û |z=0,L = 0,

Û z = 0, ns
ext · σ sns

ext = 0 on Γ̂ s
ext × (

tn, tn+1).
The initial conditions are given by the values of the unknown functions at the end of the previous time step:

v
(
tn) = vn, η̂

(
tn) = η̂n

, ξ̂
(
tn) = ξ̂

n
, Û

(
tn) = Û

n
, V̂

(
tn) = V̂

n
.

The fluid velocity remains unchanged:

∂ v

∂t

∣∣∣∣
x̂
= 0 in Ω f (tn) × (

tn, tn+1).
The values of the just calculated variables are set to be vn+1/3 = v(tn+1), η̂n+1/3 = η̂(tn+1), ξ̂

n+1/3 = ξ̂(tn+1), Û
n+1/3 =

Û (tn+1), V̂
n+1/3 = V̂ (tn+1), pn+1 = p(tn+1).

Using the just-calculated values of the thin structure displacement and velocity we compute the ALE velocity w by 
defining Atn+1 to be the harmonic extension of the structure displacement η̂n+1/3 at the fluid–structure interface onto the 
whole domain Ω̂ f

�Atn+1 = 0 in Ω̂ f ,

Atn+1 |Γ̂ = η̂n+1/3
,

Atn+1 |∂Ω̂ f \Γ̂ = 0.

Then, we define wn+1 = ∂Atn+1

∂t = ∂x
∂t ≈ xn+1−xn

�t , which remains unchanged in Problems 2(a) and 2(b).

Remark 1. Note that using the kinematic coupling conditions we can rewrite the membrane equations in the following way:

ρmh
∂ V̂ z

∂t
− C2

∂ Ûr

∂ ẑ
− C1

∂2Û z

∂ ẑ2
+ σ sns

∣∣
Γ̂

· ez = Jn(β ̂pnn f
∣∣
Γ (t)

) · ez, on Γ̂ × (
tn, tn+1),

ρmh
∂ V̂ r

∂t
+ C0Ûr + C2

∂ Û z

∂ ẑ
+ σ sns

∣∣
Γ̂

· er = Jn(β ̂pnn f
∣∣
Γ (t)

) · er on Γ̂ × (
tn, tn+1).

In this way the membrane equations become a Robin-type boundary condition for the thick structure problem, and Prob-
lem A1 becomes a pure structure problem.

Problem A2(a). This problem involves solving a time dependent Stokes problem with a Robin-type boundary condition 
involving the structure inertia and Part I of the fluid stress. This problem is solved on a fixed fluid domain Ω f (tn), which is 
determined by the location of the structure position calculated in the previous time step.

The problem reads as follows: Find v , p, η̂, ξ̂ , V̂ and Û , with v̂(x̂, t) = v(At(x̂), t) such that for t ∈ (tn, tn+1), with pn

obtained at the previous time step, the following holds:
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ρ f
∂ v

∂t

∣∣∣∣
x̂
= ∇ · σ f

∇ · v = 0

⎫⎬⎭ in Ω f (tn) × (
tn, tn+1), (36)

with the Robin-type boundary condition on Γ̂ × (tn, tn+1) given by:

ρmh
∂(v̂|Γ (t))

∂t
+ J

( ̂σ f n f
∣∣
Γ (t) + β ̂pnn f

∣∣
Γ (t)

) = 0.

This is supplemented with the following inlet and outlet boundary conditions on (tn, tn+1):

v(0, R, t) = v(L, R, t) = 0,

σ f n f
in = −pin(t)n

f
in on Γ

f
in , σ f n f

out = −pout(t)n
f
out on Γ

f
out,

and the following symmetry boundary conditions at r = 0:

∂vz

∂r
(z,0, t) = vr(z,0, t) = 0 on (0, L) × (

tn, tn+1).
The location of the structure remains unchanged:

∂η̂

∂t
= 0 on Γ̂ × (

tn, tn+1),
∂ V̂

∂t
= ∂ Û

∂t
= 0 in Ω̂ s × (

tn, tn+1).
The initial conditions are given by: v(tn) = vn+1/3, η̂(tn) = η̂n+1/3, ξ̂(tn) = ξ̂

n+1/3
, Û (tn) = Û

n+1/3
, and V̂ (tn) = V̂

n+1/3
.

After a solution to this problem is calculated, set vn+2/3 = v(tn+1), η̂n+2/3 = η̂(tn+1), ξ̂
n+2/3 = ξ̂(tn+1), Û

n+2/3 = Û (tn+1), 
V̂

n+2/3 = V̂ (tn+1), pn+1 = p(tn+1).

Problem A2(b). Solve the fluid and ALE advection sub-problem defined on the fixed domain Ω f (tn), with the domain 
velocity wn+1 just calculated in Problem A1.

The problem reads: Find v , η̂, ξ̂ , V̂ and Û , with v̂(x̂, t) = v(At(x̂), t) and wn+1 computed in Problem A1, such that:

∂ v

∂t

∣∣∣∣
x̂
+ (

vn − wn+1) · ∇v = 0 in Ω f (tn) × (
tn, tn+1),

with the lateral boundary condition on Γ̂ × (tn, tn+1) given by

ρmh
∂(v̂|Γ (t))

∂t
= 0,

and with the inlet/outlet boundary conditions defined on the portion of the boundary for which the slope of the charac-
teristics associated with the advection problem, defined by the sign of (vn − wn+1) · n, is pointing inward, toward the fluid 
domain:

v = vn+2/3, on Γ
n+2/3
− , where Γ

n+2/3
− = {

x ∈R2
∣∣ x ∈ ∂Ω f (tn)

,
(

vn − wn+1) · n < 0
}
.

The structure does not change in this step:

∂η̂

∂t
= 0 on Γ̂ × (

tn, tn+1),
∂ V̂

∂t
= ∂ Û

∂t
= 0 in Ω̂ s × (

tn, tn+1).
The initial conditions are given by the solution obtained in Problem A2(a): v(tn) = vn+2/3, η̂(tn) = η̂n+2/3, ξ̂(tn) = ξ̂

n+2/3
, 

Û (tn) = Û
n+2/3

, and V̂ (tn) = V̂
n+2/3

.

Then set vn+1 = v(tn+1), η̂n+1 = η̂(tn+1), ξ̂
n+1 = ξ̂(tn+1), Û

n+1 = Û (tn+1), V̂
n+1 = V̂ (tn+1).

After this step we update the fluid domain position via

Ω f (tn+1) = Atn+1

(
Ω̂ f ).

Then set tn = tn+1 and return to Problem A1.
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4. The discretized scheme in weak form

The Backward Euler scheme is used to approximate the time derivatives on each (tn+1, tn), while for the space dis-
cretization, we use the finite element method approach, based on a conforming FEM triangulation with maximum triangle 
diameter k. For this purpose, we define the finite element spaces V f

k (tn) ⊂ V f (tn), Q k(tn) ⊂ Q (tn), V̂ m
k ⊂ V̂ m and V̂ s

k ⊂ V̂ s , 
and introduce the following bilinear forms

an
f (v,ϕ) := 2μ f

∫
Ω f (tn)

D(v) : D(ϕ)dx,

bn
f (p,ϕ) :=

∫
Ω f (tn)

p∇ · ϕdx,

âm(η̂, ζ̂ ) := C1

L∫
0

∂η̂z

∂ ẑ

∂ζ̂z

∂ ẑ
dẑ + C0

L∫
0

η̂r ζ̂rdẑ + C2

L∫
0

∂η̂z

∂ ẑ
ζ̂rdẑ − C2

L∫
0

∂η̂r

∂ ẑ
ζ̂zdẑ,

âe(Û , ψ̂) := 2μs

∫
Ω̂ s

D(Û ) : D(ψ̂)dx̂ + λs

∫
Ω̂ s

(∇ · Û )(∇ · ψ̂)dx̂ + γ

∫
Ω̂ s

Û · ψ̂dx̂.

Discretization of the operator splitting scheme discussed above, in weak form, is given by the following:

Problem A1 (The structure problem). To discretize the structure problem in time we use the second order Newmark scheme. 
The problem reads as follows: Find (Û

n+1/3
k , V̂

n+1/3
k ) ∈ V̂ s

h × V̂ s
k such that for all (ψ̂k, φ̂k) ∈ V̂ s

k × V̂ s
k

ρs

∫
Ω̂ s

V̂
n+1/3
k − V̂

n
k

�t
· ψ̂kdx̂ + γ

∫
Ω̂ s

Û
n
k + Û

n+1/3
k

2
· ψ̂kdx̂

+ ρmh

L∫
0

V̂
n+1/3
k − V̂

n
k

�t
· ψ̂kdẑ + âm

(
Û

n
k + Û

n+1/3
k

2
, ψ̂k

)
+ âe

(
Û

n
k + Û

n+1/3
k

2
, ψ̂k

)

+ ρs

∫
Ω̂ s

(
V̂

n
k + V̂

n+1/3
k

2
− Û

n+1/3
k − Û

n
k

�t

)
· φ̂kdx̂ + ρmh

L∫
0

(
V̂

n
k + V̂

n+1/3
k

2
− Û

n+1/3
k − Û

n
k

�t

)
· φ̂kdẑ

=
L∫

0

Jnβ ̂pnn f
∣∣
Γ (t) · ψ̂kdẑ. (37)

Note that in this step we take all the kinematic coupling conditions into account: initially we set V̂
n
k |Γ = ξ̂

n
k = v̂n

k |Γ (tn); 

then, once Û
n+1/3
k and V̂

n+1/3
k are computed, η̂n+1/3

k , ξ̂
n+1/3
k and ̂

vn+1/3
k |Γ (tn) can be recovered via η̂n+1/3

k = Û
n+1/3
k |Γ and 

ξ̂
n+1/3
k = ̂

vn+1/3
k |Γ (tn) = V̂

n+1/3
k |Γ .

In this step ∂ vk/∂t = 0, and so vn+1/3
k = vn

k .

At the end of this step we compute the new fluid domain velocity by finding Atn+1 ∈ (H1(Ω̂ f ))2 with Atn+1 |Γ̂ = η̂n+1/3

and Atn+1 |∂Ω̂ f \Γ̂ = 0, such that∫
Ω̂ f

∇Atn+1 · ∇ζdx̂ = 0, ∀ζ ∈ (
H1

0

(
Ω̂ f ))2

. (38)

Then, the new fluid domain velocity is given by

wn+1 = ∂Atn+1

∂t
≈ Atn+1(x̂) − xn

�t
.

Problem A2(a) (The time dependent Stokes problem). We discretize Problem A2(a) using the Backward Euler scheme, giving 
rise to the following weak formulation: Find (vn+2/3

, pn+1) ∈ V f
(tn) × Q k(tn) such that for all (ϕk, qk) ∈ V f

(tn) × Q k(tn)
k k k k
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ρ f

∫
Ω f (tn)

vn+2/3
k − vn+1/3

k

�t
· ϕkdx + an

f

(
vn+2/3

k ,ϕk

) − bn
f

(
pn+1

k ,ϕk

)

+ bn
f

(
qk, vn+2/3

k

) + ρmh

L∫
0

̂
vn+2/3

k |Γ (tn) − ̂
vn+1/3

k |Γ (tn)

�t
· ϕ̂kdx̂

=
R∫

0

pin
(
tn+1)ϕz,k|z=0dr −

R∫
0

pout
(
tn+1)ϕz,k|z=Ldr −

L∫
0

Jnβ ̂pnn f
∣∣
Γ (t) · ϕ̂kdx̂. (39)

In this step the structure is not moving, and so Û
n+2/3
k = Û

n+1/3
k , V̂

n+2/3
k = V̂

n+1/3
k , η̂n+2/3

k = η̂n+1/3
k , and ξ̂

n+2/3
k = ξ̂

n+1/3
k .

Problem A2(b) (The fluid and ALE advection). As in the previous step, we discretize Problem A2(b) using the Backward Euler 
scheme. The weak formulation reads as follows: Find vn+1

k ∈ V f
k (tn) with vn+1

k = vn+2/3
k on Γ n+2/3

− , such that for all ϕk ∈
{ϕk ∈ V f

k (tn) | ϕk = 0 on Γ
n+2/3
− }

ρ f

∫
Ω f (tn)

vn+1
k − vn+2/3

k

�t
· ϕkdx + ρ f

∫
Ω f (tn)

((
vn

k − wn+1
k

) · ∇)
vn+1

k · ϕk = 0. (40)

Note that here we use wn+1
k computed at the very end of Problem A1.

In this step the structure is not moving, and so

Û
n+1
k = Û

n+2/3
k , V̂

n+1
k = V̂

n+2/3
k , η̂n+1

k = η̂n+2/3
k , ξ̂

n+1
k = ξ̂

n+2/3
k .

Finally, we update the fluid domain position via

Ω f (tn+1) = (I +Atn+1)
(
Ω̂ f ).

Then, set tn = tn+1 and return to Problem A1.

5. Unconditional stability of the scheme with β = 0

We show an energy estimate that is associated with unconditional stability of the scheme when β = 0. In contrast 
with similar results appearing in literature which consider simplified models without fluid advection, and/or linearized 
fluid–structure coupling calculated at a fixed fluid domain boundary [15,74,26,14], in this manuscript we prove the desired 
energy estimate for the full, nonlinear FSI problem, that includes both fluid advection and nonlinear coupling at the moving 
fluid–structure interface.

To simplify analysis, the following assumptions which do not influence stability of the scheme will be considered:

1. Only radial displacement of the fluid–structure interface is allowed, i.e., ηz = U z|Γ̂ = 0. In that case, we consider the 
following equation for the radial membrane displacement

ρmh
∂2η̂r

∂t2
+ C0η̂r = f̂ r . (41)

The FSI problem with this boundary condition and no “inlet and outlet” displacement boundary conditions is well-
defined.

2. The problem is driven by the dynamic inlet and outlet pressure data, and the flow enters and leaves the fluid domain 
parallel to the horizontal axis:

p + ρ f

2
|v|2 = pin/out(t), vr = 0, on Γ

f
in/out.

To simplify matters, instead of splitting the Navier–Stokes equations into the time dependent Stokes problem and the 
advection problem, we keep the fluid problem uncoupled so that our splitting scheme becomes:

A1. The thick structure problem involving the membrane elastodynamics equation as a Robin-type boundary condition.
A2. The fluid problem modeled by the Navier–Stokes equations in ALE form, with structure inertia included as a Robin 

boundary condition for the fluid problem.
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5.1. Discretized scheme in weak form assuming only radial displacement of the fluid–structure interface and β = 0

We introduce the following bilinear form âm associated with the thin structure elastodynamics problem (41):

âm(η̂r, ζ̂r) = C0

L∫
0

η̂r ζ̂rdẑ.

With this notation, the two steps of the discretization scheme can be written as follows:

Problem A1 (Structure). Find (Û
n+1/2
k , V̂

n+1/2
k ) ∈ V̂ s

k × V̂ s
k such that for all (ψ̂k, φ̂k) ∈ V̂ s

k × V̂ s
k

ρs

∫
Ω̂ s

V̂
n+1/2
k − V̂

n
k

�t
· ψ̂kdx̂ + γ

∫
Ω̂ s

Û
n
k + Û

n+1/2
k

2
· ψ̂kdx̂

+ ρmh

∫
Γ

V̂ n+1/2
r,k − V̂ n

r,k

�t
ψ̂r,k + âm

( Ûn
r,k + Ûn+1/2

r,k

2
, ψ̂r,k

)
+ âe

(
Û

n
k + Û

n+1/2
k

2
, ψ̂k

)

+ ρs

∫
Ω̂ s

(
V̂

n
k + V̂

n+1/2
k

2
− Û

n+1/2
k − Û

n
k

�t

)
· φ̂kdx̂ + ρmh

∫
Γ

( V̂ n
r,k + V̂ n+1/2

r,k

2
− Ûn+1/2

r,k − Ûn
r,k

�t

)
· φ̂r,kdẑ

= 0, (42)

with the initial data such that V̂ n
r,k|Γ = ξ̂n

r,k = ̂vn
r,k|Γ (tn) .

Then set η̂
n+1/2
r,k = Ûn+1/2

r,k |Γ and ξ̂
n+1/2
r,k = ̂

vn+1/2
r,k |Γ (tn) = V̂ n+1/2

r,k |Γ , and, since the fluid velocity does not change, 
vn+1/2

k = vn
k .

Problem A2 (Fluid). Find (vn+1
k , pn+1

k ) ∈ V f
k (tn) × Q k(tn) such that for all (ϕk, qk) ∈ V f

k (tn+1) × Q k(tn):

ρ f

∫
Ω f (tn)

vn+1
k − vn+1/2

k

�t
· ϕkdx + ρ f

2

∫
Ω f (tn)

(∇ · wn+1
k

)
vn+1

k · ϕkdx

+ ρ f

2

∫
Ω f (tn)

(((
vn

k − wn+1
k

) · ∇)
vn+1

k · ϕk − ((
vn

k − wn+1
k

) · ∇)
ϕk · vn+1

k

)

+ an
f

(
vn+1

k ,ϕk

) − bn
f

(
pn+1

k ,ϕk

) + bn
f

(
qk, vn+1

k

) + ρmh

L∫
0

̂vn+1
r,k |Γ (tn) − ̂

vn+1/2
r,k |Γ (tn)

�t
ϕr,kdx

=
R∫

0

pin
(
tn+1)ϕz,k|z=0dr −

R∫
0

pout
(
tn+1)ϕz,k|z=Ldr, (43)

where the initial data for the trace of the fluid velocity on Γ (tn) comes from the just calculated velocity of the thin structure 
̂

vn+1/2
r,k |Γ (tn) = ξ̂

n+1/2
r,k .

Then set Û
n+1
k = Û

n+1/2
k , V̂

n+1
k = V̂

n+1/2
k , η̂n+1

r,k = η̂
n+1/2
r,k , and ξ̂n+1

r,k = ξ̂
n+1/2
r,k .

The ALE velocity wn+1 that appears in Problem A2 is calculated after computing the new structure displacement in 
Problem A1. To update the position of the fluid domain (after Problem A2), we consider the following simple ALE mapping:

Atn : Ω̂ f → Ω f (tn), Atn (ẑ, r̂) :=
(

ẑ,
R + η̂n

r,k

R
r̂

)τ

.

We will also need the explicit form of the ALE mapping from the computational domain Ω f (tn) to Ω f (tn+1), which is given 
by
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Atn+1 ◦ A−1
tn : Ω f (tn) → Ω f (tn+1), Atn+1 ◦ A−1

tn (z, r) =
(

z,
R + η̂n+1

r,k

R + η̂n
r,k

r

)τ

.

The corresponding Jacobian and the ALE velocity are given, respectively, by

Jn+1
n := R + η̂n+1

r,k

R + η̂n
r,k

, wn+1
k = 1

�t

η̂n+1
r,k − η̂n

r,k

R + η̂n
r,k

rer . (44)

Therefore, the time-derivative of the interface displacement is approximated by (η̂n+1
r,k − η̂n

r,k)/�t , which enters the expres-

sion for the ALE velocity wn+1. This will be used in the stability analysis presented next.

5.2. Stability analysis

Let En
f denote the discrete energy of the fluid problem, En

s the discrete energy of the structure problem, and let En
m

denote the discrete energy of the simplified membrane problem at time level n�t:

En
f := ρ f

2

∥∥vn
k

∥∥2
L2(Ω f (tn))

,

En
s := ρs

2

∥∥V̂
n
k

∥∥2
L2(Ω̂ s)

+ μs
∥∥D

(
Û

n
k

)∥∥2
L2(Ω̂ s)

+ λs

2

∥∥∇ · Û
n
k

∥∥2
L2(Ω̂ s)

+ γ

2

∥∥Û
n
k

∥∥2
L2(Ω̂ s)

,

En
m := ρmh

2

∥∥ξ̂n
r,k

∥∥2
L2(0,L)

+ C0

2

∥∥η̂n
r,k

∥∥2
L2(0,L)

.

Theorem 1 (An energy estimate of the operator splitting scheme). Let {(vn, U n, V n, ηn
r , ξn

r )}0≤n≤N be a solution of (42)–(43). Then, 
the following energy estimate holds:

EN
f + EN

s + EN
m + ρ f

2

N−1∑
n=0

∥∥vn+1
k − vn+1/2

k

∥∥2
L2(Ω f (tn))

+ μ f �t
N−1∑
n=0

∥∥D
(

vn+1
k

)∥∥2
L2(Ω f (tn))

+ ρmh

2

N−1∑
n=0

∥∥ ̂vn+1
r,k

∣∣
Γ (tn)

− ̂
vn+1/2

r,k

∣∣
Γ (tn)

∥∥2
L2(0,L)

≤ E0
f + E0

s + E0
m + C

μ f
�t

N−1∑
n=0

∥∥pin
(
tn)∥∥2

L2(0,R)
+ C

μ f
�t

N−1∑
n=0

∥∥pout
(
tn)∥∥2

L2(0,R)
.

This energy estimate shows that the total energy of the coupled discretized problem is bounded by the energy of the 
initial data, and by the work done by the inlet and outlet dynamic pressure data, independently of the time step, for all the 
parameters in the problem.

Proof. To prove the energy estimate, we test the structure problem (42) with (ψ̂k, φ̂k) = (
Û

n+1/2
k −Û

n
k

�t , V̂
n+1/2
k −V̂

n
k

�t ), and the 
fluid problem (43) with (ϕk, qk) = (vn+1

k , pn+1
k ). With this choice of test functions, after multiplying by �t , Problem A1

reduces to

En+1/2
s + ρmh

2

∥∥ξ̂
n+1/2
r,k

∥∥2
L2(0,L)

− ρmh

2

∥∥ξ̂n
r,k

∥∥2
L2(0,L)

+ C0

2

∥∥η̂n+1/2
r,k

∥∥2
L2(0,L)

− C0

2

∥∥η̂n
r,k

∥∥2
L2(0,L)

= En
s . (45)

In Problem A2, after replacing the test functions by the fluid velocity vn+1
k , the symmetrized advection terms cancel out. 

To deal with the first term on the left in Problem A2, we use the identity

a(a − b) = 1

2

(
a2 − b2 + (a − b)2). (46)

Then, the first two terms combined (fluid inertia) become

ρ f

2

1

�t

∫
Ω f (tn)

((
1 + η̂n+1

r,k − η̂n
r,k

R + η̂n
r,k

)∣∣vn+1
k

∣∣2 + ∣∣vn+1
k − vn+1/2

k

∣∣2 − ∣∣vn+1/2
k

∣∣2
)

dx

= ρ f

2

1

�t

∫
f n

( R + η̂n+1
r,k

R + η̂n
r,k

∣∣vn+1
k

∣∣2 + ∣∣vn+1
k − vn+1/2

k

∣∣2 − ∣∣vn+1/2
k

∣∣2
)

dx.
Ω (t )



M. Bukač et al. / Journal of Computational Physics 281 (2015) 493–517 507
Note that since the fluid does not change in Problem A1, vn+1/2
k = vn

k . Furthermore, notice that (R + ηn+1)/(R + ηn) is 
exactly the Jacobian of the ALE mapping from Ω f (tn) to Ω f (tn+1), see (44), and so we can convert that integral into an 
integral over Ω f (tn+1) to recover the kinetic energy of the fluid at the next time-step:

ρ f

2

1

�t

∫
Ω f (tn)

R + η̂n+1
r,k

R + η̂n
r,k

∣∣vn+1
k

∣∣2
dx = ρ f

2

1

�t

∫
Ω f (tn+1)

∣∣vn+1
k

∣∣2
dx.

This calculation also shows that the ALE mapping and its Jacobian satisfy the geometric conservation law property, as 
studied by Farhat et al. in [21].

Therefore, after multiplying by �t , the energy associated with Problem A2 is given by

ρ f

2

∥∥vn+1
k

∥∥2
L2(Ω f (tn+1))

− ρ f

2

∥∥vn+1/2
k

∥∥2
L2(Ω f (tn))

+ ρ f

2

∥∥vn+1
k − vn+1/2

k

∥∥2
L2(Ω f (tn))

+ 2μ f �t
∥∥D

(
vn+1

k

)∥∥2
L2(Ω f (tn))

+ ρmh

2

∥∥ ̂vn+1
r,k

∣∣
Γ (tn)

∥∥2
L2(0,L)

− ρmh

2

∥∥ ̂
vn+1/2

r,k

∣∣
Γ (tn)

∥∥2
L2(0,L)

+ ρmh

2

∥∥ ̂vn+1
r,k

∣∣
Γ (tn)

− ̂
vn+1/2

r,k

∣∣
Γ (tn)

∥∥2
L2(0,L)

= �t

R∫
0

pin
(
tn+1)vn+1

z,k

∣∣
z=0dr − �t

R∫
0

pout
(
tn+1)vn+1

z,k

∣∣
z=Ldr. (47)

Now, Eqs. (45) and (47) are added, and the following properties are taken into account: first ̂
vn+1/2

r,k |Γ (tn) = ξ̂
n+1/2
r,k , and 

further, due to the kinematic coupling condition we also have ̂vn+1
r,k |Γ (tn) = ξ̂n+1

r,k . After adding Eqs. (45) and (47), and taking 
into account En+1/2

s = En+1
s since the displacement changes only in the first step, we get

En+1
f + En+1

s + En+1
m + ρ f

2

∥∥vn+1
k − vn+1/2

k

∥∥2
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+ 2μ f �t
∥∥D
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k

)∥∥2
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+ ρmh

2
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z,k
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z=Ldr.

To bound the right-hand side of this equality, we use the Cauchy–Schwartz and Young’s inequalities

�t

R∫
0

pin
(
tn+1)vn+1

z,k

∣∣
z=0dr − �t

R∫
0

pout
(
tn+1)vn+1

z,k

∣∣
z=Ldr

≤ �t

2ε1

∥∥pin
(
tn)∥∥2

L2(0,R)
+ �t

2ε1

∥∥pout
(
tn)∥∥2

L2(0,R)
+ ε1�t

∥∥vn+1
k

∥∥2
L2(0,R)

.

By the trace and Korn inequalities, we then have∥∥vn+1
k

∥∥2
L2(0,R)

≤ C
∥∥D

(
vn+1

k

)∥∥2
L2(Ω f (tn))

,

where C is the constant from the trace and Korn inequalities. In general, Korn’s constant depends on the domain. It 
was shown, however, that for domains associated with fluid–structure interaction problems of the type studied in this 
manuscript, the Korn’s constant is independent of the sequence of approximating domains [61,62].

By setting ε1 = μ f
C , the last term can be combined with the term on the left hand-side, associated with the fluid 

diffusion. Finally, summing the inequality from n = 0 to N − 1 we prove the desired energy estimate. �
The energy estimate, presented above, shows that the combined linear discretized sub-problems are stable, and that the 

sequence of approximate solutions to the nonlinear FSI problem is uniformly bounded in the corresponding energy norms.

6. Numerical results

To validate our numerical solver, we present two benchmark problems. In the first example a simplified FSI benchmark 
problem with a composite structure is designed for which a steady-state analytical solution is found. The problem is solved 
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Table 1
Geometry, fluid and structure parameters used in Example 1.

Parameters Values Parameters Values

Radius R (cm) 0.5 Length L (cm) 6

In. press. pin (dyne/cm2) 250 Out. press. pout (dyne/cm2) 0
Fluid density ρ f (g/cm3) 1 Dyn. viscosity μ (g/cm s) 0.035

Thin wall:
Density ρm (g/cm3) 1.1 Thickness h (cm) 0.02
Lamé coeff. μm (dyne/cm2) 1.07 × 106 Lamé coeff. λm (dyne/cm2) 4.29 × 106

Thick wall:
Density ρs (g/cm3) 1.1 Thickness H (cm) 0.1
Lamé coeff. μs (dyne/cm2) 1.07 × 106 Lamé coeff. λs (dyne/cm2) 4.29 × 106

Spring coeff. γ (dyne/cm4) 0

with the initial data “far away” from the steady-state solution. As t → ∞ it is shown that the numerical solution converges 
to the analytical steady-state solution.

In the second example the fully nonlinear FSI benchmark problem is considered. However, since there are no benchmark 
problems in literature which can be used to compare our solution with, we consider a sequence of problems as the thickness 
h of the thin structure converges to zero, and compare the limiting solution with the known FSI solution involving only a 
thick structure, showing excellent agreement. On this example both temporal and spatial convergence are studied, showing 
1st-order accuracy for the case β = 1.

6.1. Numerical Example 1: a simplified FSI problem with exact solution

We present a simple FSI problem with multiple structural layers which has an exact solution, and can be used for the 
testing of FSI solvers with composite structures. The following simplifying assumptions are considered:

1. The fluid problem is defined on the fixed, reference domain of width R , and length L (the FSI coupling is linear).
2. The fluid problem is driven by the constant inlet and outlet pressure data pin and pout = 0 (the pressure drop is 

constant).
3. Only radial displacement of the thin and thick structure is assumed to be different from zero.

Assumption 3 implies that the thin structure membrane model takes the form:

ρK h
∂2ηr

∂t
+ C0ηr = fr,

while the thick structure problem simplifies as follows:

ρs
∂2dr

∂t2
= μ

∂2dr

∂x2
+ (μ + λ)

∂2dr

∂ y2
.

Finally, the coupling conditions between the fluid and the multilayered structure are given by

fr = p + (λ + μ)
∂dr

∂ y
, ηr = dr,

∂ηr

∂t
= ur, uz = 0 on Γ × (0, T ).

The exact solution to this problem is given by the following. The fluid flow through the fixed cylinder with constant pressure 
drop is given by the Poiseuille velocity profile:

ue
z(z, r) = ue

z(r) = pin − pout

2μF L

(
R2 − r2), ue

r = 0,

and the fluid pressure is linear within the channel:

pe(z, r) = pe(z) = pout z + pin(L − z)

L
, z ∈ (0, L), r ∈ (0, R).

The radial displacements of the thin and thick structure are given by:

ηe
r (z) = pe(z)

C0
, de

r (z, r) = de
r (z) = ηe

r (z).

We solved this problem numerically using the parameters given in Table 1. The corresponding (local) Reynold’s number 
based on the cylinder radius is Re = ρRU/μ = 214. The initial data was taken far away from the steady state:

u = 0, p = pout, ηr = 0, dr = 0, at t = 0,
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Fig. 3. Comparison between the computed solution (in blue) and the exact solution (in red). The two are superimposed. Left: axial velocity. Middle: fluid 
pressure. Right: radial displacement. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this 
article.)

Table 2
Geometry, fluid and structure parameters that are used in Example 2.

Parameters Values Parameters Values

Radius R (cm) 0.5 Length L (cm) 6

Fluid density ρ f (g/cm3) 1 Dyn. viscosity μ (g/cm s) 0.035

Thin wall:
Density ρm (g/cm3) 1.1 Thickness h (cm) 0.02
Lamé coeff. μm (dyne/cm2) 5.75 × 105 Lamé coeff. λm (dyne/cm2) 1.7 × 106

Thick wall:
Density ρs (g/cm3) 1.1 Thickness H (cm) 0.1
Lamé coeff. μs (dyne/cm2) 5.75 × 105 Lamé coeff. λs (dyne/cm2) 1.7 × 106

Spring coeff. γ (dyne/cm4) 4 × 106

and the flow was driven by the constant inlet and outlet pressure data pin and pout . At the inlet and outlet of the domain, 
the thin and thick structure displacement were set to:

ηr |z=0 = dr |z=0 = pin

C0
, ηr |z=L = dr |z=L = pout

C0
= 0, ∀t > 0.

The time-dependent problem was solved until the steady state was achieved.
The numerical scheme with β = 1 was implemented. For the spatial discretization of the fluid problem we again used the 

P1-iso-P2 elements with a coarse mesh for the pressure (mesh size �xp ) and a fine mesh for the velocity (�xv = �xp/2). 
The problem was solved on a mesh containing 341 × 15 fluid nodes. For the structure problem, we used P1 elements on a 
mesh containing 341 × 7 nodes. With the time step �t = 10−5 it took 200 iterations to achieve the steady state with the 
accuracy of 0.08%. Namely, the maximum relative error between the computed and exact solution was 0.000778.

Fig. 3 shows a comparison between the computed (blue) and the exact solution (red) for the axial velocity (left), fluid 
pressure (middle), and radial displacement (right), showing excellent agreement. The corresponding relative errors are given 
by the following:

‖ue − u‖L2(Ω f )

‖ue‖L2(Ω f )

= 7.78 × 10−4,
‖pe − p‖L2(Ω f )

‖pe‖L2(Ω f )

= 1.17 × 10−4,

‖ηe
r − ηr‖L2(0,L)

‖ηe
r ‖L2(0,L)

= 3.82 × 10−5,
‖de

r − dr‖L2(Ω s)

‖de
r ‖L2(Ω s)

= 3.82 × 10−5.

We conclude that the scheme behaves well for this simplified FSI problem with multiple structural layers.

6.2. Numerical Example 2: a fully nonlinear FSI problem

In this example we solved a full, nonlinear FSI problem (1)–(16) with the structure consisting of two layers, one with 
thickness h (thin) and one with thickness H > h (thick). The combined thickness of the composite structure was h + H =
0.12 cm. The data and parameters used in the simulation are given in Table 2.

The elastodynamics of the thin structural layer was modeled by the Koiter membrane equations (6), (7), while the elas-
todynamics of the thick structure by the equations of 2D linear elasticity (9). The fluid flow is driven by the time-dependent 
pressure data:

pin(t) =
{

pmax
2

[
1 − cos

( 2πt
tmax

)]
if t ≤ tmax

0 if t > tmax
, pout(t) = 0 ∀t ∈ (0, T ),

where pmax = 1.333 × 104 (dyne/cm2) and tmax = 0.003 (s). The corresponding (local) Reynold’s number is 284.
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Fig. 4. Axial displacement (top) and radial displacement (bottom) at time t = 8 ms obtained using the model capturing two structural layers (left), and the 
model capturing FSI with a single thick structural layer [13] (right).

Fig. 5. Fluid velocity (top) and fluid pressure (bottom) at time t = 8 ms obtained using the model capturing two structural layers (left), and the model 
capturing FSI with a single thick structural layer [13] (right).

We simulated a sequence of FSI problems (1)–(16) for different values of the thicknesses h of the thin structure. Since 
there are no benchmark results related to FSI with composite structures, we studied the behavior of solutions as h converges 
to zero, and compared the limiting solution with a known benchmark solution of a FSI problem containing only a single 
thick structural layer. As h → 0 we let the combined thickness h + H of the structure remain fixed, and equal to 0.12 cm. 
We show below that the limiting solution as h → 0, obtained using the solver presented in this manuscript with β = 1, is 
in excellent agreement with the solution of the FSI problem containing a single thick structure with thickness H = 0.12 cm, 
which was obtained using a different computational solver, namely the solver developed in [13].

Both problems were solved over the time interval [0, 0.012] s, using the time step �t = 5 × 10−5. The spatial discretiza-
tion was performed using P1-iso-P2 elements for the fluid problem on a mesh containing 341 × 15 fluid nodes, while the 
structure problem was approximated using P1 elements on a mesh containing 341 × 7 nodes. Fig. 4 shows the axial and 
radial displacement at time t = 8 ms obtained using the multilayered model (left) with h > 0, and the single-layered model 
(right). Fig. 5 shows the corresponding fluid velocity and pressure. One can notice significant smoothing of both the dis-
placement as well as the fluid velocity and pressure in the composite, i.e., multi-layered structure case. Same data was used 
for both simulations.

We then decreased h and increased H to maintain the constant combined thickness h + H = 0.12 cm, to obtain the results 
in Figs. 6, 7 and 8. Shown are the flowrate, mean pressure and displacement of the fluid–structure interface obtained using 
different values of h. We can see that as we decrease the thickness of the fluid–structure interface (from h = 0.02 to h =
0.0025), the numerical results obtained using our multilayered model, approach the results obtained using the single-layered 
FSI model, labeled with h = 0. Notice how for h = 0.0025 cm the solutions obtained using the multilayered model and the 
single thick structure model (h = 0 in Figs. 6, 7, 8) are almost identical.

We conclude this section by showing the log–log plots of computational error versus time and space discretization steps, 
presented in Figs. 9 and 10. The red line in the plots indicates the slope associated with the 1st-order accuracy. We see 
that our computational solver is 1st-order accurate in both time and space for the structure displacement calculations. We 
observe the higher order temporal and spatial accuracy for the fluid velocity, while fluid pressure exhibits the first order 
accuracy in space and the higher order accuracy in time.
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Fig. 6. The flowrate computed using two different models: the model in [13] containing a single thick structural layer (h = 0), and the model considered in 
this manuscript, consisting of two layers. The thickness of the thin membrane layer was decreased from h = 0.02 to h = 0.0025 cm. The combined thickness 
of the two-layered composite structure was kept constant at h + H = 0.12 cm. Convergence of the solutions to the FSI solution containing a single, thick 
structure (h = 0) can be observed.

Fig. 7. Displacement of the fluid–structure interface obtained under the same conditions as those described in Fig. 6.

Fig. 8. Mean pressure obtained under the same conditions as those described in Fig. 6.
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Fig. 9. Temporal accuracy: The figure shows the log–log plots of the L2-error for the structure displacement, fluid pressure and velocity vs. time step. The 
red line shows the slope associated with first-order accuracy. We see 1st-order accuracy for displacement, and higher-order accuracy for the pressure and 
velocity. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Fig. 10. Spatial accuracy: The figure shows the log–log plots of the L2-error for the structure displacement, fluid pressure and velocity vs. spatial discretiza-
tion step. The red line shows the slope associated with first-order accuracy. We observe 1st-order accuracy in displacement and pressure, and higher-order 
accuracy for the velocity. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

In this benchmark problem, we impose a large inlet pressure during the first 3 · 10−3 s, after which the pressure wave 
propagates until it reaches the end of the tube at time T = 12 · 10−3 s. In order to capture the physics of this problem, the 
largest time step we consider is �t = 10−4. Even in this case, the total energy of the problem remains bounded by the inlet 
data.

6.3. Regularizing effects by thin fluid–structure interface with mass

In this manuscript we hypothesize for the first time that a fluid–structure interface with mass regularizes solutions of 
FSI problems between an incompressible, viscous fluid and an elastic structure. Namely, we hypothesize that the results 
presented in Figs. 6, 7, 8 depicting smoothed out solutions in the case when h > 0 reflecting the presence of a fluid–
structure interface with inertia, are not a consequence of a numerical solver, but rather a property of the mathematical 
(physical) problem itself. We support this hypothesis by: (1) studying the displacement and displacement velocity of the 
fluid–structure interface to measure the effects of inertia, and (2) discussing a related analytical result supporting the regu-
larization hypothesis of fluid–structure interface with mass.

Indeed, in Fig. 11, the first row shows three snap-shots of the fluid–structure interface as the pressure wave travels down 
the tube. In the second row of Fig. 11 the same three snap-shots are shown depicting the fluid–structure interface velocity. 
The red solid line in these figures corresponds to the massless fluid–structure interface in the FSI problem with a single 
thick structural layer. The black dashed line corresponds to the fluid–structure interface with mass in the FSI problem with 
two structural layers. We see significant damping of the traveling wave in the case when the fluid–structure interface has 
mass. This indicates that the inertia of the fluid–structure interface with mass regularizes solutions of FSI problems.

Similar issues were studied from the analysis point of view in the work by Hansen and Zuazua [39] in which it was 
shown that the presence of point mass at the interface between two linearly elastic strings smooths out the solution of 
this simplified FSI problem. In particular, in [39] two linearly elastic strings were considered, meeting at a point mass. 
The elastodynamics of each string was modeled by the 1D linear wave equation. It was shown that as the wave with the 
displacement in H1(0, L) and velocity in L2(0, L) passes through the point mass, the transmitted wave gets smoothed out 
to an H2(0, L) function, with velocity in H1(0, L). A numerical simulation of this phenomenon was presented in [49], and 
is shown here in Fig. 12. Notice how the transmitted wave in the panel on the right has higher regularity (a smoothed out 
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Fig. 11. Fluid–structure interface displacement (top) and velocity (bottom) obtained using the multilayered wall model discussed in the present manuscript, 
and the single layered model from [13], shown at times t = 1 ms, t = 6 ms, and t = 12 ms.

Fig. 12. Regularizing effects of point mass. The figure is taken from [49]. The initial data (left panel) is smoothed out as the transmitted wave traveling to 
the right, passes through the point mass (right panel).

tip of the wave) than the reflected wave on the left side in this figure. For a reader with further interest in this area we 
mention [43,71,76].

7. Conclusions

The focus of this manuscript was on fluid–structure interaction with composite structures. The benchmark problem 
proposed here was motivated by applications in hemodynamics. A stable, loosely-coupled partitioned scheme, based on the 
time-discretization via Lie operator splitting was proposed to numerically solve the underlying problem. An energy estimate 
was derived for the fully nonlinear moving-boundary problem, showing unconditional stability of the scheme for β = 0. 
Numerical results show that the scheme is stable and convergent for other values of β ∈ [0, 1].

Particular attention was paid to a multi-physics FSI problem in which the structure is composed of two layers: a thin 
elastic layer with inertia which is in contact with the fluid, and a thick layer which sits on top of the thin layer. The 
thin layer serves as a fluid–structure interface with mass. The presence of the thin fluid–structure interface with mass has 
profound consequences both on the numerical implementation of the scheme, and on the physical properties of solutions to 
this problem. It allows full decoupling between the fluid and structure sub-solvers, and it serves as a regularizing mechanism 
for solutions of FSI problem. In contrast with FSI problems with massless interfaces, such as FSI problems with only thick 
structures, the fluid–structure interface with mass allows a more efficient energy dissipation, which gives rise to damping 
in the amplitude of structural waves, as well as the entire solution.

This is the first study which reports on the damping effects of fluid–structure interfaces with mass. Further research 
related to the precise theoretical quantification of this effect is under way, see e.g., [59] for the 1D heat-wave problems.
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Appendix A. Proof of convergence as h → 0 of FSI solutions with composite structures to a FSI solution with a single thick 
structure

We consider here the original FSI problem (1)–(16) satisfying the following simplifying assumptions:

1. The fluid problem is defined on a fixed fluid domain Ω f (linear coupling).
2. Fluid advection is neglected leading to a time-dependent Stokes problem for the fluid.

In this case the coupled FSI problem with composite structure consisting of a thick structure sitting on top of a thin 
membrane with thickness h, serving as a fluid–structure interface with mass, takes the following form:

� f ∂t vh = ∇ · σ f
(

vh, ph
)

∇ · vh = 0

}
in Ω f × (0, T ), (48)

ρs∂
2
t U h + γ U h = ∇ · σ s(U h) in Ω s × (0, T ), (49)

ρmh∂2
t ηh

z − C2(h)∂zη
h
r − C1(h)∂2

z ηh
z = −σ f n · ez + Sn · ez

ρmh∂2
t ηh

r + C0(h)ηh
r + C2(h)∂zη

h
z = −σ f n · er + Sn · er

vh = ∂tηh

}
on Γ × (0, T ), (50)

σn f
in = −pin(t)n

f
in on Γ

f
in × (0, T ), (51)

σn f
out = −pout(t)n

f
out on Γ

f
out × (0, T ), (52)

where the coefficients Ci(h), i = 0, 1, 2, all depend on h and are given by formulas (8). The super-script h in vh refers to a 
solution of the FSI problem with composite structure in which h denotes the thickness of the fluid–structure interface with 
mass. Eqs. (48)–(52) are supplemented with initial and boundary data. This gives rise to a well-defined linear FSI problem.

The weak formulation of problem (48)–(52) is given by:

−� f

T∫
0

∫
Ω f

vh · ∂tϕ + 2μ f

T∫
0

∫
Ω f

D
(

vh) : D(ϕ) − �mh
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Γ
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− �mh
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Γ
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h
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h
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h
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∫
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∂zη
h
z ∂zζz
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Γ
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r ζr − �s
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D
(
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T∫
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Ω s

U h · ψ

= ±
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f
in/out
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∫
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v0 · ϕ(0) + ρmh

∫
Γ

∂tη(0)ζ (0) + ρs

∫
Ω s

V0 · ψ(0), (53)

for all (ϕ, ζ , ψ) ∈ C1
c (0, T ; V f (Ω f ) × H1

0(0, L)2 × U s(Ω s)), such that ϕ|Γ = ζ = ψ |Γ , where

V f = {
ϕ ∈ H1(Ω f )2 ∣∣ ϕr |r=0 = 0, ϕ|z=0,L = 0

}
,

U s = {
ϕ ∈ H1(Ω s)2 ∣∣ ψz|Γext = 0, ψ |z=0,L = 0

}
,

and C0(h), C1(h), and C2(h) are given by (8).
It is easy to see that for every h > 0 there exists a weak solution (vh, ηh, Uh) to problem (48)–(52) satisfying the 

following energy inequality:
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≤ C(Pin, Pout, v0,V0, η0). (54)
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Since the right hand side of this energy inequality does not depend on h, the sequence of solutions of problems (48)–(52), 
defined for different values of h, is uniformly bounded. From here, the following weak and weak∗ convergence results hold 
as h → 0:

vh ⇀ v weak* in L∞(
0, T ; L2(Ω f )),

vh ⇀ v weak in L2(0, T ; H1(Ω f )),
Uh ⇀ U weak in L2(0, T ; H1(Ω s)),
∂tUh ⇀ ∂tU weak∗ in L∞(

0, T ; L2(Ω s)),
√

hηh ⇀ η weak in L2(0, T ; L2(Γ )
)2

,
√

h ∂tη
h ⇀ η1 weak∗ in L∞(

0, T ; L2(Γ )
)2

,√
h ∂zη

h
z ⇀ η2 weak∗ in L∞(

0, T ; L2(Γ )
)
. (55)

From the uniqueness of the limit in D′(Γ ) we conclude that η1 = ∂tη, and η2 = ∂zηz .
What is left is to identify the limits η and ∂tη. From the kinematic coupling condition and the Trace Theorem we have:∥∥∂tη

h
∥∥

L2([0,T );L2(Γ ))
= ∥∥vh

∥∥
L2(0,T ;L2(Γ ))

≤ ∥∥vh
∥∥

L2(0,T ;H1(Ω f ))
≤ C,

where C is independent of h. From the uniform boundedness of ‖∂tηh‖L2(0,T ;L2(Γ )) we have
√

h∂tη
h → 0 in L2(0, T ; L2(Γ )

)
.

Uniqueness of the limit in D′(Γ ) implies ∂tη = 0. Similarly, we get η = 0 using the fact that ηh(s, .) = η0 + ∫ s
0 ∂tη

h .
We can now pass to the limit as h → 0 in the linear problem (53)–(52) by using (55) to get the following equality:
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V0 · ψ(0), (56)

for all (φ, ψ) ∈ C1
c ([0, T ); V f (Ω f ) × U s(Ω s)) such that φ|Γ = ψ |Γ . This shows that the limiting functions satisfy the weak 

form of the FSI with a single, thick elastic structure, coupled to the motion of an incompressible, viscous fluid via a mass-less 
fluid–structure interface.

Remark 2. We did not have to identify the limit η in order to pass to the limit. Namely, we have:

�mh∂tη
h = √

�mh
(√

�mh∂tη
h) ⇀

√
�mh∂tη = 0.
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[57] A. Mikelic, G. Guidoboni, S. Čanić, Fluid–structure interaction in a pre-stressed tube with thick elastic walls I: the stationary Stokes problem, Netw. 

Heterog. Media 2 (3) (2007) 397.
[58] L.A. Miller, C.S. Peskin, A computational fluid dynamics of ‘clap and fling’ in the smallest insects, J. Exp. Biol. 208 (2) (2005) 195–212.
[59] B. Muha, A note on optimal regularity and regularizing effects of point mass coupling for a heat-wave system, arXiv:1403.3965, 2014.
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