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Abstract

We have introduced a new explicit numerical method, based on a discrete
stochastic process, for solving a class of fractional partial differential equations
that model reaction subdiffusion. The scheme is derived from the master equa-
tions for the evolution of the probability density of a sum of discrete time ran-
dom walks. We show that the diffusion limit of the master equations recovers
the fractional partial differential equation of interest. This limiting procedure
guarantees the consistency of the numerical scheme. The positivity of the so-
lution and stability results are simply obtained, provided that the underlying
process is well posed. We also show that the method can be applied to stan-
dard reaction-diffusion equations. This work highlights the broader applicability
of using discrete stochastic processes to provide numerical schemes for partial
differential equations, including fractional partial differential equations.

1. Introduction

Reaction subdiffusion fractional partial differential equations have been widely
used in recent years as mathematical models of systems of particles subject to,
trapping, obstacles and reactions [1, 2, 3, 4, 5, 6, 7, 8]. Subdiffusion, charac-
terised by a mean squared displacement of diffusing particles that grows slower
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than linear with time, has been observed in hydrogeology [9, 8], physics [10],
biology [11], finance [12] and chemistry [13].

Reaction subdiffusion fractional partial differential equations may be de-
rived from generalised continuous time random walks (CTRWs) [14, 15] by
incorporating reaction kinetics into the process [1, 2, 3, 5, 7]. In standard
reaction-diffusion partial differential equations the reaction terms and the diffu-
sion terms are additive [16, 17, 18, 19], whilst in reaction subdiffusion equations,
derived from CTRWs, the reaction kinetics and the diffusion are entwined in
the fractional partial differential equations [2, 3, 5]. In general it is not possible
to obtain closed form algebraic solutions for non-linear reaction subdiffusion
equations. This has stimulated a great deal of interest in the development of
numerical methods for these equations. Some of the numerical methods de-
veloped for subdiffusion include, explicit and implicit finite difference methods
[20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31], spectral methods [32, 33, 34, 35],
and Galerkin methods [36, 37]. One of the simplest methods is to approxi-
mate the continuous fractional derivative using a Grünwald-Letnikov fractional
derivative [38, 39].

There have been numerous articles published on numerical methods for time
fractional reaction-diffusion equations. Most of the articles in this area consider
fractional diffusion with the ad-hoc addition of standard reactions, or addition
of reactions including the time fractional derivative on the reactions, or a com-
bination of both [40, 41, 42, 43, 44]. The ad-hoc addition of subdiffusion and
reactions may lead to unphysical negative solutions [2]. This can be avoided
by taking a more physical approach, deriving the reaction subdiffusion equa-
tions from an underlying stochastic process, a continuous time random walk
[2, 5, 6, 7]. The numerical method that we derive here is also based on an
underlying stochastic process, a discrete time random walk (DTRW).

In [45], we introduced a novel numerical scheme for solving fractional Fokker-
Planck equations that was based on a DTRW. Rather then discretising a con-
tinuum set of equations the numerical scheme is constructed by considering a
discrete time and space stochastic process. The process was chosen such that,
in the diffusion limit, the evolution equation of the probability density that
described the system would become a fractional Fokker-Planck equation. As
the process is discrete the probability density can be calculated recursively and
used to approximate the diffusion limit density, and hence the solution of the
fractional Fokker-Planck equation. A similar approach has also been used to
solve sets of fractional ordinary differential equations arising from a modified
SIR epidemic model [46].

In this article we have extended the DTRW formalism to provide a numerical
scheme for solving reaction subdiffusion fractional partial differential equations
of the form

∂u

∂t
= Dα

∂2

∂x2

[
e−

∫ t
0
a(u,x,t′) dt′

0D1−α
t

(
e
∫ t
0
a(u,x,t′) dt′u

)]
+ c(u, x, t)− a(u, x, t)u,

(1)
where u = u(x, t), a(u, x, t) and c(u, x, t) are non-negative and 0D1−α

t is a
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Riemann-Liouville fractional derivative of order 1 − α. Equations of this form
can be derived from a physically consistent theory of continuous time random
walks [7], including extension to multiple species. The numerical scheme is ob-
tained by first deriving a set of discrete time and space master equations for
an ensemble of particles undergoing a DTRW with reactions. The evolution
of these discrete equations provides the basis for a numerical solution of the
fractional partial differential equations. The resulting numerical scheme is an
explicit forward time-step method, Eq. (66) in this manuscript. Provided that
the underlying process is well posed the solution is guaranteed to be positive, as
is required for reaction diffusion processes, and stability results follow. The nu-
merical scheme can be implemented without requiring a knowledge of stochastic
processes, however additional symmetries, if known, can be incorporated into
the scheme.

The remainder of the paper is organised as follows. In Section 2 we present
the formalism for the DTRW with reactions, and derive the appropriate master
equations. In Section 3 we consider specific forms for the jump and waiting
time probability mass functions (pmfs) in the DTRWs. In Section 4, we show
that in the continuous space and time limit, depending on the jump and waiting
time pmfs, the master equations converge to standard reaction-diffusion PDEs
or reaction subdiffusion fractional PDEs. In Section 5, we outline how to imple-
ment the discrete time master equations as a numerical scheme for the PDEs.
In Section 6 we derive stability results from the underlying stochastic process.
We show that the numerical scheme has positive solutions and is stable for
physically consistent reaction kinetics. Detailed examples using the scheme are
presented in Section 7.

2. The Master Equation for Discrete Time Random Walks With Re-
actions

In this section we derive the discrete time master equations of DTRWs with
reactions an subdiffusion. These master requations underpin the numercial
scheme. The derivation of the master equations follows the framework that
we developed in [45] for the derivation of discrete time master equations of
DTRWs subject to forcing. The additional complication of reactions in the dis-
crete time master equations are treated in a manner similar to our treatment
of reactions in continuous time master equations [47, 7] where the reactions are
modelled as a birth (annihilation) and death (creation) process. The derivation
of the master equations is broken into two main parts. Firstly we consider the
evolution of a single particle subject to a space- and time-dependent probability
of annihilation. Next, by considering an ensemble of such particles arising from
a space- and time-dependent creation process, we construct the discrete master
equations that govern the evolution of the reaction diffusion system.

2.1. A Discrete Time Random Walk with an Annihilation Rate

We begin by considering a particle traversing a one-dimensional lattice V =
{L1, ..., i− 1, i, i+ 1, ..., L2}, with L1, L2 ∈ Z, in discrete time n ∈ N. At each
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time step the particle will randomly do one of three things; either remain at
the current site, undergo a jump, or be annihilated and removed from further
consideration. The probability of the actions are independent but may depend
on the current site and time step, and the time step on which the particle arrived
at the site.

For a particle that arrived at the site i on the mth time step the probability
of jumping to site j on the nth time step is given by a transition probability
mass function Ψ(j, n|i,m). This function completely describes the evolution of
the process. We make a further assumption that this probability mass function
(pmf) can be decomposed into two independent pmfs,

Ψ(j, n|i,m) = λ(j|i)ψ(n−m), (2)

where ψ(n − m) is the pmf for waiting n − m time steps before transitioning
and λ(j|i) is the pmf for jumping to site j conditional on being on site i. As
usual, the pmfs are normalised,

∞∑
n=0

ψ(n) = 1, (3)

and
L2∑

j=L1

λ(j|i) = 1. (4)

It is also important to note that we assume

ψ(0) = 0, (5)

as we do not allow multiple jumps in the same time step. It is possible to
incorporate a spatial dependence into the waiting time probabilities, and time
dependence into the jump probabilities but this is not included here for simplic-
ity.

The probability that a particle will be annihilated at site i on the nth time
step is denoted A(i, n). This time- and space-dependence allows for the consid-
eration of arbitrary functions provided that 0 ≤ A(i, n) ≤ 1. The probability
of not being annihilated over a number of time steps, between time m and n at
site i, is then given by the survival function

Θ(i, n,m) =

n−1∏
�=m

(1−A(i, �)) , (6)

and we use the convention, Θ(i, n, n) = 1. It is useful to note the semigroup
property of Θ;

Θ(i, n,m) = Θ(i, n, k)Θ(i, k,m) ∀ m ≤ k ≤ n. (7)
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The probability of a particle arriving at site i on the nth time step, given
that it is created and begins walking at site i0 on the nth

0 time step, is recursively
defined by the probability flux;

Q(i, n|i0, n0) = δi,i0δn,n0
+

L2∑
j=L1

n−1∑
m=0

Ψ(i, n|j,m)Θ(j, n,m)Q(j,m|i0, n0) (8)

where Q(i,m|i0, n0) = 0 for all m < n0. This equation expresses that the flux
into site i at time step n is the sum of all the fluxes into site j at the earlier
time step m that survived until time step n when they transition to site i. Note
that the upper limit of the sum could be n, but Ψ(i, n|j, n) = 0 due to Eq. (5).

The probability of a particle at a site not jumping by time step n, given the
particle arrived at the earlier time m is given by the survival probability

Φ(n−m) = 1−
n−m∑
k=0

ψ(k). (9)

The probability of the particle being at site i on the nth time step can then be
written

X(i, n|i0, n0) =

n∑
m=0

Φ(n−m)Θ(i, n,m)Q(i,m|i0, n0). (10)

The right hand side is the sum over all possibilities of the particle arriving at an
earlier time step, m, and not being annihilated or jumping before the nth time
step.

The change in probability mass X between time steps n and n−1 is obtained
directly from Eq. (10):

X(i, n|i0, n0)−X(i, n− 1|i0, n0) =

n∑
m=0

Φ(n−m)Θ(i, n,m)Q(i,m|i0, n0)

−
n−1∑
m=0

Φ(n− 1−m)Θ(i, n− 1,m)Q(i,m|i0, n0).

(11)

This can be rewritten as

X(i, n|i0, n0)−X(i, n− 1|i0, n0) = Q(i, n|i0, n0)

+
n−1∑
m=0

Θ(i, n,m)Φ(n−m)Q(i,m|i0, n0)

−
n−1∑
m=0

Θ(i, n− 1,m)Φ(n− 1−m)Q(i,m|i0, n0) .

(12)
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From Eq. (9) we have that Φ(n−m) = Φ(n− 1−m)−ψ(n−m), and from Eq.
(7) we see that Θ(i, n,m) = Θ(i, n, n− 1)Θ(i, n− 1,m), hence Eq. (12) can be
rewritten as

X(i, n|i0, n0)−X(i, n− 1|i0, n0) = Q(i, n|i0, n0)−
n−1∑
m=0

ψ(n−m)Θ(i, n,m)Q(i,m|i0, n0)

−
n−1∑
m=0

Φ(n− 1−m)Θ(i, n− 1,m) (1−Θ(i, n, n− 1))Q(i,m|i0, n0) .

(13)

Noting that from Eq. (6), 1−Θ(i, n, n− 1) = A(i, n− 1) and we obtain

X(i, n|i0, n0)−X(i, n− 1|i0, n0) = Q(i, n|i0, n0)−
n−1∑
m=0

ψ(n−m)Θ(i, n,m)Q(i,m|i0, n0)

−A(i, n− 1)

n−1∑
m=0

Φ(n− 1−m)Θ(i, n− 1,m)Q(i,m|i0, n0) .

(14)

Then by using the definition in Eq. (10), we substitute the last term with
X(i, n− 1|i0, n0) to arrive at

X(i, n|i0, n0)−X(i, n− 1|i0, n0) = Q(i, n|i0, n0)

−
n−1∑
m=0

ψ(n−m)Θ(i, n,m)Q(i,m|i0, n0)

−A(i, n− 1)X(i, n− 1|i0, n0). (15)

We define the outgoing flux of site i at time step n to be

ζ(i, n|i0, n0) =

n−1∑
m=0

ψ(n−m)Θ(i, n,m)Q(i,m|i0, n0) . (16)

Note from the definition of Q, Eq. (8), and recalling Eq. (2), that

Q(i, n|i0, n0)− δn,n0
δi,i0 =

L2∑
j=L1

λ(j|i) ζ(j, n|i0, n0) . (17)

Substituting this into Eq. (15) gives

X(i, n|i0, n0)−X(i, n− 1|i0, n0) =

L2∑
j=L1

λ(j|i) ζ(j, n|i0, n0) + δn,n0
δi,i0

− ζ(i, n|i0, n0)−A(i, n− 1)X(i, n− 1|i0, n0) .

(18)
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To obtain the generalised master equation (GME) governing the evolution of
the probability mass for the particle we use the semigroup property of Θ, given
in Eq. (7), to write Eq. (10) as

X(i, n|i0, n0)

Θ(i, n, 0)
=

n∑
m=0

Q(i,m|i0, n0)

Θ(i,m, 0)
Φ(n−m). (19)

Similarly for Eq. (16) we get

ζ(i, n|i0, n0)

Θ(i, n, 0)
=

n∑
m=0

Q(i,m|i0, n0)

Θ(i,m, 0)
ψ(n−m). (20)

To proceed further, we make use of the single-sided Z-transform [48] defined
by

Zn{Y (n)|z} =
∞∑

n=0

Y (n)z−n. (21)

Taking the Z-transform of Eqs. (19) and (20) gives

Zn

{
X(i, n|i0, n0)

Θ(i, n, 0)

∣∣∣∣z
}

= Zn

{
Q(i, n|i0, n0)

Θ(i, n, 0)

∣∣∣∣z
}
Zn{Φ(n)|z} (22)

and

Zn

{
ζ(i, n|i0, n0)

Θ(i, n, 0)

∣∣∣∣z
}

= Zn

{
Q(i, n|i0, n0)

Θ(i, n, 0)

∣∣∣∣z
}
Zn{ψ(n)|z}. (23)

Similar to the analysis of CTRWs [7], it is convenient to define a discrete memory
kernel K(n) by the Z-transform relation

Zn{K(n)|z} = Zn{ψ(n)|z}
Zn{Φ(n)|z} . (24)

Note that from Eq. (5) and Eq. (9), we have K(0) = 0. Dividing Eq. (23) by
Eq. (22) and inverting the Z-transform we can express ζ in terms of X,

ζ(i, n|i0, n0) = Θ(i, n, 0)

n−1∑
m=0

K(n−m)
X(i,m|i0, n0)

Θ(i,m, 0)
. (25)

We can substitute this expression for ζ in to Eq. (18) to obtain the following
generalised master equation for the evolution of a single particle probability
mass, X, subject to an annihilation process;

X(i, n|i0, n0)−X(i, n− 1|i0, n0) =

L2∑
j=L1

λ(j|i)
n−1∑
m=0

K(n−m)Θ(j, n,m)X(j,m|i0, n0)

−
n−1∑
m=0

K(n−m)Θ(i, n,m)X(i,m|i0, n0)

−A(i, n− 1)X(i, n− 1|i0, n0) + δn,n0δi,i0 .

(26)
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2.2. An Ensemble of Discrete Time Random Walks With Creation and Annihi-
lation

Under our model of reacting and diffusing particles the system comprises of
an ensemble of particles that are created at some point, undergo a random walk
and are annihilated at some other point. The evolution of this ensemble can be
found by considering the evolution of the single particles in the ensemble. The
GME for the single particle subject to an annihilation process, Eq. (26), can be
thought of as propagating each single particle from some initial point onwards.

We assume that the creation process is Markovian and defined such that the
expected number of particles created at lattice site i on time step n is given
by the arbitrary function, C(i, n) ≥ 0 for all i and n. The expected number
of particles from the ensemble at position i at time n can then be found by
propagating the creation of all the particles forward in time. The number of
particles at site i on time step n is then given by,

U(i, n) =

L2∑
i0=L1

n∑
n0=0

X(i, n|i0, n0)C(i0, n0). (27)

As the creation process is Markovian, C(i, n), can depend on the state of the
system at the previous time step, {U(j, n−1)}j . To find the evolution of U with
time we multiply the single particle GME, Eq. (26), by C(i0, n0) and then sum
over all possible starting points; i0 from L1 to L2 and n0 from 0 to n. Using
the definition in Eq. (27) we obtain

U(i, n)− U(i, n− 1) =

L2∑
j=L1

λ(j|i)
n−1∑
m=0

K(n−m)Θ(j, n,m)U(j,m)

−
n−1∑
m=0

K(n−m)Θ(i, n,m)U(i,m)−A(i, n− 1)U(i, n− 1) + C(i, n).

(28)

This is the generalised master equation for a single species discrete general
reaction diffusion process. Note that A(i, n − 1) may also be dependent on
{U(j, n− 1)}j . With the appropriate choice of the waiting time pmf, and hence
the memory kernel K, Eq. (28) may model the cases of reaction-diffusion or
reaction subdiffusion.

2.3. Interacting Ensembles of Discrete Time Random Walks With Annihilation
and Creation

Similar to the approach in [7] we can generalise this master equation for the
case of a multi-species ensemble of populations that have interactions between
them. This can represent, for example, systems such as chemical reactions
or microbiological population dynamics. To do so we allow the creation and
annihilation rates to depend on all populations. As we have worked with creation
and annihilation probabilities that are arbitrary in space and time we may
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incorporate non-linear dependencies on populations into these probabilities. We
calculate Θk(i, n,m) from the annihilation probabilities through

Θk(i, n,m) =

n−1∏
�=m

(1−Ak(i, �)), (29)

where k is the species number. Note that Ak(i, �) may also be dependent on the
state of the system {Up(j, �)}j,p at time �.

Thus the multi-species DTRW master equation with non-linear reactions is
given by

Uk(i, n) − Uk(i, n− 1) =

L2∑
j=L1

λk(i|j)
n−1∑
m=0

Kk(n−m)Θk(j, n,m)Uk(j,m)

−
n−1∑
m=0

Kk(n−m)Θk(i, n,m)Uk(i,m)

−Ak(i, n− 1)Uk(i, n− 1) + Ck(i, n). (30)

In these equations Ck(i, n), can depend on the state of the system at the previous
time step, {Up(j, n− 1)}j,p.

3. Jump and Waiting Time Probability Mass Functions

The discrete generalised master equations can be used to formulate a numer-
ical method for solving continuum reaction-diffusion type equations, including
fractional reaction-diffusion equations. To obtain a numerical method for a
given continuum reaction-diffusion equation from the discrete GME appropri-
ate choices need to be made for the jump and waiting time distributions. Once
these choices have been made, the discrete GMEs can be used as an explicit
numerical scheme for approximating reaction-diffusion PDEs that are the con-
tinuum limit of the discrete GMEs. The corresponding continuum limit of the
discrete GMEs will be obtained in section 4. This convergence in the continuum
limit establishes the consistency of the numerical scheme.

3.1. Jump Probability Mass Functions

We considering a jump process composed of nearest neighbour and self
jumps. The jump pmf is given by

λ(j|i) = r

2
δi+1,j +

r

2
δi−1,j + (1− r)δi,j . (31)

Here r ∈ [0, 1] is the probability that a jump will not be a self jump. This jump
pmf is symmetric. The incorporation of asymmetric space and time dependent
jumps has previously been considered to model a space and time dependent
force [45].
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Substituting the jump pmf, Eq. (31), into the discrete GME, Eq. (28), gives,

U(i, n)− U(i, n− 1) =
r

2

n−1∑
m=0

K(n−m)Θ(i− 1, n,m)U(i− 1,m)

+
r

2

n−1∑
m=0

K(n−m)Θ(i+ 1, n,m)U(i+ 1,m)

− r

n−1∑
m=0

K(n−m)Θ(i, n,m)U(i,m)−A(i, n− 1)U(i, n− 1) + C(i, n).

(32)

Using Eq. (7), we can express the sums in the above equation as discrete
convolutions,

U(i, n)− U(i, n− 1) =
r

2
Θ(i− 1, n, 0)

n−1∑
m=0

K(n−m)
U(i− 1,m)

Θ(i− 1,m, 0)

+
r

2
Θ(i+ 1, n, 0)

n−1∑
m=0

K(n−m)
U(i+ 1,m)

Θ(i+ 1,m, 0)

− rΘ(i, n, 0)

n−1∑
m=0

K(n−m)
U(i,m)

Θ(i,m, 0)
−A(i, n− 1)U(i, n− 1) + C(i, n).

(33)

3.2. Waiting Time Probability Mass Functions

3.2.1. Markovian

Assuming that the probability of the particle jumping to a new site on any
given time step is ω and is independent of the time that the particle arrived at
the current site, then it follows that waiting time pmf is given by,

ψ(n) = ω(1− ω)n. (34)

The corresponding survival function is,

Φ(n) = (1− ω)n. (35)

Equation (24) can now be used to obtain an explicit expression for the memory
kernel,

K(n) = ωδ1,n. (36)

3.3. Sibuya

The waiting time pmf is non-Markovian when the probability of the particle
jumping on any given time step depends on how many time steps the particle
has waited for. A special case is when the probability of jumping on a given time
step decreases the longer the particle waits without jumping. Sibuya waiting
times arise by considering a particle that has a probability α

n of jumping after
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waiting n time steps for some 0 < α ≤ 1 [49]. The waiting time survival function
is given by

Φ(n) =

n∏
k=1

(
1− α

k

)
, (37)

with Φ(0) = 1. The corresponding waiting time pmf is,

ψ(n) =
α

n

n−1∏
k=1

(
1− α

k

)
, (38)

with ψ(0) = 0 and ψ(1) = α. As in [45], we can consider the Z-transforms to
obtain an analytic expression for the memory kernel, K, from Eq. (24),

Zn{K(n)|z} = Zn{ψ(n)|z}
Zn{Φ(n)|z}

=
1− (1− z−1)α

(1− z−1)α−1

= (1− z−1)1−α − (1− z−1) , (39)

and hence it can be shown that the kernel, for n ≥ 1 can be given by

K(n) =

n∏
k=1

(
1− 2− α

k

)
+ δ1,n, (40)

with K(0) = 0. We may also write the Sibuya kernel in terms of binomial
coefficients,

K(n) =

(
1− α

n

)
(−1)n − δ0,n + δ1,n, (41)

and the kernel can be obtained from a recursion relation [45]. It is interesting
to note that the terms in the memory kernel can be related to the Grünwald-
Letnikov fractional derivative via

D
1−α(f(x)) = lim

h→0

n∑
k=0

(K(n) + δ0,n − δ1,n)
f(x− kh)

h1−α
. (42)

4. Continuum Limit of the Discrete Generalised Master Equations

In this section we derive continuum limits of the GMEs, Eq. (33), cor-
responding to Markovian, and Sibuya waiting times. These continuum limits
yield the standard reaction-diffusion PDEs and the fractional reaction-diffusion
PDEs respectively. This shows that the discrete GMEs satisfy the consistency
condition for an approximation to the PDEs, and can therefore be used as a
consistent explicit numerical method.
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4.1. Markovian Waiting Times

Using the Markovian memory kernel, Eq. (36), the discrete GME, Eq. (33),
simplifies to,

U(i, n)− U(i, n− 1) =
rω

2

(
Θ(i− 1, n, n− 1)U(i− 1, n− 1)

− 2Θ(i, n, n− 1)U(i, n− 1) + Θ(i+ 1, n, n− 1)U(i+ 1, n− 1)
)

−A(i, n− 1)U(i, n− 1) + C(i, n).

(43)

Using Eq. (6) we have

U(i, n)− U(i, n− 1) =
rω

2

(
(1−A(i− 1, n− 1))U(i− 1, n− 1)

− 2(1−A(i, n− 1))U(i, n− 1) + (1−A(i+ 1, n− 1))U(i+ 1, n− 1)
)

−A(i, n− 1)U(i, n− 1) + C(i, n).

(44)

We now relate our solution U(i, n) of the discrete GME to a function in
continuous space and time. We consider a uniform grid with spacings Δx and
Δt, and associate the points (i, n) ∈ Z

2 with points (iΔx, nΔt) ∈ R
2. We

associate the discrete function U(i, n) with a continuous function uΔ(x, t) that
is dependent on the grid spacings Δx and Δt. The functions are related by
requiring equality on the grid points, uΔ(iΔx, nΔt) = U(i, n). At the grid
points the function uΔ is the solution of a two parameter family of discrete
GMEs. The continuum limit is obtained when the separation between grid
points, Δx and Δt, goes to zero, that is,

lim
Δx→0,Δt→0

uΔ(x, t) = u(x, t). (45)

In order for this limit to exist we take a diffusion limit, which requires the ratio
of Δx2 and Δt to remain constant [50]. We also define a continuous version
of the annihilation probability, aΔ(x, t), where aΔ(iΔx, nΔt) = A(i, n). The Δ
dependence in the continuous function defines aΔ(x, t) as the probability of an
annihilation event between t and t + Δt. We can then define an annihilation
rate as the limit,

a(x, t) = lim
Δt→0,Δx→0

aΔ(x, t)

Δt
. (46)

In a similar manner, we define a continuous creation rate,

c(x, t) = lim
Δt→0,Δx→0

cΔ(x, t)

Δt
, (47)

where cΔ(iΔx, nΔt) = C(i, n).

12



With the above definitions of uΔ, aΔ, cΔ the discrete GME, Eq. (44), then
becomes,

uΔ(iΔx,nΔt)− uΔ(iΔx, (n− 1)Δt) =
rω

2

(
(1− aΔ((i− 1)Δx, (n− 1)Δt))uΔ((i− 1)Δx, (n− 1)Δt)

− 2(1− aΔ(iΔx, (n− 1)Δt))uΔ(iΔx, (n− 1)Δt)

+ (1− aΔ((i+ 1)Δx, (n− 1)Δt))uΔ((i+ 1)Δx, (n− 1)Δt)
)

− aΔ(iΔx, (n− 1)Δt)uΔ(iΔx, (n− 1)Δt) + cΔ(iΔx, nΔt).

(48)

We now introduce continuous variables x, t at the point x = iΔx, t = nΔt and
expand the continuous functions, uΔ, aΔ, cΔ, in Taylor series about x and t,
with aΔ(x, t) = o(Δt) and cΔ(x, t) = o(Δt), to obtain

Δt
∂uΔ

∂t
+ o(Δt2) =

rω

2
Δx2

(
∂2

∂x2

(
uΔ(x, t) + o(Δt)

)
+ o(Δx2)

)
− aΔ(x, t)uΔ(x, t) + cΔ(x, t).

(49)

Finally we divide by Δt and consider a sequence of processes corresponding
to the above equation in the limit Δx→ 0 and Δt→ 0, such that

D = lim
Δx→0,Δt→0

rΔx2

2Δt
, (50)

exists. Thus we obtain the diffusion limit of the GME arriving at a reaction-
diffusion PDE,

∂u(x, t)

∂t
= ωD

∂2u(x, t)

∂x2
− a(x, t)u(x, t) + c(x, t), (51)

where a(x, t) and c(x, t) can be determined from the reaction kinetics for u(x, t)
and may depend explicitly on u(x, t). The parameter ω, which is the probability
of the particle jumping to a new site on any given time step in the discrete GMEs,
can be interpreted as a time scale parameter in the continuum equation.

4.2. Sibuya Waiting Times

When using the Sibuya waiting time pmf a different approach needs to be
taken when finding the continuum limit. The sum over the memory kernel is not
amenable to direct calculation. However the sum can be written as a discrete
convolution, which enables us to exploit properties of transform methods in
finding the continuum limit.

The approach from the discrete to the continuum can be carried out in
general by considering inverse Laplace transforms with limits to continuous time,
and continuous space of star transforms from discrete time, and discrete space.
To begin, we consider a general function of discrete space and time Y (i, n) and
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define the unilateral star transform with respect to the discrete time variable,
n, as

Z∗n {Y (i, n)| s,Δt} =
∞∑

n=0

Y (i, n) e−nΔts. (52)

We define a bilateral star transform with respect to the discrete space variable,
i, as

Ẑ∗i {Y (i, n)| q,Δx} =
∞∑

i=−∞
Y (i, n) e−iΔxq. (53)

These transforms are related to the unilateral Z-transform with z = eΔts and
the bilateral Z-transform with z = eΔxq. Similar to the Markovian case, we
consider a sequence of continuous functions, yΔ, such that yΔ(iΔx, nΔt) =
Y (i, n). In this manner we associate an interval Δt between the time steps n
and n + 1 and an interval Δx between the space grid points i and i + 1. The
functions yΔ(x, t) will be different for different interval sizes and the subscript
Δ denotes this functional dependence. The continuum limit, Δx→ 0,Δt→ 0,
can then be obtained from the inverse unilateral Laplace transform with limits
to continuous time and the inverse bilateral Laplace transform with limits to
continuous space of the unilateral star transform from discrete time and the
bilateral star transform from discrete space. Explicitly, we have

y(x, t) = lim
Δx→0,Δt→0

ΔtΔxL̂−1
q

{
L−1
s

{
Ẑ∗i {Z∗n {Y (i, n)| s,Δt} | q,Δx} | t

}
|x

}
,

(54)
where L−1

s {F (s)|t} denotes the inverse unilateral Laplace transform to contin-
uous time t, and L̂−1

q {G(q)|x} denotes the inverse bilateral Laplace transform
to continuous space x. To see the result in Eq. (54) we note that

lim
Δx→0,Δt→0

ΔtΔxL̂−1
q

{
L−1
s

{
Ẑ∗i {Z∗n {Y (i, n)|, s,Δt} | q,Δx} | t

}
|x

}

= lim
Δx→0,Δt→0

ΔtΔxL̂−1
q

{
L−1
s

{ ∞∑
i=−∞

∞∑
n=0

yΔ(iΔx, nΔt) e−snΔte−qiΔx ds dq

∣∣∣∣ t
}∣∣∣∣x

}
,

= lim
Δx→0,Δt→0

∞∑
i=−∞

∞∑
n=0

yΔ(iΔx, nΔt) δ(t− nΔt)δ(x− iΔx)ΔtΔx,

=

∫ ∞

−∞

∫ ∞

0

y(x′, t′) δ(t− t′)δ(x− x′) dt′ dx′

= y(x, t),

provided that t > 0. The continuum limit of the discrete generalized master
equations with a Sibuya waiting time distribution can be found by first taking
the unlilateral star transform with respect to the discrete time variable and the
bilateral star transform with respect to the discrete space variable on each side
of the GME, Eq. (33). The exponential functions arising in the star transforms
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are expanded in Taylor series (see Appendix A) and then we take the inverse uni-
lateral Laplace transform to continuous time, and the inverse bilateral Laplace
transform to continuous space. The limit Δx → 0,Δt → 0, is then evaluated
with the requirement that

Dα = lim
Δx→0,Δt→0

rΔx2

2Δtα
(55)

exists.
The analysis, which is shown in Appendix A, results in the continuum dif-

fusion limit of the discrete generalized master equation,

∂u(x, t)

∂t
= Dα

∂2

∂x2

[
θ(x, t, 0) 0D1−α

t

(
u(x, t)

θ(x, t, 0)

)]
−a(x, t)u(x, t)+c(x, t) . (56)

This recovers the fractional reaction-diffusion equation derived from the diffu-
sion limit of continuous time random walks in [7] where 0D1−α

t is the Riemann-
Liouville fractional derivative, formally equivalent to the Grünwald-Letnikov
fractional derivative in this setting. We note that Eq. (56) is potentially a
non-linear equation, as the annihilation and creation rates, a(x, t) and c(x, t)
respectively, are defined by the reaction kinetics, which may be dependent on
the concentration u(x, t).

5. Numerical Implementation

In this section we present a simplified method of matching parameters and
implementing the explicit numerical scheme to solve the reaction-subdiffusion
equation, Eq. (56). The standard reaction-diffusion equation can be recovered
with α = 1. First we set the step size Δt by inverting the relation for the
diffusion coefficient given by

Dα =
rΔx2

2Δtα
, (57)

and treat Δx and r as free parameters, thus defining

Δt =

(
rΔx2

2Dα

) 1
α

. (58)

We note that r may be a useful parameter for decoupling Δx, Δt and Dα. In the
case of multiple species where each species has a different diffusion coefficient the
lattice for each of the species needs to be the same. This can only be achieved
by letting r be different for each species. If we have two species, A and B, with
diffusion coefficients Dαa > Dαb, then we need to set,

rb =
raDαb

Dαa
. (59)

This is done to ensure that 0 ≤ rb ≤ 1, given 0 ≤ ra ≤ 1. This choice will then
give the same Δt, for a given Δx, for each species.
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In modelling a physical system the annihilation and creation rates are pre-
scribed by the reaction kinetics.

In a stochastic reaction-diffusion system the annihilation and creation pro-
cesses may be modelled by inhomogeneous Poisson processes. In general, for an
inhomogeneous Poisson process with N(t) events up to time t, and rate function
λ(x, t), the expected number of events in the time interval ((n − 1)Δt, nΔt) is
given by

E [N(nΔt)−N((n− 1)Δt)] =

∫ nΔt

(n−1)Δt

λ(x, t′) dt′. (60)

For the same process, the probability that there is no event in the time interval
((n− 1)Δt, nΔt) is given by

P [N(nΔt)−N((n− 1)Δt) = 0] = exp

(
−
∫ nΔt

(n−1)Δt

λ(x, t′) dt′
)
. (61)

If we assume that the annihilation process is modelled by an inhomogeneous
Poisson process with rate parameter a(x, t), then the probability of an annihi-
lation event between (n− 1)Δt and nΔt is one minus the probability that there
is no annihilation event in this time. Thus

A(i, n− 1) = 1− exp

(
−
∫ nΔt

(n−1)Δt

a(iΔx, t′) dt′
)
. (62)

The survival probability function for no annihilation event between time mΔt
and nΔt is given by

Θ(i, n,m) = exp

(
−
∫ nΔt

mΔt

a(iΔx, t′) dt′
)
. (63)

If the creation process is independent of the annihilation process and may
also be modelled as an inhomogeneous Poisson process with rate c(x, t) then the
expected number of particles created between (n− 1)Δt and nΔt is given by

C(i, n) =

∫ nΔt

(n−1)Δt

c(iΔx, t′) dt′. (64)

If the creation process is dependent on an annihilation process, such as in
the case of multiple interacting chemical species, then a different approach may
be used to find the expected number of particles created in the time step. The
dependence of the processes may mean that a flux balance argument can be
used to model the creation events. Considering a reaction such that the decay
of a particle of species A, becomes a particle of species B. Then the number of
particles of species B that are created would simply be the number of particles
of species A lost. If we model the loss of species A by a Poisson process, i.e.
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with A(i, n) given by Eq. (62), then the expected number of species B particles
created would be given by,

Cb(i, n) =

(
1− exp

(
−
∫ nΔt

(n−1)Δt

aa(iΔx, t′) dt′
))

ua(iΔx, nΔt) (65)

where the subscripts a and b denote species A and B respectively. Whilst the
dependent and independent expected number of particles created in a time step
look very different, they share the same limiting behaviour as Δt → 0 . Both
the cases of dependent and independent creation processes are dealt with in the
examples in Section 7.

In reaction dynamics obtained from the law of mass action the reaction terms
are multinomials with positive coefficients identifying creation terms c(x, t) and
negative coefficients identifying annihilation terms a(x, t)u(x, t). In general a
numerical quadrature rule may be needed to evaluate the integrals in Eqs. (62),
(63), (64), and (65). Taking the independent creation process, the explicit finite
difference scheme for Eq. (56) can be written as,

U(i, n) =

n−1∑
m=0

((
1− α

n−m

)
(−1)n−m − δ0,n−m + δ1,n−m

)(
r

2
exp

(
−
∫ nΔt

mΔt

a((i− 1)Δx, t′) dt′
)
U(i− 1,m)

+
r

2
exp

(
−
∫ nΔt

mΔt

a((i+ 1)Δx, t′) dt′
)

U(i+ 1,m)− r exp

(
−
∫ nΔt

mΔt

a(iΔx, t′) dt′
)
U(i,m)

)

+ exp

(
−
∫ nΔt

(n−1)Δt

a(iΔx, t′) dt′
)
U(i, n− 1) +

∫ nΔt

(n−1)Δt

c(iΔx, t′) dt′,

(66)

where Δt is given by Eq. (58).

5.1. Boundary Conditions

On the domain, x ∈ [l1, l2], where l1 = L1Δx, and l2 = L2Δx with L1, L2 ∈
Z, boundary conditions can be set in the following manner:
Dirichlet: For

u(l1, t) = b1(t) and u(l2, t) = b2(t), (67)

set
U(L1, n) = b1(nΔt) and U(L2, n) = b2(nΔt). (68)

Zero-Flux: The conditions for a zero flux boundary can be found by integrating
Eq. (56) over its domain. This gives,

∂

∂t

[∫ l2

l1

u(x, t)dx

]
= Dα

∂

∂x

[
θ(x, t, 0) 0D1−α

t

(
u(x, t)

θ(x, t, 0)

)] ∣∣∣∣∣
x=l2

x=l1

+

∫ l2

l1

c(x, t)−a(x, t)u(x, t)dx.

(69)
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Thus the zero flux boundary conditions are given by

Dα
∂

∂x

[
θ(x, t, 0) 0D1−α

t

(
u(x, t)

θ(x, t, 0)

)]∣∣∣∣∣
x=l2

x=l1

= 0. (70)

These conditions is guaranteed to hold if we take

∂u(x, t)

∂x

∣∣∣∣
x=l1

=
∂u(x, t)

∂x

∣∣∣∣
x=l2

=
∂θ(x, t, 0)

∂x

∣∣∣∣
x=l1

=
∂θ(x, t, 0)

∂x

∣∣∣∣
x=l2

= 0. (71)

For the numerical scheme these boundary conditions are implemented by setting
ghost points for all n as follows,

U(L1 − 1, n) = U(L1, n) and U(L2 + 1, n) = U(L2, n). (72)

This is equivalent to redirecting outgoing flux that is destined to jump out of
the domain back in to those end-points.

Alternatively the domain, x ∈ [l1, l2], can be discretised such that, l1 =
(L1 − 1

2 )Δx, and l2 = (L2 +
1
2 )Δx with L1, L2 ∈ Z. This results in the discrete

points each being at the centre of an interval of width Δx. The Dirichlet and
zero flux boundary conditions are implemented in the same manner as before.

5.2. Initial Conditions
For the initial condition

u(x, 0) = u0(x), (73)

which we assume to be bounded, we simply sample u0(x) via

U(i, 0) = u0(iΔx). (74)

However we may also treat unbounded initial conditions, provided that the
integral of the initial condition over the domain is bounded. For example, if the
initial condition is a Dirac delta function,

u(x, 0) = δ(x− x0), (75)

we take

U(i, 0) =
δi,i0
Δx

(76)

where δi,i0 is a Kronecker delta, i0 = x0

Δx . The justification for Eq. (76) follows
from the identification∫ l2

l1

u(x, 0) dx = lim
Δx→0,Δt→0

∫ L2Δx

L1Δx

uΔ(x, 0) dx

= lim
Δx→0,Δt→0

L2∑
i=L1

uΔ(iΔx, 0)Δx

= lim
Δx→0,Δt→0

L2∑
i=L1

U(i, 0)Δx.

with the left hand side and right hand side both equating to one.
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6. Stability Analysis

For the numerical method to be stable we require the distance between the
solution and its approximation from the numerical scheme to be bounded for
all n, i.e. ∑

i

|U(i, n)− u(iΔx, nΔt)| ≤M (77)

where M ∈ R
+. To show this bound exists it is sufficient to show that both the

solution is bound, and the approximation is bound, i.e.∑
i

|U(i, n)| ≤M1, (78)

∑
i

|u(iΔx, nΔt)| ≤M2, (79)

with M1,M2 ∈ R
+. If u(x, t) is non-negative, and Riemann integrable then the

condition in Eq. (79) is satisfied if,∫ l2

l1

u(x, nΔt)dx ≤M3, (80)

with M3 ∈ R
+. The temporal evolution of the left hand side is given by Eq.

(69). Taking zero-flux boundary conditions this further simplifies to,

∂

∂t

[∫ l2

l1

u(x, t)dx

]
=

∫ l2

l1

c(x, t)− a(x, t)u(x, t)dx. (81)

Hence provided that the initial condition is bounded and∫ l2

l1

c(x, t)− a(x, t)u(x, t)dx ≤ 0, (82)

for all t then, ∫ l2

l1

u(x, t)dx ≤
∫ l2

l1

u(x, 0)dx, (83)

and the condition in Eq. (80) will be satisfied. Equation (82) puts a sufficient
condition on the reactions in order for the solution of the fractional PDE to
remain bounded and simply states that in total at least as many particles are
annihilated as created in the domain.

We also need to ensure that the condition in Eq. (78) is met. By construc-
tion, as a sum of pmfs in Eq. (27), U(i, n) is non-negative, provided that the
stochastic process is well posed. This is guaranteed if r, A(i, n), ψ(n) and λ(i|j)
are all probabilities, and thus restricted to [0, 1], for all i and n, and C(i, n) and
U(i, 0), are non-negative. This permits us to replace the condition in Eq. (78)
with ∑

i

U(i, n) ≤M1. (84)
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To obtain further conditions for the stability of the numerical scheme, we re-
arrange the GME, Eq. (28), and sum over i. Again taking zero-flux boundaries
this gives,∑

i

U(i, n) =
∑
i

U(i, n− 1)+

∑
i

∑
j

(λ(j|i)− δi,j)
n∑

m=0

K(n−m)Θ(j, n,m)U(j,m)

−
∑
i

(A(i, n− 1)U(i, n− 1) + C(i, n))

=
∑
i

(U(i, n− 1)−A(i, n− 1)U(i, n− 1) + C(i, n)) . (85)

where we have used the fact that by Eq. (4),∑
i

(λ(i|j)− δi,j) = 0. (86)

Provided that ∑
i

(C(i, n)−A(i, n− 1)U(i, n− 1)) ≤ 0, (87)

then ∑
i

U(i, n) ≤
∑
i

U(i, n− 1) (88)

and hence if
∑

i U(i, 0) is bounded then the condition in Eq. (78) will be satis-
fied. Equation (87) is an analogous condition on the reactions to the continuous
condition Eq. (82), and they are equivalent in the continuum limit.

The solution of the numerical scheme is therefore stable, as defined by Eq.
(77), when the underlying stochastic process is well posed and Eqs. (82) and
(87) hold. It should be emphasised that this stability result is valid for non-linear
reactions. The simplicity of the provided stability analysis is due to deriving
the numerical scheme from a stochastic process. An alternative derivation of
the stability of the numerical scheme, in the absence of reactions, via a von
Neumann type analysis is provided in Appendix B.

7. Numerical Examples

7.1. Example 1: Non-linear morphogen death rates on semi-infinite domain

In [51], the authors considered subdiffusion with self enhanced degradation as
a model for morphogen concentrations in developmental biology. The fractional
reaction subdiffusion equation in this case is

∂u(x, t)

∂t
=

∂2

∂x2

[
Dαe

− ∫ t
0
ku(x,s)ds

0D1−α
t

[
e
∫ t
0
ku(x,s)dsu(x, t)

]]
−ku(x, t)2, (89)

20



on the semi-infinite domain x ∈ [0,∞). The total mass is conserved over the
domain by injecting a flux, which is equal to the integral of the reaction terms,
at the origin. This corresponds to the boundary condition

Dα
∂

∂x

[
e−

∫ t
0
ku(x,s)ds

0D1−α
t

(
e
∫ t
0
ku(x,s)dsu(x, t)

)] ∣∣∣∣∣
x=0

=

∫ ∞

0

ku(x, t)2dx.

(90)

7.1.1. Stationary Distribution

The stationary distribution is equivalent to the stationary distribution de-
rived in [52]. In the long time limit we can replace the Riemann-Lioville frac-
tional derivatives with Weyl fractional derivatives [46]. To find the stationary
distributions, ust(x) we use the asymptotic relation

e−kust(x)t
0D1−α

t

(
ekust(x)t

)
∼ (kust(x))

1−α. (91)

Thus ust(x) satisfies the ordinary differential equation

Dαk
1−α d2

dx2

(
ust(x)

2−α
)− kust(x)

2 = 0 (92)

with boundary condition

Dαk
1−α d

dx

(
ust(x)

2−α
)∣∣∣∣

0

=

∫ ∞

0

kust(x)dx. (93)

The solution is given by [52, 51]

ust(x) = ust(0)

(
1 +

x

μ

)− 2
α

(94)

where

ust(0) =

(
g√

Dαk2−α

√
4− α

4− 2α

) 2
4−α

, (95)

g =

∞∫
0

kust(x)
2dx, (96)

and

μ =
4− 2α

α
g

(
4− α

4− 2α

) 2−α
4−α

√
Dα

kα
. (97)
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7.1.2. Numerical Solution

The numerical scheme for this problem is found by equating the process
parameters in the fractional PDE, Eq.(89), with the discrete process parameters
in the GME, Eq. (32), with the Sibuya waiting time kernel. The numerical
scheme requires four parameters, Δx, Δt, r, and α, as well as two functions,
A(i, n), and C(i, n). Comparing Eq. (89) with the general form given in Eq. (56)
we see that we have a continuous annihilation process with a rate of a(x, t) =
ku(x, t), and no creation process, i.e. c(x, t) = 0. As there are no particles
created in each time step we set C(i, n) = 0. Using Eq. (62), we set

A(i, n− 1) = 1− exp

(
−
∫ nΔt

(n−1)Δt

ku(iΔx, t′)dt′
)

≈ 1− exp (−ku(iΔx, (n− 1)Δt)Δt)

= 1− exp (−kU(i, n− 1)Δt) .

(98)

Here we have used a simple one point approximation for the integral, and the
relation between the continuous and discrete solutions on the lattice points. We
obtain Θ(i, n,m) from A(i, n) through Eq. (6). The anomalous exponent in
the fractional PDE, α, is equivalent to the fractional exponent parameter in
the Sibuya memory kernel. The choice of the parameters Δx, Δt, and r, is
dependent on the diffusion coefficient Dα and the fractional exponent from the
fractional PDE. Treating Δx and r as free parameters we can set Δt using Eq.
(58),

Δt =

(
rΔx2

2Dα

) 1
α

. (99)

Note that r is a probability and hence 0 ≤ r ≤ 1 and, for a given Δx, the
maximum Δt corresponds to r = 1.

The fractional PDE is defined over a semi-inifite domain, x ∈ [0,∞). This is
approximated by taking an absorbing boundary a long distance from the origin,
i.e. u(l, t) = 0, with l � 0. In the numerical scheme, we take l = LΔx and
this boundary condition corresponds to U(L, n) = 0. The conservation of mass
boundary condition at the origin, Eq. (90), is implemented through a flux of
particles inserted at the origin, equal to particles lost from the annihilation
process and the flux at the x = l boundary.

Substituting these functions and parameters in to the GME Eq. (32), we
obtain

U(i, n)− U(i, n− 1) =

n−1∑
m=0

K(n−m)
r

2

[
exp

(
−

n−1∑
p=m

Δt kU(i− 1, p)

)
U(i− 1,m)

− 2 exp

(
−

n−1∑
p=m

Δt kU(i, p)

)
U(i,m) + exp

(
−

n−1∑
p=m

Δt kU(i+ 1, p)

)
U(i+ 1,m)

]

− [1− exp(−Δt kU(i, n− 1))] U(i, n− 1),

(100)

22



for 0 < i < L, where K(n − m) is the Sibuya kernel from Eq. (40). The
boundary points are given by,

U(0, n)− U(0, n− 1) =

L∑
i=0

[1− exp(−kΔt U(i, n− 1))] U(i, n− 1)

+

n−1∑
m=0

K(n−m)
r

2

[
exp

(
−

n−1∑
p=m

Δt kU(L− 1, p)

)
U(L− 1,m)

− exp

(
−

n−1∑
p=m

Δt kU(0, p)

)
U(0,m)

]

(101)

and
U(L, n) = 0. (102)

The discrete solution is related to the continuous solution at the lattice points,
hence the numerical solution will be given using the relation,

u(iΔx, nΔt) = U(i, n). (103)

To obtain a solution we take k = 10, r = 1, Dα = 1, and α = 0.9. We also
choose an initial condition with g = 1 in Eq. (96), and start near the asymptotic
steady state given by Eq.(94),

U(i, 0) = ust(iΔx). (104)

As the steady state result is valid in the limit l → ∞, we examine the conver-
gence of the numerical method to this solution as we increase the length of the
domain. We also examine a range of different Δx to demonstrate convergence
to the steady state.

The numerical solutions were run to t = 2. At this time the numerical
solution was found to have converged in the sense that

L∑
i=0

(U(i, n)− U(i, n− 1))2Δx ≤ 10−3||U − ust||2 (105)

where

||U − ust||2 =
L∑

i=0

(U(i, n)− ust(iΔx))2Δx. (106)

Figure 1 shows the analytic solution and the convergence of the numerical
solutions. The method is shown to converge with decreasing Δx and increasing
domain size l = LΔx.
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Figure 1: Left: Analytic steady state solution for example 1 at t = 2. Right: Convergence
between the DTRW solution and the analytic steady state at t = 2 as a function of Δx for
l = 5 (cross), l = 10 (plus), l = 20 (square) and l = 50 (circle).

7.2. Example 2: Multi-species chemical reaction model

In the second example, we consider a simple two-species chemical reaction-
subdiffusion model with a simple transition from species A to species B and
vice-versa with a constant rate k,

A
k� B .

We denote the population densities in time and space of A and B by ua and
ub respectively. As a set of fractional partial differential equations, the model
can then be expressed as [4],

∂ua(x, t)

∂t
= Dα

∂2

∂x2

[
e−kt

0D1−α
t

(
ektua(x, t)

)]− kua(x, t) + kub(x, t)

∂ub(x, t)

∂t
= Dα

∂2

∂x2

[
e−kt

0D1−α
t

(
ektub(x, t)

)]
+ kua(x, t)− kub(x, t) .

(107)

We consider the case of zero flux boundaries located at x = −l, and x = l. This
gives the conditions,

Dα
∂

∂x

[
e−kt

0D1−α
t

(
ektua(x, t)

)] ∣∣∣∣∣
x=−l

= 0,

Dα
∂

∂x

[
e−kt

0D1−α
t

(
ektua(x, t)

)] ∣∣∣∣∣
x=l

= 0,

(108)

with equivalent conditions on ub(x, t). These conditions will be satisfied if,

∂ua(x, t)

∂x

∣∣∣∣∣
x=−l

= 0,

∂ua(x, t)

∂x

∣∣∣∣∣
x=l

= 0,

(109)
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and again equivalent conditions for ub(x, t). To facilitate a simple analytic
solution we take the initial condition to be a Dirac delta function located at the
origin for species A and zero every where for species B, i.e.

ua(x, 0) = δ(0− x)

ub(x, 0) = 0
(110)

7.2.1. Analytic Solution

By summing both equations in Eq. (107) and substituting uz(x, t) = ekt(ua(x, t)+
ub(x, t)), we obtain the equation,

∂uz(x, t)

∂t
= Dα 0D1−α

t

[
∂2uz(x, t)

∂x2

]
+ kuz(x, t). (111)

This equation is of the same form as the fractional cable equation [53], where it
was solved for the case k < 0. The boundary conditions are then,

∂uz(x, t)

∂x

∣∣∣∣∣
x=−l

= 0,

∂uz(x, t)

∂x

∣∣∣∣∣
x=l

= 0,

(112)

and the initial condition is,

uz(x, 0) = δ(0− x). (113)

This equation can then be solved analytically via the method of images yielding

uz(x, t) =
1√

4πDαtα

∞∑
j=0

(kt)j

j!

∞∑
n=−∞

(
H2,0

1,2

[
(x+ 4nl)2

4Dαtα

∣∣∣∣∣ (1− α
2 + j, α)

(0, 1) ( 12 + j, 1)

]

+H2,0
1,2

[
(2l − x+ 4nl)2

4Dαtα

∣∣∣∣∣ (1− α
2 + j, α)

(0, 1) ( 12 + j, 1)

])
,

(114)

where H are Fox H functions [54]. Alternatively the solution can be found by
separation of variables [53] giving,

uz(x, t) =
exp(kt)

2L
+

∞∑
m=1

1

L
cos

(mπx

L

) ∞∑
j=0

(kt)j

j!
E

(j)
α,1+(1−α)j

(
−m2π2Dαt

α

L2

)
,

(115)

where E
(m)
α,β (z) is the mth derivative of a Mittag-Leffler function.
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7.2.2. Numerical Solution

To construct the numerical solution to the set of fractional PDEs, Eq (107),
we must parameterise an equivalent set of GMEs. The coupled GMEs will be
of the same form as Eq. (32), using a Sibuya memory kernel and with the addi-
tional complication of a dependence in the annihilation and creation processes.
The numerical scheme will require the identification of five parameters, Δx, Δt,
ra, rb, and α, as well as four functions Aa(i, n), Ab(i, n), Ca(i, n), and Cb(i, n).

Similar to the first example we compare the fractional PDEs with the gen-
eral form presented in Eq. (56). From this we see that that the continu-
ous annihilation precess for both species A and B has a constant rate, i.e.,
aa(x, t) = ab(x, t) = k. The creation process arises out of a flux balance with
the annihilation process, i.e. ca(x, t) = kub(x, t), and cb(x, t) = kua(x, t). The
diffusion coefficients for species A and B are both equal to Dα.

The discrete annihilation probabilities are found from Eq. (62),

Aa(i, n− 1) = Ab(i, n− 1) = 1− exp

(
−
∫ nΔt

(n−1)Δt

kdt′
)

= 1− exp (−kΔt) .

(116)

Again note that setting A(i, n) also sets Θ(i, n,m) through Eq. (6). As we
have a dependent creation process we will use the expected number of created
particles of the form of Eq. (65), this will give,

Ca(i, n) =

(
1− exp

(
−
∫ nΔt

(n−1)Δt

kdt′
))

ub(iΔx, nΔt)

= (1− exp (−kΔt)))Ub(i, n),

(117)

where the correspondence between the discrete and continuous solutions has
been used. Similarly we take,

Cb(i, n) = (1− exp (−kΔt)))Ua(i, n) (118)

The fractional exponent used in the Sibuya memory kernel must match the
fractional exponent in Eq. (107). The choice of the parameters Δx, Δt, ra, and
rb, is dependent on the diffusion coefficients, Dα, and the fractional exponent,
α, of the fractional PDEs. As the diffusion coefficients of the two species are
equal then the two r parameters must also be equal, i.e. ra = rb = r. Treating
Δx and r as free parameters Δt will be given by Eq. (58).

The continuous boundary conditions are taken to be zero flux at x = −l and
x = l. We let l = LΔx, and define the discrete boundary conditions are found
by creating ghost points at −L− 1 and L+ 1 according to Eq. (72).

Putting these parameters and functions into the GMEs based on Eq.(32)
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yields the numerical scheme,

Ua(i, n)− Ua(i, n− 1) =

n−1∑
m=0

K(n−m) exp (−kΔt(n−m))
r

2

(
Ua(i− 1,m)− 2Ua(i,m) + Ua(i+ 1,m)

)
− [1− exp(−kΔt)]Ua(i, n− 1) + [1− exp(−kΔt)]Ub(i, n− 1),

(119)

for −L < i < L, where the K(n) is the Sibuya memory kernel given by Eq.
(40). The boundary points evolve according to

Ua(−L, n)− Ua(−L, n− 1) =

n−1∑
m=0

K(n−m) exp (−kΔt(n−m))
r

2

(
Ua(−L,m) + Ua(−L+ 1,m)

)
− [1− exp(−kΔt)]Ua(−L, n− 1) + [1− exp(−kΔt)]Ub(−L, n− 1),

(120)

and

Ua(L, n)− Ua(L, n− 1) =

n−1∑
m=0

K(n−m) exp (−kΔt(n−m))
r

2

(
Ua(L− 1,m)− Ua(i,m)

)
− [1− exp(−kΔt)]Ua(L, n− 1) + [1− exp(−kΔt)]Ub(L, n− 1).

(121)

Equivalent equations are also found for Ub.
As the continuum equations initial conditions involve a Dirac delta function

we use Eq. (76) to obtain discrete initial conditions,

Ua(i, 0) =
δi,0
Δx

,

Ub(i, 0) = 0.
(122)

The numerical solution is obtained by noting the correspondence between the
discrete and continuous solutions, i.e.

ua(iΔx, nΔt) = Ua(i, n)

ub(iΔx, nΔt) = Ub(i, n)
(123)

To obtain a numerical solution we have taken α = 0.5, Dα = 1 and k =
1, with a spatial domain of [−1, 1]. The solution was run up to time t =
0.1. A range of values for Δx were considered. Two separate discretisations
of the domain were considered to examine the effect of the boundary points
on the numerical solution. In the first the domain was discretised so that the
discrete points aligned with the boundary points, i.e. l = LΔx. The second
discretisation placed each point in the centre of an interval of width Δx, i.e.
l = (L+ 1

2 )Δx.
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For comparison with the analytical solution we consider the sum of the two
species solutions, UZ(i, n) = (Ua(i, n) + Ub(i, n)) exp(knΔt). This is compared
with the solution obtained from Eq. (114) in Fig. 2 for the aligned boundary
grid, and in Fig. 3 for the centred grid. We define the norm of the difference
‖UZ−uz‖2 in a similar fashion to Eq. (106). In each case the numerical solution
converges to the analytical solution. For the case of the aligned boundary the
numerical solution converges with order Δx2, and for the case of the centred
grid the convergence is of the order Δx4. This suggests, for zero-flux boundary
conditions, the centred grid discretisation of the domain is preferable to the
aligned grid discretisation.

Figure 2: Solution of example 2 using aligned boundary grid discretisation. (Left): The
solid line denotes the analytical solution uz(x, t), at t = 0.1. The points show the numerical
solution, UZ(x, t), at t = 0.1 with Δx = 1

5
(Blue Circle), Δx = 1

10
(Purple Square), and

Δx = 1
15

(Orange Cross). (Right): Convergence of the numerical solution, UZ(x, t), to the

analytic solution uz(x, t). For each Δx the solution is compared at the time t =
⌊
0.1
Δt

⌋
Δt.

Figure 3: Solution of example 2 using centred grid discretisation. (Left): The solid line
denotes the analytical solution uz(x, t) at t = 0.1. The points show the numerical solution,
UZ(x, t), with Δx = 2

5
(Blue Circle), Δx = 2

15
(Purple Square), and Δx = 2

41
(Orange Cross).

Each numerical solution is evaluated at t =
⌊
0.1
Δt

⌋
Δt. (Right): Convergence of the numerical

solution, UZ(x, t), to the analytic solution uz(x, t). For each Δx the solution is compared at
the time t =

⌊
0.1
Δt

⌋
Δt.
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8. Summary

Numerous numerical schemes have been proposed for solving nonlinear reac-
tion diffusion processes. The simplest scheme to implement is an explicit finite
difference scheme in which the time and space derivatives are replaced by lo-
cal difference operators. However such schemes are known to be numerically
unstable for general parameters and a formal stability analysis is required to
investigate this. Here we have presented a new approach to obtaining numeri-
cal schemes for reaction diffusion equations and fractional reaction subdiffusion
equations. The numerical schemes are implemented as explicit finite difference
schemes but they are guaranteed to be stable, in the sense that the differ-
ence between the numerical solution and the exact solution remains bounded
for all time, by construction, provided the stochastic process is well posed.
The construction involves the derivation of discrete time master equations for
a stochastic process with the consistency that the discrete time master equa-
tions converge to the reaction diffusion equation of interest in the continuum
space and time limit. The utility of this construction as the basis of a stable
numerical scheme is perhaps unsurprising. Reaction diffusion equations, includ-
ing fractional reaction subdiffusion equations, are themselves formally derived
from a continuous time stochastic process [7]. In implementing the numerical
scheme, further information on the stochastic process, such as symmetries in
the reaction kinetics, can be incorporated in a natural way. More generally it
may be possible to formulate discrete time stochastic processes that converge to
partial differential equations, and fractional partial differential equations, even
in cases where the partial differential equations have not previously been ob-
tained from a continuous time stochastic process. This opens up the possibility
of new classes of explicit finite difference schemes that are inherently stable.

Appendix A

In this appendix we evaluate the continuum limit of the discrete generalized
master equations, Eq. (33), based on transform methods with

y(x, t) = lim
Δx→0,Δt→0

ΔtΔxL̂−1
q

{
L−1
s

{
Ẑ∗i {Z∗n {Y (i, n)| s,Δt} | q,Δx} | t

}
|x

}
,

(124)
where

Z∗n {Y (i, n)| s,Δt} =
∞∑

n=0

Y (i, n) e−nΔts, (125)

is the unilateral star transform with respect to n,

Ẑ∗i {Y (i, n)| q,Δx} =
∞∑

i=−∞
Y (i, n) e−iΔxq, (126)

is the bilateral star transform with respect to i, L−1
s {F (s)|t} is the inverse

unilateral Laplace transform to continuous time and L̂−1
q {G(q)|x} is the inverse

bilateral Laplace transform to continuous space.
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In taking the continuum limit we make use of a product rule

lim
Δx→0,Δt→0

ΔtΔxL̂−1
q

{
L−1
s

{
Ẑ∗i {Z∗n {Y1(i, n)Y2(i, n)| s,Δt} | q,Δx} | t

}
|x

}

= lim
Δx→0,Δt→0

ΔtΔxL̂−1
q

{
L−1
s

{ ∞∑
i=−∞

∞∑
n=0

y1,Δ(iΔx, nΔt)y2,Δ(iΔx, nΔt)e−nΔtse−iΔxq| t
}
|x

}

= lim
Δx→0,Δt→0

∞∑
i=−∞

∞∑
n=0

y1,Δ(iΔx, nΔt)y2,Δ(iΔx, nΔt)δ(t− nΔt)δ(x− iΔx)ΔtΔx

= y1(x, t)y2(x, t),

=

(
lim

Δx→0,Δt→0

∞∑
n=0

y1,Δ(iΔx, nΔt)δ(t− nΔt)Δt

)

×
(

lim
Δx→0,Δt→0

∞∑
n=0

y2,Δ(iΔx, nΔt)δ(t− nΔt)Δt

)
.

(127)

which is valid for t > 0 and provided that both limits exist. We also make use
of the shift properties

Z∗n {Y (i, n− k)| s,Δt} = e−kΔtsZ∗n {Y (i, n)| s,Δt} , (128)

Ẑ∗i {Y (i− k, n)| q,Δx} = e−kΔxqẐ∗i {Y (i, n)| q,Δx} , (129)

and, for notational convenience, we write

ŶΔ(s, q) = Ẑ∗i {Z∗n {Y (i, n)| s,Δt} | q,Δx} . (130)

We now take the unilateral star transform with respect to the discrete time
variable and the bilateral star transform with respect to the discrete space vari-
able on each side of the GME, Eq. (33), to obtain

ÛΔ(s, q)−e−ΔtsÛΔ(s, q) =
r

2
(eΔxq+e−Δxq−2)X̂Δ(s, q)−e−ΔtsB̂Δ(s, q)+ĈΔ(s, q),

(131)
where

X̂Δ(s, q) = Ẑ∗i
{
Z∗n

{
Θ(i, n, 0)

n∑
m=0

K(n−m)
U(i,m)

Θ(i,m, 0)
| s,Δt

}
| q,Δx

}
,

(132)
and

B̂Δ(s, q) = Ẑ∗i {Z∗n {A(i, n)U(i, n)| s,Δt} | q,Δx} . (133)

We can expand the exponential functions in Eq. (131) to write

ΔtsÛΔ(s, q)− Δt2s2

2
ÛΔ(s, q) +O(Δt3) =

r

2
Δx2q2X̂Δ(s, q)− B̂Δ(s, q)

+ ΔtsB̂Δ(s, q) +
Δt2s2

2
B̂Δ(s, q) + ĈΔ(s, q) +O(Δx4) +O(Δt3).

(134)
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We take the inverse unilateral Laplace transform with respect to s, with limits
to continuous time, and we take the inverse bilateral Laplace transform with
respect to q, with limits to continuous space. This yields

Δt
∂

∂t
L−1
q

{
L−1
s

{
ÛΔ(s, q)|t

}
|x
}
− Δt2

2

∂2

∂t2
L−1
q

{
L−1
s

{
ÛΔ(s, q)|t

}
|x
}

=
r

2
Δx2 ∂2

∂x2
L−1
q

{
L−1
s

{
X̂Δ(s, q)|t

}
|x
}
− L−1

q

{
L−1
s

{
B̂Δ(s, q)|t

}
|x
}

+Δt
∂

∂t
L−1
q

{
L−1
s

{
B̂Δ(s, q)|t

}
|x
}
− Δt2

2

∂2

∂t2
L−1
q

{
L−1
s

{
B̂Δ(s, q)|t

}
|x
}

+ L−1
q

{
L−1
s

{
ĈΔ(s, q)|t

}
|x
}
+O(Δx4) +O(Δt3).

(135)

To take the continuum limit we first multiply by Δx and then take the limit
Δx→ 0,Δt→ 0, thus arriving at

∂

∂t
u(x, t) = f(x, t)− a(x, t)u(x, t) + c(x, t). (136)

In taking the limits leading to Eq. (136) we identified

f(x, t) = lim
Δx→0,Δt→0

r

2
Δx3 ∂2

∂x2
L−1
q

{
L−1
s

{
X̂Δ(s, q)|t

}
|x
}

(137)

together with the continuous creation rate

c(x, t) = lim
Δx→0,Δt→0

ΔtΔxL−1
q

{
L−1
s

{
ĈΔ(s, q)

Δt
|t
}
Δt|x

}
, (138)

and

a(x, t)u(x, t) = lim
Δx→0,Δt→0

ΔtΔxL−1
q

{
L−1
s

{
B̂Δ(s, q)

Δt
|t
}
Δt|x

}
, (139)

where a(x, t) is the annihilation rate. The result in Eq. (139) was obtained from
the product rule, Eq. (127),together with the identification

a(x, t) = lim
Δx→0,Δt→0

ΔtΔxL−1
q

{
L−1
s

{
ÂΔ(s, q)

Δt
|t
}
Δt|x

}
. (140)

It remains to evaluate the limit

f(x, t) = lim
Δx→0,Δt→0

r

2
Δx3 ∂2

∂x2
L−1
q

{
L−1
s

{
X̂Δ(s, q)|t

}
|x
}

=
∂2

∂x2
lim

Δx→0,Δt→0

rΔx3

2
L−1
q

{
L−1
s

{
Ẑ∗i {Z∗n {Θ(i, n, 0)Y (i, n)| s,Δt} | q,Δx} |t

}
|x
}

=
∂2

∂x2
θ(x, t, 0) lim

Δx→0,Δt→0
ΔxΔtL−1

q

{
L−1
s

{
Ẑ∗i

{
Z∗n

{
rΔx2

2Δt
Y (i, n)|s,Δt

}
|q,Δx

}
|t
}
|x
}
.

(141)
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In the last step we used the product rule, Eq. (127), with the identification

θ(x, t, 0) = lim
Δx→0,Δt→0

ΔtΔxL−1
q

{
L−1
s

{
Θ̂Δ(s, q)|t

}
Δt|x

}
, (142)

and

Y (i, n) =
n∑

m=0

K(n−m)
U(i,m)

Θ(i,m, 0)
. (143)

We can evaluate the unilateral star transform using the convolution theorem,
thus

Z∗n {Y (i, n)} = Z∗n {K(n)}Z∗n {V (i, n)} (144)

where

V (i, n) =
U(i, n)

Θ(i, n, 0)
. (145)

The unilateral star transform of the Sibuya kernel is obtained by substituting
z = e−sΔt into Eq. (39). Explicitly,

Z∗n{K(n)} = (1− e−sΔt)1−α − (1− e−sΔt) ∼ (sΔt)1−α + o(sΔt). (146)

Substituting the results from Eqs. (144), (146) into Eq. (141) we have

f(x, t) =
∂2

∂x2
θ(x, t, 0) lim

Δx→0,Δt→0
ΔxΔtL−1

q

{
L−1
s

{
Ẑ∗i

{
rΔx2

2Δtα
s1−αZ∗n {V (i, n)|s,Δt} |q,Δx

}
|t
}
|x
}
.

(147)
Provided that the limit

Dα = lim
Δx→0,Δt→0

rΔx2

2Δtα
(148)

exists, we can write this as

f(x, t) = Dα
∂2

∂x2
θ(x, t, 0) lim

Δx→0,Δt→0
ΔxΔtL−1

q

{
L−1
s

{
s1−αẐ∗i {Z∗n {V (i, n)|s,Δt} |q,Δx} |t

}
|x
}

= Dα
∂2

∂x2
θ(x, t, 0) lim

Δx→0,Δt→0
ΔxΔt

× L−1
q

{
L−1
s

{
s1−α

∞∑
i=−∞

∞∑
n=0

vΔ(iΔx, nΔt)e−nΔtse−iΔxq|t
}
|x
}

= Dα
∂2

∂x2
θ(x, t, 0) lim

Δx→0,Δt→0
ΔxΔt

× L−1
s

{
s1−α

∞∑
i=−∞

∞∑
n=0

vΔ(iΔx, nΔt)e−nΔtsδ(x− iΔx)|t
}

= Dα
∂2

∂x2
θ(x, t, 0) lim

Δx→0,Δt→0
ΔxΔt

× L−1
s

{
s1−αLt

{ ∞∑
i=−∞

∞∑
n=0

vΔ(iΔx, nΔt)δ(t− nΔt)δ(x− iΔx)|s
}
|t
}
.

(149)
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In the last line of Eq. (149) we used the notation

Lt {f(t)|s} (150)

to denote a unilateral Laplace transform with respect to time and with Laplace
variable s.

This can be simplified further by noting that

L−1
s

{
s1−αLs{y(x, t)|s}|t

}
= 0D1−α

t y(x, t) (151)

where 0D
1−α
t denotes the Riemann-Liouville derivative of order 1 − α. Using

this result in Eq. (149) we can now write

f(x, t) = Dα
∂2

∂x2
θ(x, t, 0) 0D1−α

t v(x, t) (152)

where

v(x, t) =
u(x, t)

θ(x, t, 0)
. (153)

Finally we combine the results in Eq. (153) and Eq. (152) with Eq. (136) to
obtain the continuum diffusion limit of the discrete generalized master equation,

∂u(x, t)

∂t
= Dα

∂2

∂x2

[
θ(x, t, 0) 0D1−α

t

(
u(x, t)

θ(x, t, 0)

)]
− a(x, t)u(x, t) + c(x, t) .

(154)
This recovers the fractional reaction-diffusion equation derived from the dif-
fusion limit of continuous time random walks in [47]. We note that this is a
potentially non-linear equation as a(x, t) and c(x, t) may be dependent on the
concentration u(x, t).

Appendix B: Stability Analysis

In this appendix we show the DTRW to be unconditionally stable in the
reaction free case for the anomalous diffusion equation using a von Neumann
type stability analysis introduced by Yuste and Acedo in [21]. We show that the
stability bound obtained from the Sibuya waiting time pmf is superior to the
bounds for the backward Euler formula of order 1 (BDF1), or the Grünwald-
Letnikov in the anomalous case, as well as the backward Euler formula of order
2 (BDF2).
We begin by assuming the solution of our GME,

U(i, n)− U(i, n− 1) =

n−1∑
m=0

K(n−m)
r

2
(U(i+ 1,m)− 2U(i,m) + U(i− 1,m))

(155)
is of the form

U(i, n) = σq(n)e
IiqΔx, (156)
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where I =
√−1 represents the complex number. This solution represents a

single wave number, q, of a Fourier decomposed solution from the separation of
variables approach. Substituting this solution form into our GME we obtain

σq(n)e
IiqΔx−σq(n−1)eIiqΔx =

n−1∑
m=0

K(n−m)
r

2
σq(m)eIiqΔx

(
eIqΔx − 2 + e−IqΔx

)
,

(157)
which gives

σq(n)

σq(n− 1)
= 1− 2r sin2

(
qΔx

2

) n−1∑
m=0

K(n−m)
σq(m)

σq(n− 1)
. (158)

We now define

ρ(n) =
σq(n)

σq(n− 1)
, (159)

where ρ(n) is an amplification factor which gives

ρ(n) = 1− 2r sin2
(
qΔx

2

) n−1∑
m=0

K(n−m)

n−1∏
l=m

ρ(l)−1. (160)

If |ρ(n)| > 1 for all n > N for some N , then ρ(n) will grow temporally to infinity
and the mode q is unstable. We therefore consider the extreme value ρ = −1 to
establish a bound for stability,

r sin2
(
qΔx

2

)
≤ 1

n−1∑
m=0

K(n−m)(−1)m−n+1

. (161)

Noting that

n−1∑
m=0

K(n−m)(−1)m−n+1 =

n∑
m=1

K(m)(−1)−m+1, (162)

allows us to determine the behaviour of this bound as the number of iterations,
n, tends to infinity. Using

∞∑
m=1

K(m)(−1)−m+1 = 2− 21−α, (163)

we obtain the stability bound on r,

r =
2DαΔtα

Δx2
≤ 1

2− 21−α
. (164)

The derivation of the DTRW numerical scheme interprets r as a probability
and hence r ∈ [0, 1]. The above stability bound is greater than or equal to 1 for
all values of α ∈ [0, 1] resulting in an unconditionally stable numerical scheme
for the reaction free case. The bounds obtained by Yuste and Acedo [21] for
the BDF1 (Grünwald-Letinkov) and BDF2 schemes are 1/22−α and 1/43/2−α

respectively. Figure 4 compares this stability bound for α ∈ [0, 1] for the BDF1,
BDF2 and DTRW schemes.
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Figure 4: Stability bound on r for BDF1, BDF2 and DTRW over α.

Appendix C: Exact Solution of σq(n)

In this appendix we show that the function σq(n), used in the stability
analysis presented in appendix B, can be found in terms of Fox H functions. To
begin we note that Eq. (170) can be rewritten as,

σq(n+ 1) = σq(n)− v

n∑
m=0

K(n−m+ 1)σq(m), (165)

where

v = 2r sin2
(
qΔx

2

)
. (166)

Taking the Z-transform gives

zΣq(z)− zσq(0) = Σq(z)− v(zK(z)− zK(0))Σ(z) (167)

where Σq(z) and K(z) are the Z-transforms of σq(n) and K(n) respectively.
Solving for Σq(z) and noting that K(0) = 0 we find,

Σq(z) =
zσq(0)

z − a+ vzK(z) . (168)

Now if the memory kernel is the Sibuya memory kernel we have,

K(z) = (1− z−1)1−α − (1− z−1), (169)
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which gives

Σq(z) =
zσq(0)

z − 1 + vz((1− z−1)1−α − 1(1− z−1))

=
zσq(0)

z(1− z−1)− vz(1− z−1) + vz(1− z−1)1−α

=
zσq(0)

(1− z−1)(1− v) + v(1− z−1)1−α

(170)

If 0 ≤ v < 1/2 we can expand and find,

Σq(z) =
zσq(0)

(1− z−1)(1− v)(1 + v
1−v (1− z−1)−α)

=
zσq(0)

(1− z−1)(1− v)

∞∑
j=0

(
− v

1− v
(1− z−1)−α

)

=
zσq(0)

(1− v)

∞∑
j=0

(
− v

1− v

)j

(1− z−1)−jα−1

(171)

Inverting the Z-transform then gives,

σq(n) =
σq(0)

(1− v)

∞∑
j=0

(
− v

1− v

)j ( −jα− 1
n

)
(−1)n. (172)

Note that, ( −jα− 1
n

)
=

Γ(−jα)
n!Γ(−jα− n)

=
(−1)n
n!

Γ(jα+ n+ 1)

Γ(jα+ 1)

(173)

so Eq. (172) can be written,

σq(n) =
σq(0)

(1− v)

∞∑
j=0

(
− v

1− v

)j
Γ(jα+ n+ 1)

n!Γ(jα+ 1)
. (174)

Which may be expressed in terms of a Fox H function,

σq(n) =
σq(0)

(1− v)
H1,2

2,2

[
v

1− v

∣∣∣∣∣ (0, 1) (−n, α)
(0, 1) (0, α)

]
(175)
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Alternatively, expanding Eq. (170) in the case when v ≥ 1
2 we find,

Σq(z) =
zσq(0)

v(1− z−1)(1 + 1−v
v (1− z−1)−α)

=
zσq(0)

v(1− z−1)

∞∑
j=0

(
−1− v

v
(1− z−1)−α

)

=
zσq(0)

v

∞∑
j=0

(
−1− v

v

)j

(1− z−1)jα+α−1

(176)

Inverting the Z-transform then gives,

σq(n) =
σq(0)

v

∞∑
j=0

(
−1− v

v

)j (
jα+ α− 1

n

)
(−1)n. (177)

Noting that, ( −jα− 1
n

)
=

Γ(jα+ α)

n!Γ(jα+ α− n)
, (178)

this may be rewritten as,

σq(n) =
(−1)nσq(0)

v

∞∑
j=0

(
−1− v

v

)j
Γ(jα+ α)

n!Γ(jα+ α− n)
. (179)

Which may be expressed in terms of a Fox H function,

σq(n) =
(−1)nσq(0)

n!v
H1,2

2,2

[
1− v

v

∣∣∣∣∣ (0, 1) (1− α, α)
(0, 1) (1− α+ n, α)

]
. (180)

The expressions in terms of Fox functions may not be valid for all values of v.
In both cases the absolute value of the argument needs to be less than α−2α.
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