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proppant transport in gaseous fracking fluids, air/gas drilling hydraulics, coal-gasification
reactors and food processing units. Systems automation and real time process optimization
stand to benefit a great deal from availability of efficient and accurate theoretical models

Keywords: for operations data processing. However, modeling two-phase pneumatic transport systems
Approximate Riemann solver accurately requires a comprehensive understanding of gas-solids flow behavior. In this
Two-fluid model study we discuss the prevailing flow conditions and present a low-fidelity two-fluid
Multiphase model equation for particulate transport. The model equations are formulated in a manner
Compressible flow that ensures the physical flux term remains conservative despite the inclusion of solids
Pneumatic conveying normal stress through the empirical formula for modulus of elasticity. A new set of Roe-

Hyperbolic systems Pike averages are presented for the resulting strictly hyperbolic flux term in the system

of equations, which was used to develop a Roe-type approximate Riemann solver. The
resulting scheme is stable regardless of the choice of flux-limiter. The model is evaluated by
the prediction of experimental results from both pneumatic riser and air-drilling hydraulics
systems. We demonstrate the effect and impact of numerical formulation and choice of
numerical scheme on model predictions. We illustrate the capability of a low-fidelity
one-dimensional two-fluid model in predicting relevant flow parameters in two-phase
particulate systems accurately even under flow regimes involving counter-current flow.

© 2016 Elsevier Inc. All rights reserved.

1. Introduction

Particulate transport in fluid media is common in many industrial processes. Designing such processes to predefined
capacity limits can be abstruce and highly dependent on the ability to model and simulate them. Furthermore, real-time
mechanistic model simulation coupled to model parameter tuning algorithms that take advantage of available operations
data is crucial for efficient process control automation. Process automation frameworks aid the seamless real-time opti-
mization of engineering operations and industrial processes using measured operations data. Stand alone commercial and
open-source simulators like FLUENT, Star-CCM+ and OpenFOAM are capable of modeling particulate transport at high fi-
delity. However, they are inefficient for real-time process optimization and capacity design as they are not built with the
flexibility for dynamic data utilization while running perpetually on remote servers with little or no human interaction.
Hence the need for lower fidelity models that are fast, accurate and robust.
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Some well known computational models, such as K-FIX [1], MULTIFIX [2,3], FORSIM [4], OLGA [5], TACITE [6], PLAC and
TUFFP [7], TRAC [8], RELAP [9-11] and CATHARE [12] are examples of lower fidelity models for multiphase flow systems.
However, these tend to suffer from frontal smearing, which ultimately affects parameter predictions, when applied to com-
pressible two-phase particulate transport systems. This fact led some authors [13] to the conclusion that such lower fidelity
models are incapable of making accurate parameter predictions when applied to two-phase particulate transport systems.

Toumi and Kumbaro [14] noted that the smearing of the fronts observed in the earlier models are due to the description
of the mathematical model and the numerical method adopted. They presented an approximate Riemann solution on a
modified set of isentropic equal pressure two-fluid model equation that included the virtual mass effect proposed by Drew
and Lahey [15,16] in order to ensure hyperbolicity.

Tsuo and Gidaspow [13] presented a set of strictly hyperbolic model equations for gas-solids flow in circulating fluidized
beds where the pressure gradient of the particulate phase is expressed in terms of an empirically determined modulus
of elasticity. They simulated both one- and two-dimensional flow using an earlier extension of K-FIX by Syamlal [2] in
an effort to replicate the experimental results of Luo [17,18]. Their one-dimensional numerical simulation showed signs of
significant frontal smearing [13,19] and poor steady-state solids concentration (volume fraction) predictions. They concluded
that one-dimensional models can not be used to predict solids concentrations accurately in two phase gas-solid transport
even for vertical flow. They made particular reference to flow regimes that experience clustering and counter-current annular
flow. Interestingly, their two-dimensional simulation results also indicated poor steady-state solids concentration predictions
as well. However, they attributed the discrepancy in the numerical predictions relative to experimental measurements to
the inaccuracies of the x-ray densitometer used in Luo’s experiment [17] to measure the solids concentrations.

Syamlal [20] also presented a new set of two-fluid model equations that are hyperbolic under a wide range of flow
conditions by including a bouyant force term that accounts for relative velocity between the fluid and solids phases. He
expressed the flow equations using primitive variables and also showed through characteristic analysis, where various sets
of flow equations lose hyperbolicity. However, Hou and Le Floch [21] have shown that numerical formulations such as those
that employ primitive variables do not converge to the correct solution when discontinuities are present.

Hudson and Harris [22] also presented a high resolution scheme for gas-solids two-phase isentropic flow. Both of Gi-
daspow’s [23] non-hyperbolic (Model A) and strictly hyperbolic (Model B) equations were evaluated. Model C, which is also
non-hyperbolic was analyzed but not evaluated as it displayed a larger region of non-hyperbolicity relative to Model A. They
utilized a conservative finite volume scheme and a Roe-type approximate Riemann solver. They presented a set of Roe-Pike
averages for their system of equations and solved these equations using conserved variables. They however reported some
instability in their numerical scheme which they attributed to sensitivity to the choice of flux-limiter used. It should be
noted that the observation of numerical instabilities when solving strictly hyperbolic systems, as is the case for model B
reported by Hudson and Harris, typically points to flaws in the applied numerical scheme.

Kamath and Du [24] presented an approximate Riemann solver for granular gas flow proposed by Goldshtein and Shapiro
[25]. Kamath and Du presented a Roe-type algorithm for the hyperbolic system, which included non-conservative terms. The
non-conservative terms introduce non-isentropic effects in acoustic-wave propagation within granular media and contribute
to the Rankine-Hugoniot relations across discontinuities. They reported stable and accurate results for a one-dimensional
test case for shocks with the flow features of a fluidized region downstream of the shock and a compacted solid-block region
adjacent to the wall. They concluded that the Roe-type scheme they had presented may be relevant in the investigation of
two-phase flows.

Ibraheem and Adewumi [26] also studied two-phase gas-solids transport for the initiation stage of hydrate formation and
transport in natural gas pipelines. They utilized a conservative finite volume scheme and applied a Roe-type approximate
Riemann solver using the set of Roe-Pike averages they had presented. While their model was reported stable, they had
excluded any normal stresses associated with the solids phase completely.

While there have been many studies related to the construction of high resolution schemes for gas-solids two phase
flow [20,22,24,27], there has not been enough effort in investigating the overarching benefit of improved resolution of dis-
continuous fronts on parameter predictions in gas-solids systems. In this study, we present a new set of Roe-Pike averages
for a system of strictly hyperbolic two-fluid gas-solids flow model equation of the form of Gidaspow’s Type-B model [23].
The resulting numerical scheme is insensitive to the choice of flux-limiters. We also show that the inaccuracies observed in
parameter predictions in one-dimensional two-fluid gas-solids models are highly dependent on the numerical formulation
and the capability of the numerical method of choice to capture and fully resolve discontinuities in the solution of the
model equations.

2. Background

Most process optimization scenarios involve minimizing power requirements while maintaining adequate gas flow for
particulate transport. This typically translates to minimizing pressure drop in the system while maintaining a particular
flow condition or regime suitable for the specific operation. Gas-solid models developed for process automation frameworks
need to be accurate under the broad spectrum of flow regimes expected under dilute and dense phase flow conditions but
simple enough to minimize computational costs. For a vertical pneumatic transport system, Fig. 1 shows the typical curves
of pressure drop as a function of superficial gas velocity at fixed solid mass feed rates (Ws,, Ws,, Ws,) also known as the
flow characteristics curve (FCC) or Zenz state diagram [28].
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Fig. 1. Flow regimes and transitions between dense and dilute phase flow conditions.
[Modified from Cheremisinoff et al. (1984).]

Between AB, fluid-wall viscous/frictional resistance contribution to the pressure drop in the conduit predominates. In
this section, annular pressure drop is directly proportional to gas velocity. Therefore, as gas velocity decreases, pressure
drop decreases and vice-versa. Region (AB) is also known as the dilute flow region. The flow characteristic behavior of the
fluid mixture while within region AB is similar to the behavior of single phase gas flow (Ws, = 0). Between BC, pressure
drop due to head loss and cloud particle drag are dominant. In this region, there exists an inverse relationship between
superficial gas velocity and pressure drop in the conduit. This is due to the fact that as gas velocity is reduced below
a critical value (point B), the rate of solid accumulation in the conduit is higher, which ultimately translates to higher
pressure difference across the conduit as a result of the higher hydrostatic head loss and cloud particle drag effects.

Fig. 1 also shows the various flow regimes experienced under both dilute and dense flow for vertical pneumatic trans-
port. At point A (relatively higher superficial gas velocities), solids concentration is distributed uniformly therefore the flow
remains uniform. If superficial gas velocity is reduced (between A and B), particles cluster around the pipe wall forming
annular flow whereby higher solids concentration is formed near the walls of the conduit with particles near the wall
moving in the opposite direction relative to the gaseous phase (counter-current flow). At even lower superficial gas ve-
locities, a transitional state is observed whereby the annular regions grows until it closes in on itself (point B). At even
lower superficial gas velocities (between B and C), we begin to observe slug flow, whereby bubbles of particles moving with
same orientation as the gaseous phase struggle to move through particles moving in the opposite direction. Here significant
pressure oscillations is usually observed. If superficial gas velocity is lowered to point C, packed flow may be observed.

The idea behind a low-fidelity model is the ability to capture the prevailing flow conditions (i.e. pressure drop, solid
concentrations and average phase velocities within the conduit) under varying flow regimes using analytical and empirical
constitutive relations in a one dimensional two-fluid model.

3. The mathematical model

A one dimensional isothermal two-phase Eulerian-Eulerian gas-solids transport equation may be expressed as follows:

U; + F(U)x =B(U), (1)
where:
£pg EPgVyg 0
(1 —¢&)ps (1 —8&)psvs 0
U= , FUU)= , BU) =
EpgVe © £pgVy+ Py =1 Fgg + Fug — Fa
(1—&)psvs (1—¢)psvi+ ps Fgs 4+ Fws + Fq

Subscripts g and s represent the gas and dispersed solids phases respectively. p, v and p are density, velocity, and
pressure. ¢ is the gas volume fraction, which is constrained by &pmin < & < 1. The source term (B) contains analytical and em-
pirical relations for determining forces (per unit volume) due to gravity (Fg;), wall friction (Fy,;) and fluid-particle drag (Fy),
where i = g,s. Eq. (1) contains mass and momentum conservation for both the dispersed and carrier phases. Since solid
density (ps) is a known constant, we have six unknowns and four equations so far. However, the pressure of the gas and
particulate phases may be expressed as a function of gas density and particle concentration (volume fraction) as follows.
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Gas pressure is related to gas density and temperature by the following EOS:

RT
pg=M_ng (2)

where R, Mg and T are the universal gas constant (R = 8.314 x 103 ), molecular mass of the gas phase (Mgjr =

J
kmol K
28.97 ki(Tgol) and fluid temperature. For this isothermal system, pressure of the carrier phase is directly proportional to its
density with the proportionality constant II‘%’

The solid pressure is expressed in terms of a modulus of elasticity, G(¢), which is assumed to be a function only of the
local value of the voidage. The solid pressure gradient represents the normal stresses due to particle-particle interactions.
Its inclusion helps to prevent the solid phase from reaching unrealistic low values of void fraction in addition to helping to
ensure strict hyperbolicity, which though not necessary for stability is a desirable characteristic. It is expressed as follows:

Vps=G(E)V( —e¢). 3)
In order to maintain the conservative form of the physical flux as expressed in Eq. (1) we re-write Eq. (3) as follows:
Vps=G(E)V(A —&)=V((1—-e)G(e) — (1 —¢e)VG(¢e) (4)

where the last term on the right hand side is the non-conservative contribution. This term is excluded from the flux term
and is instead treated as a forcing function.

A number of empirical correlations for the modulus of elasticity, G(¢), have been proposed. Furthermore, comparative
studies [29,30] have been carried out to test their efficacy. In this paper we adopt one proposed by Gidaspow and Ettehadieh
[31]:

Eq. (1) can be expressed as:

U + F(U)x =B(U), (6)
where:
&g EpgVyg 0
(1—¢&)ps (1—e&)psvs 0
U= , FU) = . BU)=
EpgVg () epgVy +a*pg ) Fgg + Fywg — Fq
(1 —&)psvs (1—¢)(psv2 +G(e)) (1—&)G(&)x + Fgs + Fws + Fq

a is the constant speed of sound determined as follows:

_ [dpg _ [RT
= dp | Mg v

The gravitational force per unit volume is determined as follows:

Feg=e0g8.  Fgo=(1—)(ps — pg)g (8)

where g is the gravitational acceleration (9.8 sz). The viscous force per unit volume is determined as follows:

4 /1 )
Fwiza(ip‘/,‘z) fi i=gs. 9)

The parameters d and f are the pipe diameter and dimensionless friction factor respectively. For the gas phase friction
factor, fg, is a function of pipe roughness (¢) and Reynolds number (Re):

_ Epgvgd
Mg

where g in Eq. (10) is the gas viscosity and may be determined from well known correlations (e.g. for dry air see Kadoya
et al. [32]) at local temperatures and pressures or determined at operating temperature and assumed constant.

The coefficient of friction for the gas phase, fg, is estimated from the fanning equation for laminar flow (Re < 2100) and
Chen’s [33] friction factor equation for turbulent flow conditions (Re > 2100) as expressed in Eq. (11).

Re (10)

16
e for Re < 2100,

foe= € €11.1098 —2 (11)
& = <log [3‘(7&5 — 202 Jog (%?8257 + ;;3%%%2)}) for Re > 2100.
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The dispersed phase friction factor, f, is determined by the empirical correlation of Yang [34]:

~0.979
0.0031518;3‘8 ((l —g) U ) for vertical flow

Vg—Vs

fs:

~1.15
0.029318;38 ((1 - 8)\/‘;%’]) for horizontal flow,

where terminal velocity of a single particle (vr) is defined as:

vr = f(ﬁs — pg)gdp (13)
3 Capg

The fluid-particle drag force (Fy) is estimated using Eq. (14). The inter-phase friction coefficient (8) is estimated using
the drag equation in particle-laden fluid [35-37] expressed in Eq. (15).

Fg=pBvg—vs) (14)
. Ecd(‘1 —&)pglvg — Vsl
B= 2 d, g(&) (15)

The parameters dp and Cy4 are the weighted average particle diameter and dimensionless single sphere drag coefficient
respectively. The voidage function, g(¢), accounts for the effects of neighboring particles on the drag of individual particles.
For Wen and Yu [35], g(g) = €725, Di Felice [36] developed an improved correlation for the voidage function using the
empirical correlation of Richardson and Zaki [38], which relates the fluidized flux velocity to the void fraction under varying
flow regimes. Di Felice’s voidage function is of the form:

ge)=¢" (16)

where:
1 2
n=3.7—-0.65exp —5(1.5 — logRe;)~ |.

Single sphere drag coefficient (Cy) is estimated with the correlation of Turton and Levenspiel [39]:

24, 4152 0.413 ; 5
Cy=1Rer * Re23 t 1116300Re; T i Rer<1x10 (17)
0.44 if Re,>1x10°
where:
EPg|Vg — Vs|d
Re, — £PelVe — Vsldp.

Hg

3.0.1. Characteristic analysis
Eq. (6) may be expressed in it’s quasi-linear form as follows:

U; + A(U)U, =B, (18)

where the flux Jacobian matrix, A(U), expressed in terms of primitive variables is as follows:

0 0 1 0
0 0 0 1
A= 2 2 1

—vi4+ < %G 2vg 0 (19)

0 vZ+ 8 0 2v
The eigenvalues and eigenvectors of Eq. (19) and therefore Eq. (6) are as follows:
Vg — % 0 0 0
a
=l o 0 v /2 o (20)

0 0 0 vs 4 /<8

Ps
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1
1 £(VGE)£/P5 (Vg—Vs))* —a% s
0 Py
K12 = ; K3,4 = (21
Ve F vsF /S )
0
(vs/BFVG®) [ (VEETE VP (Vg —vs)) —a s
L apg ps i

From characteristic analysis, it can be observed that Eq. (6) has real and distinct eigenvalues and is therefore strictly
hyperbolic.

4. Numerical method

The presence of shocks or discontinuities not only pose strict restrictions on the mathematical formulation of hyperbolic
problems but also on the discretization techniques and numerical schemes necessary to resolve the physical phenomena
accurately. Point wise approximations of the differential form of the conservation equations typically breakdown at discon-
tinuities. This is because conservation laws of the form in Eq. (1) are derived from the integral form:

X,
I+5
d iyl
— | ux, tydx=—f(u(x,t)lx (22)
dt i-3
Xx; 1
2
with the assumption that u and f(u) are sufficiently smooth. However, this assumption breaks down when discontinuities
are present in the solution. Eq. (22) implies that the rate of change of the substance (u) at any given time (t) is only due to
the fluxes at the edges x; +1-

A numerical discretization approach that is based on solving the integral form of conservation laws and thereby offering
a better approximation of the physical system is the Finite Volume Method (FVM). The FVM formulation is obtained by
integrating Eq. (22) from t" to t"*! to obtain:

el g 1 gt
fx,-,l u(x, t )dx_fx,-,l ux, thdx=— [ fu, )l dt. (23)
2 2 2

The time integral on the right hand side of Eq. (23) cannot be evaluated exactly since the physical flux function, f(u(x;, 1, t),
varies with time. Thus the flux function is approximated numerically using an average value, Fii%, within time interval t"
to t"*1 at the cell interfaces Xip1- Eq. (23) may also be expressed as:
At
n+1 _
Uit = Ut g (P = Fivy) @)

where:
1 i
U=+ Jx 2 ux, thdx
=3

(1
Fis1 ™ 3¢ Jon fuips,0)dt.

i+]

U7 is the spatial average of the solution in the grid cell x; € [xi_% , xi+%] at time t".

Eq. (24) is a fully discretized finite volume formulation and applicable to both scalar and systems of conservation laws.
However, we may also adopt a semi-discrete formulation by integrating Eq. (1) only along its spatial dimension to obtain
the ODE:

d
il —R; 2
dtU(t) ) (25)
where
1
Ri(U) = (Fi_% _ Fi+%) .

Eq. (25) is a semi-discrete formulation and it permits the use of higher-order time integration methods in propagating the
solution in time. It also remains a finite volume formulation if U(t) is taken to be the average values of the conserved
variables in each grid cell x; € [x;_;,%; s1lat time t. Note however, that the numerical fluxes (F;, 1) in Eq. (25) are different
2 2 2
from those of Eq. (24). Instead of time averages, F;, 1 in Eq. (25) are evaluated at time, t.
2
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The numerical flux averages are sensitive to time step sizes especially in the explicit formulation of Eq. (24). Therefore,
in order to remain within the domain of dependence in every block at each time step, the following limitation are applied:
Ax
At =CFL——— (26)
()Lg)max

where (A{,)mqx is the maximum A across the spatial domain at t" and the Courant-Friedrichs-Lewy (CFL) number [40]

is a dimensionless quantity. The CFL number may be regarded as the ratio of (A%,)max to the grid speed (Ax/At) and

determined by the choice of numerical scheme employed in approximating the numerical fluxes as well as the choice of
numerical integrator in the case of the semi-discrete formulation of Eq. (25).

4.1. Monotone schemes

Any choice of numerical flux that satisfies the consistency condition will result in a conservative scheme. The consistency
property is met if for a constant value of U whereby U; = U;j;1 = U, then:

Fiy1=F1WUi Ui = FU). (27)

A detailed account of numerical schemes for hyperbolic systems is beyond the scope of this study but may be found in the
works of Trangenstein [41], LeVeque [42], Toro [43], Barth and Deconinck [44] and Hirsch [45] among others. However, we
would discuss the few relevant to the current study.

A tempting but naive approximation for the numerical flux function is the arithmetic average of the fluxes between two

neighboring cells that produces a centered 2nd-order scheme. However, the resulting scheme is unconditionally unstable
regardless of the size of the time step adopted. Another centered scheme that’s similar but conditionally stable for 0 <
CFL <1 is the Lax-Friedrich (LxF) method:
1 Ax
2 At
The last term on the right hand side is known as the numerical viscosity term. Although the viscous term is necessary
for stability, it artificially smears (or spreads) discontinuities in the solution thereby affecting how accurately shocks are
captured. The front smearing, also known as numerical diffusion, is typical of most first-order monotone schemes including
those that take into account the physics of propagating wave contributions such as flux vector splitting (FVS) methods
[46,47], Kinetic-FVS [48,49], Godunov-type schemes [50-54| and other approximate Reimann solvers [55-58]. However, it is
important to note that the later are significantly less diffusive relative to the LxF scheme.

Perhaps the most widely accepted of the aforementioned schemes is that of Roe [52-54]. For this reason, it has en-
joyed extensive application and several improvements have been made to resolve a number of its short-comings since it
was first introduced. One such short-coming is the generation of unphysical rarefaction shocks, which violate the entropy
condition (see [59-61]). Roe’s method solves the non-linear local Riemann problem by approximating it with a linearized
cell-edge-average constant-coefficient linear system of the form:

1
Fiyy=5Fi+Fi)+ Ui = Uit1) (28)

U;+AU,=0, O<x<L, t>0 (29)

Ur ifX<X0

LC:U(x,0) = U%(x) =
(*x.0) *) {UR if x > xg,

where A=A(U, Ug) is evaluated at cell edges and must satisfy both the consistency and conservation properties expressed
as follows:
A(U,U) =A(U) (30)
F(Ug) — F(Uy) =A(Ug — Up) (31)

Roe developed a method for determining the cell-edge-average matrix, A, by introducing an intermediate variable (Q),
such that U and F can be expressed in terms of Q with the aid of transformation matrices as follows:

AU =B(QAQ. (32)

AF = C(Q) AQ (33)
From Egs. (32) and (33) we obtain the following:

A=CB . (34)

Roe and Pike [54] later presented a more efficient approach to determining &;, % and @;. It involves obtaining what is
known as the Roe-Pike averages, which are then used to evaluate A or kj, A; and &; at cell edges. The numerical flux for
Roe scheme with entropy correction typically takes the form:
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1 T, -
Fipy =5 (Fi+Fipn) + E;‘ajw(x,-)x,- (35)
]:

In this study we were able to develop a new set of Roe-Pike averages for the non-linear hyperbolic system expressed in
Eq. (6) by introducing the intermediate variable (Q) of the form:

\E€Pg

V(1 =&)ps
Q= ( €)p. (36)
Ve/EPg

Vso/(1 =€) ps

The resulting Roe-Pike averages are as follows:

é:]—}l(\/l—eL—i—\/l—eR)z (37)

N 1 2
Pe= 2z (VELPg, + /ERDgr ) (38)

Vo — Vg /ELOg, T Vgr/ERPgr

= (39)
£ VELPg, + /ER P
§o= Vs, /1T — €L+ Vs /T — R (40)

V1—eL+/1—¢g

4.2. Higher-order monotonicity preserving schemes

The disadvantage of the monotone schemes presented here is that they experience smearing or numerical diffusion at
discontinuities. Higher-order schemes, which include those of Lax-Wendroff (LW) [62], Richtmyer [63], MacCormack [64],
weighted-average flux (WAF) [65,66] and those based on MUSCL-reconstruction [67-71], resolve discontinuous fronts better
but produce spurious oscillations at sharp gradients. These non-physical oscillations also referred to as numerical dispersion
exist as numerical artifacts in the solution. In an effort to combine the benefits of higher-order schemes with the monotone
nature of first-order schemes, higher-order monotonicity preserving schemes were developed. Schemes based on ensuring
the Total Variation Diminishing (TVD) property and Essentially Non-Oscillatory (ENO) type [72], help to limit the numerical
dispersion experienced with higher-order schemes.

In this study we apply the following Roe-type higher-order TVD scheme:

_ rRoe —pRoe _ .
F,-+% = Fi+% + v (FH_% Fi) (41)
where:
1 1 &

R ~ ~ ~
Fi-f; = i(Fi + Fiyq) + 5 ;O(jl/f()uj)Kj
— 4" ¢i+%

2\ Vi
I‘Fj

. P F
T 1= Roe
) Fiy1— Fi+%

iy — FRS
I 2

1//(Xj) is the entropy fix [59-61] and ¢ are flux limiters.

All the limiters listed in Table 1 were tested and the resulting HO-TVD Roe-type scheme utilized in this study was found
to be stable regardless of the choice of flux-limiter applied.
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Table 1
Example of limiters from literature.
Limiter name Limiter limy o0 @ Reference
van Leer Pui(r) = q:‘lil\ 2 van Leer, 1974
Y (& Gme(r) = max[0, min(2r, 0.5(1 + 1), 2)] 2 van Leer, 1977
van Albada Gya(r) = gﬂ 1 van Albada et al., 1982
Minmod Gmm (1) = max[0, min(1,1)] 1 Roe, 1982
SuperBee ¢sp (r) = max[0, min(2r, 1), min(r, 2)] 2 Roe, 1983
Osher® bos (r) = max[0, min(r, B)]* B Chakravathy & Osher, 1983
Sweby Psw (r) = max[0, min(Br, 1), min(r, B)]° B Sweby, 1984
2
Ospre op(1) = ;jg:rilr; 15 Waterson & Deconinck, 1995
P1<p=<2

b Asymmetric limiter.

¢ Monotonized Central (MC).
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Fig. 2. One-dimensional transient simulation of vertical gas-solids flow.

4.3. Initial and boundary specifications

(b) Pressure Profile

Pressure, atm

0 1 2 3 4 5

(c) Particulate Phase Velocity Profiles
15

Velocity, m/s
o
(5,

0
0 1 2 3 4 5

(d) Gas Interstitial Velocity Profile
8

~

Velocity, m/s
o o

IS

o

1 2 3 4 5
Distance, m

Typically, the superficial gas velocity, vgs, solids mass flux, W, and solids concentration, 1— &j,, are known at the conduit
inlet terminal and can be specified. In addition, the outlet pressure, poy, is also usually known and can also be specified.
We have assumed that the conduit was free of solids and under no flow condition for all of the simulation conducted in
this study. Initial and boundary conditions where therefore specified as follows:

LC:
. PourtMg Vgs Wy
[6. g, Vg V5] _o = €ins SR &> Toegps 17
Pg Ve Sle=0 = 1 PoutMg 0 0 fi
» —RT 0 Y or
B.C.:
& Ein g—i
Vs
hr-L3 av
'e = o T =
Vs s av
d=&im)ps ¥
0pg 0 p
X — x=0 x=H

where H is the height of the conduit.

x=0

x>0
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5. Results and discussion

We begin by replicating the one-dimensional simulation conducted by Tsuo and Gidaspow [13]. They simulated the
vertical transport of 520 micron diameter glass beads with density of 2.62 g/cm? using air flowing at superficial gas velocity
of 5 m/s and a solids flux of 25 kg/m?/s in a grounded 7.62 cm diameter acrylic plastic pipe. Boundary specifications were
as follows:

1—ei 0.0246
ves | _ | 4979 m
Wi 25 %
DPout 1 atm

Fig. 2 (a) shows the computed solids concentration profile at one second intervals. The dashed lines are simulation results
from Tsuo and Gidaspow [13] while solid lines were generated using the HO-TVD Roe scheme from the current study.
Figs. 2 (b-d) represent the corresponding pressure and solids velocity and gas interstitial velocity profiles respectively.
Fig. 2 (b) illustrates the effect of the invasion of solids on pressure drop before the entire conduit was completely invaded
by solids. Fig. 2 (c) illustrates the corresponding velocity of the invading solids as they propagate along the conduit. And
Fig. 2 (d) illustrates the turbulent changes in gas velocity at the early time period prior to its stabilization after about
3 seconds.

Tsuo and Gidaspow [13] reported their computed solids concentration in the fully developed region under steady-state
flow is 0.0065. This result shows a 43.5% prediction error relative to Luo’s [17] measured experimental data. Computed
solids concentration in the fully developed region from the current study is 0.0088 indicating a 23.5% error relative to
Luo’s measured data. However, considering the comments from Tsuo and Gidaspow [13] about the inaccuracies of the x-ray
densitometer utilized by Luo for his measurements, we have decided to estimate the solids concentration at steady-state
analytically.

Under steady-state flow, the mass flux of both gas and particulate phases (W and W;) as well as slip velocity (vgip)
between phases may be assumed constant. Therefore, the slip velocity under steady-state flow may be expressed as follows:

W, W
epg (1—8)ps

The slip velocity may also be roughly estimated using the terminal velocity (v7) of individual particles [73] for relatively
low solids concentrations as follows:

4dy(ps —
vp= [2dp(Ps = PoIE (43)
3 PgCa

Setting vgip to v and combining the expression in Eqgs. (42) and (43), we obtain the following quadratic expression:
%% W w
82—<1+ & 4 S)e—i— £ -0 (44)
PgVT  PsVT PgVT

In order to ensure 0 < & < 1, Eq. (44) may be solved to obtain the steady-state solids concentration (1 — &) as follows:
1
Ess =3 (—b —v/b?% — 4c) (45)

where:

b=—(1+c+ X

PsVT
w v
= &~ 28
PgVT vr

Vilip = Vg — Vs = (42)

Using the analytical expression in Eq. (45), we obtain a steady-state concentration of 0.0091. Comparing the solids concen-
trations obtained from simulation to that obtained from the analytical expression, we find that Tsuo and Gidaspow [13]
were off by 22.6%. However, the solids concentration prediction from the current study were within 2.6% of the estimated
value.

The accuracy of the HO-TVD scheme even for flow conditions experiencing annular counter-current flow lies not only in
its capacity to capture discontinuous fronts. The improvement in accuracy observed in this study is also due to the conserva-
tive finite volume formulation (Eqs. (24) and (25)) employed. This is because we are not computing the primitive variables
(&, pg, Vg, Vs) directly, but rather we compute the volume averages of the conserved variables and we later decompose
them into the primitive variables seen in Fig. 2. This way we are somewhat implicitly accounting for counter-current flow
through the volume average formulation, which ensures that the conserved variables remain conserved. The application of
this numerical approach as a building block for two- and three-dimensional models for compressible multiphase flow prob-
lems would significantly improve the accuracy of such high-fidelity models as well. However, it is important to note that
the conservative formulation alone is not sufficient for model prediction accuracy.
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Fig. 3. Solids concentration profiles at difference inlet specifications using LxF (a & ¢) and HO-TVD Roe (b & d) schemes.

In order to further illustrate the effect of the numerical scheme on solids concentration predictions we simulate the same
conditions specified previously using the highly diffusive Lax-Friedrich (LxF) scheme. Fig. 3 (a) shows the computed solids
concentration profiles at one second interval obtained using the LXF scheme. Solid concentration was over-predicted by the
LXF scheme with 47.8% and 68.7% error relative Luo’s measurement and the analytical expression of Eq. (45) respectively.
Fig. 3 (b) is exactly the same as Fig. 2 (a) and only included in Fig. 3 for comparison.

Furthermore, we test the sensitivity of computed solids concentration in the fully developed region to the specified inlet
solids concentration. Figs. 3 (¢ and d) show simulation results with inlet solids concentration of 0.042 while keeping the
total mass flux of solids (W) and superficial gas velocity (vgs) unchanged. It can be observed that the computed solids
concentration in the fully developed region obtained using the dissipative LxF scheme is significantly influenced by the
inlet specification. However, the opposite is the case for the solutions obtained using the HO-TVD Roe scheme. This is not
surprising due to the fact that the total amount of solids entering the conduit remained the same for all results in Fig. 3.
The inlet solids concentration specified would only affect the inlet phase velocities to ensure that the total mass flux of
solids (Ws) does not change under the specified superficial gas velocity (vgs) as shown in Section 4.3 under boundary
specifications. Therefore, the steady-state solids concentration in the fully developed region should not be influenced by
inlet solids concentration if the solids mass flux and superficial gas velocity specified at the inlet remains the same. This
concept may also be explained through the analytical expression for steady-state solids concentration (Eq. (45)). It can be
observed that &5 is dependent on W and vgs but not a function of the inlet solids concentration.

The criticism of Luo’s measurement technique was that it was inaccurate under annular flow regime where the solids
concentration in the center of the conduit drops significantly below solids concentrations in the near-wall region. However,
Luo’s measurement technique would be relatively accurate in regions where annular segregation is not likely. An example of
that would be the pipe inlet region where the particulate phase is still fully dispersed as they are injected into the acrylic
pipe. Therefore, we decided to investigate the accuracy of the current model in predicting void fraction at the pipe inlet
region. The system is similar to that investigated in Tsuo and Gidaspow’s study however, the boundary specifications were
as follows:

Ein 0.975
Vs 112 %
Ws | | 34.81 L&
m-s
Dout 1.068 atm

Figs. 4 (a-d) represent gas velocity, pressure, solids velocity and void fraction (&) profiles respectively. Figs. 4 (b and d)
illustrate the agreement between the results obtained using the HO-TVD Roe scheme and Luo’s measurement. However, the
results obtained using the dissipative LxF scheme showed poor agreement with Luo’s measurement even for a refined grid
size of 300 grid cells (or blocks) for the less than one meter inlet section. It can also be observed that 100 grid cells were



=)

N. Adeleke et al. / Journal of Computational Physics 319 (2016) 28-43

(a) Gas Interstitial Velocity Profile

39

(b) Pressure Profile

)
T

Velocity, m/s
-
1

N

. 1.09
— 1.085F ~ o
- E NN
====ZZ-ZI2--. = RS So

E > 1.08F N~ S
e Se S~
2 RIS

4 0 1.0751 S~
2
o

T T T T T
O Experimental Data [Luo, K. M. (1987)]

= = =LxF 100 grid cells (simulation)

= = = LxF 300 grid cells (simulation)

HO-Roe 100 grid cells (simulation)

= HO-Roe 300 grid cells (simulation)

. . . . . . . . 1.065 . . .
0 0.1 02 03 04 05 06 07 08 09 1 0 0.1 02 03
Distance, m
(c) Particulate Phase Velocity Profile
6 . . . . . . 1.005

. . .
04 05 06 07 08 09 1
Distance, m

(d) Voidage Profile

&)

w c
=4 — 0.995 —
£ s
- o
%‘ 3 — ,:_‘3 0.99 —
K] o e m ===
° i 5 e g
S 2 S 0.985 - I
1 : 0.98 === " :
-
-, Z-
0 . . . . . . . . 0075 =" . . . . . . . .
0 01 02 03 04 05 06 07 08 09 1 0 01 02 03 04 05 06 07 08 09 1
Distance, m Distance, m
Fig. 4. Inlet profiles at steady-state.
[Luo (1987).]
(a) Gas Interstitial Velocity Profile (b) Pressure Profile
7.235 T T T T T T 0.959 T T T T T
O Exp.
723 0.9585
2 E
E : 0.958
%‘ 7.225 1 5
0
o » 0.9575
2 &
7.22 1
0.957
7215 . . . . . . 0.9565 . . . . . .
0 05 1 1.5 2 25 3 35 0 0.5 1 15 2 25 3 35
Distance, m Distance, m
(c) Particulate Phase Velocity Profiles «10%  (d) Particulate Phase Concentration Profiles
5 T T T T T €5 T T T T T T
o
B — — — Estimated (Eq. 46)
4r S 4t B
('
» .
- c
Eap 1 23t ]
S2r 1 2 1
g g
g 8
1 1 @ 1 1
i
° |- - - - - - - - - —-——————————————
o . . . . . . ® o i N N N N i
0 0.5 1 1.5 2 25 3 35 0 0.5 1 1.5 2 25 3 35
Distance, m Distance, m

Fig. 5. Inlet profiles at steady-state for Simulation 1.

more than sufficient for simulating the inlet section of the pipe when using the HO-TVD Roe scheme since there seems to
be barely any noticeable change in the voidage profile when the number of grid cells were increased to 300.

An additional experimental dataset for dry air drilling operations conducted in the Drilling Hydraulics Research Center
at The Pennsylvania State University between 1990 and 2003 was also studied. Temple et al. [74,75] set out to determine
the optimum circulation air velocity for efficient wellbore cleaning. They obtained flow characteristic curves (FCCs) under
constant solid mass feed rates and fixed average particle sizes in a closed loop system. They concluded that the optimum
annular flow velocity corresponds to the point of minimum pressure differential in their FCC plots.



40 N. Adeleke et al. / Journal of Computational Physics 319 (2016) 28-43

(a) Gas Interstitial Velocity Profile (b) Pressure Profile

6.166 T T 0.956 T T T
6.164 | 1
» 6.162 ] g 09555
IS ®
~ 6.16 1 Py
2 5 0955
S 6.158 ] 2
? o
> 1 =
6.156 S osas
6.154 J
6.152 L . L . L . 0.954
0 0.5 1 15 2 25 3 3.5 0 0.5 1 15 2 2.5 3 35
Distance, m Distance, m
5 (c) Particulate Phase Velocity Profiles s «103  (d) Particulate Phase Concentration Profiles
T T T T T c T T T T T T
;]
° — — — Estimated (Eq. 46)
4t 1 Sat .
'
» N
- c
o
% 3r 4 = 3r 4
2z £
[%] c
OS2t 4 @ 2 4
g 2
= o
o
1 1 o 1r 1
k]
=5
0 . . . . . . ? o : ! ’ ’ ’ ’
0 0.5 1 15 2 2.5 3 35 0 0.5 1 1.5 2 25 3 35

Distance, m Distance, m

Fig. 6. Inlet profiles at steady-state for Simulation 2.

Their experimental results indicated that solids volume fraction (or solids concentration) depends primarily on annular
air velocity and solids mass feed rate, which is in concurrence with the findings this study. Their results also show that
the steady-state solids concentration in the fully developed region is independent of particle size. However, they showed
that the point of minimum pressure drop on the FCC plot is highly dependent on particle diameter, and to a lesser degree,
on solids mass feed rate. Figs. 5 and 6 show a comparison of our simulation with Temple’s [74,75] experimental data
around the region of minimum pressure difference where counter-current flow may be observed. In order to use the current
one-dimensional model to simulate annular flow we defined the conduit hydraulic diameter as the difference between the
wellbore ID and drill pipe OD [76]. Solids mass feed rate, Wy ~ 15 % and volume averaged particle diameter, d, ~ 346.5 pm
for both simulations. Boundary specifications were defined as follows:

Simulation 1:

Ein [ 0.998
ves || 7222
Ws | | 1529¢%

| Dout | | 0.9568 atm |

Simulation 2:

Ein [ 0.998
ves | _| 6157%
W 15.4 £

| Pout | | 0.9541 atm

Temple [75] reported that they experienced small fluctuations in the particle flow rates due to operational limitations of
the L-valve used to introduce solids into the wellbore. The sensitivity of the diaphragm-type differential pressure manome-
ters combined with the flow fluctuations created significant pressure oscillations during their experiments. Although the
observed oscillation were somewhat dampened by their use of sintered brass inserts in the pressure taps, Temple recorded
an experimental error of £25% for their differential pressure readings. Temple et al. [74,75] also reported that their recorded
solids concentrations were estimated using the following expression:

qs
l-g)=—2 46
(1-¢) 4+ dg (46)

where g5 and gz represent solids volumetric rate and annular air flow rates respectively.
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It is not likely that Eq. (46) would provide accurate estimates of solids concentration in the annulus as it does not
take into consideration fluid compressibility and slip velocity between phases. As a result, Eq. (46) is expected to under-
estimate solids concentration. However, despite the reported measurement error in pressure readings and estimated solids
concentration using Eq. (46), our simulation results appear to match Temple’s data satisfactorily.

6. Conclusions

In this study we presented a set of flow equations and constitutive relations for a one-dimensional two-fluid gas-solids
flow model. The model equations are formulated in a manner that ensures the physical flux of the hyperbolic system
remains conservative despite the inclusion of solids normal stress through the empirical formula for modulus of elasticity.
From characteristic analysis, we showed that the physical flux and thereby the flow equation maintains strict hyperbolicity
and we presented a set of Roe-Pike averages for the hyperbolic system of equations. The resulting Roe-Pike averages were
used to construct a Roe-type approximate Riemann solver that is stable regardless of the choice of flux-limiter applied.
A higher-order total variation diminishing (HO-TVD) Roe-type scheme was used to compute the solution of the two-fluid
system using a conservative finite volume formulation. An analytical expression for steady-state solids concentration was
also presented and used to validate the numerical solution in addition to experimental data. The following conclusions may
be inferred from the analysis presented here:

1. The higher-resolution conservative scheme based on the computation of volume averages of the conserved variables
employed in this study helped to improve the accuracy of model predictions significantly even for regimes where
counter-current flow is present.

2. Solids concentration (volume fraction) at steady state is primarily dependent on solids mass feed rate and superficial
gas velocity.

3. Solids concentration in the fully developed region is independent of inlet solids concentration at fixed solids mass feed
rates and superficial gas velocities.

4. Grid-refinement requirements were reduced when the HO-TVD Roe-type scheme is used compared to more dissipative
schemes like Lax-Friedrich.

5. The numerical approach presented here would serve as a good building block for two- and three-dimensional forms of
gas-solids two-phase flow modeling.

7. Future studies

While we have illustrated the accuracy of the use of conservative variables and the HO-TVD scheme in improving model
predictions in low-fidelity models such as the one-dimensional isothermal two-fluid model for pneumatic conveying, there
is still much to be studied. Most importantly, the current study focuses primarily on vertical pneumatic conveying. How-
ever, this model is most likely insufficient for transient flow studies in horizontal and angular gas-solids flow systems due
to solids deposition. Solids deposition produces a different kind of segregated flow phenomena that can neither be resolved
simply by high-resolution schemes nor the computation of volume averages of conserved variables. This is because it in-
volves the static accumulation of solids along sections of the conduit, which is different from the segregated flow observed
in vertical pneumatic conveying systems.

Another important area of study not addressed here is supercritical fluid conveying. This is when the carrier fluid is
allowed to transition into supercritical phase as would be observed when fluids like CO, or N, are used in conveying prop-
pants downhole while pressurizing a hydrocarbon reservoir during hydraulic fracking. Here, a thermodynamic model must
be used to account for the properties of the carrier phase as transitions from gas to gas-like and/or liquid-like supercritical
fluid.

Furthermore, the current study is focused on isothermal conveying conditions. However, this assumption might be inap-
propriate for certain practical applications of gas-solids flow.
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