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Highlights

• A highly accurate shock fitting scheme for high explosive simulations is developed.
• The method restores the possibility of high-order rates of convergence.
• The method offers an approach to improve the calibration of HE models.



High-Order Shock-Fitted Detonation Propagation in

High Explosives

Christopher M. Romick1, Tariq D. Aslam2

Abstract

A highly accurate numerical shock and material interface fitting scheme com-
posed of fifth-order spatial and third- or fifth-order temporal discretizations
is applied to the two-dimensional reactive Euler equations in both slab and
axisymmetric geometries. High rates of convergence are not typically possi-
ble with shock-capturing methods as the Taylor series analysis breaks down
in the vicinity of discontinuities. Furthermore, for typical high explosive
(HE) simulations, the effects of material interfaces at the charge boundary
can also cause significant computational errors. Fitting a computational
boundary to both the shock front and material interface (i.e. streamline) al-
leviates the computational errors associated with captured shocks and thus
opens up the possibility of high rates of convergence for multi-dimensional
shock and detonation flows. Several verification tests, including a Sedov
blast wave, a Zel’dovich-von Neumann-Döring (ZND) detonation wave, and
Taylor-Maccoll supersonic flow over a cone, are utilized to demonstrate high
rates of convergence to nontrivial shock and reaction flows. Comparisons
to previously published shock-capturing multi-dimensional detonations in a
polytropic fluid with a constant adiabatic exponent (PF-CAE) are made,
demonstrating significantly lower computational error for the present shock
and material interface fitting method. For an error on the order of 10 m/s,
which is similar to that observed in experiments, shock-fitting offers a com-
putational savings on the order of 1000. In addition, the behavior of the
detonation phase speed is examined for several slab widths to evaluate the
detonation performance of PBX 9501 while utilizing the Wescott-Stewart-
Davis (WSD) model, which is commonly used in HE modeling. It is found
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that the thickness effect curve resulting from this equation of state and reac-
tion model using published values is dramatically more steep than observed
in recent experiments. Utilizing the present fitting strategy, in conjunction
with a nonlinear optimizer, a new set of reaction rate parameters improves
the correlation of the model to experimental results. Finally, this new model
is tested against two dimensional slabs as a validation test.

Keywords: Numerical methods, Shock-fitting, Detonation, High Explosives

1. Introduction

Insensitive high explosives (IHE), like PBX 9502, have many benefits such
as improved safety characteristics[1]; however, these IHEs exhibit longer reac-
tion zones than more conventional high explosives (CHE). This makes IHEs
less ideal explosives and thus more susceptible to edge effects. These effects
can lead to considerable performance degradation, including the detonation
speed being affected in large regions. It has been shown that in order to ob-
tain O(50 m/s) error in the steady, propagating detonation speed using an
essentially non-oscillatory (ENO) in combination with Lax-Friedrichs (LF)
shock-capturing that a minimum of 50 points were needed in the reaction
zone [2]. This becomes prohibitively more computationally intensive as the
requested error on the detonation velocity is reduced to typical experimental
uncertainties of O(10 m/s).

In addition, many constructions used in reactive high explosive (HE)
modeling e.g.WSD[3], SURF[4], CREST[5], employ the shock state or related
to this, the entropy of the reactants, in the reaction rates. In the common
practice of shock-capturing, the inherent numerical viscosity smooths the
shock at the expense of thickening its width. This, of course, introduces
some ambiguity into what is the actual shock state. In order to remove this
ambiguity, shock-fitting can be utilized. In this methodology, the shock front
becomes one of the computational boundaries. Moreover, this restores the
potential for highly accurate solutions for flows with a discontinuity as it
effectively separates the ambient upstream and smooth reactive flow behind
the front.

This potential has been demonstrated for non-reacting flows over blunt
bodies in ideal gases [6]. In fact, even spectral methods have been developed
for these flows, including those of an axisymmetric nature, by [7, 8, 9]. More-
over, shock-fitting has been successfully applied to produce highly accurate
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solutions for one-dimensional pulsating detonations by [10]. The objective of
this paper is to present a shock and material interface fitting method that
can be applied to two-dimensional detonations in either slab or asymmetric
geometries to provide highly accurate predictions.

The remainder of the paper is laid out as follows. First, the governing
equations are outlined along with associated boundary conditions. Next, the
computational algorithm is outlined starting with the transformation of Eu-
clidean space-time to the computational shock and material interface domain.
This transformation is also accompanied by the numerical scheme, which is
presented with special care near the edges of the computational domain.
Then, several verification examples are given, including a Sedov blast wave,
a ZND detonation wave, and Taylor-Maccoll supersonic flow past a cone.
This is followed by a comparison between shock-capturing and the presented
fitting strategy in a slab geometry utilizing a mixture of polytropic fluids
with a constant adiabatic exponent previously explored by [2]. The required
resolution for a specified error-tolerance on the steady phase speed of the det-
onation is much less for the shock-fitting method than for capturing. Next,
the fitting algorithm is used to evaluate detonation performance using a more
realistic reactive flow model of PBX 9501 in a slab geometry. It is found that
the predicted thickness effect curve, produced utilizing the published values
of [11] for this model, is steeper than that observed in experiments. In addi-
tion, the present method is also used to predict the corresponding diameter
effect curve for PBX 9501. A re-calibrated set of WSD parameters is deter-
mined for detonation propagation of PBX 9501 via nonlinear optimization of
rate parameters, demonstrating the utility of the new method. Finally, this
calibrated model is utilized to produce a thickness effect curve as a validation
test.

2. Governing Equations

This work is focused on detonation propagation in a non-diffusive fluid
in the absence of body forces. As such the governing equations are the
unsteady, compressible, reactive Euler equations. Furthermore, this paper
will be restricted to models of a single reaction, where the reactant, R, goes
irreversibly to product, P (R → P). These equations can be written in
conservative form in Gibbs notation as

∂ρ

∂t
+∇· (ρu) = 0, (1)
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∂

∂t
(ρu) +∇· (ρuu) +∇p = 0, (2)

∂

∂t
(ρet) +∇· (u (ρet + p)) = 0, (3)

∂

∂t
(ρλ) +∇· (ρλu) = ρR, (4)

where, t is the temporal coordinate, ρ the density, u the velocity vector, p
the pressure, E = ρet the total energy, et the specific total energy which
is composed of both internal energy and kinetic energy

(
et ≡ e+ u·u

2

)
, e

the specific internal energy, u·u
2

the specific kinetic energy, λ the reaction
progress variable, R the reaction rate and ∇ the spatial gradient operator.
The reaction progress variable is related to the mass fractions of the two
species by YR = 1 − λ and YP = λ. Equations 1-3 are expressions of the
conservation of mass, linear momenta, and energy. The evolution of the
reaction progress is described by Eqn. 4.

These equations must be further supplemented by constitutive relations
for the equation of state (EOS) for the HE, e (ρ, p, λ) , as well as the reaction
rate, R. Two separate equations of state will be examined in this work : 1)
a mixture of polytropic fluids with a constant adiabatic exponent (PF-CAE)
and 2) the Wescott-Stewart-Davis (WSD) model [3]. Most of this work will
utilize the PF-CAE EOS and is simply detailed as

e =
p

(γ − 1) ρ
− λq, (5)

where γ is the adiabatic exponent and q the heat release of the reaction.
This equivalent to the EOS of a calorically perfect mixture of ideal gases for
1 ≤ γ ≤ 5/3. The WSD EOS model is detailed by [3] and [11]. The reaction
rate model in [11] is given by

R = a (1− λ)ν
( p

B

)Np

exp

(−ρE

p

)
, (6)

where a is the reaction rate constant, ν the depletion exponent, B the pres-
sure scaling factor, Np the pressure dependence exponent, and E the acti-
vation energy. The pressure scaling factor for the PF-CAE EOS is usually
1 and for the WSD EOS, it is the Chapman-Jouguet (CJ) (fully-reacted)
pressure (pCJ) .
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2.1. Two-Dimensional Cartesian

For a slab orientation as shown in Fig. 1 with infinite depth in the
y−direction, Eqns. 1-4 can be expanded as

∂ρ

∂t
+

∂

∂x
(ρux) +

∂

∂z
(ρuz) = 0, (7)

∂

∂t
(ρux) +

∂

∂x
(ρuxux + p) +

∂

∂z
(ρuxuz) = 0, (8)

∂

∂t
(ρuz) +

∂

∂x
(ρuzux) +

∂

∂z
(ρuzuz + p) = 0, (9)

∂

∂t
(ρet) +

∂

∂x
((ρet + p) ux) +

∂

∂z
((ρet + p) uz) = 0, (10)

∂

∂t
(ρλ) +

∂

∂x
(ρλux) +

∂

∂z
(ρλuz) = ρR. (11)

Here, ux and uz are the x and z direction components of the velocity vector,
respectively.

HE

IN
E
R
T

Sonic Locus

Subsonic Region

Supersonic Region
z

x or r
Figure 1
Two-dimensional geometry (slab or axisymmetric rate-stick) with the detonation
traveling upwards and x = 0 or r = 0 marking the plane of symmetry. The black
curve denotes the sonic locus in the HE; the white dashed line denotes the HE
and inert confiner interface.

2.2. Axisymmetric Cylindrical

For axisymmetric cylinders of a HE, also known as rate-sticks, the state
variables can be independent of azimuthal angle, θ in the three-dimensional
(r, θ, z) coordinate system. Using this assumption for a rate-stick orientation
as shown in Fig. 1, Eqns. 1-4 can be expanded as

∂ρ

∂t
+

1

r

∂

∂r
(rρur) +

∂

∂z
(ρuz) = 0, (12)
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∂

∂t
(ρur) +

1

r

∂

∂r
(rρurur + p) +

∂

∂z
(ρuruz) = 0, (13)

∂

∂t
(ρuz) +

1

r

∂

∂r
(rρuzur) +

∂

∂z
(ρuzuz + p) = 0, (14)

∂

∂t
(ρet) +

1

r

∂

∂r
(r (ρet + p) ur) +

∂

∂z
((ρet + p) uz) = 0, (15)

∂

∂t
(ρλ) +

1

r

∂

∂r
(rρλur) +

∂

∂z
(ρλuz) = ρR. (16)

Here, ur and uz are the r and z direction components of the velocity vector,
respectively. By expanding the r direction derivatives in Eqns. 12-16, the
axisymmetric cylindrical equations can be written as

∂ρ

∂t
+

∂

∂r
(ρur) +

∂

∂z
(ρuz) =

−ρur

r
, (17)

∂

∂t
(ρur) +

∂

∂r
(ρurur + p) +

∂

∂z
(ρuruz) =

−ρurur

r
, (18)

∂

∂t
(ρuz) +

∂

∂r
(ρuzur) +

∂

∂z
(ρuzuz + p) =

−ρuruz

r
, (19)

∂

∂t
(ρet) +

∂

∂r
((ρet + p) ur) +

∂

∂z
((ρet + p) uz) =

− (ρet + p) ur

r
, (20)

∂

∂t
(ρλ) +

∂

∂r
(ρλur) +

∂

∂z
(ρλuz) = ρR− ρλur

r
. (21)

This approach allows the same variables to be evolved in the both the
Cartesian and axisymmetric cases. An alternative approach could be to
account for the effects of this different geometry in a stronger conservative
form [12]. However, the later approach leads to a different set of the evolved
variables in the axisymmetric case versus the Cartesian case.

2.3. General Form

Equations 17-21 are in a similar form to those for the two-dimensional
Cartesian slab geometry (Eqns. 7-11) with added source terms due to the
axisymmetric nature of the rate-stick. Furthermore, these equations can be
written in the form of

∂U

∂t
+

∂

∂χ

(
fχ (U )

)
+

∂

∂z
(f z (U )) = S (U) , (22)

where the χ direction corresponds to the x or r direction depending on the
nature of the geometry, i.e. slab or axisymmetric rate-stick, respectively.
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The respective evolved state variables, U , are

U =

{
[ρ, ρux, ρuz, ρet, ρλ]

T if slab,

[ρ, ρur, ρuz, ρet, ρλ]
T if axisymmetric,

(23)

the respective χ direction fluxes are

fχ =

{
[ρux, ρuxux + p, ρuzux, (ρet + p) ux, ρλux]

T if slab,

[ρur, ρurur + p, ρuzur, (ρet + p) ur, ρλur]
T if axisymmetric,

(24)

the respective z direction fluxes are

f z =

{
[ρuz, ρuxuz, ρuzuz + p, (ρet + p) uz, ρλuz]

T if slab,

[ρuz, ρuruz, ρuzuz + p, (ρet + p) uz, ρλuz]
T if axisymmetric,

(25)

and the respective source terms are

S =

{
[0, 0, 0, 0, ρR]T if slab,[
−ρur

r
, −ρurur

r
, −ρuruz

r
, −(ρet+p)ur

r
, ρR− ρλur

r

]T
if axisymmetric,

(26)

where T indicates the transpose.

2.4. Boundary Conditions

Equation 22 needs to be supplemented by necessary physical boundary
conditions. The first physical boundary location is the shock front at which
the Rankine-Hugoniot jump conditions are applied. At the material inter-
faces and along symmetric boundaries, the velocity must be parallel to the
interface. Lastly, in the supersonic portion of the flow beyond the sonic locus,
the detonation products relax to a near-constant state relative to the large
gradients observed in the reaction zone.

3. Numerical Implementation

In this section, the numerical algorithm for the multi-dimensional, high-
order, shock-fitted method with deflected material interfaces is presented,
and it is a natural extension of the work of [13] which was utilized in [14] with
periodic boundary conditions. This numerical algorithm employs a method of
lines approach. This supports separate spatial and temporal discretizations
as well as allows the inclusion of source terms. In the following sections, the
computational grid is defined, the spatial discretization is laid out, and the
Runge-Kutta (RK) temporal scheme is detailed.
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3.1. Transformed Grid

A frame of reference which is attached to the shock front is utilized for
ease of computation of the detonation propagation. Behind the shock front,
the reactant is converted to product releasing the stored chemical energy
of the HE which drives the detonation forward. The products deflect the
material interface outwards. This in turn slows the normal detonation speed
near the material interface and gives rise to curvature of the front. Thus,
both the shock front and material interfaces will need to be fit in order to
maintain a highly-accurate solution.

z

Figure 2
Demonstration of the transformation from the slab geometry to the
computational domain. The detonation traveling upwards in the z-direction and
χ = 0 marks the plane of symmetry.

Here, the physical domain in the HE, which is assumed to be deformed by
the passing detonation, will be transformed to a simple rectangular reference
frame facilitating easy derivative flux calculations as shown Fig. 2. The
transformation utilized in this work is

χ (ξ, η, τ) = χl (η, τ)
ξr − ξ

ξr − ξl
+ χr (η, τ)

ξ − ξl
ξr − ξl

, (27)

z (ξ, η, τ) = zs (ξ, τ) + η, (28)

t = τ, (29)

where χl (η, τ) , χr (η, τ) are the left and right physical boundaries, zs (ξ, τ)
defines the shock locus, and ξl ≡ χl (0, 0) , ξr ≡ χr (0, 0) the left and right
transformed boundaries, respectively. This transformed domain consists of
the ranges : ξl ≤ ξ ≤ ξr and 0 ≤ η ≤ −ηmax. The transformation relates z
and η linearly, offsetting the two by the position of the shock, zs. In addition,
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it uniformly distributes the χ positional coordinates along lines of constant
η.

In this transformed frame, the governing equations (Eqn. 22) can be ex-
panded using the chain rule as

∂U

∂τ

∂τ

∂t
+
∂U

∂ξ

∂ξ

∂t
+
∂U

∂η

∂η

∂t
+
∂fχ

∂ξ

∂ξ

∂χ
+
∂fχ

∂η

∂η

∂χ
+
∂f z

∂ξ

∂ξ

∂z
+
∂f z

∂η

∂η

∂z
= S. (30)

Now, multiplying Eqn. 30 by the determinant of the metric tensor of the
shock-fitted transformation,

√
g = ∂χ

∂ξ
∂z
∂η

− ∂χ
∂η

∂z
∂ξ
, and using the product rule

to rearrange terms yields

∂

∂τ
(
√
gU ) +

∂

∂ξ

(√
gU

∂ξ

∂t
+
√
gfχ

∂ξ

∂χ
+
√
gf z

∂ξ

∂z

)

+
∂

∂η

(√
gU

∂η

∂t
+
√
gfχ

∂η

∂χ
+
√
gf z

∂η

∂z

)

−U

(
∂

∂τ
(
√
g) +

∂

∂ξ

(√
g
∂ξ

∂t

)
+

∂

∂η

(√
g
∂η

∂t

))

− fχ

[
∂

∂ξ

(√
g
∂ξ

∂χ

)
+

∂

∂η

(√
g
∂η

∂χ

)]

− f z

[
∂

∂ξ

(√
g
∂ξ

∂z

)
+

∂

∂η

(√
g
∂η

∂z

)]
=

√
gS. (31)

Equation 31 can be further simplified using derivatives of the transforma-
tion Jacobian

(
J = 1/

√
g
)
, which are developed in Appendix A. Using these

derivatives, it can be shown that terms multiplied by leading U , fχ, and f z

terms are identically zero and thus, yielding

∂

∂τ
(
√
gU ) +

∂

∂ξ

(√
gU

∂ξ

∂t
+
√
gfχ

∂ξ

∂χ
+
√
gf z

∂ξ

∂z

)

+
∂

∂η

(√
gU

∂η

∂t
+
√
gfχ

∂η

∂χ
+
√
gf z

∂η

∂z

)
=

√
gS. (32)

Moreover, using the spatial and temporal metric relationships,

√
g
∂ξ

∂χ
=

∂z

∂η
,

√
g
∂ξ

∂z
= −∂χ

∂η
,

√
g
∂η

∂z
=

∂χ

∂ξ
,

√
g
∂η

∂χ
= −∂z

∂ξ
,

√
g
∂ξ

∂t
=

(
∂χ

∂η

∂z

∂τ
− ∂z

∂η

∂χ

∂τ

)
,

√
g
∂η

∂t
=

(
∂z

∂ξ

∂χ

∂τ
− ∂χ

∂ξ

∂z

∂τ

)
, (33)

9



Eqn. 32 can be written in a very simple form

∂

∂τ
(
√
gU ) +

∂

∂ξ

(
∂z

∂η

(
fχ −U

∂χ

∂τ

)
− ∂χ

∂η

(
f z −U

∂z

∂τ

))

+
∂

∂η

(
−∂z

∂ξ

(
fχ −U

∂χ

∂τ

)
+

∂χ

∂ξ

(
f z −U

∂z

∂τ

))
=

√
gS.

(34)

Here, there is a new set of conserved quantities,
√
gU . In addition, the

Cartesian fluxes of the conserved quantities, U , relative to the moving frame
are clearly recognizable. Moreover, the conserved momenta quantities result
from the laboratory frame velocities, ux or ur and uz, and not shock-attached
frame velocities.

3.2. Shock Locus

In order to reduce the complexity in the current development of the al-
gorithm, the material interfaces, χl and χr, will follow a prescribed motion
in this paper. The prescribed motion reduces the unknown metrics of the
transformation to ∂zs/∂τ and ∂zs/∂ξ. In a later paper, the development of
the fitting procedure with a more general material interface motion will be
presented. Therefore, the only remaining surface that must be fit in the
current transformation is the shock locus. This corresponds to a coordinate
curve in the shock conforming transformed space.

Based on the chosen transformation, the shock locus can be described as
a level curve, such that

η (χ, z, t) = 0. (35)

The rate of change of such a curve can be expanded using the chain rule as

∂η

∂τ

∣∣∣∣
shock

=

(
∂η

∂t

∂t

∂τ

)∣∣∣∣
shock

+

(
∂η

∂χ

∂χ

∂τ

)∣∣∣∣
shock

+

(
∂η

∂z

∂z

∂τ

)∣∣∣∣
shock

= 0. (36)

Here, it can be seen that the time rate of change of the shock locus is the dot
product of the gradient of the curve and the shock velocity. However, the
motion of the shock still needs to be related to the flow. The discontinuity
caused by the shock and its motion must be constrained by a balance of the
fluxes of the conserved quantities with the surface forces across the shock.
Therefore, by making such a substitution, Eqn. 36 can be rewritten as

∂η

∂t

∣∣∣∣
shock

= −
[
∂η

∂χ

[[fχ]]

[[U ]]
+

∂η

∂z

[[f z]]

[[U ]]

]∣∣∣∣
shock

. (37)
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Assuming that the shock locus is a smooth, continuous curve and utilizing
the spatial metric relations from Eqns. 33 yields

∂η

∂t

∣∣∣∣
shock

= −
[

1√
g

[[−fχ
∂z
∂ξ

+ f z
∂χ
∂ξ
]]

[[U ]]

]∣∣∣∣∣
shock

. (38)

Substituting the transformation of ∂η/∂t from Eqns. 33 into Eqn. 38 and
rearranging terms gives the rate of change of the shock locus as

∂zs
∂τ

=

((
∂χ

∂ξ

)−1
[
[[−fχ

∂z
∂ξ

+ f z
∂χ
∂ξ
]]

[[U ]]
+

∂z

∂ξ

∂χ

∂τ

])∣∣∣∣∣
shock

, (39)

where again zs is the shock locus.
In addition, an evolution equation is needed for the one remaining un-

known metric, ∂zs/∂ξ. This evolution of the shock slope can be obtained by
differentiating Eqn. 39 with respect to ξ :

∂

∂τ

(
∂zs
∂ξ

)
=

∂

∂ξ

((
∂χ

∂ξ

)−1
[
[[−fχ

∂z
∂ξ

+ f z
∂χ
∂ξ
]]

[[U ]]
+

∂z

∂ξ

∂χ

∂τ

])∣∣∣∣∣
shock

. (40)

Here, the commutative property of the ξ and τ derivatives is utilized.
Equations 39 and 40 both utilize the jump conditions of the conserved

quantities. Note that any component of the flux vectors, fχ and f z, and the
respective original conserved quantity, U , can be used. In this paper, the
energy jump condition is chosen as it includes all the other conserved quan-
tities within it. Moreover, from the jump conditions, the normal detonation
speed, DN , can be calculated as

DN =

⎛
⎝ [[−fχ

∂z
∂ξ

+ f z
∂χ
∂ξ
]]

[[U ]]
√

∂χ
∂ξ

2
+ ∂z

∂ξ

2

⎞
⎠
∣∣∣∣∣∣
shock

. (41)

3.3. Spatial Discretization

When the governing equations (Eqn. 34) are written in the succinct form
as

∂w

∂τ
+

∂f ξ

∂ξ
+

∂f η

∂η
= S, (42)
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it is more clear why the method of lines approach, which allows the spa-
tial and temporal discretizations to be treated separately, is utilized. In
this section, the point-wise spatial discretization and the approach used to
approximate the flux and source terms are presented. Applying this semi-
discretization to the solution, w (ξ, η, τ) , yields wi,j (τ) , where the i and j
are the spatial nodes in the ξ and η−directions, respectively.

In this work, a uniform Cartesian grid in the transformed space is used to
discretize the spatial domain. In the ξ−direction, Nξ + 1 points are spaced
between ξl and ξr. Likewise in the η direction, Nη + 1 nodes are used such
that η0 = ηmin and ηNη = 0. The use of such a grid permits separate approx-
imations in each direction for the flux derivatives as well as the inclusion of
source terms.

The choice of using separate approximations for each direction yields sev-
eral different classes of nodes in this spatial discretization. There are five such
different regions: internal nodes, nodes near the shock front, nodes near the
material interface, nodes near both, and ghost nodes. Figure 3 demonstrates
the different types of nodes for a domain that is symmetric about ξl = 0.
Ghost nodes near the rear outflow boundary are always used; whereas those
near the side boundary are only used when a symmetric boundary condition
is used.

3.3.1. Internal Nodes

The majority of the domain is composed of interior nodes. For these
nodes, the gradient in both spatial directions are approximated using a Lax-
Friedrichs scheme in conjunction with a fifth-order mapped weighted essen-
tially non-oscillatory (WENO5M) scheme [15], in a similar manner to [16].
Within the interior of the domain, both non-fitted discontinuities, e.g. dis-
continuities in the derivative from applying zero gradient conditions at the
rear boundary (Section 3.3.5) or secondary shocks, and singularities such as
Prandtl-Meyer fans are possible. Thus, a conservative scheme which assures
that captured discontinuities propagate at the correct speeds and eliminates
several stability issues associated with simpler high-order finite-difference
schemes such as WENO5M is necessary. In this section, this scheme will
be laid out fully for the ξ direction derivatives; this same procedure is also
applied in the η direction while along curves of constant ξ.

The Lax-Friedrichs flux splitting technique separates the derivative into
contributions emanating from the right and left moving waves. Therefore,
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Node Near Shock Front
Node Near Material Interface
Node Near Front & Interface
Ghost Node

Figure 3
An example of a numerical grid demonstrating the various regions of the spatial
discretization.

the spatial flux derivative in ξ direction can be written as

∂f

∂ξ

∣∣∣∣
i,j

=
1

2

(
∂f+

∂ξ
+

∂f−

∂ξ

)∣∣∣∣
i,j

, (43)

where f ≡ f ξ and

f±
i,j = f i,j ± αwi,j (44)

and α is the magnitude of largest local wave speed and the subscripts i and
j indicate evaluation at the nodal point ξi = ξ0 + iΔξ and ηj = η0 + jΔη,
respectively. The wave speeds are evaluated using the magnitudes of the
eigenvalues of the Jacobian matrix, ∂f

∂w
.
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Next, by utilizing the numerical flux function in a manner similar to
[17, 15] and then applying the WENO5M scheme of [15, 10] to the right and
left moving waves yields

∂f±

∂ξ

∣∣∣∣
i,j

=
f̂

±
i+ 1

2
,j − f̂

±
i− 1

2
,j

Δξ
+O

(
Δξ5
)
, (45)

where the approximations of numerical flux functions are given by the fol-
lowing stencils

f̂
+

i+ 1
2
,j = F (f+

i−2,j,f
+
i−1,j,f

+
i,j,f

+
i+1,j ,f

+
i+2,j

)
, (46)

f̂
−
i+ 1

2
,j = F (f−

i+3,j,f
−
i+2,j,f

−
i+1,j ,f

−
i,j,f

−
i−1,j

)
. (47)

As this procedure is applied to curves of constant η, the j position remains
constant; thus, the j subscript will be discarded from this point forward.

Now, the WENO5M interpolator, developed by [15], is presented in fur-
ther detail for a single right moving wave contribution flux, f+. This inter-
polator is composed of three sub-stencils, qk, and weights, ωk, and is given
by

f̂+
i+ 1

2

= F (f+
i−2, f

+
i−1, f

+
i , f

+
i+1, f

+
i+2

)
=

3∑
k=1

ωkqk. (48)

The component stencils are defined as

q1 =
1

6

(
2f+

i−2 − 7f+
i−1 + 11f+

i

)
, (49)

q2 =
1

6

(−f+
i−1 + 5f+

i + 2f+
i+1

)
, (50)

q3 =
1

6

(
2f+

i + 5f+
i+1 − f+

i+2

)
. (51)

Following the procedure of [15], the weights first developed by [18], which
are given by

ω∗
k = υk/

3∑
i=1

υi, where υk =
ωk

(ε+ βk)
2 , (52)
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are mapped in order to increase the accuracy of the scheme near critical
points to fifth-order by

ωk =
gk (ω

∗
k)

3∑
i=1

gi (ω
∗
i )

, where gk (ω) =
ω (ωk + ω2

k − 3ωkω + ω2)

ω2
k + (1− 2ωk)ω

. (53)

Here ωk are the ideal weights for smooth regions (ω1 = 1/10, ω2 = 6/10, ω3 = 3/10) ,
βk are the smoothness indicators and ε is a small parameter which keeps the
weights bounded. In this work ε = 10−40 as suggested in [15] and utilized
by [10]. The three smoothness indicators for the WENO5M interpolator are
defined as

β1 =
13

12

(
f+
i−2 − 2f+

i−1 + f+
i

)2
+

1

4

(
f+
i−2 − 4f+

i−1 + 3f+
i

)2
, (54)

β2 =
13

12

(
f+
i−1 − 2f+

i + f+
i+1

)2
+

1

4

(−f+
i−1 + f+

i+1

)2
, (55)

β3 =
13

12

(
f+
i − 2f+

i+1 + f+
i+2

)2
+

1

4

(
3f+

i − 4f+
i+1 + f+

i+2

)2
, (56)

(57)

Using this scheme, Eqn. 43 for the derivative in the ξ direction can be
expressed as

∂f

∂ξ

∣∣∣∣
i,j

=
1

2

⎛
⎝ f̂

+

i+ 1
2
,j − f̂

+

i− 1
2
,j

Δξ
+

f̂
−
i+ 1

2
,j − f̂

−
i− 1

2
,j

Δξ

⎞
⎠+O

(
Δξ5
)
,

=
1

Δξ

⎛
⎝ f̂

+

i+ 1
2
,j − f̂

−
i+ 1

2
,j

2
+

f̂
+

i+ 1
2
,j − f̂

−
i− 1

2
,j

2

⎞
⎠+O

(
Δξ5
)
,

=
f̂ i+ 1

2
,j − f̂ i− 1

2
,j

Δξ
+O

(
Δξ5
)
. (58)

There is now a single approximate numerical flux defined at the midpoints be-
tween the nodes; as an illustrative example this flux approximation between
the i and i+ 1 nodes is given by

f̂ i+ 1
2
,j =

1

2

(
f̂

+

i+ 1
2
,j − f̂

−
i+ 1

2
,j

)
. (59)
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To obtain the approximation at the other necessary location for the derivative
calculation, i−1/2, one must only shift Eqn. 59 by a single node, to the nodes
i− 1 and i.

At internal nodes, there are no boundary conditions to be dealt with and
thus, the only governing equations are given by Eqn. 42. Therefore, applying
this spatial discretization to the governing equations yields

dwi,j

dt
=−

⎛
⎜⎝ f̂ ξ

∣∣∣
i+ 1

2
,j
− f̂ ξ

∣∣∣
i− 1

2
,j

Δξ

⎞
⎟⎠−

⎛
⎜⎝ f̂ η

∣∣∣
i,j+ 1

2

− f̂ η

∣∣∣
i,j− 1

2

Δη

⎞
⎟⎠

+ S (wi,j) +O
(
Δξ5
)
+O

(
Δη5
)
, (60)

where S (wi,j) is simply the source term evaluated at the nodal point ξi, ηj.
For nodes near the boundaries, a different discretization must be used such
that only points within the domain or the boundary conditions themselves are
utilized. These different discretizations are detailed in the following sections.

3.3.2. Nodes Near the Shock Front

For the two nodes directly behind the fitted shock, the flux derivatives
in the η direction are approximated using formulas developed using Taylor
series expansions involving nodes up to and including the shock front. These
derivative approximations are given by

∂f η

∂η

∣∣∣∣
i,Nη−2

≈ 1

12Δη

(
f η

∣∣
i,Nη−4

− 8 f η

∣∣
i,Nη−3

+ 8 f η

∣∣
i,Nη−1

− f η

∣∣
i,Nη

)
, (61)

∂f η

∂η

∣∣∣∣
i,Nη−1

≈ 1

12Δη

(
− f η

∣∣
i,Nη−4

+ 6 f η

∣∣
i,Nη−3

− 18 f η

∣∣
i,Nη−2

+10 f η

∣∣
i,Nη−1

+ 3 f η

∣∣
i,Nη

)
.

(62)

Both of these approximations are only fourth-order accurate. The use of these
stencils are necessary to ensure numerical stability of the scheme; however,
as stated in [10], this scheme does appear to retain its global fifth-order
convergence rate in the spatial domain, due to the fact that Eqns. 61-62 are
not applied along a characteristic, as demonstrated in Sections 4.1 and 4.2
for several examples.
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Now, the velocity at which the fitted discontinuity (shock) moves is dic-
tated by the jump in the flow from the ambient upstream to the shocked state
in the normal direction. Therefore, the solution at the shock front, j = Nη,
is a function of the flow as well as the shock shape, ∂zs/∂ξ. More succinctly,
the front state must satisfy the normal Rankine-Hugoniot conditions.

In order to satisfy these conditions, the normal shock speed is first deter-
mined using the energy equation of the Euler equations in conjunction with
Eqn. 41. Since the jump condition for each conserved quantity is equivalent,
one may choose any of the jump conditions. The energy equation is chosen
for this work as it takes into account all of the state variables and the shock
shape. Using the normal shock speed, the shock state is then calculated by

ρs (uNs −DN) = ρ0 (uN0 −DN) , (63)

ps − p0 = (ρ0 (uN0 −DN))
2

(
1

ρ0
− 1

ρs

)
, (64)

es − e0 =
1

2
(ps + p0)

(
1

ρ0
− 1

ρs

)
, (65)

λs = λ0, (66)

uTs = uT0 , (67)

where uN , uT are the normal and tangent velocity, respectively. The sub-
scripts s and 0 denote the shock and ambient states, respectively. Lastly, the
flow is evolved in time at the front with the flux derivatives in the η direction
approximated by the fifth-order accurate one-sided finite difference scheme
given by

∂f η

∂η

∣∣∣∣
i,Nη

≈ 1

60Δη

(
−12 f η

∣∣
i,Nη−5

+ 75 f η

∣∣
i,Nη−4

− 200 f η

∣∣
i,Nη−3

+300 f η

∣∣
i,Nη−2

− 300 f η

∣∣
i,Nη−1

+ 137 f η

∣∣
i,Nη

)
. (68)

The evaluation of ξ flux derivatives in both Eqns. 40 and 42 utilizes the
same WENO5M scheme presented for the internal nodes in Section 3.3.1,
except near the material interfaces, which will be discussed later in Sec-
tion 3.3.3. Furthermore, the source terms are once again simply evaluated at
the nodal points of (i, Nη − 2) and (1, Nη − 1) ; however, at (i, Nη) the shock
jump conditions are enforced.

In addition, the shock front location at the center of the HE is also up-
dated using Eqn. 39 which is treated as an ODE in time with the spatial
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component evaluated at the node. The rest of the front locations are con-
structed purely for plotting purposes a posteriori. By utilizing the fact that
the shock front is a function only of ξ, the shock shape can be calculated by

zs (ξ) = zsCL
+

∫ ξ

ξCL

dzs

dξ̂
dξ̂, (69)

where zsCL
is the shock front location at the center of the HE (ξCL) . Here,

this integral is approximated using the second-order accurate trapezoidal
method.

3.3.3. Material Interface Nodes

Near the material interfaces, flux derivatives in the ξ direction are approx-
imated using lower-order accurate and simpler stencils which are biased to
include only nodes within the computational domain. Near the left material
interface (i = 0) , these are given by

∂f ξ

∂ξ

∣∣∣∣
0,j

≈ 1

Δξ

(
− f ξ

∣∣
0,j

+ f ξ

∣∣
1,j

)
, (70)

∂f ξ

∂ξ

∣∣∣∣
1,j

≈ 1

2Δξ

(
− f ξ

∣∣
0,j

+ f ξ

∣∣
2,j

)
, (71)

∂f ξ

∂ξ

∣∣∣∣
2,j

≈ 1

2Δξ

(
− f ξ

∣∣
1,j

+ f ξ

∣∣
3,j

)
, (72)

and near the right material interface (i = Nξ) , these are given by

∂f ξ

∂ξ

∣∣∣∣
Nξ−2,j

≈ 1

2Δξ

(
− f ξ

∣∣
Nξ−3,j

+ f ξ

∣∣
Nξ−1,j

)
, (73)

∂f ξ

∂ξ

∣∣∣∣
Nξ−1,j

≈ 1

2Δξ

(
− f ξ

∣∣
Nξ−2,j

+ f ξ

∣∣
Nξ,j

)
, (74)

∂f ξ

∂ξ

∣∣∣∣
Nξ,j

≈ 1

Δξ

(
− f ξ

∣∣
Nξ−1,j

+ f ξ

∣∣
Nξ,j

)
. (75)

At the material interfaces, the scheme is a first-order one-sided difference
Taylor-series expansion. At the neighboring points, the standard second-
order central difference scheme is utilized. These lower-order accurate Taylor-
series approximations are utilized near the material interfaces for numerical
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stability purposes, as a self-similar Prandtl-Meyer expansion fan may form
requiring robust solution techniques. These approximations reduce the local
rate of convergence of the scheme; however, the denotation velocity (and thus
the shock state) still convergences at high-order as demonstrated in Sections 4
and 5.1. This is a consequence of the domain of dependence for the shock
front behavior given the particular problems of interest in this work. This do-
main is roughly approximated by the sonic locus, which is discussed further
in Section 5.1.

In addition, the flow must be parallel to the material interfaces. In order
to enforce the velocity be tangent to the interfaces, the normal velocity of the
flow must be set to the velocity of the interfaces, ∂χ/∂τ |χl

or ∂χ/∂τ |χr
. This

is accomplished by correcting the χ direction velocity in the shock-attached
frame at the interface using the following

uχ =

(
∂χ
∂η

∂z
∂η

)(
uz − ∂z

∂τ

)
+

∂χ

∂τ
. (76)

3.3.4. Symmetric Boundary Nodes

In the case where the deflection of the material interfaces are symmet-
ric, the computational domain can be reduced to half of the full domain in
the slab geometry. In order to accomplish this, three ghost (extra) cells are
used in the ξ direction to enforce the null flow and flux conditions across
the boundary at ξ = 0. At these ghost cells the state variables take a value
equivalent to that of a cell equidistant from the symmetry plane except for
the velocity perpendicular to the symmetry plane which is equal in magni-
tude but in the opposite direction. As an example for a ghost node to the
immediate left of the symmetry plane shown in Fig. 3, i = −1, this can be
accomplished by

ρ|−1,j = ρ|1,j , ux|−1,j = − ux|1,j , uz|−1,j = uz|1,j ,

et|−1,j = et|1,j , λ|−1,j = λ|1,j ,
∂z

∂ξ

∣∣∣∣
−1,j

=
∂z

∂ξ

∣∣∣∣
1,j

; (77)

this same procedure is also applied for ghost nodes i = −2 and i = −3.
Using these ghost nodes, the ξ flux derivatives can be calculated using the
WENO5M scheme developed in Section 3.3.1 for all points up to and includ-
ing the plane of symmetry (ξ = 0) .

Although the physical nature of the axisymmetric case is different, the
same null flow and flux conditions at ξ = 0 are true; as such, the same ghost
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cell procedure in the ξ direction is applied in this case as well. In addition
to these conditions, care must also be taken for the source terms emanating
from the axisymmetric nature at r = 0 as they all include a denominator of
r. The numerators of these source terms are also zero at r = 0 due the null
flow condition at the symmetry line. Therefore to evaluate what these source
terms should be at r = 0, L’Hôpital’s rule must be applied,

lim
r→0

−ρur

r
= lim

r→0

− (ρ∂ur

∂r
+ ∂ρ

∂r
ur

)
1

=

(
−ρ

∂ur

∂r

)∣∣∣∣
r=0

, (78)

lim
r→0

−ρurur

r
= lim

r→0

− (2ρ∂ur

∂r
ur +

∂ρ
∂r
urur

)
1

= 0, (79)

lim
r→0

−ρuruz

r
= lim

r→0

− (ρuz
∂ur

∂r
+ ∂

∂r
(ρuz) ur

)
1

=

(
−ρuz

∂ur

∂r

)∣∣∣∣
r=0

, (80)

lim
r→0

− (ρet + p) ur

r
=

(
− (ρet + p)

∂ur

∂r

)∣∣∣∣
r=0

, (81)

lim
r→0

−ρλur

r
=

(
−ρλ

∂ur

∂r

)∣∣∣∣
r=0

. (82)

Here, the zero radial velocity at the centerline of the HE is applied. Recall,
that the source terms in Eqn. 78-82 are also mapped into the computational
domain by multiplying by

√
g; therefore, using Eqns. 33 and the chain rule

allows for the continuity source term along the centerline to be written as(
−√

gρ
∂ur

∂r

)∣∣∣∣
r=0

=

[
−ρ

(
∂ur

∂ξ

∂z

∂η
− ∂ur

∂η

∂z

∂ξ

)]∣∣∣∣
ξ=0

. (83)

Likewise, this same procedure can be applied to the remaining source terms
at the centerline. In the current transformated construction, ∂z/∂η = 1
and ∂z/∂ξ|ξ=0 = 0; therefore, these source terms are only dependent on
∂ur/∂ξ|ξ=0 . This term of ∂ur/∂ξ|ξ=0 is approximated using a sixth-order
central difference stencil assuming a symmteric nature of the velocity, such
that

∂ur

∂ξ

∣∣∣∣
ξ=0,η=ηj

≈ 45 ur|1,j − 9 ur|2,j + ur|3,j
30Δξ

. (84)

3.3.5. Rear Boundary Nodes

As mentioned previously, at the rear boundary, a zero gradient condition
in the η direction is enforced. This is accomplished by making use of a set
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of three ghost nodes in the η direction behind the last point in the compu-
tational domain as shown in Fig. 3. The state variables for these nodes are
set equal to that of the last node in the computational domain. Then, the η
flux derivative at the rear boundary can be calculated using the WENO5M
scheme developed in Section 3.3.1. The use of such a boundary condition
causes minimimal to no effect on the propagation of the detonation front
if applied behind the sonic locus, which is shown in Fig. 1, as information
about the flow behind this curve propagates away from the front.

3.4. Temporal Integration

After applying the spatial discretization described previously and evalu-
ating the source terms, one is left with a set of ordinary differential equations
(ODEs) in time at each i, j node, such that

dwi,j

dτ
= L (w)|ξ=ξi,η=ηj

, (85)

where L is the discrete approximation to the fluxes and source terms. There-
fore, these ODEs can be solved using a wide variety of integration schemes.

In this work, the ODEs are solved by an explicit RK scheme. In gen-
eral, RK schemes integrate a given solution from an initial time, τn, to an
incrementally larger time, τn+1 = τn+Δτn, using several intermediary steps.
Following a similar notation to that of [10], this procedure can be written for
an initial solution of wn

i,j at τn for a s-stage scheme as

w̄1
i,j = wn

i,j, (86)

w̄l
i,j = wn

i,j +Δτn

l−1∑
k=1

alkL
(
w̄k

i,j

)
, (87)

wn+1
i,j = wn

i,j +Δτn

s∑
k=1

bkL
(
w̄k

i,j

)
, (88)

where w̄l
i,j are the solutions at the intermediary stage l, and alk and bk

are integration coefficients. These coefficients for the two schemes used in
this work, the three stage third-order accurate scheme extracted from [17]
and the six stage fifth-order accurate scheme adopted from [19], are given
in Tables 1 and 2, respectively. Here, the temporal discretization is deter-
mined by the fastest advection speed in one direction as the effects of the
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source terms are fully resolved. This uni-directional time-step is then multi-
plied by a Courant−Friedrichs−Lewy (CFL) number of 4/5 to maintain the
numerical stability of the integration scheme; then to compensente for the
multi-dimensional nature of the scheme, this value is divided by 2 to give
the overall temporal discretization size. Moreover, small changes in the CFL
number do not effect the results presented.

Table 1
Coefficients for a three stage third-order accurate Runge-Kutta scheme from [17]

k ak1 ak2 bk

1 1
6

2 1 1
6

3 1
4

1
4

2
3

Table 2
Coefficients for a six stage fifth-order accurate Runge-Kutta scheme from [19]

k ak1 ak2 ak3 ak4 ak5 bk

1 1
24

2 1 0

3 1
4

1
4

0

4 2046
15625

− 454
15625

1533
15625

125
336

5 − 739
5625

− 511
5625

− 566
5625

20
27

27
56

6 11822
21875

− 6928
21875

− 4269
21875

−4
7

54
35

5
48

4. Verification

During the development of any new scheme, it is important to verify
the accuracy of the numerical implementation and the governing equations
with several test problems. The test problems utilized here are a decaying
planar non-reacting shock wave (Sedov-Taylor blast wave), a planar steadily
propagating detonation wave, and steady flow around symmetrical right cone
at zero angle of attack (Taylor-Maccoll flow). The first example verifies that
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the time-dependent nature of an inert flow is captured correctly at a high-
order convergence rate. Furthermore, the implementation of the reaction
source term is verified by the steadily traveling detonation wave. The Taylor-
Maccoll flow is exploited to verify the spatial convergence rate of a solution
that exercises the axisymmetric based source terms.

4.1. Planar Sedov-Taylor Blast Wave

The intense explosion in a perfect gas is valuable for verification as the
flow can be reduced to a similarity solution. The theoretical development for
these blast waves was first demonstrated by [20, 21, 22]. The solution assumes
an uniform PF-CAE initially at rest in which a large amount of energy, E, is
deposited at an initial time, t = 0. This generates a blast wave with a leading
shock that is a function of time at a distance from the origin, R (t) . Behind
this shock the flow is isentropic when diffusive effects and body forces are
neglected in the flow. This similarity solution, given by Eqn. B.43 (as well as
others given in Appendix B), maintains the same shape for all time in terms
of a nondimensional radius, ζ. Furthermore, this transcendental equation that
can be solved up to an arbitrary accuracy allowing for a detailed comparison
and a calculation of errors.
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Figure 4
A log-log plot of the L1-norm of the relative error at t = 1.00202 μs for the total
energy versus the resolution of the simulation.

For this test case, the blast wave is initialized by plane of instantaneous
energy, E = 7.02912×106 J/mm2, deposited into an quiescent PF-CAE with
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γ = 1.4 and ρo = 1.25×10−3 mg/mm3, resulting in an one-dimensional Carte-
sian wave that decays in strength with repsect to time in the physical domain.
The test case is initialized at t = 1 μs using the exact solution obtained by in-
verting Eqn. B.43. The total length of the physical domain is Lz = 2000 mm
and it starts from the blast radius, R (t = 1 μs) ≈ 2197.0134 mm. The tem-
poral integration is accomplished using the fifth-order RK method presented
in Section 3.4.

The L1-norm for the relative error over the front half of the domain in the
localized total energy, ρet, at t = 1.00202 μs are shown versus the resolution
of the simulation in Fig. 4. The relative error is only calculated over half of the
domain nearest the shock, as there is O (1) error from applying the constant
gradient back boundary condition to the Sedov−Taylor blast wave flow. The
slope of this curve in the log-log space indicates the solution is converging
at a rate of 4.95, which is nearly the ideal fifth-order rate of the scheme.
Table 3 lists the L1 error norm at each resolution and the local convergence
rates. The solution of the finest resolution of Δη = 0.78125 mm is affected
by round-off error. This round-off error is what causes the convergence rate
of the solution to diverge from the ideal fifth-order convergence at fine grids.

Table 3
L1 error in the total energy in Sedov−Taylor blast wave flow

Resolution (mm) L1-error norm rc
50.00000 1.3322× 10−7 -

25.00000 5.2527× 10−9 4.665

12.50000 1.7988× 10−10 4.868

6.25000 5.6866× 10−12 4.983

3.12500 1.7943× 10−13 4.986

1.56250 5.8144× 10−15 4.948

0.78125 1.0951× 10−15 2.409

4.2. Steady Planar Detonations

A CJ detonation propagating in an idealized HE has been shown to relax
to a stable, self-sustained, steadily-traveling wave for certain conditions. This
stability has been demonstrated both numerically [10] and using linear sta-
bility theory [23]. The stability of one of these detonations offers the ability
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to check that the shock-speed is being correctly predicted by the algorithm
and that the reaction source term is correctly implemented.
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Figure 5
Detonation velocity versus time curves for resolutions with N1/2 = 10 and
N1/2 = 20 versus the exact solution of a PF-CAE.

For this verification example, the same set of non-dimensional standard
parameters used by [10] is chosen so that a stable detonation is realized.
Thus for this case, a PF-CAE with an ambient density of ρo = 1, ambient
pressure of po = 1, and a constant ratio of specific heats of γ = 1.2 is utilized.
The heat release of the reaction is q = 50. With these ambient conditions
and heat release, the CJ detonation velocity can be calculated :

DCJ =

√
γpo
ρo

+
q (γ2 − 1)

2
+

√
q (γ2 − 1)

2
≈ 6.80947463. (89)

By using the remaining reaction parameters detailed here, the reaction rate
scale factor a = 35.955584760859722, the pressure scaling factor B = 1, the
pressure dependence exponent Np = 0, the depletion exponent ν = 1, and
lastly the activation energy of the reaction E = 25, gives rise to a steady,
CJ detonation, with a half-reaction zone length of L1/2 = 1. The calculations
presented are initialized using the steady ZND wave structure.

Figure 5 shows the calculated detonation velocity versus time for Δη =
Δξ = 0.10 and Δη = Δξ = 0.05. These relatively coarse resolutions corre-
spond to 10 and 20 points within the half-reaction zone length. The early
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Figure 6
The late time error in the detonation velocity versus resolution for a stable,
steadily propagating detonation in a PF-CAE.

time behavior is dominated by the small perturbations to the exact ZND
due the discretization; however, at later times the detonation relaxes to a
stable detonation as expected. The long time error in the steady detonation
speed versus the resolution of the calculation is shown in Fig. 6. The slope of
this log-log curve demonstrates that the rate of convergence for this scheme
is ∼ 5.01 except near the coarsest resolutions presented which have a rate
of convergence which is greater than the nominal value for the scheme. At
the finest resolution, the scheme comes close to the round-off error due the
double-precision nature of the calculations. Figure 6 demonstrates clearly
that even with moderate resolutions, the shock-fitting technique presented
delivers highly accurate solutions while also offering a high-order convergence
rate.

4.3. Taylor-Maccoll Flow

The steady, supersonic flow of a PF-CAE past a sharp symmetrical right
semi-infinite cone at zero angle of attack can be reduced to a solution for a
single variable in a similar manner to that in Section 4.1. In Taylor-Maccoll
flow, the cone induces a leading shock emanating from the tip followed by
flow which is continuously deflected downstream of the shock and eventually
becomes asymptotically parallel to the surface at infinity. As such, the flow
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is only dependent on the angle of inclination, θ, at a point in space; more
explicitly, it is independent of the distance from the tip, l, and azimuthal
angle, φ, from spherical coordinates centered at the tip of the cone. Therefore,
it can be demonstrated that the flow properties remain constant along an
individual ray from the vertex of the cone, with the flow properties varying
continuously between rays. This flow field was first examined in a graphical
form by [24]; later, a longer development of the governing equation and a
numerical solution was presented by [25]. A numerical simulation of such
a flow field verifies that axisymmetric based source terms properly capture
the different geometrical configuration of the flow. This work utilizes the
governing ODE developed for a PF-CAE by [26, Chap. 10] to initialize the
flow field :

(γ − 1)

2

[
2ht − u2

l −
(
∂ul

∂θ

)2
] [

2ul +
∂ul

∂θ
cot θ +

∂2ul

∂θ2

]

−
(
∂ul

∂θ

)2 [
ul +

∂2ul

∂θ2

]
= 0. (90)

Here, ht = h+u2
0/2, is the total enthalpy of the ambient flow, u0 the ambient

flow velocity, and ul the radial velocity in spherical coordinates.

Table 4
Spatial error in continuity equation evaluation for the (ξ = 0.3 mm,
η = −0.3 mm) point in Taylor-Maccoll Flow

Δη = Δξ Double Precision rc Quad Precision rc
(mm) (mg/(mm3 s)) (mg/(mm3 s))

0.100000000 3.77095× 10−6 - 3.77095× 10−6 -

0.050000000 9.76561× 10−9 8.593 9.76561× 10−9 8.593

0.025000000 3.55008× 10−11 8.104 3.54999× 10−11 8.104

0.012500000 1.16054× 10−11 1.613 1.16047× 10−11 1.613

0.006250000 4.72337× 10−13 4.620 4.71830× 10−13 4.620

0.003125000 1.61308× 10−14 4.911 1.56784× 10−14 4.911

0.001562500 5.18249× 10−16 4.963 5.02698× 10−16 4.963

0.000781250 2.98589× 10−15 −2.526 1.58693× 10−17 4.985

0.000390625 - - 4.68001× 10−19 5.084

The conical flow problem chosen for this work is a Mach 1.84 flow in air
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(ρ0 = 1.25×10−3 mg/mm3 and p0 = 1.01325×10−4 GPa) over cone with an
half angle of 12.5◦ which results in a shock angle of ∼ 35.0816568099◦ and
for which [27, Figure 259] presented a Schlieren image of an experiment. It
is worth noting, that this verification problem yields a non-trivial Jacobian
transformation, and it indeed activates the axisymmetric source terms as well
as both ξ and η directional derivatives. Due to the singularity at the vertex
of the cone, which tries to enforce both the shock and the cone surface, the
simulation is unstable at finite times. However, this flow can still provide
an useful verification of the spatial errors away from the vertex. Since the
initial conditions for the simulation are calculated using the analytic steady
solution, the spatial error can be calculated by evaluating the discrete oper-
ator which is used to approximate the fluxes and source terms, L

(
w̄k

i,j

)
. At

points away from the tip of the cone, the rate of convergence is fifth-order
given enough resolution; a typical point (ξ = 0.3 mm, η = −0.3 mm) is cho-
sen to illustrate the rate of convergence of the spatial errors. Table 4 shows
the spatial error for the continuity equation as well as the rates of conver-
gence of the method for the usual double precision calculations and those for
quad precision. As with the previous test cases, there is super-convergence
observed at the coarser grids which is followed by the method approaching
the asymptotic convergence rate. In the double precision case, the method
hits round-off error at the finest grid examined but the rate of convergence
is near the ideal rate. Moreover, when this same resolution is examined with
quad precision the method still approaches the ideal convergence rate.

5. Applications

In this section, the shock-fitting method detailed here is applied to HEs
in order to examine the steady-state phase speed. Two separate EOSs are
examined; the first is the simpler PF-CAE model and the second is the WSD
model. The PF-CAE EOS case will be compared with previously published
model presented in [2]. Utilizing the WSD model both slab/axisymmetric
rate-stick geometries are examined and thickness/diameter effect curves are
produced for a published model of PBX 9501.

All cases presented are symmetric and initialized using the one-dimensional
planar ZND profile for a detonation traveling at DCJ . The material interface
follows a prescribed motion; it is initially parallel to the one-dimensional
ZND wave structure and deflects out to angle corresponding to an uncon-
fined HE experiment and equivalently, to the maximum streamline deflection
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of a single oblique shock. Here, the full form of the motion is given by

χl (η, τ) = ξl, (91)

χr (η, τ) =

⎧⎪⎨
⎪⎩

ξr − ηm

11∑
i=6

ai

(
τ

τc

)i
τ
τc

< 1

ξr − ηm τ
τc

≥ 1

, (92)

where m is the slope corresponding the deflection angle, ai the polyno-
mial constants, and τc a time constant. Choosing a6 = 462, a7 = −1980,
a8 = 3465, a9 = −3080, a10 = 1386, and a11 = −252 gives a material inter-
face deflection that is smooth and fives times smoothly differentiable in τ.
The deflection angle is calculated by a shock polar analysis in the manner
presented by [28] for the PF-CAE model and [29, 30] for the WSD model.
With the main variable of interest being the steady-state phase speed, the
third-order RK scheme is utilized for temporal integration as the main source
of error is due to spatial discretization.

5.1. PF-CAE HE Slabs

A convergence study is performed examining the unconfined steady det-
onation phase speed and a comparison between shock-fitting and shock-
capturing is made for a 48 mm wide slab of HE using a PF-CAE which
weakly mimics PBX 9502. The PF-CAE/reaction model parameters are
taken from [2] and are given by γ = 3, q = 4 mm2/μs2, ρ0 = 2 mg/mm3,
p0 = 10−4 GPa, k = 1.2936 1/μs, ν = 1/2, B = pCJ , N = 2, and
E = 0 mm2/μs2. With this choice of parameters, the Chapman-Jouguet
detonation speed and pressure are DCJ ≈ 8.00 mm/μs and pCJ ≈ 32.0 GPa,
respectively.

The total reaction zone length is ∼ 4 mm and the ZND solution is very
near the strong shock limit. From shock polar theory, it is known that for a
single oblique shock, there is an associated streamline deflection angle [26].
For a PF-CAE in the strong shock limit, this deflection angle can be calcu-

lated explicitly, φe = arctan
(√

(γ − 1) / (γ + 1)
)
≈ 35.3◦. This corresponds

to streamline turning angle of θe ≈ 19.5◦. Likewise, it also corresponds to
the flow being exactly sonic in the shock-attached reference frame. This
turning angle yields m ≈ 0.35355. The time constant chosen for material
interface motion is τc = 5 μs. For ease of comparison with the previously
preformed shock-capturing calculations, the computational domain length
chosen is 10 mm.
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Figure 7
The predicted steady half-profile for the sonic parameter in a symmetric 48 mm
wide slab for a PF-CAE HE at resolution of 1/8 mm. The sonic locus is denoted
by the black curve.

Figure 7 shows the sonic parameter for the steady wave profile for reso-
lution of 1/8 mm. The sonic parameter is defined as the local sound speed
squared minus the magnitude of velocity in the shock-attached frame squared,
c2 − |u − D|2. The sonic locus, which is denoted by the thick black curve,
is where the magnitude of velocity in the shock-attached frame equals the
local sound speed and roughtly indicates the domain of dependence for the
flow affecting the detonation front propagation [31]. Behind this curve, small
acoustic disturbances propagate away from the shock. Since the sonic locus
curve intersects the shock front at the material interface, the detonation is
considered unconfined as desired.

In addition to the unconfined nature of the HE, it is also useful to estab-
lish that the detonation relaxes to a steadily traveling wave by examining
the phase speed of the detonation. Figure 8 shows the phase speed at the
centerline, material interface, and mid-span between these two points at a
resolution of Δξ = Δη = 1/8 mm. As the material interface follows a pre-
scribed motion, the phase speed slows from DCJ first at the edge which is
followed by a slowing of the mid-span speed and finally, the centerline speed.
At late time, all phase speeds relax to the same value of D0 ≈ 6.905 mm/μs;
thus indicating detonation that has relaxed to a steadily traveling wave.

For the comparison with shock-capturing, the previously run simulations
of [2] are utilized. These simulations used a nominally second-order, min-
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Figure 8
The detonation phase speed in a symmetric 48 mm thick slab for a PF-CAE HE
at the centerline (black solid curve), the material interface (black dashed curve),
and at mid-span (light gray dotted curve) at a resolution of 1/8 mm.

mod spatial scheme in conjugation with the Ghost Fluid Method of [32] to
treat the multi-material interaction of the HE with a highly compressible
confiner (ρ0c = 2 mg/mm3 and γ = 1.4). Note that the results presented
in [2] used an early variant of ENO which results in quantitative differences
than those presented here, but they are both converging qualitatively in the
same fashion. Each shock-capturing simulation was run for 100 μs and the
phase speeds shown in Fig. 9 and table 5 are calculated as an average over the
full domain width and the final four half-thickness of the domain (96 mm) .
In the case of shock-fitting, the phase speeds are averaged over the final 10 μs
of the simulation.

Figure 9 compares the steady detonation phase speed for shock-fitting
(black curve) with that of shock-capturing (gray curve) at several resolu-
tions. It is clear that the shock-capturing technique is much less accurate
than shock-fitting at coarse resolutions. In fact at resolution of 1/2 mm,
capturing predicts D0 = 6.693 mm/μs versus 6.904 mm/μs at a resolution
of 1/128 mm. Whereas, using shock-fitting at a resolution of 1/2 mm yields
D0 = 6.897 mm/μs which is within 0.2% of the extrapolated infinite res-
olution velocity of 6.9074 ± 0.0004 mm/μs. Moreover, this means that for
a user-specified error tolerance, shock-fitting needs less resolution than the
capturing method, saving much computational time.
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Convergence study of the steady detonation phase speed for a symmetric 48 mm
wide slab for a PF-CAE HE comparing shock-capturing (gray curve) and
shock-fitting (black curve).

Table 5 lists the averaged values shown in Fig. 9; in addition it shows
a simple extrapolation to an infinite resolution. For shock-capturing this is
6.909 ± 0.005 mm/μs, which is produced using the finest two resolutions
and assuming first-order convergence; this is probably better than can be
expected due to the smearing of the shock. In the case of shock-fitting, the
finer resolutions likely begin to show the buildup of error due to the use
of the lower-order approximations utilized near the material interface; thus,
the infinite resolution approximation is made using resolutions of 1/16 mm
and 1/32 mm. Furthermore, the shock-fitting case prediction of 6.9074 ±
0.0004 mm/μs is within the error predicted by the shock-capturing scheme.
This indicates that it is likely that both methods are converging towards the
same steady detonation phase speed. For a case where the user specifies an
error tolerance of 0.01 mm/μs, shock-fitting is more than 4000 times more
efficient.

5.2. WSD EOS Slabs and Axisymmetric Rate-Sticks

The second application of the shock-fitting method is predicting the
thickness-effect curve for PBX 9501 utilizing a more realistic and complex
EOS given by the WSD model. The parameters for this model are taken
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Table 5
Steady Phase Speed Convergence

Resolution Shock-Capturing Shock-Fitting

(mm) D0 (mm/μs) D0 (mm/μs)

1/2 6.6933 6.8967

1/4 6.7932 6.9022

1/8 6.8456 6.9053

1/16 6.8749 6.9068

1/32 6.8909 6.9072

1/64 6.8994 6.9072

1/128 6.9043 6.9070

1/∞ 6.909± 0.005 6.9074± 0.0004

from [11] and are given by ρ0 = 1.844 mg/mm3, p0 = 0 GPa, k = 110 1/μs,
ν = 0.93, Np = 3.5, E = 0 mm2/μs2, and B = pCJ = 36.3 GPa. At this
ambient density DCJ ≈ 8.860 mm/μs which is moderately higher than that
observed in experiments for PBX 9501 of DCJ ≈ 8.800 mm/μs. This mis-
match in DCJ is partly due to using a higher than usually measured ambient
density (ρ0 = 1.836 mg/mm3) . However, even correcting for the difference
in ambient density, the DCJ from experimental correlation would only be
∼ 8.840 mm/μs. The choice of these parameters yields a moderately stiff
reaction with a CJ half reaction zone length of ∼ 7 μm and full reaction
zone of ∼ 500 μm.

An additional complication of realistic EOSs, like those used in the WSD
model, is that typical detonations propagate at finite Mach numbers usually
in the range of 3−5. This fact has two ramifications worth pointing out. First,
the maximum streamline deflection for a single oblique shock results in a
post-shock subsonic flow. Thus to replicate the unconfined nature rate sticks,
the streamline must be deflected past this point by introducing a Prandtl-
Meyer expansion fan. Second, the maximum streamline deflection for a single
oblique shock will also become a function (although a weak one [11]) of the
detonation phase velocity, which is part of the solution sought. Although
the streamline deflection angle is explicitly a function of the phase speed,
near the maximum sonic angle this correlation is a weak relationship for
detonating phase speeds. Moreover, the maximum deflection angle occurs at
higher phase speeds [26]. For this reason, the deflection angle is evaluated at
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DCJ , since for finite sized charges, the propagation speed is expected to be
below this speed. From the shock polar analysis of this model, the maximum
streamline deflection angle at DCJ is ∼ 12.1◦. This corresponds to final slope
of the material interface of m ≈ 0.215. Since the reaction rate is faster, the
time constant utilized for the motion of the material interface is τc = 0.5 μs.
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Figure 10
Centerline phase speed versus time for four slab thickness using the WSD model
from [11].

Figure 10 is a plot of the centerline phase speed versus time for several slab
thicknesses utilizing a resolution of 5 μm; such a fine resolution is necessary
to begin resolving the reaction zone. The phase speed of the 8 mm wide slab
(black solid curve) is only slightly retarded by the material interface deflection
and relaxes to D0 = 8.843 mm/μs. As the thickness is reduced further, the
steady phase speed is also reduced (w = 4 mm, D0 = 8.764 mm/μs - dark
gray line and w = 2 mm, D0 = 8.568 mm/μs - light gray line); however,
below a critical thickness, the detonation fails. An example below this critical
threshold is w = 1 mm which is shown by the black dashed line.

By examining several more slab thickness, a thickness-effect curve is pro-
duced, which is shown in Fig. 11(a). The dashed gray curve representing a
curve fit through the open squares which are the points simulated. In ad-
dition, the experimental fit/data from [33] is represented by the black curve
with filled squares. This experimental thickness curve for the phase speed is
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(a) Thickness effect curve for PBX 9501 utilizing WSD [11] predicted by
shock-fitting and experimental data from [33]and (b) diameter effect curve for
PBX 9501 utilizing WSD [11] predicted by shock-fitting and experimental fit
from [33] and [34].

D0 = 8.800 [1− (1.83× 10−2) / (w − 0.5251)] . The model strongly over pre-
dicts the effects of slab thickness on D0; at wider slabs it predicts higher
phase speeds than observed as expected due to the high value of DCJ . How-
ever, the model also predicts detonation failure at a slab width of ∼ 1.2 mm,
which is larger than that observed in experiments. This mis-prediction by
the model is due to the model being calibrated to replicate the Shock-to-
Detonation Transition (SDT). While examining the predicted behavior at
finer resolutions, it is found that the model begins to develop oscillations;
this suggests an instability under resolution similar to that predicted in [14].

In addition, using this same methodology with the axisymmetric source
terms, a diameter effect curve can be created by plotting the phase speed
versus radius of the rate stick. Figure 11(b) shows the predicted diameter
curve for the PBX 9501 model (dashed gray curve with open squares) utilizing
a resolution of 5 μm. The experimental fit, which is indicated by the solid
black curve, is taken from [33], D0 = 8.800 [1− (1.91× 10−2) / (r − 0.4780)] ,
and is in good agreement with the fit given by [34]. The dashed part of
the curve is conjecture by [34] based on the similarity between PBX 9501
and PBX 9404, as both are high percentage HMX based HEs. In a similar
manner to that of the thickness effect curve, the model over predicts the phase
speed at larger diameters and under predicts it at the smaller diameters.
Furthermore, the failure diameter is also mis-predicted dramatically.
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Table 6
Calibration Experiments

Radius Ambient Density Observed Phase Speed Predicted Phase Speed

r (mm) ρ0 (mg/mm3) D0 (mm/μs) D0 (mm/μs)

0.790 1.832 8.2590 8.2590

1.005 1.832 8.4870 8.4793

1.415 1.832 8.6120 8.6212

2.505 1.832 8.7220 8.7243

5.3. Reaction Model Calibration

The last application of the method examined in this paper is a calibration
to the detonation regime of the reaction parameters of the WSD model for
PBX 9501. More specifically, after correcting DCJ by adjusting the heat
release of reactants in the WSD model (q = 5.69) , the variables used in
the calibration are a, ν, and Np. The calibration is automated using the
downhill simplex method from [35] and utilized four rate-stick experiments
which are shown in table 6. After 35 downhill simplex iterations (272 total
rate stick simulations) and optimized set of parameters were found: a =
1.9155, ν = 0.9562, and Np = 3.3898. The diameter-effect curve using the
calibrated model is shown by the light gray dashed curve with open squares
in Fig. 12(b). The calibrated diameter-effect curve lies directly on top of that
developed from experiments (shown by the black solid curve) as expected.
Figure 12(a) shows the predicted thickness-effect curve (shown by the gray
dashed line with open squares) using the calibrated reaction model. This
curve is in much closer agreement with that developed from experiments
by [33] than the model developed from the SDT data; however, it still slightly
under predicts the phase speed of the detonation in narrower slabs. The
discrepancies between the prediction for rate stick and slab type geometries
is also present in detonation shock dynamics [33, Figure 9].

It should be noted that while the newly re-calibrated model preforms
well for multi-dimensional detonation propagation, it is unlikely that this
will preform well at predicting SDT. This is due to the simple reaction rate
with only three parameters to adjust. The re-calibration of the reaction
parameters to the detonation regime is meant to demonstrate the utility of
the presented algorithm. Further work remains to be performed to fully
calibrate reactive flow models in greater detail.
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Figure 12
(a) Thickness effect curve and (b) diameter effect curve for PBX 9501 predicted
by shock-fitting utilizing the calibrated reaction model versus the experimental
fits from [33].

6. Conclusions

The present shock and material interface fitting algorithm is a highly ac-
curate strategy for examining multi-dimensional shock and detonation flows
even with moderately coarse grids. In fact by fitting the interfaces to compu-
tational boundaries, the discontinuities and the associated smearing effects
from shock-capturing are removed. Thus, the method also offers the pos-
sibility of high rates of convergence as demonstrated by several verification
tests, where fifth-order convergence rates of solutions were demonstrated.
Moreover, the highly-accurate nature of the algorithm is more clear when
compared with results produced using capturing. For the case of the PF-
CAE EOS HE application, there is a computational savings of 4096 over
capturing for an error on the O(10 m/s), which is a similar uncertainity to
that observed in experiments on HEs. This savings is realized through the
reduction in necessary resolution in each direction as well as the correspond-
ing larger time-step. The removal of the ambiguity of the shock state could
play an even greater role in other reactive flow models which utilize the shock
state during the evaluation of the reaction.

Utilizing the present fitting algorithm, a thickness effect curve was pro-
duced. It is found that the published parameters for the WSD reactive
flow model for PBX 9501 predict a significantly steeper curve than obtained
from experimental data. Likewise, the predicted diameter effect curve also
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shows a significantly stiffer effect with respect to charge size than that ob-
served in experiments. Moreover, the utility of the fitting method is demon-
strated through the re-calibration of the reactive parameters for the det-
onation regime. This re-calibration was automated using a multi-variable
downhill simplex method in conjunction with the shock-fitting algorithm.
After this calibration, the model diameter effect curve reproduces that ob-
served from experiments. Furthermore, the thickness effect curve produced
using the re-calibrated parameters closely mimics that of the experimental
data.

The highly accurate nature of the fitting algorithm, when employed ap-
propriately, gives rise to further opportunities for study, particularly in HE
modeling. This includes work with more complex geometry constraints, e. g.
cone type tests [36], and multi-layered problems [37], e. g. HE surrounded
by a confiner [30], both of which can lead multiple traveling shocks. In order
to deal with such geometries, the current algorithm likely must be modified
to handle the triple shock interaction and overtaking shocks to add stability
as most fitting algorithms are susceptible to failure at these points due the
high-order stencils utilized in the spatial derivative calculations. This adds
additional complexity to the presented algorithm and thus, it is left for a
future paper.
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Appendix A. Derivatives of Jacobian

In this section the partial derivatives of the Jacobian are developed. An
illustrative example is the derivative with respect to time of the Jacobian,
which is given by

∂J

∂t
=

∂

∂t

(
∂ξ

∂χ

∂η

∂z
− ∂ξ

∂z

∂η

∂χ

)
. (A.1)

Now applying the product rule, this can be written as

∂J

∂t
=

∂

∂t

(
∂ξ

∂χ

)
∂η

∂z
+

∂

∂t

(
∂η

∂z

)
∂ξ

∂χ
− ∂

∂t

(
∂ξ

∂z

)
∂η

∂χ
− ∂

∂t

(
∂η

∂χ

)
∂ξ

∂z
. (A.2)

Since χ, z, and t are independent variables, their derivatives can be inter-
changed through the commutative property,

∂J

∂t
=

∂

∂χ

(
∂ξ

∂t

)
∂η

∂z
+

∂

∂z

(
∂η

∂t

)
∂ξ

∂χ
− ∂

∂z

(
∂ξ

∂t

)
∂η

∂χ
− ∂

∂χ

(
∂η

∂t

)
∂ξ

∂z
. (A.3)

Then, utilizing the chain rule to expand the χ and z derivatives,

∂J

∂t
=

[
∂ξ

∂χ

∂

∂ξ

(
∂ξ

∂t

)
+

∂η

∂χ

∂

∂η

(
∂ξ

∂t

)]
∂η

∂z
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+

[
∂ξ

∂z

∂

∂ξ

(
∂η

∂t

)
+

∂η

∂z

∂

∂η

(
∂η

∂t

)]
∂ξ

∂χ

−
[
∂ξ

∂z

∂

∂ξ

(
∂ξ

∂t

)
+

∂η

∂z

∂

∂η

(
∂ξ

∂t

)]
∂η

∂χ

−
[
∂ξ

∂χ

∂

∂ξ

(
∂η

∂t

)
+

∂η

∂χ

∂

∂η

(
∂η

∂t

)]
∂ξ

∂z
. (A.4)

Lastly by rearranging terms, the derivative of the Jacobian with respect to t
can be written as

∂J

∂t
=

[
∂

∂ξ

(
∂ξ

∂t

)
+

∂

∂η

(
∂ξ

∂t

)]
J. (A.5)

This procedure can likewise be performed for both the χ and z derivatives
of the Jacobian, such that

∂J

∂χ
=

[
∂

∂ξ

(
∂ξ

∂χ

)
+

∂

∂η

(
∂ξ

∂χ

)]
J, (A.6)

∂J

∂z
=

[
∂

∂ξ

(
∂ξ

∂z

)
+

∂

∂η

(
∂ξ

∂z

)]
J. (A.7)

Therefore, the derivatives of the determinant of the metric tensor
(√

g
)
can

be written in terms of the Jacobian derivatives using the chain rule,

∂

∂t
(
√
g) =

∂

∂t

(
J−1
)
= − 1

J2

∂J

∂t
= − 1

J

[
∂

∂ξ

(
∂ξ

∂t

)
+

∂

∂η

(
∂ξ

∂t

)]

= −
[
∂

∂ξ

(
∂ξ

∂t

)
+

∂

∂η

(
∂ξ

∂t

)]√
g, (A.8)

∂

∂χ
(
√
g) = −

[
∂

∂ξ

(
∂ξ

∂χ

)
+

∂

∂η

(
∂ξ

∂χ

)]√
g, (A.9)

∂

∂z
(
√
g) = −

[
∂

∂ξ

(
∂ξ

∂z

)
+

∂

∂η

(
∂ξ

∂z

)]√
g. (A.10)

Appendix B. Sedov-Taylor Blast Waves

The fluid flow solution of an intense explosion caused by the deposition
of a large amount of energy at a localized point is developed in this section
following the work of [38, Chap. 6]. The intense explosion in a PF-CAE yields
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axisymmetric flow in the strong shock limit. For fluid at with an ambient
density of ρo and ambient pressure of po, this limit yields po/ (ρoDN) ≈ 0
where DN is the normal shock speed. Diffusive effects and body forces are
negligible behind the leading shock which results in isentropic flow inside the
blast radius, which is a function of time. Utilizing the definition of entropy
for a PF-CAE, s = ln (p/ργ) , and the definition of the frozen sound speed
squared, a2 = γp/ρ, the governing equations of the flow from blast origin to
the shock front can be written as

∂ρ

∂t
+ xn ∂

∂x
(xnρux) = 0, (B.1)

∂

∂t
(ρux) + xn ∂

∂x

(
xnρu2

x

)
+

∂p

∂x
= 0, (B.2)

ds

dt
=

∂

∂t

(
ln a2

)
+ ux

∂

∂x

(
ln a2

)−
(γ − 1)

(
∂

∂t
(ln ρ) + ux

∂

∂x
(ln ρ)

)
= 0, (B.3)

where γ is the adiabatic exponent or equivalently, for a calorically perfect
gas, the ratio of specific heats, x the spatial coordinate, ux the velocity in
the direction of the flow, and the parameter n determines the geometry of
the axisymmetric flow :

n =

⎧⎨
⎩

0 planar geometry
1 cylindrical geometry
2 spherical geometry

(B.4)

In addition to the flow behind the shock, the shock state must be determined.
This accomplished using the Rankine-Huginot jump conditions; in the strong
shock limit, the shock state is given by

ρ (R (t)) =
(γ + 1)

(γ − 1)
ρo, (B.5)

ux (R (t)) =
2

(γ + 1)
DN , (B.6)

p (R (t)) =
2

(γ + 1)
ρoD

2
N , (B.7)

where DN is a function of time.
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In the strong shock limit, the particle velocities and pressures behind the
shock are much larger than ambient acoustic speed and the initial pressure,
respectively. Therefore, there are only two dimensional parameters that play
an important role in determining the flow behavior, ρo and E. These two
parameters can be combined in a single way which is independent of mass;
thus, the blast radius, R (t) , must take the functional form

R (t) = c1

(
E

ρo

) 1
(n+3)

t
2

(n+3) , (B.8)

where c1 is a dimensionless constant. Furthermore, the speed at which the
shock location changes is given by

dR

dt
= DN = c1

(
E

ρo

) 1
(n+3) 2

(n+ 3)
t
(n−1)
(n+3) =

2

(n+ 3) t
R (t) . (B.9)

It then follows that up to an undetermined constant, c1, that shock state and
its motions are known :

R (t) = c1

(
E

ρo

)( 1
m)

t(
2
m), (B.10)

DN =
2

mt
R (t) , (B.11)

ρ (R (t)) =
(γ + 1)

(γ − 1)
ρo, (B.12)

ux (R (t)) =
4

(γ + 1)mt
R (t) , (B.13)

p (R (t)) =
8

(γ + 1)m2t2
ρoR (t)2 , (B.14)

a2 (R (t)) =
8γ (γ − 1)

(γ + 1)2 m2t2
R (t)2 , (B.15)

where m = n+ 3 is used for ease of notation.
For a similarity solution to exist for all time, t > 0, then a non-dimensional

variable must exist which is composed of a combination of x and t. The
blast radius is a distance which is a function of time which suggests a non-
dimensional variable of

ζ =
x

R (t)
. (B.16)
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With this choice for similarity variable, the shock is located at ζ = 1 and
the blast origin at ζ = 0 for all time after the initial deposition. Likewise,
non-dimensional functions of density, velocity, and the squared sound speed
can be defined as well :

D (ζ) =
ρ

ρo
, (B.17)

U (ζ) =
a1uxt

x
, (B.18)

A (ζ) =
a2a

2t2

x2
, (B.19)

where a1 and a2 are dimensionless constants which can be used to simplify
the form of the governing equations. By substituting Eqns. B.17-B.19 into
Eqns. B.1-B.3, utilizing the definition of the squared sound speed and ap-
plying the derivatives of the similarity variable, ∂ζ/∂t = −2ζ/ (mt) and
∂ζ/∂x = ζ/x, the governing equations can be written as

ρo
a1t

[
ζ

(
U − 2a1

m

)
dD

dζ
+

(
ζ
dU

dζ
+ (n+ 1)U

)
D

]
= 0, (B.20)

x

a21t
2

[(
U − 2a1

m

)
ζ
dU

dζ
+ (U − a1)U

]

+
x

a2t2
1

γ

(
Aζ

D

dD

dζ
+ 2A+ ζ

dA

dζ

)
= 0, (B.21)

1

a1t

[(
U − 2a1

m

)
ζ

A

dA

dζ
+ 2 (U − a1)

+ (1− γ)

(
U − 2a1

m

)
ζ

D

dD

dζ

]
= 0. (B.22)

Therefore, for all time after the energy deposition and any location between
the blast origin up to and including the blast front, the governing equations
can be simplified further if a2 = a21 = m2/4 and ρo > 0. After this simplifica-
tion, the governing equation can written using prime notation as

ζ (U − 1)D′ + ζDU ′ + (n+ 1)DU = 0, (B.23)

ζ (U − 1)U ′ +
(
U − m

2

)
U +

1

γ

(
Aζ

D′

D
+ 2A+ ζA′

)
= 0, (B.24)

ζ (U − 1)

[
A′

A
− (γ − 1)

D′

D

]
+ 2
(
U − m

2

)
= 0. (B.25)
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In addition, this transformation can be applied to obtain the conditions at
the blast front

D (1) =
ρ (R (t))

ρo
=

(γ + 1)

(γ − 1)
, (B.26)

U (1) =
mux (R (t)) t

2R (t)
=

2

(γ + 1)
, (B.27)

A (1) =
m2a2 (R (t)) t2

4R (t)2
=

2γ (γ − 1)

(γ + 1)2
; (B.28)

thus, the ODEs given by Eqns. B.23-B.25 could be integrated from the blast
front (ζ = 1) towards the blast origin (ζ = 0) for the non-dimensional form
of the solution.

Though Eqns. B.23-B.25 can be integrated, an analytic solution is still
sought. This solution is pursued using the fact that the total energy within
the blast wave is conserved; no energy enters through the shock front due
the strong shock propagating into a fluid that is initially quiescent. The
total energy for a PF-CAE within a radius, r, is can be obtained using the
integrand:

E (r, t) =

∫ r

0

ρ

(
e+

u2
x

2

)
πl (2r̂)n ∂r̂

=

∫ r

0

ρ

(
a2

γ (γ − 1)
+

u2
x

2

)
πl (2r̂)n ∂r̂, (B.29)

where

l =

{
0 planar geometry
1 non-planar geometry

(B.30)

The motion of the boundary is balanced by the change in ρ, ux, and a2 time.
As the blast wave can be described as a similarity solution, the total energy
between two ζ locations must remain constant, and thus, the integrand must
be a function of ζ alone. Furthermore, the total energy from the origin to a
ζ can be written using Eqns. B.17-B.19 as

E (ζ) =
2n+2πlρo

m2

∫ ζ

0

D

(
A

γ (γ − 1)
+

U2

2

)
ζ̂n+2Rm

t2
dζ̂,

=
2n+2πlcm1 E

m2

∫ ζ

0

D

(
A

γ (γ − 1)
+

U2

2

)
ζ̂n+2dζ̂. (B.31)
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Note, that this definition contains the total energy of the blast wave, E, and
the unknown constant, c1, which is necessary to obtain the physical solution
from the similarity solution. By evaluating Eqn. B.31 for ζ = 1, the unknown
constant can be determined :

E (ζ = 1) = E =
2n+2πlcm1 E

m2

∫ 1

0

D

(
A

γ (γ − 1)
+

U2

2

)
ζ̂n+2dζ̂; (B.32)

therefore,

c1 =

[
2n+2πl

m2

∫ 1

0

D

(
A

γ (γ − 1)
+

U2

2

)
ζ̂n+2dζ̂

]− 1
m

. (B.33)

Now, applying the Reynolds’ transport theorem to the conservation of
energy equation and utilizing the divergence theorem yields

d

dt
(E (ζ)) = 0 =

∫
S(ζ)

[
ρ

(
e+

u2

2

)
∂r

∂t
− ρu

(
e+

u2

2
+

p

ρ

)]
dS,

=

∫
S(ζ)

[
ρ

(
a2

γ (γ − 1)
+

u2

2

)
∂

∂t
(ζR)

−ρu

(
a2

(γ − 1)
+

u2

2

)]
dS. (B.34)

For this to be the case for any ζ, the integrand is itself must be identically
zero and therefore,

ρ

(
a2

γ (γ − 1)
+

u2

2

)
∂

∂t
(ζR) = ρu

(
a2

(γ − 1)
+

u2

2

)
. (B.35)

Making use of Eqns. B.17-B.19, results in an algebraic constraint of(
A

γ (γ − 1)
+

U2

2

)
∂

∂t
(ζR) =

2xU

mt

(
A

(γ − 1)
+

U2

2

)
,(

A

γ (γ − 1)
+

U2

2

)
2x

mt
=

2xU

mt

(
A

(γ − 1)
+

U2

2

)
,

A =
γ (γ − 1)

2

(U − 1)

(1− γU)
U2, (B.36)

as long as U �= 1/γ. Notice that the conditions

A (U (ζ = 1)) = A

(
U =

2

(γ + 1)

)
= A (ζ = 1) =

2γ (γ − 1)

(γ + 1)2
(B.37)
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are satisfied. Rearranging Eqn. B.23, then substituting into Eqn. B.25, and
then multiplying by d ln ζ/dU yields

d ln ζ

dU

[
(U − 1)

(γ − 1)

d lnA

d ln ζ
+

dU

d ln ζ
+

κU −m

(γ − 1)
= 0

]
, (B.38)

(U − 1)

(γ − 1)

d lnA

dU
+

(κU −m)

(γ − 1)

d ln ζ

dU
+ 1 = 0, (B.39)

where κ = ((γ − 1) (n+ 1) + 2) . Then, by substituting the derivative of the
natural log of Eqn. B.36,

d lnA

dU
= 0 +

1

(U − 1)
+

γ

(1− γU)
+

2

U
, (B.40)

into Eqn. B.39 yields

(U − 1)

(γ − 1)

[
1

(U − 1)
+

γ

(1− γU)
+

2

U

]
+

(κU −m)

(γ − 1)

d ln ζ

dU
+ 1 = 0,

d ln ζ

dU
=

γ (U − 1)

(m− κU) (1− γU)
+

2 (U − 1)

(m− κU)U
+

γ

(m− κU)
. (B.41)

Likewise, a relationship between the nondimensional density and velocity can
be obtained through a similar procedure:

d ln ζ

dU

[
d lnD

d ln ζ
=

−1

(U − 1)

dU

d ln ζ
− (n+ 1)U

(U − 1)

]
,

d lnD

dU
=

−1

(U − 1)
− (n+ 1)

(m− κU)

[
γU

(1− γU)
+ 2 +

γU

(U − 1)

]
. (B.42)

Integrating Eqns. B.41 and B.42 with respect to U results in

ζ (U) =

[
(m− κU) (γ + 1)

(m (γ + 1)− 2κ)

]β1
[
γ + 1

1− γ
(1− γU)

]β2

[
(γ + 1)

2
U

]− 2
m

, (B.43)

D (U) =

[
γ + 1

γ − 1

] [
γ + 1

1− γ
(U − 1)

]β3
[
(γ + 1) (m− κU)

m (γ + 1)− 2κ

]β4

[
γ + 1

1− γ
(1− γU)

]β5

(B.44)
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where

β1 =
κ− (γ + 1)m

mκ
+

κ−m

m (κ− γm)
, (B.45)

β2 =
1− γ

κ− γm
, (B.46)

β3 = −
(
(n+ 1) γ

m− κ
+ 1

)
, (B.47)

β4 = − (n+ 1)

[
κ− (γ + 1)m

κ (m− κ)
− 1

κ− γm

]
, (B.48)

β5 =
− (n+ 1)

κ− γm
. (B.49)

However, the sought solution is for D (ζ) , U (ζ) , and A (ζ) not ζ (U) ,
D (U) , and A (U) given by Eqns. B.36, B.43, and B.44. Therefore, Eqn. B.43
must be implicitly inverted for U (ζ) by an iterative process to arbitrary accu-
racy. To find this solution, the values of U must be bounded. One bound for
this process is at ζ = 1, which known to be U (ζ = 1) = 2γ (γ − 1) / (γ + 1)2 ,
and the other bound is determined by the evaluation of ζ (U) = 0. This
means the lower bound is given by the maximum of three possiblities, U = 0,
U = 1/γ, and U = m/κ which is also less than the upper bound. Given that
γ > 1, the bounds are given by

2

γ + 1
≥ U ≥

⎧⎨
⎩

1
γ

if (m− 4) γ < (3m− 8)

m
κ

if m = 5 and γ > 7

(B.50)

Lastly, Eqn. B.33 must be rewritten in terms of U to obtain the physical
solution from the similarity solution :

c1 =

[
2n+2πl

m2

∫ 2
γ+1

1
γ

or m
κ

D

(
A

γ (γ − 1)
+

Û2

2

)
ζn+2 dζ

dÛ
dÛ

]− 1
m

. (B.51)
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