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We propose and validate a novel extension of Hybrid High-Order (HHO) methods to 
meshes featuring curved elements. HHO methods are based on discrete unknowns that 
are broken polynomials on the mesh and its skeleton. We propose here the use of physical 
frame polynomials over mesh elements and reference frame polynomials over mesh faces. 
With this choice, the degree of face unknowns must be suitably selected in order to recover 
on curved meshes the same convergence rates as on straight meshes. We provide an 
estimate of the optimal face polynomial degree depending on the element polynomial 
degree and on the so-called effective mapping order. The estimate is numerically validated 
through specifically crafted numerical tests. All test cases are conducted considering 
two- and three-dimensional pure diffusion problems, and include comparisons with 
discontinuous Galerkin discretizations. The extension to agglomerated meshes with curved 
boundaries is also considered.

© 2018 Elsevier Inc. All rights reserved.

1. Introduction

The continuous growth of high-performance computational resources and the increasing predictive capabilities of numer-
ical models has significantly widened the range of real-life, multi-physics configurations that can be simulated. The trend 
is towards increasingly complex systems of partial differential equations (PDEs) in complex domains, possibly focusing on a 
multiscale spatial and temporal behavior. Also the amount of physical data (permeability, mechanical properties, etc.) to be 
incorporated into large-scale models in order to replicate the complexity encountered in the real-world is rapidly increas-
ing. In this context, the geometrical flexibility of numerical methods is a crucial aspect that can greatly reduce the effort 
required to obtain an accurate representation of both the computational domain and the problem data. We develop and nu-
merically investigate here a specific instance of discretization methods for PDEs that support high-order approximation on 
curved (high-order) meshes. Curved meshes are commonly employed to provide a satisfactory representation of the domain 
boundary with only a moderate number of mesh elements, so that the polynomial degree can be increased while keeping 
the global number of degrees of freedom (DOFs) under control. The role that curved meshes play in obtaining accurate 
solutions when combined with high-order discretization methods has been demonstrated, e.g., in [1–3].
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In recent years, discretization methods supporting arbitrary approximation orders on general meshes have received an 
increasing amount of attention. We cite here, among others, Discontinuous Galerkin (DG) and Hybridizable Discontinuous 
Galerkin (HDG) methods, see e.g. [4–7], Hybrid High-Order (HHO) methods [8,9], and Virtual Element Methods (VEM) [10]. 
The implementation of efficient DG and HDG methods on curved meshes is an open field of research. On the one hand, 
both Bassi et al. [5] and Warburton [11] proposed the use of polynomial spaces defined in the physical frame. In the former 
reference, orthonormal bases are obtained by means of a modified Gram–Schmidt procedure to ensure numerical-stability 
at high-polynomial degrees, while in the latter the same goal is attained by incorporating the spatial variation of the 
element Jacobian into the physical basis functions. On the other hand, recent works by Chan et al. [12,13] rely on reference 
frame polynomial spaces introducing weight-adjusted L2-inner products in order to recover high-order accuracy. HDG has 
been employed on meshes with curved boundaries, mainly in the context of compressible flow problems [14,15]; eXtended 
HDG with level-set description of interfaces has been recently investigated by Gurkan et al. [16]. Fidkowski [17] compared 
DG and HDG methods for unsteady simulations of convection-dominated flows on mapped deforming domains. Blended 
isogeometric DG methods formulated on elements that exactly preserve the CAD geometry have also been recently proposed 
in [18]. Finally, we cite here the very recent work [19] of Beirão da Veiga et al. on two-dimensional Virtual Element methods 
supporting meshes with curved edges.

To this day, HHO methods have been essentially confined to meshes with straight edges in two space dimensions and 
planar faces in three space dimensions. In this work, we devise a novel extension of HHO methods to meshes featuring 
curved elements, assess its performance, and compare it with DG methods. HHO methods are based on discrete unknowns 
that are broken polynomials on elements and faces, and rely on two key ingredients: (i) local reconstructions obtained by 
solving small, embarrassingly parallel problems inside each element and (ii) high-order stabilization terms penalizing face 
residuals. These ingredients are combined to formulate local contributions, which are then assembled as in standard finite 
elements. The construction is devised so that only face unknowns are globally coupled (element unknowns can be locally 
eliminated by static condensation), leading to global problems of relatively small size and compact stencil that can be solved 
efficiently, both sequentially and in parallel.

The crucial issue to extend HHO methods to curved meshes lies in the definition of face unknowns, for which we propose 
the use of reference frame polynomials. With this choice, the degree of face unknowns must be suitably selected in order 
to recover on curved meshes the same convergence rates as on straight meshes. We provide an estimate of the optimal 
face polynomial degree depending on the element polynomial degree and on the so-called effective mapping order; see 
(23) below. The performance of the resulting method applied to a pure diffusion problem is thoroughly assessed through a 
comprehensive set of tests. Specifically, the numerical results presented in Section 5 compare h- and p-convergence rates of 
HHO and DG methods over two- and three-dimensional curved meshes. We consider both randomly and regularly distorted 
mesh sequences, which do not tend to affine meshes upon refinement, as well element subdivision mesh sequences, where 
mesh elements have faces that are less and less curved (asymptotically affine elements). In Section 6, we also consider 
p-convergence on curved computational domains discretized by means of agglomerated meshes in the spirit of [5].

The material is organized as follows. In Section 2 we introduce the discrete setting (mesh, mapping functions, and 
numerical integration). In Section 3 we discuss local polynomial spaces over elements and faces and projections thereon. 
The HHO and DG discretizations of the Poisson problem used for the numerical study are formulated in Section 4. The 
numerical results on standard curved and agglomerated meshes are collected in Sections 5 and 6, respectively. Finally, some 
conclusions are drawn in Section 7.

2. Discrete setting

In this section we discuss the main assumptions on the mesh and provide details on the functions that realize the 
mapping from reference geometries to physical elements, as well as on the numerical computation of integrals over elements 
and faces.

2.1. Mesh

Let � ⊂ Rd , d ∈ {2, 3}, be a bounded connected open domain with Lipschitz boundary. For any n ∈ {1, . . . , d}, let Kn be 
a fixed set of reference geometries defined in the Cartesian frame ξ = {ξi}1�i�n . The set of reference geometries contains, 
e.g., triangular and quadrilateral reference elements for n = 2, tetrahedral, hexahedral, pyramidal and prismatic reference 
elements for n = 3.

We consider a possibly curved mesh Th of � in the usual finite element sense, i.e., Th is a set of disjoint open elements 
T ∈ Th with non-empty interior that satisfy

� =
∑

T ∈Th

T , (1)

and it holds that h = maxT ∈Th hT with hT denoting the diameter of T . Notice that (1) entails a simplification: more generally, 
� is only approached as the meshsize h tends to 0, as is the case for the numerical tests of Section 6. Mesh faces are 
collected in the set Fh , partitioned as Fh =F i

h ∪Fb
h , where F i

h collects internal faces and Fb
h boundary faces. For any mesh 

element T ∈ Th , the set FT := {F ∈Fh : F ⊂ ∂T } collects the mesh faces composing the boundary of T .
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We make the following assumptions:

(i) For each T ∈ Th , there exists a reference element κ ∈ Kd and a polynomial mapping �T such that T is the image of κ
through the mapping, i.e. T = �T (κ).

(ii) For every F ∈Fh , there exist a reference face σ ∈Kd−1 and a polynomial mapping �F such that F = �F (σ ).
(iii) Quadrature rules of arbitrary order are available on every reference element κ ∈Kn and every reference face σ ∈Kd−1.

2.2. Reference-to-physical-frame mapping functions

For each physical element T ∈ Th , the reference element κ ∈Kd is such that it has the same number of faces and nodes 
as T . The polynomial space Mm

d (κ), m � 1, for each component of the mapping �T ∈ [Mm
d (κ)]d is such that its dimension 

matches the number of nodes of κ , and is chosen in the set {Pm
d , Qm

d , Sm
d }, where

(i) Pm
d (κ) is spanned by the restriction to κ of the polynomial functions of d variables and total degree � m, so that 

dim(Pm
d ) = (m+d)!

m!d! ;
(ii) Qm

d (κ) is spanned by the restriction to κ of polynomial functions of d variables and degree � m in each variable, so 
that dim(Qm

d ) = (m + 1)d;
(iii) Sm

d (κ) is the restriction to κ of a serendipity space of polynomials of d variables, i.e., any set containing all the polyno-
mials of total degree � m in each variable that can be determined uniquely by the edge and face nodes, see e.g. Brenner 
and Scott [20, § 4.6].

We remark that Lagrange polynomials over the set of nodes can be obtained solving linear systems involving the generalized 
Vandermonde matrix associated to Mm

d (κ), see e.g. Karniadakis and Sherwin [21, Section 3.3.2].
Similarly, for each physical face F ∈ Fh , the polynomial space Mm

d−1(σ ) for each component of the mapping �F ∈
[Mm

d−1(σ )]d is such that its dimension matches the number of nodes of F . In the case of mesh faces, Mm
d−1(σ ) is cho-

sen in the set {Pm
d−1(σ ), Qm

d−1(σ ), Sm
d−1(σ )}.

Throughout the rest of the paper, both the element polynomial mappings {�T : T ∈ Th} and the face polynomial map-
pings {�F : F ∈Fh} are assumed to be invertible.

2.3. Numerical integration

Since Gaussian quadrature rules of arbitrary order are available on reference geometries, the use of reference-to-physical 
frame mappings is a consolidated strategy for the numerical integration of both polynomial and non-polynomial functions 
over mesh elements and faces.

Let T ∈ Th be such that T = �T (κ) for some κ ∈Kd . The integral over T of a function v can be computed as follows:∫
T

v(x) dx =
∫
κ

(v ◦ �T )(ξ )| J�T (ξ)| dξ , (2)

where x and ξ denote, respectively, the physical and reference space coordinates, and J�T is the Jacobian of the mapping 
function �T . If v is a polynomial function, the polynomial degree q of the integrand in the right-hand side of (2) depends 
on the polynomial degrees of v , �E and | J�T |, say k and m and j, respectively. Since, in particular, q = km + j, the de-
gree of exactness of the quadrature rule required to compute the integral exactly rapidly increases when considering high 
polynomial orders k on curved meshes (for which m > 1).

A similar strategy can be employed to compute the integral of a function v on a face F ∈ Fh such that F = �F (σ ) for 
some σ ∈Kd−1:∫

F

v(x) dx =
∫
σ

(v ◦ �F )(ξ )| J�F (ξ)| dξ .

To alleviate the notation, from this point on both the integration variable and the measure are omitted from integrals.

3. Local polynomial spaces and projections

We discuss in this section key ingredients of both HHO and DG methods: local polynomial spaces on elements and faces 
and projectors thereon.

3.1. Polynomial spaces on elements

Physical frame polynomial spaces have been considered by several authors, e.g. Gassner et al. [4], Bassi et al. [22], and 
proposed as a key instrument to build DG approximations with optimal approximation properties on general polyhedral 
meshes, see Di Pietro and Ern [23, Chapter 1].
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Let a mesh element T ∈ Th and a non-negative integer k be fixed. We consider the space Pk
d(T ) spanned by the restriction 

to T of d-variate polynomials of total degree � k. Physical frame basis functions are defined so as to inherently span the 
space Pk

d(T ) even in case of arbitrarily shaped elements with possibly curved faces. From a practical point of view, in order 
to find a numerically satisfactory physical frame basis, we rely on the procedure described in Bassi et al. [5]: starting from a 
monomial basis for Pk

d(T ) defined in a local reference frame aligned with the principal axes of inertia of T , an orthonormal 
basis is obtained by means of a modified Gram–Schmidt orthogonalization procedure.

Consider now a smooth enough real-valued function v on T . The L2-orthogonal projection πk
T v ∈ Pk

d(T ) of v is such that∫
T

(
v − πk

T v
)

w = 0 for all w ∈ Pk
d(T ). (3)

This relation defines uniquely the polynomial πk
T v as the best approximation of v in Pk

d(T ) in the L2-norm sense.
Of course, one may choose to minimize the projection error in a different norm. A relevant choice in the present context 

corresponds to the elliptic projection � k
T v ∈ Pk

d(T ) of v that satisfies∫
T

∇
(

v − � k
T v
)

· ∇w = 0 for all w ∈ Pk
d(T ) and

∫
T

(
v − � k

T v
)

= 0. (4)

These relations define a unique polynomial � k
T v which is the best approximation of v in Pk

d(T ) in the sense of the L2-norm 
of the gradient, and has the same mean value as v over T .

It has been recently proved by Di Pietro and Droniou [24,25] that both the L2-orthogonal and the elliptic projections 
approximate the function v optimally inside T provided that T is star-shaped with respect to every point of a ball of 
radius comparable to hT . This result classically extends to the case when T is the finite union of star-shaped subsets; see 
[26]. Optimal approximation properties for the traces of v over the faces of T , on the other hand, can be proved using 
similar arguments as in the cited references provided a standard local trace inequality is available. In what follows, we 
tacitly assume that the mesh sequences that we consider satisfy the requirements for both πk

T v and � k
T v to optimally 

approximate both v and its trace.

3.2. Polynomial spaces on faces

While the collection of polynomial spaces {Pk
d(T ) : T ∈ Th} defined above is sufficient to formulate DG methods, HHO 

methods also require polynomial spaces over mesh faces. Interestingly, while the faces F ∈ Fh are possibly d-dimensional 
entities when they belong to a curved element, the reference faces σ ∈Kd−1 are by definition (d − 1)-dimensional entities. 
Accordingly, the physical frame polynomial spaces Pk

d−1(F ) can be suitably employed only if F ∈ Fh is a straight line seg-
ment when d = 2 or a subset of a plane when d = 3 (since, in these cases, the space spanned by the restrictions to F of the 
functions in Pk

d(T ) is Pk
d−1(F )). Polynomial spaces defined over the reference geometries appear, on the other hand, to be a 

natural choice for curved faces, as discussed in what follows.
For each F ∈Fh such that F = �F (σ ) for some σ ∈Kd−1 and any non-negative integer l, we consider the space Pl

d−1(σ )

spanned by the restriction to σ of (d − 1)-variate polynomials. Numerically satisfactory bases for these spaces can be 
obtained, e.g., using Jacobi polynomials over σ . Notice that, for d = 3, one could also consider the richer spaces Ql

d−1(σ )

(tensor product polynomials over σ ) or Sl
d−1(σ ) (serendipity polynomials over σ ). However, we focus here on Pl

d−1(σ )

since the numerical results of [27] showed that these spaces did not improve the accuracy per DOF.
A well-known phenomenon when working with reference frame polynomial spaces is that a degradation of the approx-

imation properties with respect to physical frame polynomial spaces may be observed; see Botti [27] and the precursor 
work of Arnold et al. [28]. Let F ∈ Fh denote a face such that F = �F (σ ) for some reference face σ ∈ Kd−1 with mapping 
�F ∈ [Mm

d−1(σ )]d . The degradation of the approximation properties can be evaluated based on the so called effective mapping 
order m, defined as the minimum positive integer such that

�F ∈ [Pm
d−1(σ )]d. (5)

Remark 1 (Effective mapping order). The distinction between the polynomial degree m of the mapping and the effective 
mapping order m reflects the (usual) implementation choice of defining the mapping space according to the number of 
nodes of the element; see Section 2.2. The effective mapping order corresponds the minimum degree m that would be 
required to map the reference face σ on the physical face F regarding each component of the mapping �F as an element 
of the polynomial space Pm

d−1(σ ).
The effective mapping order depends on both the face shape and the choice of the polynomial space. Let us consider a 

few examples. Let d = 3 and consider a six-node triangular face such that m = 2 and M2
d−1(σ ) = P2

d−1(σ ) (see Section 2.2
for further details). For a physical face where at least one edge is curved, the effective mapping order is m = 2. However, 
if all the edges are straight, meaning that second-order mid-edge nodes coincide with the middle point of the segments 
connecting vertex nodes, we have m = 1 since the second-order terms in �F vanish. Similarly, for a nine-node quadrangular 
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face, corresponding to m = 2 and M2
d−1(σ ) = Q2

d−1(σ ), the effective mapping order can range from m = 4 for a genuinely 
quadratic face to m = 1 for a rectangular face (since three nodes are sufficient to define both triangular and rectangular 
elements). In conclusion, we have that⎧⎪⎨

⎪⎩
m = 1 ⇔ �F is an affine mapping,

m > 1 ⇔ �F is a non-affine mapping,

m > m ⇒ �F is a non-affine mapping and dim (Mm
d−1) > dim (Pm

d−1).

It is a simple matter to check that the following polynomial space inclusion holds true for any non-negative integer k:

Pk
d(F ) ◦ �F ⊆ Pkm

d−1(σ ), (6)

where Pk
d(F ) is spanned by the restriction to F of d-variate polynomials.

For a smooth enough real-valued function v on F and any integer l � 0, we define the Jacobian-weighted reference frame 
projection π l

σ v ∈ Pl
d−1(σ ) such that∫

σ

(
v ◦ �F − π l

σ v
)

w | J�F | = 0 for all w ∈ Pl
d−1(σ ). (7)

This relation defines π l
σ v as the best approximation of (v ◦ �F ) in Pl

d−1(σ ) in the | J�F | 1
2 -weighted L2-norm over σ . The 

approximation properties of this projection are determined by the largest integer k such that Pk
d(F ) ◦ �F ⊆ Pl

d−1(σ ). Clearly, 
recalling (6), we have that

k =
⌊

l

m

⌋
. (8)

Throughout the rest of this work, we assume that the following optimal trace approximation properties hold: For any 
v ∈ Hk+1(T ),

‖π l
σ v |F ◦ �−1

F − v‖L2(F ) � Ch
k+ 1

2
F |v|Hk+1(T ), (9)

where C > 0 is a real number independent of h and of F , but possibly depending on the mesh regularity, on l, and on m.

4. Two nonconforming methods for the Poisson problem

We formulate in this section HHO and DG discretizations of the model problem: Find u : � → R such that

−
u = f in �,

u = 0 on ∂�,
(10)

where f : � → R denotes a given forcing term. This problem models diffusion phenomena where the diffusive flux is 
proportional to the opposite of the gradient of the scalar potential u. Assuming f ∈ L2(�), a standard weak formulation of 
problem (10) reads: Find u ∈ H1

0(�) such that∫
�

∇u · ∇v =
∫
�

f v for all v ∈ H1
0(�).

4.1. BR2 discontinuous Galerkin method

We consider here the method of Bassi et al. [29], usually referred to as “Bassi and Rebay 2” (BR2). Let a polynomial 
degree k � 1 be fixed, and set

Uk
h := Pk

d(Th), (11)

where Pk
d(Th) := {

v ∈ L2(�) : v |T ∈ Pk
d(T ) for all T ∈ Th

}
denotes the space of broken polynomials of total degree � k on 

the mesh Th . For all F ∈ F i
h such that F = ∂T1 ∩ ∂T2 (the ordering of T1, T2 is arbitrary but fixed once and for all) and all 

vh ∈ Uk
h , we introduce the jump and average operators defined as follows:

�vh � := vh |T1 − vh |T2
, {vh} := 1

(vh |T1 + vh |T2
).
2
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On boundary faces, we conventionally set �vh � = {vh} := vh . When applied to vector-valued functions, the jump and average 
operators act componentwise.

For all F ∈Fh , we define the local lifting operator rk
F : L2(F ) → [Pk

d(Th)]d , such that, for all v ∈ L2(F ),∫
�

rk
F (v) · τ h =

∫
F

v {τ h}·nF for all τ h ∈ [Pk
d(Th)]d, (12)

where nF points out of T1 if F ∈F i
h is such that F = ∂T1 ∩∂T2 (the ordering of the elements is coherent with the definition 

of the jump), while it points out of � if F ∈Fb
h . We also introduce the global lifting operator Rk

h : Uk
h → [Pk

d(Th)]d such that, 
for all vh ∈ Uk

h ,

Rk
h(vh) :=

∑
F∈Fh

rk
F (�vh �).

The BR2 bilinear form on Uk
h × Uk

h , is given by

aBR2
h (uh, vh) :=

∫
�

(
∇huh − Rk

h(uh)
)

·
(
∇hvh − Rk

h(vh)
)

−
∫
�

Rk
h(uh) · Rk

h(vh) +
∑

F∈Fh

∫
�

ηF rk
F (�uh �) · rk

F (�vh �),

where ∇h denotes the broken gradient on Th and, to ensure coercivity, we take (see, e.g., [23, Lemma 5.19])

ηF = 1 + max
T ∈TF

card(FT ),

where TF collects the (one or two) elements that share F . The BR2 DG method for problem (10) reads: Find uh ∈ Uk
h such 

that

aBR2
h (uh, vh) =

∫
�

f vh for all vh ∈ Uk
h . (13)

It was proved by Brezzi et al. [30] on standard, straight meshes that, assuming sufficient regularity, the L2-errors on the 
solution and on its gradient converge as hk+1 and hk , respectively; see also [23] for polyhedral meshes. A similar behavior
can be expected on the curved meshes considered here.

4.2. HHO method

Let two non-negative integers k and l � k be given. The integer k is fixed while, as it will be clear in what follows, l will 
have to depend on both k and the effective mapping order m (see (5)) in order to obtain optimal convergence properties. 
The global space of discrete unknowns for the HHO method is

Uk,l
h :=

(
×
T ∈Th

Pk
d(T )

)
×
(

×
�F (σ )∈Fh

Pl
d−1(σ )

)
. (14)

For a generic element of Uk,l
h , we use the classical HHO underlined notation

vh = (
(vT )T ∈Th , (vσ )�F (σ )∈Fh

)
.

Given a smooth enough scalar-valued function v on �, the interpolation operator Ik,l
h returns the vector of scalar unknowns 

defined as follows:

Ik,l
h v :=

(
(πk

T v)T ∈Th , (π
l
σ v)�F (σ )∈Fh

)
, (15)

where πk
T and π l

σ are defined by (3) and (7), respectively. The restrictions of Uk,l
h , vh ∈ Uk,l

h , and Ik,l
h to a mesh element 

T ∈ Th are respectively denoted by Uk,l
T , vT , and Ik,l

T .

Following Di Pietro et al. [9], for all T ∈ Th we define the local potential reconstruction operator pk+1
T : Uk,l

T → Pk+1
d (T )

such that, for all vT := (
vT , (vσ )�F (σ )∈FT

) ∈ Uk,l ,
T
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∫
T

∇pk+1
T vT · ∇w = −

∫
T

vT 
w +
∑

F=�F (σ )∈FT

∫
F

(vσ ◦ �−1
F )(∇w · nT F ) ∀w ∈ Pk+1

d (T ), (16a)

∫
T

(
pk+1

T vT − vT

)
= 0, (16b)

where nT F is the unit normal to F pointing out of T . A global potential reconstruction operator pk+1
h : Uk,l

h → Pk+1
d (Th) is 

obtained patching the elementary contributions:(
pk+1

h vh

)
|T := pk+1

T vT for all T ∈ Th. (17)

Remark 2 (Approximation properties of the potential reconstruction and polynomial degree on faces). The convergence rate of the 
HHO method is intimately linked to the approximation properties of the potential reconstruction (see, e.g., [9, Theorem 8]), 
which are briefly discussed hereafter.

We start by estimating the difference between the potential reconstruction operator applied to the interpolate of a 
smooth function and its elliptic projection. Denote by v a scalar-valued function on T whose regularity will be detailed in 
what follows. Recalling the definitions (15) of the interpolator, (16) of the potential reconstruction, and (4) of the elliptic 
projector � k+1

T we have, for all w ∈ Pk+1
d (T ),∫

T

∇(pk+1
T Ik,l

T v − � k+1
T v) · ∇w

= −
∫
T

πk
T v 
w +

∑
F=�F (σ )∈FT

∫
F

(π l
σ v ◦ �−1

F ) (∇w · nT F ) −
∫
T

∇v · ∇w

=
�������∫
T

(v − πk
T v) 
w +

∑
F=�F (σ )∈FT

∫
F

(π l
σ v ◦ �−1

F − v) (∇w · nT F ),

(18)

where we have performed an integration by parts on the third term in the right-hand side to pass to the third line and 
we have used the definition (3) of πk

T together with the fact that 
w ∈ Pk−1
d (T ) ⊂ Pk

d(T ) to cancel the first term in the 
right-hand side. Using the definition of the L2-norm followed by (18), we get

‖∇(pk+1
T Ik,l

T v − � k+1
T v)‖L2(T )d

= sup
w∈Pk+1

d (T ), ‖∇w‖L2(T )d =1

⎛
⎝∫

T

∇(pk+1
T Ik,l

T v − � k+1
T v) · ∇w

⎞
⎠

= sup
w∈Pk+1

d (T ), ‖∇w‖L2(T )d =1

⎛
⎝ ∑

F=�F (σ )∈FT

∫
F

(π l
σ v ◦ �−1

F − v) (∇w · nT F )

⎞
⎠ .

(19)

Let us estimate the argument of the supremum.

(i) The case m = 1. In this case, the argument of the supremum is zero for any l � k. To prove it, perform a change of 
variables to express the integral inside the summation as an integral over the reference face σ ∈ Kd−1 such that F =
�F (σ ), notice that (∇w · nT F )|F ◦ �F ∈ Pk

d−1(σ ) (see (6)), and use the definition (7) of πk
σ . As a consequence, we have 

that

pk+1
T Ik,l

T = � k+1
T ,

in accordance with [9, Eq. (17)]; see also [31] (and, in particular, Section 3.1 therein) for a pedagogical introduction.
(ii) The case m > 1. For all F ∈FT such that F = �F (σ ) for some σ ∈Kd−1, abridging into a � b the inequality a � Cb with 

constant C independent of h, and letting k be given by (8), we have∣∣∣∣∣∣
∫
F

(π l
σ v ◦ �−1

F − v) (∇w · nT F )

∣∣∣∣∣∣� ‖(π l
σ v ◦ �−1

F − v)‖L2(F )‖∇w‖L2(F )d‖nT F ‖L∞(F )d

� h
k+ 1

2 |v| k+1 h
− 1

2 ‖∇w‖ 2 d ,
T H (T ) T L (T )
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where we have used the approximation properties (9) of π l
σ to bound the first factor under the assumption that 

v ∈ Hk+1(T ), a trace inequality for polynomials to bound the second, and the fact that the normal vector has unit 
Euclidean norm at every x ∈ F to estimate the third. Plugging this bound into (19), we infer that

‖∇(pk+1
T Ik,l

T v − � k+1
T v)‖L2(T )d � hk

T |v|Hk+1(T ).

In conclusion, with a � b having the same meaning as above, we have that

‖∇(pk+1
T Ik,l

T v − � k+1
T v)‖L2(T )d �

{
0 if m = 1,

hk
T |v|Hk+1(T ) if m > 1.

(20)

Let us now estimate the difference between v and pk+1
T Ik,l

T v . Inserting ±∇� k+1
T v into the norm, and using the triangle 

inequality, we have that

‖∇(v − pk+1
T Ik,l

T v)‖L2(T )d � ‖∇(v − � k+1
T v)‖L2(T )d︸ ︷︷ ︸
ε1

+‖∇(� k+1
T v − pk+1

T Ik,l
T v)‖L2(T )d︸ ︷︷ ︸

ε2

. (21)

Assuming v ∈ Hmax(k+1,k)+1(T ), and using the optimal approximation properties of the elliptic projector together with (20), 
we infer the existence of two positive real numbers C1 and C2 independent of h and of T (but possibly depending on the 
mesh regularity, on k, m, and on l) such that

ε1 � C1hk+1
T |v|Hk+2(T ) and ε2 �

{
0 if m = 1,

C2hk
T |v|Hk+1(T ) if m > 1.

(22)

When m > 1, for l such that k = k + 1 the two error components are equilibrated and both converge as hk+1
T . For m > 1 and 

l such that k < k + 1, on the other hand, the error component ε2 dominates. Clearly, from a computational point of view, 
we are interested in the smallest value of l that ensures convergence in hk+1

T , which corresponds to assuming that

l =
{

k if m = 1,

m(k + 1) if m > 1.
(23)

The HHO bilinear form on Uk,l
h × Uk,l

h is defined as follows:

aHHO
h (uh, vh) :=

∫
�

∇h pk+1
h uh · ∇h pk+1

h vh +
∑
T ∈Th

∑
F∈FT

1

hF

∫
F

(
δl

T F − δk
T

)
uT

(
δl

T F − δk
T

)
vT , (24)

where, following [31], for all T ∈ Th the difference operators δk
T and δl

T F , F ∈FT , are such that, for all vT ∈ Uk,l
T ,

δk
T vT := πk

T pk+1
T vT − vT and δl

T F vT :=
(
π l

σ pk+1
T vT − vσ

)
◦ �−1

F for all F = �F (σ ) ∈ FT . (25)

The first term in the right-hand side of (24) is the standard Galerkin contribution responsible for consistency, whereas 
the second is a stabilization that ensures coercivity with respect to a suitable H1

0-like discrete norm. In view of (20), it 
can be easily checked that the difference operators defined by (25) vanish for l as in (23) when their argument is of the 
form Ik,l

T w with w ∈ Pk+1
d (T ). This is a crucial point to fully exploit the optimal approximation properties of the potential 

reconstruction in the error estimates.
The HHO method for problem (10) reads: Find uh ∈ Uk,l

h such that

aHHO
h (uh, vh) =

∑
T ∈Th

∫
T

f vT for all vh ∈ Uk,l
h . (26)

It was proved in [32] on straight polygonal and polyhedral meshes that the error between pk+1
h uh and the exact solution of 

problem (10) in the L2- and H1
0-norms converge as hk+2 and hk+1, respectively; see also [31, Theorem 1]. In view of (22), 

a similar behavior can be expected here for l as in (23).

5. Numerical results

In this section we numerically assess and compare the h- and p-convergence rates of the HHO and DG discretizations 
of problem (10) formulated in the previous section. All the convergence plots included in this section display discretization 
errors on the y axis versus the number of DOFs on the x axis. For this reason, the axis labels are omitted. For the sake of 
simplicity, the convergence plots are labeled as follows:
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Fig. 1. Two-dimensional mesh sequences of � = (0,1)2.

• HHO mesh family and error type, PkPl : indicates the error for the HHO discretization based on the space Uk,l
h (cf. (14)) 

over the specified mesh sequence;
• DG mesh family and error type, Pk : indicates the error for the DG discretization based on the space Uk

h (cf. (11)) over the 
specified mesh sequence.

The total number of DOFs is computed as follows:

DG DOFs := card(Th) × dim(Pk
d) = dim(Uk

h), HHO DOFs := card(Fh) × dim(Pl
d−1).

For the HHO discretization, the number of DOFs differs from the dimension of the space Uk,l
h because the element-based 

DOFs can be eliminated in a preliminary step by means of static condensation. This efficient implementation strategy ex-
ploits the fact that, by construction, only face-based DOFs are globally coupled. Element-based DOFs can then be recovered 
from face-based DOFs in a post-processing step. A discussion on static condensation for HHO methods can be found, e.g., in 
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Fig. 2. Three-dimensional mesh sequences of � = (0,1)3 (mesh clips showing internal faces).

Table 1
Properties of the reference-to-physical frame mappings �T ∈ [Mm

d (κ)]d and �F ∈ [Mm
d−1(σ )]d for each mesh sequence. m and limh→0 m denote, respectively, 

the effective mapping order (see (5)) and the asymptotic effective mapping order.

Mesh sequence Numer of nodes Mm
d (κ) Mm

d−1(σ ) m limh→0 m Figure

regular tri3 3 P1
2(κ) P1

1(σ ) 1 1 –

randomDist tri6 6 P2
2(κ) P2

1(σ ) 2 2 1a

cartesian quad4 4 Q1
2(κ) P1

1(σ ) 1 1 –

randomDist quad8 8 S2
2(κ) P2

1(σ ) 2 2 1b

regularDist quad8 8 S2
2(κ) P2

1(σ ) 2 2 1c

elemSubdiv quad8 8 S2
2(κ) P2

1(σ ) 2 1 1d

regular tet4 6 P1
3(κ) P1

2(σ ) 1 1 –

randomDist tet10 10 P2
3(κ) P2

2(σ ) 2 2 2a

randomDist hex8 8 Q1
3(κ) Q1

2(σ ) 2 2 2b

randomDist hex20 20 S2
3(κ) S2

2(σ ) 3 3 2c

[31, Section 3.2.4]; see also [33, Section 2.2.4], where more general implementation aspects are also discussed. The errors 
for the HHO discretization are always computed with respect to the global potential reconstruction pk+1

h uh obtained from 
the discrete solution; see (17).

The global (sparse) linear systems are solved by means of iterative solvers employing right-preconditioners and imposing 
tight tolerances (machine precision) on the convergence of the relative residual. The local linear problems involved in 
the computation of the local lifting operators (12) for the DG method, as well as in the computation of the potential 
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Fig. 3. Error versus number of DOFs for HHO discretizations of the Poisson equation on regular three-node and randomly distorted six-node triangular 
elements grids. Forcing term and boundary conditions imposed according to the polynomial solution (27) with a = 2.

Fig. 4. Error versus number of DOFs for HHO discretizations of the Poisson equation on regular three-node and randomly distorted six-node triangular 
elements grids. Forcing term and boundary conditions imposed according to the polynomial solution (27) with a = 3.

Fig. 5. Error versus number of DOFs for HHO discretizations of the Poisson equation on regular eight-node and randomly distorted twenty-node hexahedral 
elements grids. Forcing term and boundary conditions imposed according to the polynomial solution (27) with a = 2.
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Table 2
Convergence rates of HHO discretizations on randomly distorted six-node triangular elements grids, see also Fig. 3. Forcing term and boundary conditions 
imposed according to the polynomial solution (27) with a = 2.

Number of elements (32) 128 512 2048 8192 32768

L2 projection : ‖u − πk
h u‖L2(�) 2.00 2.00 2.00 2.00 2.00

HHO P1(T ) − P1(σ ): ‖u − pk+1
h uh‖L2(�) 1.34 0.91 0.98 0.96 0.82

HHO P1(T ) − P1(σ ): ‖∇h(u − pk+1
h Ik,l

h u)‖L2(�)d 0.23 −0.11 −0.03 0.02 −0.03

HHO P1(T ) − P1(σ ): ‖∇h(u − pk+1
h uh)‖L2(�)d 0.31 0.05 −0.01 0.02 −0.03

HHO P1(T ) − P2(σ ): ‖u − pk+1
h uh‖L2(�) 1.88 1.82 1.87 2.00 1.98

HHO P1(T ) − P2(σ ): ‖∇h(u − pk+1
h Ik,l

h u)‖L2(�)d 0.83 0.83 0.90 0.99 0.98

HHO P1(T ) − P2(σ ): ‖∇h(u − pk+1
h uh)‖L2(�)d 0.87 0.99 0.87 0.99 0.98

HHO P1(T ) − P3(σ ): ‖u − pk+1
h uh‖L2(�) 1.41 1.85 1.91 1.98 1.98

HHO P1(T ) − P3(σ ): ‖∇h(u − pk+1
h Ik,l

h u)‖L2(�)d 0.33 0.90 0.90 0.97 0.98

HHO P1(T ) − P3(σ ): ‖∇h(u − pk+1
h uh)‖L2(�)d 0.39 0.92 0.91 0.95 0.99

Table 3
Convergence rates of HHO discretizations on randomly distorted six-node triangular elements grids, see also Fig. 4. Forcing term and boundary conditions 
imposed according to the polynomial solution (27) with a = 3.

Number of elements (32) 128 512 2048 8192 32768

L2 projection: ‖u − πk
h u‖L2(�) 2.97 3.00 3.00 3.00 3.00

HHO P2(T ) − P2(σ ): ‖u − pk+1
h uh‖L2(�) 1.38 1.97 1.96 1.91 1.99

HHO P2(T ) − P2(σ ): ‖∇h(u − pk+1
h Ik,l

h u)‖L2(�)d 0.49 0.86 1.01 0.91 1.00

HHO P2(T ) − P2(σ ): ‖∇h(u − pk+1
h uh)‖L2(�)d 0.42 0.95 0.96 0.90 0.99

HHO P2(T ) − P3(σ ): ‖u − pk+1
h uh‖L2(�) 1.91 1.90 1.86 1.96 1.96

HHO P2(T ) − P3(σ ): ‖∇h(u − pk+1
h Ik,l

h u)‖L2(�)d 0.93 0.90 0.85 0.96 0.96

HHO P2(T ) − P3(σ ): ‖∇h(u − pk+1
h uh)‖L2(�)d 0.94 0.88 0.88 0.95 0.96

HHO P2(T ) − P4(σ ): ‖u − pk+1
h uh‖L2(�) 2.36 2.85 2.85 2.96a 1.66a

HHO P2(T ) − P4(σ ): ‖∇h(u − pk+1
h Ik,l

h u)‖L2(�)d 1.32 1.79 1.82 1.97 2.00

HHO P2(T ) − P4(σ ): ‖∇h(u − pk+1
h uh)‖L2(�)d 1.42 1.86 1.81 1.96 1.98

HHO P2(T ) − P5(σ ): ‖u − pk+1
h uh‖L2(�) 1.86 2.75 2.91 −0.58a −0.73a

HHO P2(T ) − P5(σ ): ‖∇h(u − pk+1
h Ik,l

h u)‖L2(�)d 0.87 1.63 1.96 1.94 1.99a

HHO P2(T ) − P5(σ ): ‖∇h(u − pk+1
h uh)‖L2(�)d 0.98 1.63 2.00 1.90 1.19a

a Indicates that the convergence rate is influenced by machine precision.

Table 4
Convergence rates of HHO discretizations on randomly distorted twenty-node hexahedral ele-
ments grids, see also Fig. 5. Forcing term and boundary conditions imposed according to the 
polynomial solution (27) with a = 2.

Number of elements (64) 512 4096 32768

L2 projection: ‖u − πk
h u‖L2(�) 1.99 1.99 1.99

HHO P1(T ) − P1(σ ): ‖u − pk+1
h uh‖L2(�) 0.67 0.89 0.92

HHO P1(T ) − P1(σ ): ‖∇h(u − pk+1
h Ik,l

h u)‖L2(�)d −0.32 −0.11 −0.09

HHO P1(T ) − P1(σ ): ‖∇h(u − pk+1
h uh)‖L2(�)d −0.14 −0.07 −0.09

HHO P1(T ) − P2(σ ): ‖u − pk+1
h uh‖L2(�) 0.92 0.88 0.91

HHO P1(T ) − P2(σ ): ‖∇h(u − pk+1
h Ik,l

h u)‖L2(�)d −0.11 −0.11 −0.11

HHO P1(T ) − P2(σ ): ‖∇h(u − pk+1
h uh)‖L2(�)d −0.06 −0.12 −0.08

HHO P1(T ) − P3(σ ): ‖u − pk+1
h uh‖L2(�) 1.64 1.89 1.88

HHO P1(T ) − P3(σ ): ‖∇h(u − pk+1
h Ik,l

h u)‖L2(�)d 0.58 0.85 0.89

HHO P1(T ) − P3(σ ): ‖∇h(u − pk+1
h uh)‖L2(�)d 0.71 0.90 0.90

HHO P1(T ) − P4(σ ): ‖u − pk+1
h uh‖L2(�) 1.95 1.89 1.92

HHO P1(T ) − P4(σ ): ‖∇h(u − pk+1
h Ik,l

h u)‖L2(�)d 0.95 0.82 0.92

HHO P1(T ) − P4(σ ): ‖∇h(u − pk+1
h uh)‖L2(�)d 1.08 0.89 0.93

HHO P1(T ) − P5(σ ): ‖u − pk+1
h uh‖L2(�) 2.14 1.78 1.87

HHO P1(T ) − P5(σ ): ‖∇h(u − pk+1
h Ik,l

h u)‖L2(�)d 1.20 0.78 0.86

HHO P1(T ) − P5(σ ): ‖∇h(u − pk+1
h uh)‖L2(�)d 1.23 0.78 0.90
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Fig. 6. Error versus number of DOFs for HHO and DG discretizations of the Poisson equation over uniformly refined triangular mesh sequences. Forcing 
term and boundary conditions imposed according to the trigonometric solution (28).

reconstruction (16) and in the static condensation for the HHO method, are exactly solved exactly by means of Cholesky 
factorizations.

5.1. Mesh sequences

In two space dimensions, we consider the following uniformly refined mesh sequences of the unit square � = (0, 1)2

(see Fig. 1): (i) randomly distorted six-node triangular and eight-node quadrilateral mesh families, see Figs. 1a and 1b, 
respectively; (ii) a uniformly refined regularly distorted eight-node quadrilateral mesh family, see Fig. 1c; (iii) a uniformly 
refined element subdivision eight-node quadrilateral mesh family, see Fig. 1d. Uniformly refined triangular and quadrangular 
mesh families with straight edges are also considered for the sake of comparison.

In three space dimensions, we consider uniformly refined randomly distorted ten-node tetrahedral, eight-node, and 
twenty-node hexahedral mesh families of the unit cube � = (0, 1)3 (see Fig. 2). Uniformly refined tetrahedral mesh families 
with planar faces are also considered for the sake of comparison.

All the meshes considered here were checked to ensure positivity of the reference-to-physical frame mapping Jacobian 
in each mesh element. This guarantees that quadrilaterals do not degenerate into triangular elements and that edges do not 
intersect. The properties of the polynomial mappings for each mesh sequence are reported in Table 1. It is interesting to 
remark that h-refinement on the element-subdivision mesh family leads to quadrilaterals with edges that are less and less 
curved, which we formally indicate writing limh→0 m = 1 (limh→0 m should be interpreted here as an “asymptotic” effective 
mapping order). Notice that we do not attempt to provide a precise mathematical definition of this notion, as it seems to 
require some technicalities which we do not deem adequate to the present (application-oriented) paper. This topic will be 
further investigated in a future, theoretically-oriented work.

5.2. HHO h-convergence rates on polynomial solutions

In order to numerically confirm the scaling for the error component ε2 in (22), we consider in this section manufactured 
polynomial solutions for which the error component ε1 vanishes (since polynomials of total degree � (k + 1) are invariant 
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Fig. 7. Error versus number of DOFs for HHO and DG discretizations of the Poisson equation over uniformly refined quadrilateral meshes. Forcing term and 
boundary conditions imposed according to the trigonometric solution (28).

by � k+1
T -projection), and the approximation properties of pk+1

T Ik,l
T are entirely dictated by ε2. More precisely, we define the 

following second and third degree polynomial solutions of the Poisson problem:

u(x) =
d∑

i=1

xa
i , a = 2,3. (27)

The boundary conditions and forcing term are inferred from u. In Figs. 3–5 and Tables 2–4, we compare the results obtained 
on the regular (straight edge-face) and on the randomly distorted triangular and hexahedral mesh sequences of Figs. 1a–2c. 
Following Remark 2, the HHO method (26) should reproduce to machine precision accuracy the polynomial solutions (27)
setting k = a − 1 and l as in (23). The numerical results confirm this point. More precisely:

• Regular (straight edge) triangular mesh sequence (m = 1): The discrete solutions obtained using the HHO spaces U1,1
h and 

U2,2
h are exact up to machine precision for a = 2 and a = 3, respectively;

• Randomly distorted triangular mesh sequence (m = 2): The discrete solutions obtained using the HHO spaces U1,4
h and U2,6

h
are exact up to machine precision for a = 2 and a = 3, respectively.

• Regular (straight face) hexahedral mesh sequence (m = 1): The discrete solutions obtained using the HHO spaces U1,1
h are 

exact up to machine precision for a = 2;
• Randomly distorted hexahedral mesh sequence (m = 3): The discrete solutions obtained using the HHO spaces U1,6

h are 
exact up to machine precision for a = 2.

Moreover, if l is such that k < k + 1, we observe the expected rates of hk+1 for the L2-error on the solution and hk for the 
L2-error on the gradient; see Tables 2–4. Note that, since m = 2 for the randomly distorted triangular mesh sequence, the 
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Fig. 8. Error versus number of DOFs for HHO and DG discretizations of the Poisson equation over uniformly refined quadrilateral meshes. Forcing term and 
boundary conditions imposed according to the trigonometric solution (28).

choices l = 2, 3 and l = 4, 5 yield the same convergence rates. Similarly, since m = 3 for the randomly distorted hexahedral 
mesh sequence, the choices l = 1, 2 and l = 3, 4, 5 yield the same convergence rates.

We can also remark from Tables 2–4 (where πk
h denotes the global L2-orthogonal projector on the broken polynomial 

space Uk
h defined by (11)) that the reconstruction of the interpolated exact solution behaves as the reconstruction of the 

discrete solution in terms of gradient errors: compare, e.g., ‖∇h(u − pk+1
h Ik,l

h u)‖L2(�)d with ‖∇h(u − pk+1
h uh)‖L2(�)d . In other 

words, the discretization error for the HHO discretization scales optimally with respect to the approximation properties of 
pk+1

h Ik,l
h .

5.3. h-convergence rates on trigonometric solutions

In order to investigate and compare the h-convergence rates of HHO and DG methods, we focus on a trigonometric solu-
tion of the Poisson equation. This choice is more representative of the performance of the methods in real-life computations. 
In particular, unlike the previous section, both error components in the right-hand side of (21) are non-zero, so that the 
relative magnitude of the constants C1 and C2 in (22) determines the observed convergence rate for HHO discretizations 
before the asymptotic regime is reached. We compute the forcing term and boundary conditions of the Poisson problem 
according to the following analytical solution:

u(x) =
d∏

i=1

sin(πxi). (28)

We first point out that DG discretizations based on the space Uk
h provide convergence rates of hk+1 for the L2-error on 

the solution and hk for the L2-error on its gradient, both on regular and distorted curved mesh sequences. Therefore, in all 
the plots hereafter, the convergence rates of DG solutions are considered as a reference.
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Fig. 9. Error versus number of DOFs for HHO and DG discretizations of the Poisson equation over uniformly refined quadrilateral mesh sequences. Forcing 
term and boundary conditions imposed according to the trigonometric solution (28).

HHO discretizations on triangular mesh families perform significantly better in terms of h-convergence rates when ap-
proximating a trigonometric potential instead of a polynomial one, see Fig. 6 and compare with the results of Section 5.2. 
In particular, HHO formulations based on the space Uk,k+1

h yield optimal convergence rates on the randomly distorted mesh 
family in all the cases but k = 2, where l = k + 2 is required. This behavior suggests that C1 � C2 in (22) and, accordingly, 
the error component ε1 in (21) dominates during the early stages of the convergence history, while ε2 shows up at latter 
stages due to its weaker rate of convergence; see (22).

Similarly, the HHO spaces Uk,k+1
h yield optimal convergence rates on randomly distorted quadrilateral mesh families, see 

Figs. 7–8 and 9–10. Note that the randomly distorted mesh sequence is associated with an earlier and more pronounced 
convergence degradation with respect to the regularly distorted mesh family, even if the asymptotic convergence rate is the 
same. Interestingly, no convergence degradation is observed for equal-order HHO spaces Uk,k

h on the element subdivision 
mesh family. This behavior has been documented by Botti [27] and Bassi et al. [34] in the context of reference frame 
DG discretizations, and can be explained taking into account the asymptotic effective mapping order. Indeed, whenever 
mesh refinement drives towards mesh elements with edges that are less and less curved (i.e., when limh→0 m = 1), optimal 
convergence rates can be expected for the equal-order spaces Uk,k

h ; see [27, Remark 1] on this subject.

Convergence degradation is also observed in three space dimensions when considering the equal-order HHO spaces Uk,k
h

over the randomly distorted ten-node tetrahedral mesh family and the randomly distorted twenty-node hexahedral mesh 
sequence. Once again, increasing the polynomial degree by one over mesh faces (i.e., taking l = k + 1) is usually sufficient to 
recover optimal h-convergence rates, see Figs. 11–12 and Figs. 13–14. Note that one could have expected a more significant 
degradation of the convergence properties than observed on the distorted twenty-node hexahedral elements (for which we 
have m = 3).

The numerical results presented in this section demonstrate that DG discretizations based on the space Uk+1
h and HHO 

discretization based on the space Uk,k
h provide similar convergence rates on good mesh sequence with asymptotic effective 

mapping order equal to 1. This is crucial considering that good mesh generators should drive towards affine polynomial 
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Fig. 10. Error versus number of DOFs for HHO and DG discretizations of the Poisson equation over uniformly refined quadrilateral mesh sequences. Forcing 
term and boundary conditions imposed according to the trigonometric solution (28).

mappings upon mesh refinement, even in case of complex domain boundaries. In this context, the possibility to consider 
k = 0 in HHO formulations on arbitrarily shaped mesh families can be considered a significant advantage with respect to DG 
discretizations whenever low-order methods are mandatory to keep the computational cost low. We notice, in passing, that 
the HHO formulation with k = 0 enters the Hybrid-Mixed-Mimetic framework of [35]; [9, Section 2.5] for further details. In 
the context of Mimetic Finite Differences, a treatment of curved faces has been proposed in [36], where similar results are 
found for mesh faces that become less and less curved. As opposite, in the presence of randomly distorted mesh elements 
(that might arise, e.g., in Lagrangian and ALE computations), DG seems to be a safer choice.

5.4. p-convergence on trigonometric solutions

When sufficient regularity of the exact solution can be expected, the possibility to improve the solution accuracy by in-
creasing the polynomial degree (p-refinement) is a major advantage of high-order discretizations. In this section we consider 
the same trigonometric solution (28) as in the previous section, but we focus on p-convergence instead of h-convergence. 
In this context, HHO discretizations can be expected to provide significant gains with respect to (modal) DG discretizations, 
since the corresponding number of DOFs grows significantly slower than for DG methods when increasing the polynomial 
degree.

The numerical results reported in Figs. 15 and 16 for two-dimensional randomly distorted triangular and quadrilateral 
meshes, and three-dimensional randomly distorted hexahedral and tetrahedral meshes, respectively, confirm this trend in 
all but the hexahedral meshes. In particular, the randomly distorted twenty-node hexahedral meshes seem more favorable 
to p-refined DG discretizations rather than HHO discretizations. This behavior can be explained taking into account the 
following aspects:

• For the DG discretizations, we have chosen the smallest possible polynomial space Pk
d(T ) over each T ∈ Th , irrespectively 

of the element shape.
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Fig. 11. Error versus number of DOFs for HHO and DG discretizations of the Poisson equation over uniformly refined tetrahedral mesh sequences. Forcing 
term and boundary conditions imposed according to the trigonometric solution (28).

• For HHO discretizations, the global number of DOFs is proportional to the number of faces, and hexahedral elements 
have an unfavorable number of faces per element compared to tetrahedra.

• The effective mapping order m is higher for eight-node quadrilateral faces (m = 3), as compared to six-node triangu-
lar mesh faces and four-node quadrilateral mesh faces (m = 2). Accordingly, the convergence degradation of reference 
frame polynomial spaces Pl

d−1(σ ) is the most severe of the lot, and requires higher polynomial degrees on faces to 
compensate.

We also notice that we have placed ourselves in the worst-case scenario, where all the faces are curved. If curved faces only 
occur on the boundary of the domain, a significant reduction in the number of DOFs can be obtained for HHO using equal 
element and face polynomial orders for the internal faces.

6. Agglomeration coarsening

Besides the advantage in terms of accuracy per DOF, one of the major benefits of p-convergence with respect to 
h-convergence is the fact that the former is a single grid strategy, while the latter requires to generate a h-refined mesh 
sequence. Clearly, in order to keep the global number of DOFs under control and fruitfully exploit high polynomial degrees, 
a grid conceived for p-refinement must be coarse enough. On the other hand, when considering a complex domain �, the 
mesh must also meet the conflicting requirement of providing a satisfactory approximation �h of the domain: a rough ap-
proximation can be highly detrimental in terms of accuracy. In particular, the enforcement of boundary conditions on ∂�h
might lead to large consistency errors that are not settled increasing the polynomial degree k.

Unfortunately, generating a coarse high-order grid Th that provides a satisfactory representation of the domain boundary 
∂� is often a non-trivial task. In practice, building a h-refined mesh sequence might be both less expensive and time con-
suming. Moreover, h-refined mesh sequences can be constructed in such a way that �h is a better and better approximation 
of � as h decreases.
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Fig. 12. Error versus number of DOFs for HHO and DG discretizations of the Poisson equation over uniformly refined tetrahedral mesh sequences. Forcing 
term and boundary conditions imposed according to the trigonometric solution (28).

In this context, the support of arbitrarily shaped elements in HHO and DG discretizations comes into play, providing 
an unprecedented flexibility by means of agglomeration coarsening. Starting from a fine first- or second-order grid Th , an 
agglomerated grid TH can be generated on the fly by clustering together the cells of the fine grid, as detailed in Section 6.1
below. The grid TH can be made arbitrarily coarse, so that card(TH ) � card(Th), while keeping the approximation of the 
computational domain unchanged, i.e., �H = �h .

6.1. Agglomerated mesh

Starting from a mesh Th , we can define a coarsened mesh TH = {T} by agglomeration. More precisely, we suppose that 
(i) TH partitions �h :=⋃

T ∈Th
T \ ∂� in the sense that 

⋃
T∈TH

T = �h; (ii) every agglomerated element T ∈ TH is an open 
bounded connected subset of � and there exists a set of sub-elements TT ⊂ Th such that

T=
⋃

T ∈TT

T .

We define a facet F of T ∈ TH as a portion of its boundary ∂T such that F ∈Fh . Facets are collected in the set F H
h ⊂Fh . 

By definition, for every facet there exists a reference face σ ∈Kd−1 and a polynomial mapping �F such that F = �F (σ ). We 
define an agglomerated face F of T ∈ TH as a portion of ∂T such that either F = ∂T ∩ ∂� or there exists T′ ∈ TH , T′ �= T, 
such that F = ∂T ∩ ∂T′ . Agglomerated faces are collected in the set FH . For every agglomerated face F ∈ FH we introduce 
the set FF ⊂F H

h collecting the facets partitioning F, i.e., such that F =⋃
F∈FF

F .
Both HHO and DG discretizations can be extended to support agglomerated meshes pending the following changes:

• For both HHO and DG discretizations: Th is replaced by TH and, correspondingly, T ∈ Th is replaced by T ∈ TH .
• For DG discretizations only: Fh is replaced by FH and, correspondingly, F ∈Fh is replaced by F ∈FH .
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Fig. 13. Error versus number of DOFs for HHO and DG discretizations of the Poisson equation over uniformly refined hexahedral mesh sequences. Forcing 
term and boundary conditions imposed according to the trigonometric solution (28).

• For HHO discretizations only: Fh is replaced by F H
h .

6.2. Numerical results

In what follows, we use agglomeration coarsening to demonstrate that p-convergence can be fruitfully exploited to 
reduce the error with respect to exact solution up to a tight tolerance. Most importantly, this can be achieved starting 
from a single standard fixed fine mesh Th of a curved computational domain. To assess the p-convergence rates of the 
DG and HHO methods we consider the test case of Gobbert and Yang [37]: the computational domain is unit annulus 
� = {0.5 < x2 + y2 < 1.5} and we consider the following exact solution of the Poisson equation:

u(x) = cos(π
√

x2 + y2), (29)

with suitable forcing term f . The solution (29) vanishes on the exact boundary ∂�. We consider second-order six-node 
triangular mesh sequences and the following discretizations of the homogeneous boundary condition:

Choice 1: u(x)|∂�h = cos(π
√

x2 + y2), (30a)

Choice 2: u(x)|∂�h = 0. (30b)

The choice (30a) neglects any influence of the domain discretization as we are using the exact solution on ∂�h ; instead, the 
choice (30b) introduces a consistency error since, in our case, ∂�h �= ∂�.

The agglomerated and regular h-coarsened mesh sequences are built as follows:
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Fig. 14. Error versus number of DOFs for HHO and DG discretizations of the Poisson equation over uniformly refined hexahedral mesh sequences. Forcing 
term and boundary conditions imposed according to the trigonometric solution (28).

• Agglomerated mesh sequence (Fig. 17a): we agglomerate on top of a fine 40k six-node triangular elements grid Th . Starting 
from a 4k agglomerated elements grid TH1 (obtained by agglomerating ten fine grid elements on average), for i ∈
{2, . . . , 8}, we construct agglomerated meshes such that card(THi ) = card(THi−1 ) 

(
dim(Pi−1

d )

dim(Pi
d)

)
.

• Regular mesh sequence (Fig. 17b): we mimic the mesh cardinality of the agglomerated mesh sequence, that is card(Thi ) ≈
card(THi ), such that hi ≈ Hi .

Note that the discrete computational domain �Hi = �h is fixed when we consider the agglomerated mesh sequence, de-
pending solely on the underlying grid Th . As opposite, coarser standard meshes provide a rougher approximation of the 
domain boundaries ∂�hi when compared to finer standard meshes.

Non-conforming HHO and DG discretizations are considered over agglomerated and standard mesh sequences using both 
boundary condition choices in (30).

• DG: we consider the spaces Ui
Hi

and Ui
hi

, the resulting DG discretizations have approximatively 12k DOFs.

• HHO: we consider equal-order HHO discretizations based of the spaces Ui−1,i−1
Hi

and Ui−1,i−1
hi

. Note that degree k DG 
and degree (k − 1) HHO discretizations provide the same h-convergence rates.

The convergence results shown in Table 5 and Fig. 18 demonstrate the ability of approaching (up to 10−9) the exponential 
convergence results obtained enforcing the exact boundary condition (30a) using agglomerated mesh sequences together 
with the boundary condition (30b). Instead, the lack of consistency for the standard mesh sequence is clearly appreciable as 
the discretization is unable to provide an error in the L2-norm lower that 10−5 using the boundary condition in (30b).

It is interesting to remark that DG solutions based on the boundary condition in (30a) provide comparable results over 
the agglomerated and standard mesh sequence since the number of DOFs is proportional to the number of mesh elements. 
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Fig. 15. Error versus number of DOFs. p-refined HHO and DG discretizations of the Poisson equation over the six-node distorted triangular meshes of 
Fig. 1a (first row) and the eight-node distorted quadrilateral meshes of Fig. 1b (second row). HHO DOFs space is Uk,k

h (k = 0, 1, ...), DG DOFs space is Uk
h

(k = 1, 2, ...).

As opposite, HHO discretizations based on the boundary condition in (30a) perform better on the agglomerated grid but 
also require a significantly higher number of DOFs, see Table 5. This is due to the fact that agglomerated elements have a 
significantly higher number of facets as compared to triangular elements, hence card(F H

h ) � card(Fh) even if card(TH ) �
card(Th).

Table 5 also reports the number of ILU preconditioned Conjugate Gradient iterations required to reduce the relative 
residual norm of the global equation system by fourteen orders of magnitude. For both the HHO and dG methods, the 
performance of the iterative solver is not affected by the use of agglomerated meshes. This behavior is expected for dG 
methods, where the number of mesh faces on agglomerated meshes is comparable to standard meshes (since faces are de-
fined as intersections of two elements or of one element with the domain boundary, see [23, Definition 1.16]). Interestingly, 
a similar behavior is observed also for HHO methods, where the faces of the agglomerated mesh coincide with facets; see 
[31] for further details on the notion of mesh faces for HHO. Furthermore, increasing the polynomial degree on coarser 
agglomerated meshes is highly beneficial from both the accuracy and the easiness of solution viewpoints.

We conclude this section by observing that the main issue of mesh agglomeration is related to numerical integration. As 
a matter of fact, if quadrature is performed on the subelements, as we actually do, the cost of numerical integration can 
become significant.

7. Conclusion

We assessed convergence rates of a new adaptation of the HHO method to curved meshes based on physical frame 
polynomial spaces over mesh elements and reference frame polynomial spaces over mesh faces. We verified, by means of 
carefully crafted numerical test cases, that optimal approximation properties of the potential reconstruction operator can 
be recovered by increasing the degree of face polynomial spaces by a suitable amount with respect to element polyno-
mial spaces. This amount can be theoretically estimated according to the face shape and the mapping properties so as to 
counterbalance the convergence degradation affecting reference frame polynomials in case of non-linear mappings.
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Fig. 16. Error versus number of DOFs. p-refined HHO and DG discretizations of the Poisson equation over the ten-node distorted tetrahedral meshes of 
Fig. 2a (first column), the twenty-node distorted hexahedral meshes of Fig. 2c (second column) and the eight-node distorted hexahedral meshes of Fig. 2b 
(third column). HHO DOFs space is Uk,k

h (k = 0, 1, ...), DG DOFs space is Uk
h (k = 1, 2, ...).

We demonstrated (and motivated by analyzing the error of the reconstructed potential with respect to the exact solu-
tion) that optimal convergence rates can be expected on non-pathological mesh sequences for standard HHO approximations 
using the same polynomial degree on both elements and faces. By non-pathological we mean here that they tend towards 
an affine mesh when the meshsize is reduced. On the other hand, when dealing with pathological mesh sequences (which 
do not tend to affine meshes upon refinement), the numerical evidence shows that most of the time sufficient accuracy can 
be obtained by increasing the face polynomial degree by one. Clearly, non-pathological mesh sequences are representative 
of most practical applications thanks to the availability of good mesh generators, see e.g. [38]. As opposite, handling patho-
logical mesh sequences may be relevant in the context of moving and deformable mesh methods. We remark that, both in 
pathological and non-pathological mesh sequences, we considered the worst possible configuration where all the elements 
are curved, not only the elements that are adjacent to domain boundaries.

The comparison of HHO and DG methods with the same convergence rates in h shows that the errors in both the L2-
and H1-norms are comparable, with a small but perceptible advantage of DG in terms of accuracy per DOF for polynomial 
degrees greater than one. This behavior is documented comparing (i) HHO discretization based on the equal-order space Uk,k
h
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Fig. 17. Sequences of meshes of the unit annulus.

HHO with DG discretization based on the space Uk+1
h over non-pathological mesh sequences and (ii) HHO discretizations 

based on the enriched space Uk,k+1
h with DG based on the space Uk+1

h over pathological mesh sequences.

The comparison of p-refined HHO and DG discretizations based on the sequences of spaces {Uk,k
h }k�0 and {Uk

h}k�1, 
respectively, shows that HHO methods have a clear advantage in terms of accuracy per DOF in two space dimensions, both 
on triangular and quadrilateral pathological mesh sequences. In three space dimensions, this advantage is maintained on 
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Table 5
p-convergence of HHO and DG discretizations on h-coarsened agglomerated and regular mesh sequence of Figs. 17a-17b. L2 and H1 measure the error in 
L2(�h) norm with respect to the exact solution and the exact solution gradient, respectively, using the boundary condition in (30a) and (30b) (exBC and 
hoBC, respectively). The last column shows the number of iterations of the linear solver (ILU preconditioned Conjugate Gradient).

k card(Th) card(Fh) DOFs L2 exBC L2 hoBC H1 exBC H1 hoBC LS its

DG discretizations on agglomerated meshes (Th = TH , Fh = FH )

1 4080 11683 12240 3.04e–03 3.04e–03 2.32e–01 2.32e–01 169
2 1978 5804 11868 9.07e–05 9.07e–05 1.23e–02 1.23e–02 125
3 1190 3549 11900 5.13e–06 5.13e–06 6.32e–04 6.32e–04 100
4 804 2399 12060 2.32e–07 2.32e–07 3.03e–05 3.03e–05 89
5 572 1709 12012 1.94e–08 1.90e–08 2.09e–06 2.09e–06 77
6 426 1278 11928 4.24e–09 8.20e–10 9.77e–08 9.73e–08 66
7 330 989 11880 4.16e–09 7.79e–11 1.32e–08 8.31e–09 59
8 274 820 12330 4.16e–09 3.33e–12 1.05e–08 3.69e–10 54

DG discretizations on standard meshes

1 4082 6222 12246 3.44e–03 3.44e–03 2.49e–01 2.49e–01 176
2 2060 3160 12360 1.08e–04 1.08e–04 1.34e–02 1.34e–02 143
3 1156 1786 11560 9.24e–06 7.31e–06 7.49e–04 7.49e–04 125
4 816 1268 12240 1.11e–05 3.58e–07 1.05e–04 3.97e–05 114
5 596 932 12516 1.61e–05 2.22e–08 1.50e–04 2.29e–06 104
6 412 648 11536 3.92e–05 1.83e–09 3.36e–04 1.76e–07 90
7 318 504 11448 6.72e–05 1.33e–10 5.48e–04 1.28e–08 87
8 280 446 12600 6.67e–05 5.25e–12 5.58e–04 5.32e–10 87

HHO discretizations on agglomerated grids (Th = TH , Fh = FH
h )

0 4080 19160 19160 1.83e–03 1.83e–03 2.31e–01 2.31e–01 175
1 1978 13636 27270 4.29e–04 4.29e–04 1.48e–02 1.48e–02 129
2 1190 10673 32019 7.09e–06 7.09e–06 9.14e–04 9.14e–04 100
3 804 8846 35384 7.71e–07 7.69e–07 5.06e–05 5.06e–05 84
4 572 7575 37875 2.44e–08 2.33e–08 3.63e–06 3.63e–06 71
5 426 6596 39576 3.37e–09 2.02e–09 1.89e–07 1.89e–07 63
6 330 5915 41405 4.14e–09 9.36e–11 1.91e–08 1.62e–08 57
7 274 5412 43296 4.16e–09 5.34e–12 1.03e–08 7.86e–10 52

HHO discretizations on standard grids

0 4082 6222 6222 1.01e–02 1.01e–02 2.91e–01 2.91e–01 145
1 2060 3160 6320 1.53e–03 1.53e–03 3.92e–02 3.92e–02 127
2 1156 1786 5358 6.23e–05 6.28e–05 4.71e–03 4.71e–03 98
3 816 1268 5072 1.66e–05 7.25e–06 3.87e–04 3.82e–04 84
4 596 932 4660 1.62e–05 3.83e–07 9.92e–05 3.18e–05 85
5 412 648 3888 3.91e–05 3.61e–08 2.66e–04 3.35e–06 90
6 318 504 3528 6.70e–05 2.98e–09 4.58e–04 2.88e–07 70
7 280 446 3568 6.67e–05 1.81e–10 5.38e–04 1.62e–08 66

Fig. 18. Error versus polynomial degree. p-convergence of HHO and DG discretizations on h-coarsened agglomerated and regular mesh sequence of 
Figs. 17a-17b. L2 and H1 measure the error in L2(�h) norm with respect to the exact solution and the exact solution gradient, respectively, using the 
boundary condition in (30a) and (30b) (exBC and hoBC, respectively).
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tetrahedral mesh sequences, while the performance of the two non-conforming methods is comparable on hexahedral mesh 
sequences. It is interesting to remark that, among standard three dimensional elements shapes (also including e.g. prismatic 
and pyramidal elements), tetrahedral and hexahedral meshes have the highest and the lowest mesh elements to mesh faces 
cardinality ratio, respectively. Since the DOF count is face-based for HHO methods and element-based for DG methods, it is 
no surprise that HHO shines on tetrahedral meshes.

To conclude, asymptotically small discretization errors have been achieved employing high-order HHO and DG discretiza-
tions over a unit annulus computational domain with curved boundaries. Remarkably, error reduction is pursued considering 
high-polynomial degrees over meshes obtained by agglomeration coarsening of a second-order six-node triangular grid ob-
tained with standard mesh generators. Agglomeration-coarsening has been designed to provide a uniform number of DOFs 
while increasing the polynomial degree in case of dG discretizations. In view of the discussion in the previous paragraph, 
DG seems the choice of preference in this context, since on agglomerated mesh sequences the average number of faces per 
mesh element is typically much larger than on standard grids. Variations of the HHO method that improve its behaviour on 
agglomerated meshes are currently under study, and will make the object of a future work.
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