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We present a self-contained description of the wave-function matching (WFM) method to 
calculate electronic quantum transport properties of nanostructures using the Landauer-
Büttiker approach. The method is based on a partition of the system between a central 
region (“conductor”) containing N S sites and an asymptotic region (“leads”) characterized 
by N P open channels. The two subsystems are linearly coupled and solved simultaneously 
using an efficient sparse linear solver. Invoking the sparsity of the Hamiltonian matrix 
representation of the central region, we show that the number of operations required by 
the WFM method in conductance calculations scales linearly with the number of sites, 
more precisely with ∼ N S × N P for large N S , faster than previously claimed.

© 2019 Elsevier Inc. All rights reserved.

1. Introduction

Advances in the fabrication of high-quality samples at the micro and nanoscale paved the way for the discovery of 
unusual electronic transport properties. As a consequence, the demand for numerical methods to realistically describe such 
systems on an atomistic/microscopic basis has dramatically increased. At low temperatures, experiments have reported 
electronic coherence lengths as long as tens of microns, typically larger than the characteristic sample size [1–4]. In such 
mesoscopic systems, the electronic transport is dominated by quantum interference. In this paper, we critically analyze the 
Wave Function Matching (WFM) method [5–9], whose numerical implementations allow to efficiently compute the quantum 
transport properties of electrons in nanostructures, modeling realistic sample sizes and non-trivial geometries.

Quantum electronic transport in mesoscopic systems is usually described by the Landauer-Büttiker approach [10], that 
gives a simple relation between the conductance and the quantum transmission coefficients of a single-particle scattering 
problem and can be generalized to time-dependent [11–13] and interacting systems [14]. In other words, the problem is 
reduced to solving a Schrödinger equation for an open quantum system. We show in this paper that the WFM method 
is one of the most efficient numerical tools for this task. The latter introduces a partition between a central or scattering 
region (“conductor”) and the asymptotic one (“leads” or terminals) and, by matching the corresponding wave function at 
the partition boundaries, calculates the system scattering matrix S [15].
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Fig. 1. Illustration of a generic multi-terminal two-dimensional system. The dashed lines indicate the partition between the scattering and the asymptotic 
regions. The latter is modeled by or semi-infinite periodic lattices.

Alternatively, transport properties in mesoscopic systems can be calculated using non-equilibrium Green’s function 
(NEGF) techniques [10]. This formalism is widely used due to its successful combination with Density Functional Theory 
[16–22]. At the single-particle level, NEGF is equivalent to the Landauer-Büttiker approach (see, for instance, Ref. [23]). 
The standard method to compute transport properties in large systems using NEGF is the Recursive Green’s Function (RGF) 
method [24–26]. The latter takes advantage of the sparsity of the system Hamiltonian to partition the scattering region into 
conveniently chosen small domains [27,28]. The corresponding Green’s functions are recursively combined using the Dyson 
equation to obtain matrix elements of the full system Green’s function that are relevant for transport calculations. The RGF 
method is robust, accurate, has a simple implementation, and has been widely used [29–35].

A recent open source implementation of the WFM method, the Kwant package [9], has significantly increased its usage. 
Kwant is developed under a user-friendly platform coded in Python and handles general-shaped scattering regions, multiple 
orbitals, and multi-probes [36]. Furthermore, extensions to the Kwant package can be easily joined [37]. Kwant also explores 
the sparsity of the system Hamiltonian by using the MUMPS libraries, a forefront package for sparse linear algebra [38]. 
Reference [9] shows that Kwant significantly outperforms the RGF method in a wide range of applications within the 
single-particle picture.

In this paper, we show that the number of operations required by the WFM method to compute the conductance of a 
given system is much smaller than previously claimed [9]. To explain this finding, we first give a self-contained presentation 
of the method – whose documentation is scattered and scarce – critically analyzing its main features. Next, we numerically 
study a number of systems to corroborate our analytical findings.

The paper is organized as follows: In Sec. 2 we provide a short review of the relation between quantum transport and 
the scattering theory. Next, we adapt the theory for the tight-binding approximation and cast the scattering problem as 
the solution of a linear system. In Sec. 3 we describe the WFM method and discuss its computational cost. In Sec. 4 we 
benchmark the WFM method comparing its CPU time, memory usage and precision with a standard RGF implementation. 
Next, we present an application of the WFM method for a realistic-sized multi-probe graphene Hall bar system. In Sec. 5
we summarize our conclusions.

2. Theoretical background

The WFM method is suited to calculate the scattering properties of a system with arbitrary geometry and dimension 
d = 1, 2, or 3. It is aimed to describe the non-interacting elastic scattering processes in mesoscopic samples or crystalline 
structures coupled to multiple terminals.

Fig. 1 illustrates a generic multi-terminal two-dimensional (d = 2) system. A central scattering region is coupled to 
electrodes represented by semi-infinite leads labeled by α = 1, · · · , �, where incoming and outgoing electrons propagate 
coherently. Due to the transverse confinement, the leads states are quantized in open modes (scattering channels) labeled 
by n = 1, . . . , Nα . The index n labels both the transverse modes and the electron spin projection. The mesoscopic sample 
corresponds to the central or scattering region, while the leads are associated to the asymptotic domain.

Let us describe the system single-particle Hamiltonian by a tight-binding model. This approximation is suited to model 
both an atomistic system represented by a linear combination of atomic orbitals and a continuous system in a finite element 
representation [10]. The system Hamiltonian is written as
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H =
∑
j, j′

H j, j′ | j〉〈 j′|, (1)

where the index j = (r j, σ) labels both the position in the lattice and the internal degrees of freedom σ such as spin, 
atomic orbital, etc., of the basis state | j〉. Here we assume that 〈 j| j′〉 = δ j j′ .

2.1. Quantum transport and scattering theory

The Schrödinger equation of the scattering system reads

H
∣∣�±

m(E)
〉= E

∣∣�±
m(E)

〉
, (2)

where |�+
m(E)〉 and |�−

m(E)〉 stand for the outgoing and incoming scattering states at channel m, with normalization 
〈�±

m(E)|�±
m′(E ′)〉 = δmm′δ(E − E ′). Here m labels both α and n. The S-matrix is defined by the scattering amplitudes 

〈�−
m(E)|�+

m′(E ′)〉 = Smm′ (E)δ(E − E ′).
The scattering matrix S can be formally written in terms of projection operators that decompose the Hilbert space in 

the partition described by Fig. 1 [39]. Let us assume, for instance, normal boundary conditions at the interface B between 
the scattering and asymptotic regions. One defines the projection operator

Q =
∑
μ

∣∣φμ

〉 〈
φμ

∣∣ (3)

in terms of the complete set of discrete orthonormal states 
〈
φμ

∣∣φμ′
〉= δμμ′ defined in the scattering (or central) region and 

obeying the boundary conditions at B. In turn, at the asymptotic region, one defines

P =
∑
m∈α

∫
dE |χm(E)〉 〈χm(E)| , (4)

where |χm(E)〉 form a complete set of continuous orthogonal states, 
〈
χm(E)

∣∣χm′ (E ′)
〉= δmm′δ(E − E ′), defined in the asymp-

totic (or leads) region. Since the asymptotic region is not compact, the projection operator P is continuous. By construction, 
P and Q span the system Hilbert space and, hence, P + Q = 1.

The system Hamiltonian is conveniently decomposed into three pieces

H = H P P + H Q Q + (H P Q + H Q P ), (5)

where we introduced the notation AH B = H AB .1

The projection operators allow one to write Eq. (2) as a Lippmann-Schwinger equation, namely

P |�±
m(E)〉 = |χm(E)〉 + 1

E± − H P P
H P Q Q |�±

m(E)〉 (6)

Q |�±
m(E)〉 = 1

E± − H Q Q
H Q P P |�±

m(E)〉, (7)

where E± = E ± iη, with η an infinitesimal positive number. After some algebra (see Appendix A), one writes the S-matrix 
as [39]

Smm′(E) = δmm′ − 2iπρ
1/2
m (E)

∑
μμ′

[H P Q ]mμ

[
1

E − H Q Q − �+(E)

]
μμ′

[H Q P ]μ′m′ρ1/2
m′ (E), (8)

where �±(E) = H Q P (E± − H P P )−1 H P Q is the embedding self-energy, which accounts for coupling the to the continuum 
and describes the resonance processes, while ρm(E) stands for the electronic density of states at the channel m. Here we 
explicitly neglect direct tunneling processes between different electrodes [39,15]. This approximation is accurate provided 
the central region is sufficiently large to prevent direct tunneling processes across the system. This condition is true for 
most mesoscopic systems, except for small molecular junctions (for more details, see, for instance, Ref. [40]).

The Landauer-Büttiker theory [10] relates the linear conductance of an electronic sample to the transmission probability 
as

Gαβ = e2

h

∞∫
−∞

dE

(
−∂ f

∂ E

)
Tαβ(E), (9)

1 It is convenient to use as the channel basis in the asymptotic region the eigenfunctions of H P P , namely, H P P |χm(E)〉 = E |χm(E)〉 with normal boundary 
conditions at B.
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Fig. 2. (a) Sketch of a mesoscopic system (S) coupled to Left (L) and Right (R) semi-infinite leads with periodic lattice structure. (b) Equivalent system with 
the L and R terminal (in general, α = 1, · · ·�) mapped into a single-lead (T).

where f (E) = [1 + e(E−μ)/kT
]−1

is the Fermi-Dirac distribution with μ and T giving the equilibrium chemical potential and 
temperature of the reservoirs.2 The transmission Tαβ(E) is given by

Tαβ(E) =
∑
n∈α
m∈β

|Snm(E)|2 , (10)

where Snm(E) is given by Eq. (8). The WFM method also gives local properties such as local currents and the local density 
of states (LDOS), as discussed in Sec. 4.

2.2. The scattering problem in tight-binding approximation

Let us now write the system Hamiltonian in a suitable form to implement the WFM method. For the sake of simplicity, 
we discuss in detail the two-terminal case and, at the end, we generalize the results to the multi-terminal case.

Let us consider a mesoscopic system attached to semi-infinite leads, α = R, L, as illustrated by Fig. 2a. Following the 
partition operators presented in the previous section, we introduce the standard matrix representation: (i) H Q Q ↔ H S for 
the scattering region Hamiltonian; (ii) H P P ↔ H L + H R , for the leads Hamiltonian; (iii) H Q P ↔ V S L + V S R , for the coupling 
term connecting the mesoscopic system to the leads.

The full Hamiltonian is written in a block matrix form as

H =
⎛
⎝ H L V L S 0

V S L H S V S R

0 V R S H R

⎞
⎠ . (11)

H L and H R can be written in the block-diagonal structure

H L =

⎛
⎜⎜⎜⎜⎜⎝

. . .
. . .

. . . Hl Vl

V †
l Hl Vl

V †
l Hl

⎞
⎟⎟⎟⎟⎟⎠ H R =

⎛
⎜⎜⎜⎜⎜⎝

Hr V †
r

Vr Hr V †
r

Vr Hr
. . .

. . .
. . .

⎞
⎟⎟⎟⎟⎟⎠ , (12)

where Hl(r) stands for suitable L(R)-lead unit cell Hamiltonian of dimension ML(R) (represented by boxes in Fig. 2). Vl(r)
are the hopping matrices between nearest-neighboring unit-cells and the unwritten matrix elements are identically zero.

It is advantageous to use the structure of the leads matrices H L and H R to group them into an effective single-lead with 
disjoint sections. The rearranged layout is depicted in Fig. 2b. The modified H reads

H =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

H S V †
S L V †

S R

V S L Hl 0 V †
l 0

V S R 0 Hr 0 V †
r

Vl 0 Hl 0

0 Vr 0 Hr
. . .

. . .
. . .

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (13)

2 In general, the reservoirs have different chemical potentials and temperatures, thus, fα(E) = [1 +e(E−μα)/kTα ]−1. For simplicity we take all temperatures 
equal to T and since we restrict ourselves to linear response, the small differences between μα and the equilibrium μ lead to Eq. (9).
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The effective lead, hereafter denoted by T , compacts the eigenvalue problem to a single semi-infinite partition, namely⎛
⎜⎜⎜⎜⎜⎝

H S − E V †
T S

V T S HT − E V †
T

V T HT − E
. . .

. . .
. . .

⎞
⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎝

ψS

ψ0
ψ1
...

⎞
⎟⎟⎟⎠=

⎛
⎜⎜⎜⎝

0
0
0
...

⎞
⎟⎟⎟⎠ , (14)

where ψS corresponds to the scattering wave function at the central region and ψn , to the lead wave function at the n-th 
slice, with n = 0, 1, 2, . . . (see Fig. 2). For the sake of compactness, we do not impose to ψ the energy normalization of the 
states �. The latter is introduced at the end of the calculation, as discussed in Sec. 3.1. The generalization to a multi-terminal 
setup is straightforward. In this case, H T accounts for all Hα , with α = 1, . . . , � and has dimension MT =∑�

α=1 Mα .

3. The wave function matching method

Let us now solve Eq. (14). For that purpose we introduce the eigenmode basis φn:

V T φn−1 + (HT − E)φn + V †
T φn+1 = 0, (15)

which corresponds to rows of Eq. (14) far from the scattering region. Due to translational symmetry, one can use Bloch’s 
theorem to conveniently write φn as

φn = χλn, (16)

where χ is the lead unit cell eigenfunction (independent of n) and λ is a complex constant. Hence,

V T χ + (HT − E)χλ + V †
T χλ2 = 0. (17)

The standard procedure to solve this quadratic eigenvalue problem in λ is to introduce an auxiliary vector

χ ′ ≡ λ−1 V T χ (18)

and to linearize Eq. (17) [41] as

(
HT − E 1̂

V T 0̂

)(
χ
χ ′
)

= λ

(
−V †

T 0̂
0̂ 1̂

)(
χ
χ ′
)

. (19)

The advantage of casting Eq. (17) as a generalized eigenvalue problem is that one can calculate the eigenvalue λ, which is 
associated to the crystal momentum k (using λ = eikaα , where aα is the α-lead lattice constant), and the eigenvector χ as a 
function of the electronic energy E . The quadratic eigenvalue problem is translated into a linear problem at the expense of 
doubling the equation dimension. Hence, the number of eigenvalues is twice the rank MT of the matrices V T and HT .

One can solve the generalized eigenvalue problem in Eq. (19) by means of well-known numerical algorithms [41–44]. 
Given an electronic energy E , we calculate the eigenvectors (χ T

p χ ′T
p )T and the corresponding eigenvalues λp , where p =

1, · · · , 2MT .
We can infer from the scattering problem that the 2MT solutions correspond to MT incoming modes and MT outgoing 

modes, as depicted in Fig. 3. Since the terminals are uncoupled, the eigenstate χp has a block structure

χp =
(
· · · 0 (χα

p )T 0 · · ·
)T

, (20)

where each block χα
p describes the eigenstate of the α-lead with eigenvalue λp for p = 1, · · · , Mα and α = 1, · · · , �.

The modes can be propagating |λp | = 1 or evanescent |λp| < 1 (|λp| > 1 gives a non-physical behavior). The probability 
current for the p-th propagating mode reads [45]

jp = −2

h̄
Im
(
λpχ

†
p V T χp

)
. (21)

The incoming modes correspond to jp > 0 and the outgoing ones to jp < 0. We label those two sets of solutions as λ±
p , χ±

p
for p = 1, . . . , N P , where ± indicates the corresponding current direction and N P ≤ MT is the number of incoming/outgoing 
propagating channels at the electronic energy E . See Fig. 3. Since we are interested in transmission coefficients, we restrict 
ourselves to the analysis of the propagating modes. The evanescent modes ( jp = 0) can be treated straightforwardly as a 
generalization of this method.
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Fig. 3. Multi-mode representation of the scattering process of a single-lead with MT =∑�
α=1 Mα modes. The sign − (+) indicates incoming (outgoing) 

modes with amplitude A−
p (A+

p ), where p = 1, 2, · · · , N P .

Using the sets χ±
p as basis, we write the wave functions ψn as

ψn =
N P∑

q=1

A−
q χ−

q (λ−
q )n +

N P∑
p=1

A+
p χ+

p (λ+
p )n, (22)

where n = 0, 1, · · · , and A±
p are unknown amplitudes.

One defines the scattering matrix S̃ that relates incoming with outgoing amplitudes as⎛
⎜⎜⎜⎝

A+
1

A+
2
...

A+
N P

⎞
⎟⎟⎟⎠= S̃

⎛
⎜⎜⎜⎝

A−
1

A−
2
...

A−
N P

⎞
⎟⎟⎟⎠ . (23)

Since the eigenchannel basis used by the WFM method is not normalized as the one introduced in Sec. 2, the matrix S̃ does 
not preserve the flux. As we discuss below, S is obtained from S̃ by a simple relation.

To calculate the S-matrix, we consider the scattering process of a single incoming mode q, namely

ψnq = χ−
q (λ−

q )n +
N P∑

p=1

χ+
p (λ+

p )n S̃ pq. (24)

The corresponding S-matrix can be obtained by solving the first two lines of Eq. (14)

(H S − E)ψSq + V †
T Sψ0q = 0, (25)

V T SψSq + (HT − E)ψ0q + V †
T ψ1q = 0, (26)

where ψSq is the scattering region wave function upon injection from mode q. Substituting Eq. (24) into Eq. (26) and 
recalling that the basis functions χ±

p satisfy Eq. (17), we find

V T SψSq = V T ψ−1q, (27)

where ψ−1q is also given by Eq. (24). Note, however, that ψ−1q has no physical meaning, since in Eq. (14) there is no slice 
defined for n = −1. Here, ψ−1q is an auxiliary mathematical quantity designed to represent the contributions of the terms 
including ψ0q and ψ1q in Eq. (26).

Applying the definition of χ ′ , Eq. (18), to each propagating mode as

χ ′±
q = (λ±

q

)−1
V T χ±

q , (28)

Eq. (27) becomes

V T SψSq = χ ′−
q +

N P∑
p=1

χ ′+
p S̃ pq = χ ′−

q + χ ′+ S̃q, (29)

where χ ′± ≡ (χ ′±
1 χ ′±

2 · · · χ ′±
N P

) with dimension MT × N P and S̃q is the column q of the S-matrix with dimension N P × 1. 
Analogously, using Eq. (24) we write ψ0q as

ψ0q = χ−
q + χ+ S̃q. (30)

The linear system composed by Eqs. (25) and (29) reads



446 T.P. Santos et al. / Journal of Computational Physics 394 (2019) 440–455
(
H S − E V †

T Sχ
+

V T S −χ ′+

)(
ψSq

S̃q

)
=
(

−V †
T Sχ

−
q

χ ′−
q

)
. (31)

Let us now generalize Eq. (31) to account for different q-modes(
H S − E V †

T Sχ
+

V T S −χ ′+

)(
ψS1 ψS2 · · · ψS N P

S̃1 S̃2 · · · S̃N P

)
=
(

−V †
T Sχ

−
1 −V †

T Sχ
−
2 · · · −V †

T Sχ
−
N P

χ ′−
1 χ ′−

2 · · · χ ′−
N P

)
. (32)

We cast this result into the compact form(
H S − E V †

T Sχ
+

V T S −χ ′+

)(
ψS

S̃

)
=
(

−V †
T Sχ

−
χ ′−

)
, (33)

where S̃ is the full S-matrix and ψS = (
ψS1 ψS2 · · · ψS N P

)
is the wave function of the scattering region. The S-matrix 

has dimension N P × N P while ψS has dimension N S × N P , since it is defined for all the N S sites in the central region upon 
injection from all the N P channels.

Hence, the solution of Eq. (33) has a computational cost that depends on the number of propagating channels N P at the 
electronic energy E . Due to the sparsity of H S , we infer that CPU time required to compute a given system conductance 
scales as N S × N P . In Sec. 4 we numerically verify that the WMF method indeed follows this prediction.

Note that Eq. (33) involves representations in different spaces, while the scattering wave function is given in the tight-
binding basis, the S-matrix is expressed in eigenmode basis. The matrices χ± give a connection between these two basis 
[46]. For a sufficiently large system, H S and V T S are sparse matrices making the problem appropriate to the sparse solvers.

3.1. Connection to Green’s functions

The coupling with leads gives a finite line-width to the resonances in the scattering region via a so-called self-energy. 
In the non-equilibrium Green’s functions formalism (NEGF) (see, for instance, Refs. [10,40]) the embedding self-energy 
modifies the scattering region Hamiltonian as H S → H S + �. In what follows we demonstrate that � can be calculated 
from the presented equations.

Let us define the dual space states χ̃±
p , where(

χ̃±
p

)†
χ±

p′ = δpp′ , (34)

and identify the first and the second terms on the RHS of Eq. (24) with

ψnq− ≡ (λ−
p )nχ−

q , and ψnq+ ≡
N P∑

p=1

(λ+
p )nχ+

p S̃ pq. (35)

Introducing the translation operator F± [7]

F±ψnq± = ψn+1,q±, (36)

where

F± ≡
N P∑
p

λ±
p χ±

p

(
χ̃±

p

)†
, (37)

one can write ψ0q and ψ1q , respectively, as

ψ0q = ψ0q− + ψ0q+, (38)

ψ1q = F−ψ0q− + F+ψ0q+ = (F− − F+)χ−
q + F+ψ0q. (39)

Substituting Eq. (39) into Eq. (26) and solving Eq. (25) for ψSq we find

(E − H S − �)ψSq = Q −
q , (40)

where

Q −
q ≡ V †

T S G T V †
T (F− − F+)χ−

q (41)

is a source term dependent of which channel q is injecting,

� = V †
T S G T V T S (42)
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is the embedding self-energy, and

G T =
(

E − HT − V †
T F+

)−1
(43)

is the surface Green’s function of the semi-infinite leads. Since Eq. (43) involves outgoing states F+ , G T and � correspond 
to retarded Green’s function and self-energy, respectively [10].

We stress that both � and G T are independent of q and contain information about all the propagating modes at the 
energy E . In Appendix B we show that Eq. (43) reproduces the exact analytical surface Green’s function of a 1D chain.

Notice that we can solve Eq. (40) for ψSq as

ψSq = G S Q −
q , (44)

where G S is the scattering region Green’s function given by

G S ≡ (E − H S − �)−1 . (45)

Thus, knowing the full Green’s function matrix G S , we can calculate ψSq for any q using Eq. (44).
With the help of the dual vector χ̃+

p defined in Eq. (34) and the definition of ψ0q+ given by Eq. (35), we calculate the 
amplitudes S̃ pq as

S̃ pq = (χ̃+
p

)†
ψ0q+. (46)

The outgoing wave function ψ0q+ is a superposition of states χ+
p with amplitudes S̃ pq . Those states carry a probability 

current

jpq = jp

∣∣∣ S̃ pq

∣∣∣2 . (47)

Here jpq depends on the injecting mode q and jp is given by Eq. (21).
The transport coefficients P pq defined as the ratio between the incoming probability current jq and the outgoing proba-

bility current jpq at mode p reads

P pq = jpq

jq
=
∣∣∣∣∣
√

jp

jq
S̃ pq

∣∣∣∣∣
2

= ∣∣S pq
∣∣2 , (48)

where we defined the scattering amplitudes S pq as [10]

S pq ≡
√

jp

jq
S̃ pq, (49)

where S is unitary and conserves the current probability [10]. The factor 
√

jp/ jq reflects the different normalizations of the 
states ψ and �.

3.2. Generalized Fisher-Lee expression for the transmission amplitudes

Let us use the WFM method elements introduced above to derive the relation between the transmission amplitudes as 
functions of the scattering region Green’s functions.

First we write ψ0q+ in the RHS of Eq. (38) as a function of the scattering region wave function ψSq using Eqs. (39) and 
Eq. (26), namely

ψ0q+ = G T V T SψSq +
[

G T V †
T (F− − F+) − 1

]
χ−

q . (50)

Hence, the scattering amplitude S pq =√ jp/ jq S̃ pq reads

S pq =
√

jp

jq

(
χ̃+

p

)†
G T V T S G S V ST G T V †

T (F− − F+)χ−
q + (χ̃+

p

)†
[

G T V †
T (F− − F+) − 1

]
χ−

q . (51)

Here we used Eqs. (41) and (44) to substitute the dependence on ψSq by a dependence on the scattering region Green’s 
function G S .

We assume that the modes q and p belong to different leads α and β , respectively. Due to the block structure of 
Eq. (20) and to the absence of coupling between the leads, the matrices G T , V † and (F− − F+) are block diagonal in the 
T
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leads subspace. The two-contacts Hamiltonian in Eq. (13) illustrates the diagonal block structure of V †
T , for instance. Thus, 

the second term in Eq. (51) identically vanishes.
In this case, the scattering amplitude in Eq. (51) becomes

tβα
pq =

√
jp

jq

(
χ̃+

p

)†
G T V T S G S V ST G T V †

T (F− − F+)χ−
q , (52)

where tβα
pq is the current-normalized transmission amplitude for the scattering from mode q in the lead α to the mode p

in the lead β .
Although one can calculate the transmission coefficients by means of G S from Eq. (52), only few Green’s functions 

matrix elements, such as the elements connecting sites belonging to the interface with the leads, are required to compute 
the transmission (see, for instance Ref. [26]). Therefore, a simplification of Eq. (52) is desirable. For that purpose we use a 
sub-block division of the scattering region similar to the one used in Ref. [26].

We divide the scattering region into � + 1 blocks, where C is the central block, which has no connection with the leads, 
and α represents the α-interface, which is connected to C and only to the lead α, where α = 1, · · · , �. In this picture, G S

and V T S read

G S =

⎛
⎜⎜⎜⎝

[G S ]CC [G S ]C1 · · · [G S ]C�

[G S ]1C [G S ]11 · · · [G S ]1�

...
...

...

[G S ]�C [G S ]�1 · · · [G S ]��

⎞
⎟⎟⎟⎠ , (53)

V T S =

⎛
⎜⎜⎜⎝

0 V 11 0 · · · 0
0 0 V 22 · · · 0
...

...
...

...

0 0 0 · · · V��

⎞
⎟⎟⎟⎠ . (54)

Since G T V †
T (F− − F+) is diagonal, where [G T ]αβ = δαβ Gα V †

α

(
F α− − F α+

)
and F α± ≡∑N P

p∈α λ±
p χ±α

p

(
χ̃±α

p

)†, and the states χ−
q

and χ̃+
p have different non-vanishing blocks given by Eq. (20), we find

tβα
pq =

√
jp

jq

(
χ̃

+β
p

)†
Gβ V †

ββ [G S ]βα VααGα V †
α(F α− − F α+)χ−α

q , (55)

which is the generalized Fisher-Lee expression [10].

4. Benchmark and application

Let us now demonstrate the efficiency of the sparse solvers associated with the WFM method implemented in the 
Kwant package. To this end, we compare the processing time and memory usage of the WFM method with the standard 
RGF approach for a two-dimensional model system as a function of its size and aspect ratio. We conclude this section 
by discussing an application of the WFM method, namely, the calculation of longitudinal and transverse resistance of a 
realistic-sized graphene Hall bar.

As mentioned in the introduction, nowadays the RGF method is one of the most standard techniques to compute the 
conductance of nanoscale systems. This method is designed to compute only the system full Green’s function matrix ele-
ments related to transport properties [10]. For that purpose, the system is divided into partitions. The computational time 
necessary to calculate the transmission scales with the number of partitions times the cube of the typical number of sites 
within the partitions.

We recall that Ref. [9] draws conclusions by comparing the performance of the RGF and WFM methods for a square 
lattice system with L ×L sites as a function of L. The authors [9] find that the CPU time required to compute the conductance 
using the RGF method scales with L4, while the WFM implementation in Kwant scales with L3. Here we explore more 
diverse situations to numerically verify that the WFM method is more efficient than L3, as discussed in Sec. 3.

Let us begin by considering a nearest neighbor (nn) tight-binding Hamiltonian in a two-dimensional square-lattice of 
length L and width W in number of sites. We take W ′ as the width of the leads (see inset of Fig. 4a). We set E = 0. In 
this case, we recall that for semi-infinite square lattice leads the number of open channels at the left and right leads NL =
NR = W ′ . This model stems for instance from a finite-difference discretization of the Schrödinger equation of a mesoscopic 
two-dimensional electron gas (2DEG) [46,10]. For this model, the optimal partition of the RGF consists of L partitions (slices) 
with W sites each.

Fig. 4 gives the CPU time (in arbitrary units) necessary to compute the conductance of the system, Eq. (9), as a function 
of L, W , and W ′ . It should be emphasized that in both implementations, the linear algebra calculations are coded in lower 
level programming languages, making this comparison possible.
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Fig. 4. CPU time for the computation of the conductance as a function for a square lattice system of (a) length L (for W and W ′ fixed), (b) width W (for L
and W ′ fixed), and (c) lead width W ′ (for L and W constant). Since E = 0, W ′ = NR = NL . Solid lines indicate linear fittings.

Fig. 5. CPU time as a function of the side of a L × L system. The lines correspond to the best aW b fit. For Kwant (nn) b ≈ 2.7 (dotted line), for RGF (nn) 
(dashed line) and for RGF (3nn) (solid line) we have b ≈ 3.8. Kwant 3nn displayed the same trend as the corresponding nn.

As discussed in Sec. 3 one has to solve N P times the sparse linear system of dimension N S + MT , Eq. (32). Since the 
number of operations to solve a sparse system scales as O(N) [41] and here MT = 2W ′ , the WFM is expected scale as 
(LW + 2W ′)W ′ . Fig. 4 verify that this conjecture is indeed correct. As a consequence, the performance of the WFM method 
is much better than previously believed [9] for a realistic model of a nanostructure, MT = 2W ′ � W .

Let us now examine a situation where W = W ′ . Fig. 5 clearly shows that the CPU time of the RGF (nn) method scales 
with L4, as expected by the matrix multiplication and diagonalization operations involved. In distinction, the WFM shows a 
much better CPU performance scaling as L3 (here L = W = W ′). However, the overall pre-factor is typically large, making 
the method clearly advantageous only for W � 102 sites.

We use this setting to investigate the efficiency of the WFM method when dealing with tight-binding Hamiltonians that 
consider hopping matrix elements beyond nearest-neighbor sites. This is the case in tight-binding models based on Wannier 
wave functions [47], that are very practical and accurate tools to model large scale disorder systems. Let us consider a square 
lattice tight-binding Hamiltonian with up to the 3-rd nearest-neighbor (3nn) hopping terms. Since for the RGF method, only 
neighboring partitions should be connected in this model, one has to double the size of each slice, W → 2W , reducing the 
total number of slices by half L → L/2. Hence the CPU time grows by a factor of 4 (solid line of Fig. 5). In Fig. 5 we show 
that Kwant is practically insensitive to the coordination number of the lattice model, which represents a huge advantage 
over RGF.
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Fig. 6. Memory usage as a function of processing time in the calculation of the conductance for a nearest-neighbor tight-binding model of square lattice of 
dimensions L = 1000 and W = 600 for (a) the RGF and (b) the Kwant method. The different stages of the computation are indicated by (i) to (iv), see main 
text.

Let us now analyze the memory usage of both methods. As already pointed out in Ref. [9], the memory usage in Kwant 
can be ten times larger than in a RGF implementation, which is a problem for the computation of transport properties in 
large systems (with a million or more sites). In what follows we study this issue in more detail, examining the intermediate 
processes, such as the leads eigenmodes calculation, the linear system construction and factorization, and the solving stage, 
regions (ii)-(iv) of Fig. 6, respectively. This stage-by-stage information of the memory usage gives a clear view of the method 
advantages and bottlenecks.

Fig. 6 shows the memory usage in a conductance calculation for both the WFM and the RGF implementations. A huge 
difference can be noted between the maximum memory used for each method. In Kwant, a preliminary time is spent in 
reading the input parameters, stage (i), which is negligible in the RGF Fortran 90 implementation and it is not displayed. 
The next stage in both methods, indicated by (ii) in Fig. 6, is related to the computation of the lead contribution, namely, 
the lead surface Green’s function in the RGF [10] and the eigenmode diagonalization in WFM. In both methods, this is done 
twice for our two-probe model and �−times in general systems. Kwant spends an extra time in the factorization of the 
linear system, Eq. (33).

At the solving stage, indicated by (iv) in Fig. 6, we observe that Kwant requires one order of magnitude more memory 
than the RGF method. This is the only feature where the RGF outperforms the WFM methods. We note however that WFM 
approach allows for the computation of local operators (such as local currents and LDOS) with no significant additional cost, 
which is not the case for the RGF method.

Both methods are very robust and accurate. In our extensive tests, the computed conductances agree within the numer-
ical precision. Even in the cases where the Green’s function regularization factor η is known to require a special choice in 
RGF, like transmission by evanescent modes in graphene [48], the WFM method gives reliable results without any particular 
adjustment.

4.1. Application: graphene Hall bar

Let us now show the results of the WFM method for the transport properties in a realistic size graphene Hall bar in 
the quantum Hall regime [49]. Despite the importance of such class of systems, few numerical studies have addressed 
the longitudinal and transverse resistances in Hall bar geometries due to the lack of an efficient multi-terminal electronic 
transport code.

We consider a graphene sample with ∼ 106 atoms in a Hall bar geometry (inset of Fig. 7). The graphene tight-binding 
Hamiltonian [49] is H = − 

∑
〈i, j〉(ti j |i〉 〈 j| + H.c.) +∑

i εi |i〉 〈i|, where the sums run over the sites of a honeycomb lattice 
and 〈· · · 〉 restricts the pairs of sites to nearest-neighbors. The model includes a local (Anderson) scalar disorder by randomly 
choosing εi from an uniform distribution [−δW , δW ], where δW = 0.08t .

The magnetic field B = Bez perpendicular to the graphene sheet is accounted for by Peierls substitution, namely, by 
taking φi j = e

h̄

∫ r j
ri

A(r) ·dr and A = B d
dx [(W (x) −1)x]yex + BW (x)xey . The gauge W (x) is a smooth step-function conveniently 

chosen according to the orientation of the leads. Since in our Hall bar we consider leads along both the x and y directions, 
we avoid discontinuities in the magnetic field by smoothly varying the vector potential according to Ref. [50,35].

We calculate the system longitudinal and transverse resistances using the Landauer-Büttiker formula, Eq. (9), considering 
the terminals α = 2, 3, 5, 6 as voltage probes, that is, I2 = I3 = I5 = I6 = 0 (see inset of Fig. 7b). In this setting, I1 = −I4 = I . 
Hence, Rxx = (V 2 − V 3)/I1 and Rxy = (V 3 − V 5)/I1. Our results for a single disorder realization correspond to typical 
quantum Hall resistance curves for graphene samples [49]. Fig. 7a shows Rxx and Rxy as functions of E F for a particular 
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Fig. 7. Graphene Hall bar longitudinal Rxx and transverse Rxy resistance for a single disorder realization (106 atoms and T = 0) as a function of (a) E F /t
for φ/φ0 = 0.007 and (b) φ/φ0 for E F /t = 0.5.

Fig. 8. Local density of states at E F = 0.5t and a magnetic flux of (a) φ = 0.004φ0 (plateau state) and (b) φ = 0.008φ0 (transition state). (c) Local current at 
E F = 0.5t and φ = 0.004φ0 (plateau state). (For interpretation of the colors in the figure(s), the reader is referred to the web version of this article.)

value of φ/φ0. Here φ = B A, A is the area of the primitive unit cell and φ0 = h/e is the unit flux quantum. In Fig. 7b 
we show the dependence of Rxx and Rxy on the magnetic field B by varying φ/φ0 and keeping E F constant. Fig. 7 shows 
quantized Hall plateaus at Rxy = h

2e2
1

2n+1 for integer values of n and zero longitudinal resistance Rxx at the Rxy plateaus.
We also calculate the local density of states [9]. Figs. 8a and 8b show localized edge states along the sample in the 

plateau region and a delocalized state in the transition region between two plateaus (solid and dashed vertical lines of 
Fig. 7, respectively). As expected, the local current [9] show quantum Hall edge states, see Fig. 8c.
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The CPU time required for the resistance calculations is of the order of 80 seconds for a single disorder realization and 
a single energy value in one core of an Intel® Xeon® X5650 processor. As discussed, such fast computation time in WFM 
relies on the W ′ � W condition.

5. Conclusion

We have reviewed the underlying theory of the (WFM) method applied to a tight-binding (finite element) Hamiltonian 
used to model the transport properties of mesoscopic systems. Our analysis revealed that the WFM method is computation-
ally far superior than previously expected [9].

We numerically verify our predictions in a number of settings, benchmarking the CPU time, memory usage and precision 
of the WFM versus the RGF method.

To illustrate the power of the method we calculate the longitudinal and transverse resistance of a realistic-sized disor-
dered graphene sheet in the quantum Hall regime. We consider a sample patterned in a Hall bar geometry, corresponding 
to a multi-terminal setting difficult to treat with other numerical approaches.

We conclude mentioning that the WFM method allows for a straightforward generalization for multi-terminal systems 
with nontrivial sample geometries, while the RGF approach resorts on ingenious schemes to deal with such situations 
[26,31]. In addition, the Kwant package also offers a set of implementation tools to facilitate the study of a wide range of 
settings, such as multi-orbital atomic states, general lattice connectivity and geometry, to name a few.
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Appendix A. Derivation of the resonance S-matrix

Equation (8) can be derived in different ways [39,15,51,52]. Here we present a simple derivation of the resonance S-
matrix using the projection formalism introduced in Sec. 2.

First we define the system Hamiltonian in Eq. (5) as

H = H P P + U , (A.1)

where

U ≡ H P Q + H Q P + H Q Q . (A.2)

Recalling that H |�±
m(E)〉 = E|�±

m〉 and H P P |χm(E)〉 = E |χm(E)〉, one readily writes [15]

|�±
m(E)〉 = |χm(E)〉 + (E± − H P P )−1U |�±

m(E)〉. (A.3)

Solving Eq. (A.3) for |�±
m(E)〉 yields

|�±
m(E)〉 = |χm(E)〉 + (E± − H)−1U |χm(E)〉 . (A.4)

In order to obtain the S-matrix, we first use Eq. (A.4) to calculate 〈�−
m(E)|�+

m′(E ′)〉, namely

〈�−
m(E)|�+

m′(E ′)〉 = 〈χm(E)|�+
m′(E ′)〉 + 〈χm(E)|U (E + iη − H)−1|�+

m′(E ′)〉,
= 〈χm(E)|�+

m′(E ′)〉 + (E − E ′ + iη)−1〈χm(E)|U |�+
m′(E ′)〉. (A.5)

The substitution of Eq. (A.3) into the first term of the RHS of Eq. (A.5) leads to

〈�−
m(E)|�+

m′(E ′)〉 = 〈χm(E)|χm′(E ′)
〉

+ 〈χm(E)| (E ′ + iη − H P P )−1U |�+
m′(E ′)〉 + (E − E ′ + iη)−1 〈χm(E)| U |�+

m′(E ′)〉, (A.6)

= δmm′δ(E − E ′) + 〈χm(E)| U |�+
m′(E ′)〉 [(E ′ − E + iη)−1 + (E − E ′ + iη)−1] . (A.7)

In the limit η → 0+ , the term between braces becomes −2π iδ(E − E ′) [15] and the S-matrix reads

Smm′(E) = δmm′ − 2π i
〈
χm(E)|U |�+

m′(E)
〉
. (A.8)

With the help of Eq. (A.4), the S-matrix is written in terms of the transition operator T

Smm′(E) = δmm′ − 2π i 〈χm(E)| T |χm′(E)〉 , (A.9)
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where T ≡ U + U (E − H)−1U . Since Q |χm(E)〉 = 0, we write Tmm′(E) = 〈χm(E)| T |χm′ (E)〉 as

Tmm′ ≡ 〈χm(E)| H P Q (E − H)−1 H Q P |χm′(E)〉 . (A.10)

In turn, we conveniently write the operator (E − H)−1 using the Dyson equation

(E − H)−1 = (E − H Q Q )−1 + (E − H Q Q )−1 V (E − H)−1, (A.11)

where we used H = H Q Q + V . Projecting onto the bound states and using P + Q = 1 we find

Q (E± − H)−1 Q = (E± − H Q Q )−1 + (E± − H Q Q )−1 H Q P P (E± − H)−1 Q . (A.12)

In analogy, we write a Dyson equation using Eq. (A.1) to obtain P (E − H)−1 Q as

P (E± − H)−1 Q = (E± − H P P )−1 H P Q Q (E± − H)−1 Q . (A.13)

Combining Eqs. (A.12) and (A.13) we arrive at

Q (E± − H)−1 Q = (E± − H Q Q − �±)−1, (A.14)

where �±(E) ≡ H Q P (E± − H P P )−1 H P Q .

Inserting the result in Eq. (A.14) back into Eq. (A.10) and defining 〈χm(E)| H P Q |φμ〉 ≡ ρ
1/2
m (E)[H P Q ]mμ we find

Tmm′ =
∑
μμ′

〈χm(E)| H P Q |φμ〉〈φμ|(E − H Q Q − �+)−1|φμ′ 〉〈φμ′ |H Q P |χm′(E)〉 , (A.15)

which completes the demonstration of Eq. (8). We note that it is standard to use the notation Wmμ = 〈χm(E)| H P Q |φμ〉, 
see for instance Refs. [39,51,52,23]. The notation we adopt here is more convenient for the discussion of the numerical 
implementation.

Appendix B. Surface Green’s function for a 1D chain

In this Section we explicitly derive the Green’s function of the first site in a semi-infinite linear chain of atoms using 
Eq. (43). We consider a system with one orbital per atom, where the hopping matrices are numbers given by H T = ε0 and 
V T = −t . We apply the definition of the leads eigenstates in Eq. (16) into Eq. (15) to find

E = ε0 − t(λ−1 + λ), (B.1)

whose solutions are

λ±
1 = −

(
E − ε0

2t

)
± i

√
1 −

(
E − ε0

2t

)2

. (B.2)

Notice that if we substitute λ = eika into Eq. (B.1) we recover the well known dispersion relation for the 1D chain.
The eigenstates corresponding to λ±

1 are χ±
1 = 1. The probability current j1, given by Eq. (21), reads

j±1 = 2
t

h̄
Im(λ±

1 ) = ±2
t

h̄

√
1 −

(
E − ε0

2t

)2

. (B.3)

Thus, there is one state propagating forwards ( j+1 > 0) and one propagating backwards ( j−1 < 0), resulting in Np = 1.
Since the dual vectors are simply χ̃±

1 = 1, Eq. (37) leads to F+ = λ+
1 . Therefore, the surface Green’s function G T in 

Eq. (43) reads

G T = (E − ε0 + tλ+
1

)−1 = 1

t

⎡
⎣( E − ε0

2t

)
− i

√
1 −

(
E − ε0

2t

)2
⎤
⎦ . (B.4)
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