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Abstract

Our purpose is to derive a hybrid model for particle systems which combines a kinetic description of the fast particles

with a fluid description of the thermal ones. In the present work, fast particles will be described through a collisional

kinetic equation of Boltzmann–BGK type while thermal particles will be modeled by means of a system of Euler type

equations. Then, we construct a numerical scheme for this model. This scheme satisfies exact conservation properties.

We validate the approach by presenting various numerical tests.

� 2004 Elsevier Inc. All rights reserved.
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1. Introduction

In rarefied gas dynamics, for strongly non-equilibrium situations, fluid models are inappropriate and one

must resort to a kinetic description such as that provided by the Boltzmann equation. But the cost of the

numerical resolution of this model is very prohibitive in terms of both CPU time and memory storage. We

refer the reader to [2,4,26], etc. In the present work, we propose a hybrid kinetic/fluid model describing the

evolution of slow (or thermal) particles by means of a fluid model, and restricting the use of the kinetic
model to the modeling of fast (or suprathermal) particles.

Fluid dynamical descriptions are based on the assumption that the mean free path of a particle is very

small compared to the typical macroscopic length. In this case, the distribution function of the particles

approaches a local equilibrium represented by a maxwellian, the parameters of which are the fluid variables

(density, mean velocity and temperature). The evolution of the fluid variables is governed by the Euler or
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Navier–Stokes equations. More precisely, if s is the Knudsen number (ratio of the particle mean free path

to the typical macroscopic scale), an expansion of the solution of the Boltzmann equation in power of s can
be performed (Hilbert or Chapman–Enskog expansion [8,9]). At the leading order in s, the distribution
function is approximated by a maxwellian whose parameters obey the Euler equations. If the next order is

retained, the fluid parameters solve the compressible Navier–Stokes equations, where the diffusion terms

(viscosity and heat conductivity) are of the order of s. When s is small without being very small, the Navier–

Stokes equations offer a quite good compromise between physical accuracy and numerical efficiency.

However, when s becomes larger, the Navier–Stokes equations break down, as well as any model at-

tempting to take into account higher order powers in s (like e.g. the Burnett equations).

Our model is aimed at transition regimes, where s ¼ Oð1Þ, when the Navier–Stokes equations surely

break down. In such a situation, one must resort to the resolution of the full kinetic equation.
Solving a kinetic equation requires the discretization of large number of variables (3 dimensions in

position, 3 dimensions in velocity plus the time). Moreover, a kinetic equation very often involves stiff terms

in the collision operator and its computational cost is often quite expensive. To overcome these problems,

probably the most efficient method is the Monte-Carlo method (cf. [4,18,26], etc.). Some deterministic

methods (cf. [7,15,22,29], etc.) have been recently developed with some success. Nevertheless, the search for

models which would give a good approximation of the physics at a reasonable computer cost is still not

complete. Our work is a contribution in this direction. It partly relies on Levermore’s entropy minimization

approach (see [21]), which was used to develop higher order moment hierachies, in the spirit of earlier work
by Grad [16,17] or M€uller and Ruggeri [25]. Related approaches can be also be found in [14] where half

moment expansions are used.

In this paper, we present a hybrid kinetic/fluid model based on a domain decomposition method in the

velocity variable. In order to simplify the presentation, we consider a Bathnagar–Gross–Krook (BGK)

model (instead of the full Boltzmann operator) as a starting point (see [3]). The unknown distribution

function f ¼ f ðt; x; vÞ depends on time tP 0, on space x 2 Rd , and on velocity v 2 Rd ; d ¼ 1; 2; 3, and
solves

of
ot

þ v � rxf ¼ 1

s
ðM½f � � f Þ: ð1:1Þ

M½f � is the maxwellian with the same moments as f , i.e.

M½f �ðvÞ ¼
n

ð2pT Þ
d
2

exp

"
� jv� uj2

2T

#
; ð1:2Þ

where n; u; T (the density, mean velocity and temperature) satisfy:

n ¼
Z
Rd

f ðvÞ dv;

nu ¼
Z
Rd

vf ðvÞ dv;

dnT ¼
Z
Rd

jv� uj2f ðvÞ dv:

ð1:3Þ

In other words, M½f � is defined as the only maxwellian whose parameters n; u; T are such that
Z
Rd

f ðvÞ
1

v
jvj2

0
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Adv ¼

Z
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v
jvj2

0
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Adv: ð1:4Þ
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Finally, s > 0 represents a scaled relaxation time. Eq. (1.1) is written in scaled variables, the time and space

scales being related to the problem under consideration (e.g. the domain size). Eq. (1.1) is supplemented

with an initial condition fðt¼0Þ ¼ f0:
Our model relies on the assumption that the particles can be clearly grouped into two categories. The

first category consists of thermal particles, whose distribution function is close to a maxwellian. The second

category is that of suprathermal or energetic particles. They are supposed to represent a small proportion of

the total number of particles. On the other hand, their distribution function can be anything. Of course,

there are situations where such an assumption is clearly untrue (for instance, the case of two interpene-

trating particle beams for which the distribution function is the sum of two maxwellians of nearly equal

weights), but our belief is this assumption is satisfied in many cases of practical interest. We shall give some

examples later on. Following this assumption, we choose a domain B1 in velocity space (most often a ball
centered in u and with radius R

ffiffiffiffi
T

p
, where u and T are a velocity and a temperature to be conveniently

chosen, and R is a fixed number). We suppose that the particle distribution function can be approximated

by a maxwellian inside B1. Therefore, we make the Ansatz that the solution of (1.1) can be approximated by

f ¼ M1; v 2 B1;
f2; v 2 B2 ¼ Rd n B1;

�
ð1:5Þ

where M1 is a maxwellian. In practice, u and T are space and time dependent functions. They are chosen to

be the mean velocity and the temperature of f .
Let ðn1; u1; T1Þ be the parameters of M1. On should note that u1 6¼ u and T1 6¼ T in general. We must

derive a set of fluid equations for ðn1; u1; T1Þ from the BGK model (1.1), as well as a kinetic equation for f2.
The way we achieve this task is by taking the moment equations of (1.1) on the domain B1. We obtain

conservation equations for the mass, momentum and energy of the thermal particles i.e. those contained in
B1. As usual, these equations are not closed. To close the system, we use Levermore’s entropy minimization

strategy [21] and take the distribution function in B1 to be the maxwellianM1, which minimizes the entropy

of the thermal particles, subject to the constraints of given mass, momentum and energy in B1. The so-

obtained system differs from the standard Euler equations in the expression of the fluxes on the one hand

(because these fluxes are integrated over B1 only) and in the coupling with the BGK equation which de-

scribes the evolution of the distribution function f2. This coupling is due first to the collision operator

(collisions may ‘‘send’’ particles from B1 to B2 and vice versa), but also, to the fact that u and T are de-

pending on ðt; xÞ. Therefore, the variations of the fluid domain in space and time induce fluxes of particles
from B1 to B2 and vice versa. These fluxes appear as source and sink terms depending on f2 in the Euler

equations, and as boundary conditions depending on M1 at the boundary of B2 for f2.
We must point out how important it is for a numerical discretization to respect a perfect flux balance

between the two sets of equations (the Euler equations on B1 and the BGK equation on B2). Otherwise,

there might exist local sources or sinks of mass, momentum and energy which is obviously unphysical.

We shall present a numerical strategy which respects this balance perfectly. It relies first on a full time,

space and velocity discretization of the BGK equation by a conservative finite volume scheme. Then, the

analogue of the decomposition (1.5) is performed in the discrete distribution function; the discrete moment
equations are obtained for the thermal particles and a discrete entropy minimization principle is used to

close the equations.

In this paper, we try to demonstrate the validity of the hybrid approach against the full kinetic equation.

Therefore, we do not try to optimize the numerical efficiency and at this stage, our hybrid model is still

more costly than (or at least as costly as) a direct finite volume simulation of the BGK equation. The reason

is that the computation of the numerical fluxes for the Euler equations is done by discrete integration of the

maxwellian on the mesh discretization of the phase space. Therefore, the storage requirements and com-

putational complexity of the method is the same as for the resolution of the full BGK equation by a de-
terministic method.
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Cost reduction will be obtained by two means: a faster computation of the numerical fluxes, possibly

involving some pre-storage on the one hand, and a Lagrangian (particle type) discretization of the dis-

tribution function on B2. These concepts will be developed in future work.
We now outline some similar approaches in the literature. First this approach was developed for dif-

fusion equations in [10], and for hydrodynamics equations in [11]. It bears some similarities with the so-

called df method [6,27]. However, the df approach relies on writing the distribution function as

f ¼ Mþ df with M a maxwellian whose parameters are solutions of the standard Euler equations and df
satisfies a perturbation equation involving some approximations. Therefore, everywhere in velocity space,

there is a superposition of a thermal distribution function M and a non-thermal part df . The idea of using

moments over sub-regions of velocity space is also present in [14]. Most hybrid kinetic/fluid approaches

used so far are based on a domain-decomposition in position space: a fluid model is used except in specific
regions where the flow is identified as being far from equilibrium, and where a kinetic model is used (cf.

[5,23,24], etc.). Then, suitable interface conditions are set up at the kinetic/fluid interface. Sometimes, an

overlap of the kinetic and fluid regions is performed.

Levermore’s moment hierarchy of models [21] is sometimes used as an alternative to kinetic models. This

approach has been pioneered by Grad [16] and has been thoroughly investigated in the physics literature by

M€uller and Ruggeri [25]. It has been applied to rarefied gas dynamics by [19,22,24], semiconductor physics

(see [1]), etc. The entropy minimization approach, which founds Levermore’s approach as well as the

present work, has also found applications to deterministic numerical methods for the BGK equation, like
e.g. in [22].

The paper is organized as follows. In Section 2, the hybrid model is derived following the ideas outlined

above. In Section 3, its fully conservative numerical discretization is proposed. For the sake of simplicity,

we restrict to a one-dimensional model on both space and velocity. In Section 4, results of numerical

simulations are presented. A few technical points are developed in Appendices A, B and C.
2. Derivation of the hybrid model

Our starting point is the Boltzmann–BGK equation (1.1) and (1.2). Let us introduce some notations.

Definition 2.1. For all function g : Rd ! R, we define for i ¼ 1; 2:

giðvÞ ¼
gðvÞ if v 2 Bi;
0 otherwise;

�

where B1 is defined by B1 ¼ fv 2 Rd s:t: jv� uj6R
ffiffiffiffi
T

p
g and B2 ¼ Rd n B1:

Remark 2.2. Later on, u and T will be chosen as the mean velocity and temperature of the distribution

function f over Rd .

Our goal is to approximate (1.1) and (1.2) by a fluid/kinetic model. Associated to the solution f to (1.1)
and (1.2), the distribution function f2 is the unknown of the kinetic part of the hybrid model. On the other

hand, the fluid part must be a closed system of ðd þ 2Þ equations satisfied by the moments of f1 on B1; they

are given by U1 ¼ ðn1; P1; 2W1ÞT such that

Z
B1

f1ðvÞ
1

v
jvj2

0
@

1
Adv ¼

n1
P1
2W1

0
@

1
A ¼ U1; ð2:1Þ
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with n1 the density, P1 the momentum and W1 the total energy of f1 on B1. Integrating (1.1) on B1

against the vector of conserved quantities mðvÞ ¼ ð1; v; jvj2ÞT with respect to the velocity variable v 2 B1

leads to a non-closed system of equations for U1. This is the well-known ‘‘moment closure problem’’
in kinetic theory. To close these equations, we shall use Levermore’s strategy, based on the entropy

minimization principle (see [21]). However, the present situation is different from that investigated by

Levermore, in that the velocity set of integration is bounded, and the approach requires a few minor

adjustments.

First, we introduce the entropy functional related to the domain B1:

H1ðgÞ ¼
Z
B1

gðvÞ logðgðvÞÞ dv 8gP 0;

and the corresponding entropy minimization problem,

Given n1 P 0; P1 2 Rd ; W1 P 0; find a non-negative function M1 on B1;
realizing the following minimum:

Min H1ðgÞ; gP 0 s:t:
R
B1
gðvÞ

1

v
jvj2

0
@

1
Adv ¼

n1
P1
2W1

0
@

1
A

8<
:

9=
;:

8>>>><
>>>>:

ð2:2Þ

If (2.2) has a solution, then the system of moments U1 derived from (1.1) and (1.2) can be closed by a

distribution function that coincides with that solution. This closure strategy, as pointed out by Levermore

[21], ensures the hyperbolicity of the so-obtained system (here, if u and T are chosen a priori). The following

proposition solves the entropy minimization problem (2.2) (following results in [20]):

Proposition 2.3. The entropy minimization problem (2.2) has a solution if and only if

jP1j2 6 2n1W1; ð2:3Þ
2n1W1 � jP1j2

n21
þ u

���� � P1
n1

����
2

6R2T : ð2:4Þ

Moreover, under conditions (2.3) and (2.4), the solution is unique and is a maxwellian function:

M1ðvÞ ¼ expðk1 � mðvÞÞ ¼ expðk10 þ k11 � vþ k12jvj
2Þ; ð2:5Þ

where k1 ¼ ðk10; k
1
1; k

1
2Þ

T 2 Rdþ2 is uniquely determined by the following relation:
Z
B1

expðk1 � mðvÞÞmðvÞ dv ¼
n1
P1
2W1

0
@

1
A with mðvÞ ¼ ð1; v; jvj2ÞT: ð2:6Þ

For the proof, we refer the reader to Appendix A.

The so-obtained distributionM1, of the form (2.5), is used to close our moment system. We are now able

to write the hybrid model. For this purpose, let us first introduce some notations. The quantities,

wn1
wP1
2wW

0
@

1
A ¼

Z
B1

M1ðvÞvmðvÞ dv ¼
Z
B1

M1ðvÞ
v

v� v
jvj2v

0
@

1
Adv; ð2:7Þ
1
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are the moment fluxes, with mðvÞ ¼ ð1; v; jvj2ÞT. The term,

~F ðvÞ ¼ D
v� u
R

ffiffiffiffi
T

p
� �

; with D ¼ o

ot
þ v � rx; ð2:8Þ

is a force which results from the space and time variations of B1 as we shall see later on. Now, if we denote

by Sðu;R
ffiffiffiffi
T

p
Þ the boundary of B1, which, in the case we consider, is a sphere of center u and radius R

ffiffiffiffi
T

p
,

we can introduce the following sets:

S� ¼ fv 2 Sðu;R
ffiffiffiffi
T

p
Þ s:t: ~F ðvÞ �~m < 0g; ð2:9Þ
Sþ ¼ fv 2 Sðu;R
ffiffiffiffi
T

p
Þ s:t: ~F ðvÞ �~m > 0g; ð2:10Þ

where~m is the outward unit normal to Sðu;R
ffiffiffiffi
T

p
Þ. If dSðvÞ is the Euclidean surface element on Sðu;R

ffiffiffiffi
T

p
Þ,

we can then define the following boundary outgoing and incoming semi-fluxes:

Ln1

LP1

2LW1

0
@

1
A :¼

Z
Sþ

~F ðvÞ �~mM1ðvÞmðvÞ dSðvÞ;
Gn1

GP1

2GW1

0
@

1
A :¼

Z
S�

j~F ðvÞ �~mjf2ðvÞmðvÞ dSðvÞ

(where ‘‘L’’ is for ‘‘loss’’ and ‘‘G’’ for ‘‘gain’’: we shall see that they enter as loss and gain terms in the Euler

equations). If we take the moments of (1.1), make the approximation f1 ’ M1 given by (2.5) and (2.6), and

if we couple the so-obtained closed system to the restriction of (1.1) to B2 (where f1 is again replaced by M1

on B1), then we obtain the following hybrid model.

Proposition 2.4. With the previous notations, the hybrid fluid/kinetic model of unknowns ðn1; P1;W1; f2Þ is

written as

o

ot

n1
P1
W1

0
@

1
Aþrx �

wn1
wP1
wW1

0
@

1
A ¼ 1

s

nð1Þ � n1
P ð1Þ � P1
W ð1Þ � W1

0
@

1
A�

Ln1

LP1

LW1

0
@

1
Aþ

Gn1

GP1

GW1

0
@

1
A;

of2
ot

þ v � rxf2 ¼
1

s
Q2ðf2;M1Þ; ð2:11Þ

with the following boundary conditions:

f2ðvÞ ¼ M1ðvÞ 8v 2 Sþ:

The moments ðn1; P1;W1ÞT are given by (2.1). Moreover, the collision term is given by

Q2ðf2;M1Þ ¼ ðM½M1þf2�;2ðvÞ � f2ðvÞÞ; v 2 B2;

where M½M1þf2� (whose parameters are the density, mean velocity and temperature of M1 þ f2) satisfiesZ
Rd

M½M1þf2�ðvÞmðvÞ dv ¼
Z
Rd

M1ðvÞð þ f2ðvÞÞmðvÞ dv:
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Moreover, we denote

nð1Þ

P ð1Þ

2W ð1Þ

0
@

1
A ¼

Z
B1

M½M1þf2�ðvÞmðvÞ dv;

with mðvÞ ¼ ð1; v; jvj2ÞT:

Remark 2.5. Under the assumption that u and T are chosen a priori, the fluid part of the hybrid model is

hyperbolic. This is a simple consequence of Levermore’s result (see [21]).

Proof. We integrate (1.1) with respect to v on B1, after multiplication by ð1; v; jvj2ÞT. We get

Z
B1

of
ot

ðvÞ
1

v
jvj2

0
@

1
Advþ

Z
B1

v � rxf ðvÞ
1

v
jvj2

0
@

1
Adv ¼ 1

s

Z
B1

ðM½f � � f ÞðvÞ
1

v
jvj2

0
@

1
Adv: ð2:12Þ

First, we recall the notation

Ui ¼
Z
Bi

fiðvÞ
1
v
jvj2

0
@

1
Adv ¼

ni
Pi
2Wi

0
@

1
A; i ¼ 1; 2 ð2:13Þ

for the moments of fi; i ¼ 1; 2; and introduce similar notations for the fluxes,

uðfiÞ ¼
Z
Bi

fiðvÞv
1

v
jvj2

0
@

1
Adv; i ¼ 1; 2:

Let us consider the left-hand side of (2.12). If we exchange derivatives and integrals, there appear some

boundary terms. To compute them, we use a change of variables that transforms B1 into the fixed ball

Bð0; 1Þ of radius 1 and whose center is 0

w ¼ v� u
R

ffiffiffiffi
T

p : ð2:14Þ

We then set f1ðt; x; vÞ ¼ g1ðt; x;wÞ, and obtainZ
B1

of1
ot

�
þ v � rxf1

�
mðvÞ dv ¼

Z
Bð0;1Þ

og1
ot

�
þ ðR

ffiffiffiffi
T

p
wþ uÞ � rxg1 þ~F 1ðwÞ � rwg1

�
~mðwÞJ dw

¼ o

ot

Z
Bð0;1Þ

g1 ~mðwÞJ dw�
Z
Bð0;1Þ

g1
o

ot
ð~mðwÞJÞ dw

þrx �
Z
Bð0;1Þ

ðR
ffiffiffiffi
T

p
wþ uÞg1 ~mðwÞJ dw�

Z
Bð0;1Þ

g1rx

� ððR
ffiffiffiffi
T

p
wþ uÞ~mðwÞJÞ dw�

Z
Bð0;1Þ

g1rw � ð~F 1ðwÞ~mðwÞJÞ dw

þ
Z
Sð0;1Þ

~F 1ðwÞ �~mg1 ~mðwÞJ dSðwÞ; ð2:15Þ
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where~m is the outward unit normal to Bð0; 1Þ

~F 1ðwÞ ¼ � 1

R
ffiffiffiffi
T

p D1 R
ffiffiffiffi
T

p
w

�
þ u
�
; with D1 ¼

o

ot
þ ðR

ffiffiffiffi
T

p
wþ uÞ � rx ð2:16Þ

is a force term, and

~mðwÞ ¼
1

R
ffiffiffiffi
T

p
wþ u

jR
ffiffiffiffi
T

p
wþ uj2

0
@

1
A:

Finally,

J ¼ ðR
ffiffiffiffi
T

p
Þd ; d ¼ 1; 2; 3;

is the Jacobian of the change of variables (2.14). Some calculations (which are developed in Appendix B)
show that the sum of the second, the fourth and the fifth terms of (2.15) vanishes. So, if we return to the

original v variable, we obtainZ
B1

of1
ot

�
þ v � rxf1

�
mðvÞ dv ¼ o

ot

Z
B1

f1mðvÞ dvþrx �
Z
B1

vf1mðvÞ dvþ
Z
Sðu;R

ffiffiffi
T

p
Þ
~F ðvÞ �~mf1mðvÞ dSðvÞ;

ð2:17Þ

where ~F ðvÞ is the force (2.16) expressed in terms of v,

~F ðvÞ ¼ D
v� u
R

ffiffiffiffi
T

p
� �

; with D ¼ o

ot
þ v � rx:

Now, using (2.12) and (2.17), we obtain the following moment system:

oU1

ot
þrx � uðf1Þ ¼

1

s

Z
B1

M½f1þf2�ðvÞ
�

� f1ðvÞ
	
mðvÞ dv�

Z
Sðu;R

ffiffiffi
T

p
Þ
~F ðvÞ �~mf1ðvÞmðvÞ dS:

The boundary terms represent the exchange fluxes between the kinetic and the fluid zones. We decompose

these boundary terms into outgoing semi-fluxes:Z
Sþ

~F ðvÞ �~mf1ðvÞmðvÞ dS;

and incoming semi-fluxes:Z
S�

j~F ðvÞ �~mjf1ðvÞmðvÞ dS: ð2:18Þ

This last term (2.18) takes into account particles fluxes from B2 to B1; these fluxes are due to the variation of

the ball B1. Therefore, these incoming particles are modeled by f2 and, using the boundary conditions,

(2.18) becomesZ
S�

j~F ðvÞ �~mjf2ðvÞmðvÞ dS:

Now, we make the approximation f1ðvÞ ’ M1ðvÞ 8v 2 B1, where M1 is given by (2.5) and (2.6) (with

n1; P1;W1 defined by (2.13)). Then, we obtain the first part of (2.11); the coupling with the restriction of (1.1)
to B2 (where f1 is always approximated by M1) leads to the hybrid model (2.11). h
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3. Numerical schemes for the hybrid model

In this section, we present a numerical scheme for the hybrid model (2.11). The main difficulty comes
from the dependence of B1 ¼ fv 2 Rd s:t: jv� uj6R

ffiffiffiffi
T

p
g on both time and space. As pointed out in

Section 1, the variations of B1 in position and time induce fluxes of particles from B1 to B2 and vice versa.

Then the mass, momentum and energy fluxes into B2 must be exactly balanced by the same fluxes out of B1,

otherwise unphysical source or sink terms will appear. To ensure these conservations at the discrete level,

we first start from a fully discretized version of the BGK equation in position, velocity and time, and

perform the domain decomposition and passage to the fluid quantities on B1, directly on the discrete

equations. The motion of the ball B1; which takes into account the evolution of the mean velocity u and the

temperature T , is performed at the end of each discretization step.
For the sake of simplicity, we restrict to a one-dimensional problem in both position and velocity space,

with a cartesian grid xi ¼ iDx; vk ¼ kDv; i; k 2 Z, while tn ¼ nDt is the time discretization, n 2 N. Like in

the continuous case (see Section 2), our starting point is the BGK equation. We first discretize (1.1) and

(1.2) on the full velocity space, following the strategy developed in [22]. We approximate f ðtn; xi; vkÞ by f n
i;k

such that

f nþ1
i;k ¼ f n

i;k � vþk
Dt
Dx

f n
i;k

h
� f n

i�1;k

i
� v�k

Dt
Dx

f n
iþ1;k

h
� f n

i;k

i
þ Dt

s
En

i;k

h
� f n

i;k

i
; ð3:1Þ

with v�k ¼ 1
2
ðvk � jvkjÞ and where ðEn

i;kÞk2Z realizes the following minimum:

Min
X
k2Z

gk logðgkÞDv; gk

(
P 0 s:t:

X
k2Z

mkgkDv ¼ Un
i

)
; ð3:2Þ

with the prescribed moments Un
i ¼

P
k2Z f

n
i;kmkDv and mk ¼ ð1; vk; jvkj2Þ: In [22], it is shown that the operator

ðEn
i;k � f n

i;kÞ is an approximation of the BGK operator. In particular, thanks to Theorem 3.1 of [22], ðEn
i;kÞk2Z

has an exponential form provided that the prescribed moments Un
i are strictly realizable (i.e. Un

i is the mo-

ment vector of a strictly positive discrete function). In this case, the discrete equilibrium is En
i;k ¼ expðani � mkÞ,

where ani 2 R3 is the solution of the discrete moment problem (see Appendix C for more details)X
k2Z

mk expðani � mkÞDv ¼ Un
i : ð3:3Þ

We note that (3.1) can be viewed as a first order finite volume method for the BGK equation (1.1) and (1.2).

Now, in order to decompose the velocity domain, we have to define a discretized version of the ball B1.

In the remainder of this paper, we shall choose u and T as the global mean velocity uðt; xÞ and temperature

T ðt; xÞ, respectively. They are approximated at point xi and at time tn by

uni ¼
Pn
i

nni
; ð3:4Þ
T n
i ¼

2W n
i n

n
i � ðPn

i Þ
2

ðnni Þ
2

; ð3:5Þ

where nni ; Pn
i and W n

i are the mass, momentum and energy at xi and tn, and are such that

Un
i ¼

nni
P n
i

2W n
i

0
@

1
A ¼

X
k2Z

f n
i;kmkDv:
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Then, at position xi and time tn, ðB1Þni can be approximated by the following discrete set:

Kn
i ¼ fk 2 Z s:t: vk ¼ kDv satisfies jvk � uni j6R

ffiffiffiffiffi
T n

i

p
g; ð3:6Þ

where R is an arbitrary parameter.
We introduce the moments of ðf n

i;kÞk2Z on the set Kn
i according to

Un
1;i ¼

X
k2Kn

i

mkf n
i;kDv;

and the restriction of ðf n
i;kÞk2Z on Z nKn

i

f n
2;i;k ¼

f n
i;k if k 2 Z nKn

i ;
0 otherwise:

�

We are going to present an algorithm which, from the knowledge of Kn
i ;U

n
1;i; f

n
2;i;k at time tn, computes

Knþ1
i ;Unþ1

1;i ; f nþ1
2;i;k at time tnþ1, based on the moments of (3.1).

First, the discrete fluxes on Kn
i of an arbitrary discrete distribution function ðgkÞk2Z are denoted by

/n
1;i;�ðgÞ ¼

X
k2Kn

i

v�k mkgkDv; ð3:7Þ

and the moments of ðEn
i;kÞk2Z on Kn

i are written as

Un
ð1Þ;i ¼

X
k2Kn

i

mkE
n
i;kDv:

To close our discrete moment systems, we shall approximate f n
i;k on Kn

i by the solution ðMn
1;i;kÞk2Kn

i
of the

following minimization problem, with the prescribed moments Un
1;i

Min
X
k2Kn

i

gk logðgkÞDv; gk

8<
: P 0 s:t:

X
k2Kn

i

mkgkDv ¼ Un
1;i

9=
;: ð3:8Þ

Note that (3.8) differs from (3.2) in that the summations are carried over the set Kn
i instead of Z. This

problem is solved in the same way as (3.2). Indeed, if the prescribed moments Un
1;i are strictly realizable,

Mn
1;i;k has the following exponential form Mn

1;i;k ¼ expðkn1;i � mkÞ; where kn1;i 2 R3 is the solution of the dis-
crete moment problemX

k2Kn
i

mk expðkn1;i � mkÞDv ¼ Un
1;i: ð3:9Þ

Now, we first take the moments of (3.1) on Kn
i and close the resulting equations by the discrete entropy

minimization problem (3.8). In a next step, we shall ‘‘move’’ the set Kn
i into a new one, Knþ1

i . First, let us

introduce the moments ~Unþ1
1;i of f nþ1

i;k on the ball Kn
i

~Unþ1
1;i ¼

X
k2Kn

i

mkf nþ1
i;k Dv;

as well as the restriction of f nþ1
i;k onto the complement Z nKn

i

~f nþ1
2;i;k ¼ f nþ1

i;k if k 62 Kn
i ;

0 otherwise:

�
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If we take the discrete moments of (3.1) on Kn
i , and close the resulting moment equations by the solution

f n
i;k ’ Mn

1;i;k; 8k 2 Kn
i of the discrete entropy minimization problem (3.8) on the one hand, and take the

restriction of (3.1) on Z nKn
i on the other hand, we obtain

~Unþ1
1;i ¼ Un

1;i �
Dt
Dx

/n
1;i;þðMn

1;iÞ
h

� /n
1;i;þðMn

1;i�1 þ f n
2;i�1Þ

i
� Dt
Dx

/n
1;i;�ðMn

1;iþ1

h
þ f n

2;iþ1Þ � /n
1;i;�ðMn

1;iÞ
i
þ Dt

s
Un

ð1Þ;i

h
� Un

1;i

i
; ð3:10Þ
~f nþ1
2;i;k ¼ f n

2;i;k � vþk
Dt
Dx

f n
2;i;k

h
� Mn

1;i�1;k

�
þ f n

2;i�1;k

�i
� v�k

Dt
Dx

Mn
1;iþ1;k

�h
þ f n

2;iþ1;k

�
� f n

2;i;k

i
þ Dt

s
En

i;k

h
� f n

2;i;k

i
: ð3:11Þ

Let us remark that ~Unþ1
1;i and ~f nþ1

2;i;k are intermediate variables that only take account the space variation of

Kn
i through the fluxes.
The next step of the algorithm is to consider the time variation of Kn

i : To that purpose, we construct

ð ~Mnþ1
1;i;kÞk2Kn

i
the discrete distribution solution to (3.8) with the prescribed moments ~Unþ1

1;i . Then we define an

approximation of f nþ1
i;k ; for all k 2 Z; solution to (3.1) by ~f nþ1

i;k such that

~f nþ1
i;k ¼

~Mnþ1
1;i;k if k 2 Kn

i ;
~f nþ1
2;i;k otherwise:

(
ð3:12Þ

Hence, the discrete moments of ~f nþ1
i;k are an approximation of Unþ1

i . At this level, unþ1
i ; T nþ1

i and Knþ1
i can

then be defined through (3.4) and (3.5) (with n replaced by nþ 1). The unknowns at the next time step are

finally

Unþ1
1;i ¼

X
k2Knþ1

i

mk
~f nþ1
i;k Dv; ð3:13Þ
f nþ1
2;i;k ¼ ~f nþ1

i;k jZnKnþ1
i
: ð3:14Þ

The following proposition presents some properties of the above scheme.

Proposition 3.1. Eqs. (3.10)–(3.14) give a numerical scheme that preserves the total mass, momentum and

energy. Moreover, let ðf 0
i;kÞi;k2Z be a strictly positive initial condition

f 0
i;k > 0 8k 2 Z; 8i 2 Z:

Let us denote by K a bounded discrete velocity domain which is an approximation of Z. If the following

condition on the time step is fulfilled:

Dt
1

s

�
þmax

k2K

jvkj
Dx

� ��
< 1; ð3:15Þ

then the kinetic sequence ðf n
2;i;kÞnP 0, defined by the above scheme, satisfies

f n
2;i;k > 0 8nP 0; i 2 Z; k 2 K nKn

i : ð3:16Þ
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Proof. We first prove the conservation property of the scheme. For this purpose, we introduce the discrete

moments of ðf n
2;i;kÞk

Un
2;i ¼

X
k2ZnKn

i

mkf n
2;i;kDv:

Let us multiply (3.11) by mk ¼ ð1; vk; v2kÞ
T
and sum over k 2 Z nKn

i

X
k2ZnKn

i

mk
~f nþ1
2;i;k Dv ¼ Un

2;i �
Dt
Dx

X
k2ZnKn

i

vþk mk f n
2;i;k

�2
4 � ðf n

2;i�1;k þMn
1;i�1;kÞ

�
Dv

3
5

� Dt
Dx

X
k2ZnKn

i

v�k mk ðMn
1;iþ1;k

�2
4 þ f n

2;iþ1;kÞ � f n
2;i;k

�
Dv

3
5þ Dt

s

X
k2ZnKn

i

ðmkE
n
i;kÞDv

2
4 � Un

2;i

3
5:

ð3:17Þ

If we add (3.17) with (3.10), and sum up over i 2 Z, the discrete fluxes vanish. As well, the discrete collision

operator vanishes. Then, if we note

~Unþ1
2;i ¼

X
k2ZnKn

i

mk
~f nþ1
2;i;k Dv;

we obtainX
i2Z

ð ~Unþ1
1;i þ ~Unþ1

2;i Þ ¼
X
i2Z

ðUn
1;i þ Un

2;iÞ:

The second step of the algorithm (3.13) and (3.14) preserves the macroscopic quantities, so that we finally
obtainX

i2Z
Unþ1

i ¼
X
i2Z

Un
i ¼ C;

where C is a constant, only depending on the initial discrete mass, momentum and energy.
In order to show the positivity of the sequence ðf n

2;i;kÞnP 0, let us write (3.11) as follows:

~f nþ1
2;i;k ¼ 1

�
� Dt

s
� jvkj

Dt
Dx

�
f n
2;i;k þ vþk

Dt
Dx

Mn
1;i�1;k þ vþk

Dt
Dx

f n
2;i�1;k � v�k

Dt
Dx

Mn
1;iþ1;k

� v�k
Dt
Dx

f n
2;iþ1;k þ

Dt
s
En

i;k for all k 2 K nKn
i ;

with the notations: v�k ¼ vk�jvk j
2

; and K is a bounded discrete velocity domain. The strict positivity of ~f nþ1
2;i;k is

ensured if

1� Dt
s
� jvkj

Dt
Dx

P 0 8k 2 K; 8i 2 Z

holds. Then, if we suppose the existence of ~Mnþ1
1;i;k 8k 2 Kn

i ; which is positive because it is a maxwellian,

relations (3.13) and (3.14) ensure the positivity of f nþ1
2;i;k . h

Remark 3.2. The property (3.16) of the above numerical scheme allows us to show that Enþ1
i;k ; and Mnþ1

1;i;k;
have an exponential form with respect to k. Indeed, the strict positivity of ð~f nþ1

2;i;k Þ (under the condition on the

time step (3.15) of proposition 3.1 ensures that Unþ1
i is the moment vector of a strictly positive discrete
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function (see (3.13)). According to [22], this implies that Unþ1
i is also a moment vector of a discrete max-

wellian function Enþ1
i;k ; which uniquely solves the discrete entropy minimization problem (3.2). The same is

true for the moments Unþ1
1;i :

The resolution of the discrete entropy minimization problems (3.2) and (3.8) are classical ([22,24]). For

the sake of completeness, this step is detailed in Appendix C.
4. Numerical results

In this section, we present numerical tests to illustrate the capabilities of the method. We validate our

method on one-dimensional flows (shock tube problems). We also investigate the influence of the numerical

parameters. Note that in this section, we go back to an equation using physical variables. In particular, s is
the relaxation time, t; x; v are, respectively, the time, space and velocity variables.

Numerically, the boundary conditions are treated by a classical ghost cell technique (see [31]). A Di-

richlet or a reflecting condition is imposed in the ghost cell according to the test case.

Computations by means of the BGK model and the hybrid model take about the same amount of CPU

time (slightly more for the hybrid model). However, at this stage, we did not try to optimize the numerical

efficiency but wanted first to test the hybrid methodology in the most straightforward way. Indeed, the

numerical fluxes (3.7) for the Euler equations are calculated by discrete integration of the maxwellian on

phase space. Therefore, the complexity of the method is the same as for the resolution of the BGK model.

Some pre-storage of these numerical fluxes will reduce the CPU time. Also, shifting from a finite volume
method to a particle method for the discretization of the kinetic part should also greatly improve the ef-

ficiency of the method.

4.1. Shock tube problem: basic test problem

We study a one-dimensional stationary shock wave (see [4,22]). The flow is initialized with two max-

wellian states related by the discrete Rankine–Hugoniot relations. Let us detail these discrete Rankine–

Hugoniot relations.
For a given left state UL, we must find a right state UR such that there exists a stationary solution of the

discrete BGK model (3.1), i.e.

vk
ofk
ox

¼ 1

s
ðEk � fkÞ 8k 2 Z; ð4:18Þ

with the boundary conditions

fkð�1Þ ¼ Ek;L and fkðþ1Þ ¼ Ek;R;

where
P

k2Z mkEk;LDv ¼ UL and
P

k2Z mkEk;RDv ¼ UR: Multiplying (4.18) by mk and summing on k 2 Z, we

see that UL and UR must necessarily satisfy the following discrete Rankine–Hugoniot relations:X
k2Z

vkmkEk;LDv ¼
X
k2Z

vkmkEk;RDv:

To solve this problem, we use a Newton iterative algorithm in order to compute the downstream values of

n; u; T as functions of the upstream ones.

We have used the following values for the mass density nL ¼ 6:63� 10�6 kgm�3, the mean velocity

uL ¼ 2551 m s�1, and temperature TL ¼ 293 K, of the upstream flow. The gas considered is argon (the

molecular mass mA equals 66.3� 10�27 kg). These values yield a shock Mach number equal to 6. The
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computational domain is ½0; L�; L ¼ 1 m whereas the velocity domain takes into account the discrete ve-

locities between vmin ¼ ð�5600Þ ms�1 and vmax ¼ 8200 m s�1. A one-dimensional grid of 200 cells in space

and 200 cells in velocity is used. The constant parameter R is taken equal to 2 and s equals 3� 10�5 s.
In Figs. 1–3, we present the normalized profiles ðq� qLÞ=ðqR � qLÞ for q ¼ n (the mass density), q ¼ u

(the mean velocity) and q ¼ T (the temperature) as functions of the normalized space variable x=l (where l
is the mean free path of the upstream flow (l ¼ s

ffiffiffiffiffiffiffiffi
RTL

p
, where R is the gas constant)). These figures display

the results obtained by the hybrid model, by the full BGK equation (discretized by (3.1)) and by the Euler

equations (discretized following [13]). The velocity set (given by ½vmin; vmax�) ensures that the left and right

maxwellians are correctly represented. The stationary shock wave of the Euler equations is situated at

x ¼ 0:5 m. In Figs. 1–3, we can see that the hybrid model is closer to the BGK model than to the Euler

equations, but the shock wave of the hybrid model is stiffer than that of the BGK model. The hybrid model
has an intermediate behaviour between the Euler equations and the BGK model, as could be expected.

The distribution functions computed by the hybrid model at locations upstream (x ¼ 0:1 m), within

(x ¼ 0:5 m) and downstream (x ¼ 0:9 m) the shock are plotted in Fig. 4 as functions of the velocity

v 2 ½vmin; vmax�. When the flow is at equilibrium (upstream and downstream the shock), the distribution

functions are very well approximated by the hybrid model. Inside the shock, the hybrid model computes an

intermediate maxwellian between the upstream and downstream maxwellians, with a jump at the boundary

of the ball v ¼ k0 (where k0 is s.t. B1 ¼ ½k0; k1�). The departure from equilibrium of the distribution function

inside the shock is not accurately enough described by the hybrid model. In Fig. 5, we can see the distri-
bution functions of the hybrid model and of the full BGK model within the shock, as functions of the

velocity; we can see a jump at v ¼ k0 for the hybrid model; this is a discontinuity between the kinetic

unknown f2 and the maxwellian M1.

In Fig. 6, we present the distribution functions of the hybrid model and of the full BGK model, as

functions of the velocity, at x ¼ 0:54 m. The BGK distribution function has two humps of comparable size

whereas a maxwellian (with one hump only) takes place for the hybrid model. This figure shows the limit of

our approach. Indeed, the hybrid model makes some errors in describing the distribution function inside

the shock.
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Fig. 1. Stationary shock: normalized mass density as a function of x=l; x 2 ½0;L�. The Mach number of the flow is 6. Comparison

between the BGK model (dashed line), the hybrid model (continuous) and the Euler equations (stars).
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Fig. 2. Stationary shock: normalized mean velocity as a function of x=l; x 2 ½0; L�. The Mach number of the flow is 6. Comparison

between the BGK model (dashed line), the hybrid model (continuous) and the Euler equations (stars).
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Fig. 3. Stationary shock: normalized temperature as a function of x=l; x 2 ½0;L�. The Mach number of the flow is 6. Comparison

between the BGK model (dashed line), the hybrid model (continuous) and the Euler equations (stars).
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4.2. Shock tube problem: influence of the numerical parameters

In this section, we present the influence of the numerical parameters on both the macroscopic and

microscopic quantities. First, we study the influence of the velocity discretization, while the other pa-

rameters are kept fixed to the values Dx ¼ 1=200,R ¼ 2, s ¼ 3� 10�5 s and Dt ¼ 6� 10�7; Fig. 7 represents
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Fig. 4. Stationary shock: distribution functions as functions of the velocity v 2 ½vmin; vmax�. The Mach number of the flow is 6. Dis-

tribution functions upstream the shock (x ¼ 0:1 m) (dashed line), inside the shock (x ¼ 0:5 m) (continuous line) and downstream the

shock (x ¼ 0:9 m) (stars) are presented. B1 ¼ ½k0; k1� is the fluid zone at x ¼ 0:5 m.
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Fig. 5. Stationary shock: distribution functions as functions of the velocity v 2 ½vmin; vmax�. The Mach number of the flow is 6. Dis-

tribution functions within the shock (x ¼ 0:5 m). Comparison between the full BGK model (dashed line) and the hybrid model

(continuous). B1 ¼ ½k0; k1� is the fluid zone at x ¼ 0:5 m.
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the normalized mass density as a function of the normalized space variable x=l; x 2 ½0; L�, (L ¼ 1 m), where

l is the upstream mean free path, obtained by the hybrid model with different velocity discretizations. We

can see that the increase of the number of discrete velocities does not improve the results significantly.

Nevertheless, a minimal number of discrete points in velocity space is needed. Indeed, we need a sufficient
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Fig. 6. Stationary shock wave: distribution functions as functions of the velocity v 2 ½vmin; vmax�. The Mach number of the flow is 6. The

distribution functions at x ¼ 0:54 m are represented. Comparison between the full BGK model (dashed line) and the hybrid model

(continuous).
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Fig. 7. Stationary shock: influence of the number of discrete velocities on the normalized mass density as a function of x=l; x 2 ½0;L�.
The Mach number of the flow is 6. Results obtained with 100 (continuous line), 200 (dotted line) and 400 discrete velocities (dashed

line) are presented.
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number of discrete velocities in the discrete ball in order to solve the discrete moment problem (3.8) (see

Appendix C).

We also study the influence of the space discretization. Fig. 8 represents the normalized mass density as a

function of the normalized space variable x=l; x 2 ½0; L�, obtained with different values of Dx (and with
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Fig. 8. Stationary shock: influence of the space discretization on the normalized mass density as a function of x=l; x 2 ½0; L�. The Mach

number of the flow is 6. Results obtained with 50 (dotted line), 100 (dashed line), 200 (continuous), 400 (dashed and dotted line) and

500 mesh points (thick continuous line) are presented.
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R ¼ 2, s ¼ 3� 10�5 s, 200 discrete velocities and Dt ¼ 6� 10�7). We can see that the shock becomes stiffer

as Dx is decreased, up to Dx
L ¼ 1

400
. The same behaviour is observed for the mean velocity and the temper-

ature. The value Dx ¼ 1
200

seems to be a good compromise between accuracy and computer time.
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Fig. 9. Stationary shock: influence of the time step on the normalized mass density as a function of x=l; x 2 ½0;L�. The Mach number

of the flow is 6. Results obtained with Dt (continuous), Dt=2 (dashed and dotted line), Dt=5 (dotted line) and Dt=10 (thick dashed line)

are presented (Dt ¼ 6� 10�7).
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The variation of Dt does not improve the results (with R ¼ 2, s ¼ 3� 10�5 s, 200 discrete velocities and

Dx ¼ 1=200). Indeed, the condition (3.15) imposes a small time step which already gives some quite good

results (Dt ¼ 6� 10�7). In Fig. 9, we can see the normalized mass density as a function of the normalized
space variable x=l; x 2 ½0; L�, obtained by the hybrid model with different values of Dt.

Once the numerical parameters are chosen properly, we investigate the influence of the parameter R on

both the macroscopic and microscopic quantities. The parameter R is a kind of cutover between max-

wellian and kinetic solvers. By varying R, we cross between the pure fluid description (large R) to the full

kinetic one (small R). The other parameters are taken as follows: s ¼ 3� 10�5 s, Dt ¼ 6� 10�7, 200 discrete

velocities and Dx ¼ 1
200
. For instance, on Fig. 10, we plot the distribution functions within the shock (x ¼ 0:5

m) as functions of the velocity v 2 ½vmin; vmax� for the hybrid model with various values of R, and for the full

BGK model. In the same way, in Fig. 11, the normalized mass density profile is plotted as a function of the
normalized space variable x=l for the hybrid model (for different value of R) and for the full BGK model in

comparison. WhenR is small (R ¼ 0:5 orR ¼ 1), both microscopic and macroscopic quantities are in good

agreement with results given by the BGK model. On the contrary, as R is growing, the macroscopic profiles

(Fig. 11 and the same is true for the mean velocity and the temperature) become less smooth and tend
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Fig. 10. Stationary shock: influence of the parameter R on the normalized mass density as a function of x=l; x 2 ½0; L�. The Mach

number of the flow is 6.
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Fig. 11. Stationary shock: influence of the parameter R on the normalized mass density as a function of x=l; x 2 ½0; L�. The Mach

number of the flow is 6.
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towards the results given by the Euler equations. In the same way, the distribution function inside the shock

given by the hybrid model is very close to that given by the BGK model for small values of R (R ¼ 0:5 or

R ¼ 1 for example). When R is greater (R ¼ 3), the distribution function (Fig. 10) becomes a maxwellian

(like that given by the Euler equations). In this case, the hybrid model does not describe accurately the

results of the BGK model. As pointed out in Section 1, we focused on the validation of the hybrid model

without any consideration about the numerical cost. In particular, the numerical cost does not depend on

R. The a priori choice ofR ¼ 2 seems to be a good compromise. Note that the parameterRmay depend on
the space variable x. This allows to choose a suitable R, which is small at locations where the flow is known

to be far from equilibrium and large when the flow is close to the equilibrium. For example, in the case of a

stationary shock wave, a smallerR can be used within the shock while a largerR is sufficient to describe the

flow far from the shock.

Finally, in Fig. 12, we have plotted the inverse of the shock-wave thickness as a function of the upstream

Mach number (see [4,22]). We define the shock-wave thickness, for instance for the mass density, by the

length LS s.t.

LS ¼
nR � nL

dn
dx

� 	
max

;
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Fig. 12. Shock-wave thickness as a function of the Mach number.
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where nR and nL are the downstream and upstream mass densities, respectively. As mentioned above, when

R is large (R ¼ 3; 4), the shock-wave thickness of the hybrid model is smaller than that of the BGK model.

When R ¼ 0:5 or R ¼ 1, the thickness LS of the hybrid model is comparable with that of the BGK

model. Our results seem to be in good agreement with the experimental data, up to Mach 5 or Mach 6 (see

[4,22]).
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4.3. Sod shock tube problem

In this section, we present an other numerical test, the Sod shock tube problem (see [28,30]). We compare

the hybrid model to the discrete BGK model (3.1) and to the exact solution of the Sod shock tube problem.

The initial conditions are the following: the mass density nL ¼ 1 kgm�3, the mean velocity uL ¼ 0 m s�1 and
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Fig. 15. Sod shock tube problem: pressure as a function of x 2 ½0;L�. Comparison between the BGK model (continuous), the hybrid

model (circles) and the exact solution of the Euler equations (dashed line).
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the pressure pL ¼ 105 Pa for x 2 ½0; L=2�; L ¼ 1 m, and the mass density nR ¼ 0:125 kgm�3, the mean

velocity uR ¼ 0 m s�1 and the pressure pR ¼ 104 Pa for x 2 ½L=2; L� The numerical parameters are: 200 cells

in space (Dx ¼ 1=200), 100 cells in velocity (Dv ¼ 15) and Dt ¼ 2:5� 10�6. Moreover, s ¼ 10�5 s andR ¼ 2.

The solution is observed at 0.52 ms.

Figs. 13–15, respectively, represent the mass density, mean velocity and pressure (circles) profiles as

functions of the space variable x for the hybrid model. We have also plotted the numerical solution of the

BGK model (continuous curves) and the exact solution of the Euler equations (discontinuous curves). We
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Fig. 17. Unsteady shock: mean velocity as a function of the space variable x 2 ½0; 2:5�m. Comparison between the BGKmodel (dashed

line), the hybrid model (continuous) and the Euler equations (dashed and dotted line).
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see that the rarefaction wave, the contact discontinuity and the shock wave are well described by the hybrid

model. The hybrid numerical solution can be nearly superimposed on the BGK solution. In Fig. 14, we can

see a bump at the contact discontinuity level. This bump seems to remain even when the time, space and
velocity steps decrease (see [28]).

4.4. Unsteady shock problem

We compare the results obtained by our hybrid model, with those obtained by the full BGK model and

by the Euler equations, in the case of an unsteady shock wave (see [4,7,15]).

The calculations are made in an unsteady fashion by using a classical procedure to produce a shock. At

the beginning, the flow is uniform with a mass density n ¼ 10�6 kgm�3, a mean velocity u ¼ �900 m s�1 and
a temperature T ¼ 273 K. The gas considered is argon, as in the steady case (see Section 4.1); at x ¼ 0 m, we

put a specular wall and at x ¼ 2:5 m, an incoming distribution equal to a maxwellian with parameters

ðn; u; T Þ is imposed in the ghost cell. We look at the solution when the shock arrives at a distance 1.6 m of

the wall, which corresponds to t ¼ 1:64 ms.

The space domain ½0; 2:5� m is discretized using 500 mesh points, and we consider 140 discrete velocities

in ½�4000; 4000� ms�1. Moreover, s ¼ 3� 10�5 s and R ¼ 2. In Figs. 16–18, comparison between the three

models are made on the macroscopic profiles (mass density, mean velocity and temperature). As in the

steady case, the hybrid model has an intermediate behaviour between the BGK model and the Euler
equations.

In Fig. 19, we study the influence of the parameter R on the mass density. When R is small (R ¼ 1), the

results obtained thanks to the hybrid model are nearly superimposed on those given by the BGK model. On

the contrary, as R is growing, our hybrid model gets closer to the Euler equations. The same conclusions

hold for the mean velocity and the temperature.
5. Conclusion

First, we have presented a new hybrid model to describe systems of particles which are far from equi-

librium. This model is based on a domain decomposition in velocity space and a fluid approximation of the

solution of the kinetic equation for small velocities, based on a entropy minimization principle. The as-

sociated moment problems are rigoursly treated.

Second, we give a discrete version to this hybrid model. In particular, we obtain a numerical scheme

preserving the total mass, momentum and energy of the system. Numerical results show that this method

gives accurate results for the computation of transition regimes. In such regimes, the Euler or Navier–
Stokes models are known to be insufficient to describe the flow. So far, our hybrid strategy is as costly as a

direct resolution of the BGK model. Optimization procedure will be investigated in future work. However,

the present work is a basis for the development of intermediate models between kinetic and fluid ones

aiming at the description of transition regimes.

The approach will be further extended to more realistic collision operator. Moreover, the effect of an

electrical field will be incorporated. These extensions will be the subject of future works.
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Appendix A. Resolution of the entropy minimization problem

This section is devoted to the resolution of the entropy minimization problem (2.2). We shall prove that

(2.2) has a unique solution provided that the prescribed moments satisfy some constraints that will be
precised later on. In order to make this statement precise, wee first need to specify what is known as the

moment realizability problem: what necessary and sufficient conditions have to be satisfied by the pre-

scribed moments n1; P1;W1 so that the moment problem:

Find a non-negative function M1 on B1 such that

R
B1
M1ðvÞ

1

v
jvj2

0
@

1
Adv ¼

n1
P1
2W1

0
@

1
A

8>><
>>: ðA:1Þ

admits at least one solution? When the moment realizability problem is solvable, the question is then: what

are the necessary and sufficient conditions on n1; P1;W1 so that the entropy minimization problem (2.2)

admits a solution?
The proof is similar to that of [12] which uses results of [20]. To make the conditions such that (2.2)

admits a solution explicit, we will use the following result borrowed from [20] (Theorems 7.1 and A.1).

Theorem A.1 (cf. [20]). Let X be an open subset of Rd ; d ¼ 1; 2; 3; consider N þ 1 independent moment

functions (aiðxÞ; i ¼ 0::N ) of the variable x 2 X (where X is an open subset of Rd), satisfying

aN ðxÞP 0 and
jaiðxÞj

1þ aN ðxÞ
! 0 as jxj ! þ1 for i ¼ 0::N � 1:

Let D be the following functional domain:

D ¼ ff P 0; f 6¼ 0 and
Z
X
jð1þ aNðxÞÞf ðxÞj dx < þ1g:

For any f 2 D, we consider the moment vector lðf Þ ¼ ðl0; l1; . . . ; lNÞðf Þ defined by

lðf Þ ¼
Z
X
aðxÞf ðxÞ dx; with a ¼ ða0; a1; . . . ; aN ÞT:

The exponential functions are the functions of the form

expkðxÞ ¼ expðk0a0ðxÞ þ k1a1ðxÞ þ � � � þ kNaN ðxÞÞ; ðA:2Þ

with k ¼ ðk0; k1; . . . ; kNÞ 2 RNþ1. We then define the following subset of RNþ1:

K ¼ fk 2 RNþ1 s:t: expk 2 Dg;

and denote oK its boundary. Finally, we note

E ¼ fexpk s:t: k 2 Kg:

(i) Then the following moment problem:

For q 2 RNþ1; find f 2 D s:t: lðf Þ ¼ q

admits a solution if and only if, for all b 2 RNþ1 n f0g, we have

b � aðxÞ6 0 a:e: ) b � q6 0:
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(ii) Assume that K 6¼ ; and K \ oK ¼ ;: Then lðDÞ ¼ lðEÞ i.e.

For all q 2 lðDÞ; there is an unique k 2 K s:t: lðexpkÞ ¼ q:

Moreover, the entropy minimization problem

Min

Z
X
f log f dx; f

�
P 0 s:t: lðf Þ ¼ q




is uniquely solvable for all q 2 lðDÞ.

Using this theorem, we will prove Proposition 2.3.

Proof of Proposition 2.3. Thanks to (ii) of Theorem A.1, we only have to show that the moment problem has
a solution in the form of an exponential function. In fact, here we have K ¼ Rdþ2 and K \ oK ¼ ;: To show

that the moment problem has a solution in the form of an exponential function, we use (i) of Theorem A.1.

To get conditions (2.3) and (2.4), we first rewrite the moment problem (A.1) as follows:

find f s:t:

Z
B1

f ðvÞ

1
v�u

R
ffiffiffi
T

p
jv�uj2

R2T

0
BB@

1
CCAdv ¼

n1
P1�un1
R
ffiffiffi
T

p
1

R2T
ð2W1 � 2u � P1 þ juj2n1Þ

0
B@

1
CA:

The change of variables w ¼ ðv� uÞ=R
ffiffiffiffi
T

p
leads to

Z
Bð0;1Þ

f ðR
ffiffiffiffi
T

p
wþ uÞ

1

w
jwj2

0
@

1
Adw ¼ ðR

ffiffiffiffi
T

p
Þ�3

M0

M1

M2

0
@

1
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with Bð0; 1Þ the unit ball and

M0 ¼ n1;
M1 ¼
P1 � un1
R

ffiffiffiffi
T

p ;
M2 ¼
2W1 � 2u � P1 þ juj2n1

R2T
:

We will prove that (A.3) has a solution. For that purpose, we use assertion (i) of Theorem A.1 with

X ¼ Bð0; 1Þ and

a0ðwÞ ¼ 1; a1ðwÞ ¼ w ða1 2 RdÞ and a2ðwÞ ¼ jwj2:

Theorem A.1 says that (A.3) has a solution if and only if, for all ðb0; b1; b2Þs:t: b0 þ b1�
wþ b2jwj

2
6 0 8w 2 Bð0; 1Þ; we have

b0M0 þ b1 �M1 þ b2M2 6 0:

Passing in polar coordinates in the first inequality, we obtain

b0 þ b1 � wþ b2jwj
2 ¼ b0 þ jb1jjwj cos hþ b2jwj

2 8w 2 Bð0; 1Þ; 8h 2 ½0; 2p�: ðA:4Þ
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The second member of (A.4) is negative 8w 2 Bð0; 1Þ 8h 2 ½0; 2p� if and only if b0 þ jb1jX þ b2X
2 is negative

8X 2 ½0; 1� (we set X ¼ jwj).
We now characterize the set C ¼ fðb0; b1; b2Þ s:t: b0 þ jb1jX þ b2X

2
6 0 8X 2 ½0; 1�g: Looking at the

asymptotic behaviour when X goes to zero and to 1, we get: b0 6 0 and b0 þ jb1j þ b2 6 0: For the function
F ðX Þ ¼ b0 þ jb1jX þ b2X

2 to be negative for all X 2 ½0; 1�; it is necessary and sufficient that its maximum

remains negative. We then compute the maximum of the function F . If the critical point X ¼ � jb1j
2b2

belongs

to ½0; 1�; F ðX Þ6 0 is equivalent to F ðX Þ6 0; 8X 2 ½0; 1� (because of the strict concavity of F ðb2 < 0Þ). On

the other hand, if X 62 ½0; 1�, maxðF ð0Þ; F ð1ÞÞ6 0 is an equivalent condition to F ðX Þ6 0; 8X 2 ½0; 1�: We

find: F ðX Þ ¼ b0 � ðjb1j
2
=4b2Þ: Therefore,

C ¼ ðb0; b1; b2Þ
 ,

� jb1j
2b2

2 ½0; 1� and b0 �
jb1j

2

4b2

6 0

!(

or b0

�
6 0; b0 þ jb1j þ b2 6 0;

�jb1j
2b2

62 ½0; 1�
�)

:

Assertion (i) of Theorem A.1 says that for all b 2 C, we have b0M0 þ b1 �M1 þ b2M2 6 0, or equivalently

b0M0 þ jb1jjM1j þ b2M2 6 0.

If we first consider b s:t: � jb1j=2b2 2 ½0; 1� and b0 � ðjb1j
2
=4b2Þ6 0; i.e. bs:t: b2 < �jb1j=2 and

b0 6 jb1j
2
=4b2; this is equivalent to saying that for all b2 < �jb1j=2, we have

jb1j
2

4b2

M0 þ jb1jjM1j þ b2M2 6 0:

For a fixed b2 s.t. b2 6 � jb1j
2
, consider the function G : R ! R such that

Gðjb1jÞ ¼ jb1j
2M0 þ 4b2jb1jjM1j þ 4b2

2M2:

For the function G to be positive (because bP 0), it is necessary and sufficient that its minimum is

positive. As Gð0ÞP 0 and Gðþ1Þ ¼ þ1, this minimum is reached at a finite value of jb1jP 0. If jb1j ¼ 0;
then:

G0ðjb1jÞ ¼ 2jb1jM0 þ 4b2jb1jjM1jP 0 8jb1j > 0:

By passing to the limit jb1j ! 0; we obtain b2 P 0 which is a contradiction. Then jb1j > 0 and therefore

G0ðjb1jÞ ¼ 0: This gives

jb1j ¼ � 2b2jM1j
M0

and Gðjb1jÞ ¼
4b2

2

M0

ðM2M0 � jM1j2Þ:

The necessary and sufficient condition is Gðjb1jÞP 0 which is equivalent to: M2M0 � jM1j2 P 0.

Let us consider now b s.t. b0 6 0 and b0 þ jb1j þ b2 6 0 and �jb1j=2b2 62 ½0; 1�. Combining the three

inequalities, we obtain: b0 6 � ðjb1j þ b2Þ and b2 > � jb1j
2
. Recall that we must prove, for all these b:

b0M0 þ jb1jjM1j þ b2M2 6 0:

Thanks to b0 6 � ðjb1j þ b2Þ; this is equivalent to saying that for all b2 > �jb1j=2, we have:

jb1jðjM1j �M0Þ þ b2ðM2 �M0Þ6 0:
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By passing to the limit jb1j and b2 ! þ1; we obtain the following conditions:

M2 6M0 and jM1j6M0:

Moreover, the inequality jb1jðjM1j �M0Þ þ b2ðM2 �M0Þ6 0 is satisfied 8b2 s.t. b2 > �jb1j=2. So, it follows
that M0 � 2jM1j þM2 P 0.

Finally, the necessary and sufficient conditions on ðM0;M1;M2Þ reads

M2 6M0; jM1j2 6M0M2; M0 � 2jM1j þM2 P 0 and jM1j6M0:

We can easily show that the first two conditions imply the last two ones. Therefore, the moment problem
(A.1) admits a solution in D if and only if

2W1 � 2u � P1 þ n1juj2 6R2Tn1; jP1j2 6 2W1n1: �
Appendix B. Calculations relative to the proof of Proposition 2.4

In this section, we prove that expression (2.15) can be simplified. Indeed, the volumic terms preceded by

the minus sign in (2.15) vanish. More precisely, we show that

o
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p
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� �
¼ 0; ðB:1Þ

where ~mðwÞ is the vector of the conserved quantities in the w variable

~mðwÞ ¼
1

R
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p
wþ uj2

0
@

1
A;

J is the Jacobian J ¼ ðR
ffiffiffiffi
T

p
Þd ; d ¼ 1; 2; 3, and ~F 1ðwÞ is the force term given by (2.16). Let us calculate the

divergence of this force term:
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Now, we investigate the mass component, i.e. when ~mðwÞ ¼ 1: In this case, (B.1) is written as
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T

p
Þ R

ffiffiffiffi
T

p� �d�1

þ Jrw � ~F 1ðwÞ
� �

:

Thanks to the expression (B.2), this term is equal to zero.

The momentum component corresponds to ~mðwÞ ¼ R
ffiffiffiffi
T

p
wþ u. Let us detail the calculations of the

three terms of (B.1). The first one gives

o

ot
ð~mðwÞJÞ ¼ J

o~mðwÞ
ot

 !
þ d u
�

þR
ffiffiffiffi
T

p
w
� oR ffiffiffiffi

T
p

ot
ðR

ffiffiffiffi
T

p
Þd�1

;
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whereas the second one becomes (with ~mðwÞ ¼ uþR
ffiffiffiffi
T

p
Þ:

rx � ~mðwÞ~mðwÞJ
� �

¼ ~mðwÞ~mðwÞ � rx

� �
J þ J rx � ~mðwÞ

� �
~mðwÞ

h
þ rx ~mðwÞ
� �

~mðwÞ
i
:

Finally, the last term can be written as follows:

rw � ~mðwÞ~F 1ðwÞJ
� �

¼ J rw ~mðwÞ
� �

~F 1ðwÞ þ J rw �~F 1ðwÞ
� �

~mðwÞ:

If we use (B.2) in the last term, we find

rw � ~mðwÞ~F 1ðwÞJ
� �

¼ JR
ffiffiffiffi
T

p
~F 1ðwÞ �

J
R

ffiffiffiffi
T

p R
ffiffiffiffi
T

p
rx � u

�
þ d

o

ot

�
þ ðuþR

ffiffiffiffi
T

p
wÞ � rx

�
R

ffiffiffiffi
T

p
þR

ffiffiffiffi
T

p
w � rxðR

ffiffiffiffi
T

p
Þ
�
~mðwÞ

¼ �J
o

ot

��
þ ðuþR

ffiffiffiffi
T

p
wÞ � rx

�
ðuþR

ffiffiffiffi
T

p
wÞ
�
� J
R

ffiffiffiffi
T

p R
ffiffiffiffi
T

p
rx � u

�

þ d
o

ot

�
þ ðuþR

ffiffiffiffi
T

p
wÞ � rx

�
R

ffiffiffiffi
T

p
þR

ffiffiffiffi
T

p
w � rxðR

ffiffiffiffi
T

p
Þ
�
~mðwÞ:

If we develop and sum these three terms, we can see that they vanish.

Finally, let us calculate the third component (the energy component). In this case, ~mðwÞ is equal to

juþR
ffiffiffiffi
T

p
j2. We then denote juþR

ffiffiffiffi
T

p
j2 by ~mðwÞ. As in the momentum calculations, we investigate each of

the three terms of (B.1). For the first term, we have

o

ot
J ~mðwÞ
� �

¼ 2J
oðuþR

ffiffiffiffi
T

p
Þ

ot
� ðuþR

ffiffiffiffi
T

p
Þ þ d ~mðwÞ oðR

ffiffiffiffi
T

p
Þ

ot
ðR

ffiffiffiffi
T

p
Þd�1

;

and for the second term of (B.1), where ~mðwÞ ¼ juþR
ffiffiffiffi
T

p
j2, we find

rx � ðu
�

þR
ffiffiffiffi
T

p
Þ~mðwÞJ

�
¼ ~mðwÞJrx � ðuþR

ffiffiffiffi
T

p
Þ þ JðuþR

ffiffiffiffi
T

p
Þ � rx ~mðwÞ þ ~mðwÞðuþR

ffiffiffiffi
T

p
Þ � rxJ :

Finally, the third term of (B.1) can be developed as follows:

rw � ~mðwÞ~F ðwÞJ
� �

¼ J ~mðwÞrw �~F ðwÞ þ J~F ðwÞ � rw ~mðwÞ

¼ � J ~mðwÞ
R

ffiffiffiffi
T

p R
ffiffiffiffi
T

p
rx � u

�
þ d

o

ot

�
þ ðuþR

ffiffiffiffi
T

p
wÞ � rx

�
R

ffiffiffiffi
T

p
þR

ffiffiffiffi
T

p
w � rxðR

ffiffiffiffi
T

p
Þ
�

� 2J
R

ffiffiffiffi
T

p o

ot

��
þ ðuþR

ffiffiffiffi
T

p
wÞ � rx

�
ðuþR

ffiffiffiffi
T

p
wÞ
�
� ðuþR

ffiffiffiffi
T

p
wÞR

ffiffiffiffi
T

p

¼� J ~mðwÞ
R

ffiffiffiffi
T

p R
ffiffiffiffi
T

p
rx � u

�
þ d

oR
ffiffiffiffi
T

p

ot
þ ðuþR

ffiffiffiffi
T

p
wÞ � rxR

ffiffiffiffi
T

p

þR
ffiffiffiffi
T

p
w � rxðR

ffiffiffiffi
T

p
Þ
�
� 2J

oðuþR
ffiffiffiffi
T

p
wÞ

ot
� ðu

�
þR

ffiffiffiffi
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p
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�

� 2J ðu
�h

þR
ffiffiffiffi
T

p
wÞ � rxðuþR

ffiffiffiffi
T
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i

The sum of these three terms vanish. We conclude that (B.1) vanishes.
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Appendix C. Numerical resolution of discrete moment and entropy problems

As in the continuous case, the discrete entropy minimization problem requires the resolution of a dis-

crete moment problem. First, for numerical reasons, we must restrict the discrete velocity space Z to a finite
discrete set. Let K be the following set of indices:

K ¼ fk 2 N such that k6 2Kg; ðC:1Þ

where K > 0 is given. We then define a discrete velocity set V of R by

V ¼ fvk ¼ ðk � KÞDv; k 2 Kg;

where Dv is the velocity step, Dv > 0. Three minimization problems take place in our scheme: (3.2), (3.8)

and, in the second step of the algorithm, (3.8) with prescribed moments ~Unþ1
1;i . The first one (3.2) determines

En
i;k. At the continuous level, we have seen that En

i;k has an exponential form (2.5). At the discrete level, we

use a result of [22] stating that this property remains true provided that the set (C.1) contains at least three

points (which is not very restrictive) and the prescribed discrete moments Un
i are strictly realizable, i.e. Un

i is
the moment vector of a strictly positive discrete function (which is fulfilled thanks to proposition 3.1 and

Remark 3.2). Consequently, thanks to this result, we let:

En
i;k ¼ expðani � mkÞ; 8k 2 K:

So, it is sufficient to solve the following discrete moment problem:

Find ani 2 R3 such that for Un
i 2 R3 givenP

k2K
expðani � mkÞ ¼ Un

i :

(
ðC:2Þ

As well as for (3.8), if Kn
i contains more than three points and the prescribed discrete moments Un

1;i are

strictly realizable (which is satisfied thanks to proposition 3.1 and Remark 3.2), the second minimization

problem (3.8) yields Mn
1;i;k which also has an exponential form:

Mn
1;i;k ¼ expðkn1;i � mkÞ 8k 2 Kn

i :

So, we only have to solve the following discrete moment problem:

Find kn1;i 2 R3 such that for Un
1;i 2 R3 givenP

k2Kn
i

expðkn1;i � mkÞ ¼ Un
1;i:

8<
: ðC:3Þ

Let us now pay attention to the resolution of the third minimization problem (3.8) with prescribed moments
~Unþ1
1;i . It allows us to obtain ~Mnþ1

1;i;k 8k 2 Kn
i in the second step of the algorithm. We have to solve (3.8) with

prescribed moments ~Unþ1
1;i . Nevertheless, we do not know if the prescribed moments ~Unþ1

1;i are satisfied by a

strictly positive discrete distribution. So, we can not apply the result of [22]. The problem is different and we

are faced with a discrete moment realizability problem; we are seeking conditions on ~Unþ1
1;i so that there

exists a strictly positive discrete distribution, the moments of which should be equal to ~Unþ1
1;i . However, the

restriction on the time step ensures that ~Unþ1
1;i is not ‘‘far’’ from Un

1;i which is strictly realizable; consequently,
in practice, we solve this entropy minimization problem in the same way as the two previous entropy

minimization problems, i.e. solving the discrete associated moment problem:

Find ~knþ1
1;i 2 R3 such that for ~Unþ1

1;i 2 R3 givenP
k2Kn

i

expð~knþ1
1;i � mkÞ ¼ ~Unþ1

1;i :

8><
>: ðC:4Þ
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Consequently, the computation of these three discrete entropy minimization problems does not require the

resolution of some expensive minimization problems. Indeed, it is sufficient to solve the associated discrete

moment problems (C.2), (C.3) and (C.4).
Let us now consider the numerical resolution of the discrete moment problems (C.2), (C.3) and (C.4).

Several strategies can be used to solve them (see [24] or [22]). We have chosen here a Newton algorithm.
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