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a b s t r a c t

An integral equation based scheme is presented for the fast and accurate computation of
effective conductivities of two-component checkerboard-like composites with complicated
unit cells at very high contrast ratios. The scheme extends recent work on multi-compo-
nent checkerboards at medium contrast ratios. General improvement include the simplifi-
cation of a long-range preconditioner, the use of a banded solver, and a more efficient
placement of quadrature points. This, together with a reduction in the number of
unknowns, allows for a substantial increase in achievable accuracy as well as in tractable
system size. Results, accurate to at least nine digits, are obtained for random checkerboards
with over a million squares in the unit cell at contrast ratio 106. Furthermore, the scheme is
flexible enough to handle complex valued conductivities and, using a homotopy method,
purely negative contrast ratios. Examples of the accurate computation of resonant spectra
are given.

� 2011 Elsevier Inc. All rights reserved.
1. Introduction

This paper is devoted to solving the electrostatic equation for periodic composites with unit cells made of squares of con-
ductivity r2 that are either mixed with other squares of conductivity r1, to form a checkerboard structure, or simply embed-
ded in a background material of conductivity r1. There are Nsq squares in the unit cell and the area fraction of squares with
conductivity r2 is denoted p. The goal is to compute the effective conductivity r⁄ rapidly, with high accuracy, and for almost
any combination of r1, r2, and p for which the electrostatic equation has a solution.
1.1. Motivation and challenges

There are several applications that motivate our study. The homogenization of checkerboards with random unit cells at
high real valued contrast ratios r2/r1 (or r1/r2) is a classic problem in materials science. It is of interest to study how r⁄
depends on p and in particular what happens when one type of squares forms a connected path throughout the composite
(percolation). The contrast ratio can be considerable in materials of technological importance. A ratio of 107 is not unusual
[23]. Very large Nsq are then needed to reach convergence to statistical limits. See Chapters 10.10 and 10.11 of [25] for a re-
view of this field. In the metamaterial community there is a strong interest in a related issue, namely how to compute res-
onant spectra of effective dielectric permittivity functions (spectra of plasmonic excitations) for composites made of
polygonal metamaterial inclusions embedded in a dielectric background material [7,27]. The electrostatic equation is the
. All rights reserved.
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same for conducting and for dielectric materials. Only the notation differs, see Table on p. 19 of [25]. For simplicity, we will
talk about conductivity in this context, too. Of particular interest is the behavior of r⁄ close to values of r2/r1 where the elec-
trostatic equation does not have a solution or only has a solution as a limit in the complex r2/r1-plane.

The computational tasks just discussed offer extreme challenges. Non-smooth interfaces tend to make solutions singular
and hard to resolve. The electric fields close to certain corner vertices may just barely be square integrable. As Nsq grows, the
interaction between distantly separated parts in the computational domain may cause problems which cannot be resolved
by discretization and local techniques alone. Being in the vicinity of parameter combinations where the electrostatic equa-
tion ceases to have a solution is often hard. All these difficulties add up and may manifest themselves as artificial ill-condi-
tioning, slow convergence with mesh refinement, critical slowing down in iterative solvers, and severe loss of precision.
Several methods have been suggested to alleviate these problems including variants of the finite element method [1,6], net-
work models [23,12], renormalization schemes [20], mode-matching methods [27], and Brownian motion simulation [21].
See also Section 3 of [26] for state-of-the-art algorithms to combat critical slowing down in network models and [8] for a
discussion of future directions in the research field at large.
1.2. Our scheme

Let C denote the boundary (the interfaces) of a composite. We shall reformulate the electrostatic equation as a Fredholm
second kind integral equation
ðI þ KÞlðzÞ ¼ gðzÞ; z 2 C; ð1Þ
where I is the identity, K is an integral operator which is compact on smooth C, l(z) is an unknown layer density, and g(z) is a
right hand side.

Solvers for large-scale boundary values problems on smooth domains often rely on integral equation reformulations of
the form (1). The last few years have seen increased activity in the development of efficient solvers using (1) also when
C is non-smooth. The scheme of the present paper originates from work on non-smooth inclusion problems in free-space
[17]. The ideas in [17] were later improved and extended to encompass the biharmonic equation [18], mixed boundary con-
ditions [13], singular integral equations with non-zero indices [14], and boundaries with quadruple-junctions [15]. The pres-
ent paper is a direct sequel to [15]. As in [15], we apply a combination of short- and long-range preconditioners to (1). Major
new features include:

� A better strategy for choosing quadrature nodes which makes the error in r⁄ grow linearly with contrast ratio. In [15] the
growth is superlinear.
� An improved long-range preconditioner which makes the computational cost grow almost linearly with Nsq. In [15] the

growth is cubic.
� A homotopy-type method which allows for computing r⁄ at points in the complex r2/r1-plane where the solution to the

electrostatic equation only exists as a non-unique limit.

In addition there are several minor improvements.
1.3. Relation to the Bremer–Rokhlin scheme

Other recent work on the efficient solution of (1) in the presence of non-smooth boundaries includes [5], which exploits
cancellation of singularities, and a comprehensive mechanism currently being developed by a group around Bremer and
Rokhlin [2–4]. Let us discuss the relation of the Bremer–Rokhlin scheme to our scheme.

Both schemes take as a starting point the observation that an accurate and economical discretization of (1) can only be
effected by restricting the operator on the left hand side to a finite-dimensional subspace, determined by the right hand side
g(z). High resolution in combination with compression is used as a means to achieve this. The result is a kind of precomputed
purpose-made composite quadrature, suitable for Nyström discretization.

The Bremer–Rokhlin scheme employs an elaborate machinery to construct families of ‘universal quadratures’. Each uni-
versal quadrature is appropriate for the discretization of a given integral equation over an entire class of boundary segments
with complicated geometry. When the integral equation depends on material parameters, in addition to geometry, more uni-
versal quadratures are needed. The approach has the advantage that the precomputation is done once and for all and can be
stored on disk. When solving a particular problem involving many boundary singularities of similar shapes, only a few uni-
versal quadratures need to be activated. Our scheme precomputes ‘quadrature-weighted inverses’ afresh around every
boundary singularity. This offers greater flexibility when applying the scheme to new situations and opens up for a parallel
implementation, but requires more RAM storage.

Another difference between the two schemes is the way in which the process of resolution and compression is carried
out. The Bremer–Rokhlin compression is done via a series of solutions of large linear systems followed by rank-revealing
QR decompositions. Our scheme deals with resolution and compression in tandem, using a fast and stable recursion. No large
linear systems are ever set up. This is an advantage for boundary segments where extremely high resolution is needed.
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The schemes also differ in the assumptions made on g(z). The Bremer–Rokhlin scheme assumes that g(z) is a restriction to
C of a function that satisfies the underlying partial differential equation in a neighborhood of each point on C. This assump-
tion applies, for example, to certain important acoustic scattering problems. Our scheme only assumes that g(z) is piecewise
smooth. This is an advantage when the computational domain models granular materials or materials containing branching
cracks.

An open question is how easily the two schemes generalize to three dimensions. Perhaps one can combine their best
features?

1.4. Organization of the paper

The paper is divided into eight sections. Section 2 introduces unit cells and integral equations that will be used in all
examples. Section 3 is on discretization. The leading ideas in our compression scheme are summarized in Sections 4 and
5. Section 6 is on implementation. This material is essential for the understanding of how limits are taken in the complex
r2/r1-plane and how the compression of inverses of giant matrices corresponding to intensely resolved integral operators
can be executed in sub-linear time. Section 7 presents improvements to the long-range preconditioner proposed in [15].
The paper ends in Section 8 with some truly large-scale and accurate numerical examples for random checkerboards along
with the computation of resonant spectra of two metamaterial composites. The reader interested in more examples is re-
ferred to a forthcoming paper [16].

2. Integral equations for the electrostatic problem

We shall solve the electrostatic partial differential equation on three types of doubly-periodic domains in a plane D:
square arrays of squares, staggered arrays of squares, and two-component random checkerboards. An average electric field
e = (ex,ey) of unit strength is applied to D and we seek the potential U(r) for the computation of r⁄ in direction e
r� ¼
Z

D0

ðrðrÞrUðrÞ � eÞdVr; ð2Þ
where r(r) is the local conductivity, dVr is an infinitesimal area element, and the unit cell D0 is [�1/2,1/2) � [�1/2,1/2). We
make no distinction between points or vectors in a real plane R2 and points in a complex plane C. From now on, all points
will be denoted z or s.

The interfaces C in D are given orientation. The restriction of C to D0 is denoted C0 and the outward unit normal of C at z
is nz = n(z). Corner vertices are denoted ck. Obviously, r(z) may jump as C is crossed. Let r+(z) denote the conductivity on the
positive side of C at z, let r-(z) denote the conductivity on the negative side, and introduce as in [15]
aðzÞ ¼ rþðzÞ � r�ðzÞ; z 2 C; ð3Þ
bðzÞ ¼ rþðzÞ þ r�ðzÞ; z 2 C; ð4Þ
cðzÞ ¼ rþðzÞr�ðzÞ; z 2 C; ð5Þ
kðzÞ ¼ aðzÞ=bðzÞ; z 2 C: ð6Þ
Our domains exhibit similarities, but they also differ in important respects. Different integral equation reformulations will be
used for efficiency.

2.1. Ordered arrays of squares

The two ordered arrays are made by placing squares with conductivity r2 in a plane with conductivity r1. Fig. 1 shows
cutouts of unit cells. The orientation of C is positive. The arrays are overall isotropic, so r⁄ is independent of e. The points in
between neighboring corner vertices in the staggered array are called double-corner concentration points and denoted dk.

The conductivity r2 may be complex valued while r1 is assumed real. The special case of real valued and negative ratios
r2/r1 poses a particular challenge. The electrostatic equation may not have a unique solution and this property is then car-
ried over to the integral equation. Sometimes r⁄, viewed as a function of r2 with r1 held constant, has a well defined limit
which depends on whether r2/r1 approaches the negative real axis from above or from below in the complex plane. Hethe-
rington and Thorpe [19] argue that such a branch cut occurs for r⁄ of composites with right-angled interfaces whenever r2/
r1 2 [�3,�1/3]. See also p. 378 of Milton [25]. We shall capture the limit of r⁄ from above.

We follow standard practice for inclusion problems and represent U(z) as a continuous function which is a sum of a driv-
ing term and a single-layer potential with density q(z) [10]. Enforcing continuity of the normal current across C we arrive at
the integral equation
qðzÞ þ kðzÞ
p

Z
C
qðsÞI nz�nsds

s� z

� �
¼ 2kðzÞRf�enzg; z 2 C0; ð7Þ
where the ‘bar’ symbol denotes complex conjugation. We observe that (7) is a Fredholm integral equation of the second kind
with an integral operator which is compact away from the corner vertices.
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Fig. 1. Left: a cutout of a square array of squares with p = 0.5 and a unit cell with a 16-panel coarse mesh on C0. Right: a staggered array of squares with
p = 0.4 and a unit cell with a 32-panel coarse mesh on C0. The vertex separation distance is d and the dots indicate double-corner concentration points dk.

1 2 3 4

5 6 7 8

9 10 11 12

13 14 15 16

z

z per

Fig. 2. Left: a cutout of a two-component ordered checkerboard. Middle and right: A unit cell D0 of a random checkerboard with Nsq = 16 squares.
Orientation of C0 (solid lines) and L0nC1 (dashed lines) along with a point z 2 C1 and its periodic image zper 2 L0nC1.
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The parameter k(z) in (7) is independent of z. Should the integral operator in (7) have been compact everywhere, then, in a
finite portion of the complex k-plane, there could exist a finite number of values jkjP 1, called eigenvalues of the equation,
for which the solution q(z) may not be unique or may not even exist as a limit. See Sections 8 and 38 of Mikhlin [24]. If,
however, (7) can be solved for q(z) and under the assumption that the inclusions do not overlap the unit cell boundary,
the effective conductivity can be computed from
r� ¼ r1 þ r1

Z
C0

qðzÞRf�ezgdjzj: ð8Þ
Depending on how the unit cell is chosen, the squares in the staggered array may overlap the unit cell boundary. With the
choice in Fig. 1, they certainly do. But since the layer density q(z) is periodic and identical on all squares one can modify (8)
so that it integrates q(z) twice on the square at the center of the unit cell and ignores q(z) on the other squares.

2.2. Checkerboards

Fig. 2 shows checkerboards. The squares in D have either high conductivity r2 or low conductivity r1. Here r2 and r1 are
real so that r2/r1 > 1. The challenge is to achieve linear complexity and high accuracy in difficult situations.

The middle image of Fig. 2 is from a random checkerboard with Nsq = 16. The right image indicates C0 by solid lines. The
boundary of D0 is denoted L0 and C1 = C0 \ L0. Note that some or all squares that meet at a corner vertex ck could have the
same conductivity. Vertices where two squares of conductivity r1 and two squares of conductivity r2 meet diagonally, like in
the left image of Fig. 2, will be referred to as special corner vertices.

An efficient Fredholm second kind integral equation for checkerboard problems can be derived by applying Green’s third
identity to the periodic function UðzÞ �Rf�ezg. In terms of a transformed potential u(z), this double-layer type equation as-
sumes the simple form
uðzÞ � kðzÞ
p

Z
C

uðsÞI ds
s� z

� �
¼ 2

cðzÞ
bðzÞRf

�el0ðzÞg; z 2 C0; ð9Þ
where l0(z) is zero for z 2 C0nC1 and equal to the vector difference of z and its periodic image zper 2 L0nC1 for z 2 C1, see Sec-
tion 2.2 of [15]. The effective conductivity can be computed from
r� ¼
Z

C0

uðzÞIf�edzg: ð10Þ
We observe that the integral operator in (9) is compact away from the corner vertices.
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Fig. 3. Left: a coarse mesh on C0 for a checkerboard unit cell with Nsq = 16. There are four quadrature panels on each square side. Right: local meshes Mb

and Mc centered around a corner vertex. There will be 192 discretization points on Mb and 128 points on Mc.
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3. Discretization

We discretize (7) and (9) using a Nyström scheme based on composite polynomial interpolatory quadrature and a param-
eterization z(t) of C0. Coarse meshes with four quadrature panels per square side are constructed on C0, see Figs. 1 and 3. We
also need fine meshes obtained from coarse meshes by subdividing panels neighboring corner vertices nsub times in a direc-
tion towards the vertices.

The layer densities q(z) and u(z) in (7) and (9) are smooth on most quadrature panels. We choose quadrature nodes and
weights according to composite 16-point Gauss–Legendre quadrature in parameter t on such panels. This quadrature has
panelwise polynomial degree 31.

Panels neighboring corner vertices of ordered arrays of squares or special corner vertices of checkerboards require special
attention and will be referred to as special panels. The layer densities q(z) and u(z) may undergo rapid changes there. This is
so because of strong singularities that arise in rU(z). For checkerboards, as r2/r1 ?1, this field is barely square integrable
in D0 and barely absolutely integrable on C0, see Section 2.3 of [15]. See p. 378 of Milton [25] for a discussion of similar sin-
gularities that arise at corner vertices as r2/r1 approaches values in the range [-3,-1/3].

Legendre nodes are not optimal for capturing the behavior of layer densities on special panels. Rather, it pays off to bunch
quadrature nodes in a direction towards the vertices. An experimental investigation, see Section 8.2, shows that nodes cor-
responding to zeros of the Jacobi polynomial PðxÞða;bÞ16 on the canonical interval x 2 [�1,1], for certain a and b, are more effi-
cient. For checkerboards and with the corner vertex at a special panel’s right endpoint, we take a = (r1/r2)0.4 � 1 and b = 0.
With the corner vertex at a special panel’s left endpoint, we take a = 0 and b = (r1/r2)0.4 � 1. For ordered arrays of squares at
negative contrast ratios we take a = 10�6 � 1 and b = 0 or a = 0 and b = 10�6 � 1. The corresponding quadrature weights are
determined so that the panelwise polynomial degree is 15.

A discretization in parameter t on the coarse mesh of a checkerboard gives Ncoa = 128Nsq points zi = z(ti) and the same
number of weights wi. On the fine mesh there are Nfin = (128 + 64nsub)Nsq discretization points. The square array of squares
has Ncoa = 256 and Nfin = 256 + 64nsub. The staggered array of squares has Ncoa = 512 and Nfin = 512 + 128nsub. We collect
quadrature weights on the diagonal of matrices W for later use. The subscripts ‘coa’ and ’fin’ are used to indicate the coarse
mesh and the refined mesh, respectively.

4. Short-range preconditioning

Consider now the Fredholm second kind integral equations (7) and (9) in the general form (1) where g(z) is piecewise
smooth. Let K(s,z) denote the kernel of K. Split K(s,z) into two functions
Kðs; zÞ ¼ KHðs; zÞ þ K�ðs; zÞ; ð11Þ
where Kw(s,z) is zero except for when s and z simultaneously lie in a neighborhood CH

k centered around a particular ck or dk.
Then K�(s,z) is zero. The neighborhoods CH

k cover four coarse panels around ck of a square array of squares and eight coarse
panels around dk of a staggered array of squares and around ck of a checkerboard. Compare Section 3.2 of [15].

The kernel split (11) corresponds to an operator split K = Kw + K� where K� is a compact operator. After discretization (1)
assumes the form
ðIþ KH þ K�Þl ¼ g; ð12Þ
where I, Kw, and K� are square matrices and l and g are columns vectors. Note that Kw is sparse and block diagonal. The
blocks of KH

coa corresponding to ck of a square array of squares have size 64 � 64 while the blocks corresponding to dk of a
staggered array of squares and to ck of a checkerboard have size 128 � 128.

The change of variables
lðzÞ ¼ ðI þ KHÞ�1 ~lðzÞ ð13Þ
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makes (12) read
ðIþ K�ðIþ KHÞ�1Þ~l ¼ g: ð14Þ
This right preconditioned equation corresponds to the discretization of a Fredholm second kind equation with a composed
compact operator and the solution ~l is the discretization of a piecewise smooth function. There should be no ill-conditioning
in (14) due to mesh refinement close to corner vertices and we can view (I + Kw)�1 as a short-range preconditioner for (12).
There will, however, be ill-conditioning in (14) for parameter values k(z) that are very close to eigenvalues of (7) and (9).

5. Compression of the preconditioned equation

The matrix K� and the right hand side g in (14) can be accurately evaluated on a grid on the coarse mesh. Only (I + Kw)�1

needs a grid on the refined mesh for its accurate evaluation. We introduce the compressed weighted inverse
R ¼ PT
W Ifin þ KH

fin

� ��1
P: ð15Þ
Here P is a prolongation operator from the coarse grid to the fine grid, PW ¼WfinPW�1
coa is a weighted prolongation operator,

see Section 5 of [13]. Furthermore, the block-diagonal Ncoa � Ncoa matrix PT
W P, where superscript T denotes the transpose, has

the property
PT
W P ¼ I: ð16Þ
Strictly speaking, the relation (16) does not hold exactly for matrix blocks corresponding to special panels. It holds, however,
also for these blocks that
f iWcoaPT
W Pf j ¼ f iWcoaf j; ð17Þ
where fi and fj are discretizations of piecewise polynomials on the coarse grid of degree i and j and i + j 6 15. One can say
that (16) holds to the same polynomial degree as the overall quadrature holds.

With (15), Eq. (14) assumes the form
ðIcoa þ K�coaRÞ~lcoa ¼ gcoa: ð18Þ
The single-layer equation (7) will be used in this form in the numerical examples of Section 8. In terms of the new discrete
density l̂coa ¼ R~lcoa one can also write (18) in left preconditioned form
ðIcoa þ RK�coaÞl̂coa ¼ Rgcoa: ð19Þ
The double-layer equation (9) will be used in this form in the more elaborate scheme for complicated unit cells developed in
Section 7.

Functionals on l(z) of the type
Z
f ðzÞlðzÞdz ¼

Z
f ðzðtÞÞlðzðtÞÞz0ðtÞdt; ð20Þ
where f(z) is a piecewise smooth function, assume the discretized form
fT
coaZcoal̂coa; ð21Þ
where f is a column vector and Z is a matrix containing discrete values z0i ¼ z0ðtiÞmultiplied with weights wi on the diagonal.

6. Recursive construction of R

The compressed inverse R has the same block diagonal structure as KH

coa, see Section 4. Its construction from the definition
(15) is costly when the refined mesh has many panels. Actually, the number of subdivisions needed to reach a given accuracy
may grow without bounds due to the singularities in l(z) that arise as r2/r1 approaches certain values, see Section 3.

Fortunately, the construction of each block Rk of R, associated with a corner vertex ck or with a double-corner concentra-
tion point dk, can be greatly sped up and also stabilized via a recursion. This recursion uses grids on local meshes centered
around a ck or a dk, see Figs. 3 and 4.

6.1. General recursion

The staggered array of squares needs the recursion in the general form
Rik ¼ PT
Wbc F R�1

ði�1Þk

n o
þ I�b þ K�ibk

� ��1
Pbc; i ¼ 1; . . . ;nrec; ð22Þ
where the number of recursion steps nrec corresponds to nsub of the refined mesh and where Rik = Rk for i = nrec. See Section 6
of [13]. The weighted and unweighted prolongation operators PWbc and Pbc act from a 128-point grid on a local mesh Mic to a
192-point grid on a local mesh Mib, see the right image of Fig. 4. The superscript ’�’ in (22) has a meaning which can be
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Fig. 4. Local meshes close to corner vertices. Left: the square array. Right: the staggered array with meshes centered around a double-corner concentration
point dk. The vertex separation distance is d. Meshes with index i = nrec have the largest panels and Mnc coincides with the coarse mesh on C0 in a
neighborhood of dk, see the rightmost image of Fig. 1. The panels on meshes with index i � 1 are half the size of those on meshes with index i.
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explained by considering the discretization of K on a 192-point grid on Mib and on a 128-point grid on Mði�1Þc. Let the result-
ing matrices be Kibk and K(i�1)ck. Now Kibk� is the 192 � 192 matrix which results from zeroing all entries of Kibk that also are
contained in the 128 � 128 matrix K(i�1)ck. The operator Ff�g expands an 128 � 128 matrix into an 192 � 192 matrix by zero-
padding in such a way that FfKði�1Þckg þ K�ibk ¼ Kibk.

6.2. Fixed-point iteration and Newton’s method

The recursion (22) can be simplified for square arrays of squares and for checkerboards thanks to scale invariance of the
integrals in (7) and (9). The local meshes Mib and Mic look the same at all recursion steps and the index i can be dropped, see
the right image of Fig. 3 and the left image of Fig. 4. The recursion (22) assumes the form of a fixed-point iteration
Rik ¼ PT
Wbc F R�1

ði�1Þk

n o
þ I�b þ K�bk

� ��1
Pbc; i ¼ 1; . . . ;nrec; ð23Þ
which for nrec ?1 can be cast as a non-linear matrix equation
GðRkÞ � PT
WbcAðRkÞPbc � Rk ¼ 0; ð24Þ
where
AðRkÞ ¼ F R�1
k

n o
þ I�b þ K�bk

� ��1
; ð25Þ
see Sections 3.2 and 3.3 of [15]. The non-linear Eq. (24), in turn, can be solved for Rk with a variant of Newton’s method. Let X
be a matrix-valued perturbation of Rk and expand G(Rk + X) = 0 to first order in X. This gives a Sylvester-type matrix equation
X� PT
WbcAðRkÞF R�1

k XR�1
k

n o
AðRkÞPbc ¼ GðRkÞ ð26Þ
for the Newton update X. One can use the MATLAB built-in function dlyap for (26), but GMRES [28] gives a smaller residual
and we use that method.

6.3. Initialization, number of recursion steps, and homotopy

The recursion (22), the fixed-point iteration (23), and Newton’s method for (24) need to be initialized and nrec has to be
decided in (22) and in (23). The three types of domains call for different strategies.

Random checkerboards at high contrast ratios are the easiest to deal with. Here we first use the fixed-point iteration (23),
initialized with
F R�1
0k

n o
¼ Ic þ Kck; ð27Þ
where subscript ‘c’ refers to a discretization on mesh Mc in Fig. 3. Compare Eq. (24) of [15]. The iterations are stopped when
either kG(Rk)k/kRkk is smaller than 10�mach in Frobenius norm or a number of 500 iterations is reached. The final fixed-point
iterate is then used as initial guess in Newton’s method for (24). The Newton iterations are stopped when either kG(Rk)k/kRkk
is smaller than 100�mach or a maximum number of 15 iterations is reached. Fig. 5 illustrates this strategy for an Rk associated
with a ck of an ordered checkerboard at r2/r1 = 108. One can see that the convergence of the fixed-point iteration is very
slow. About 2 � 105 steps, corresponding to the same number of subdivisions of the fine mesh, would be needed for full con-
vergence if only the fixed-point iteration was used. This clearly shows the power of Newton iterations and explains why
methods relying solely on mesh refinement run into great difficulties on these types of domains. There are only 16 possible
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corner configurations in a random checkerboard, corresponding to 16 distinct blocks of R. Therefore, the time- and storage
requirements for computing R are negligible for large unit cells.

Square arrays of squares at negative contrast ratios are more difficult to treat. This is so since the solution to the electro-
static equation may only exist as a limit for r2/r1 approaching the negative real axis, see Section 2.1. Again we first use the
fixed-point iteration (23), initialized as in (27) but with r2 (which enters into Kbk�) multiplied with a constant q = 1 � 0.01i.
Again the final fixed-point iterate is used as initial guess in Newton’s method for (24). Now, however, we use a homotopy
method and at each Newton step we reduce the imaginary part of q with a factor of ten. After 14 such iterations q is set to
unity and an additional maximum of 15 Newton iterations are performed. In this way the final expression for Rk may be
complex valued even though the last few matrices Kbk�, fed into (24), are purely real.

Staggered arrays of squares at negative contrast ratios are the most intricate. Here the choice of nrec and of initializer in
(22) are very important. We choose nrec large enough so that the vertex separation distance d, see Fig. 4, at the first recursion
step (i = 1) is at least 1016 times larger than the part of CH

k covered by the mesh M1b. In this way the interaction between the
two connected parts of M1b is negligible. The initializer R0k is then chosen as a compressed inverse computed using the
homotopy method just described for the Rk of the square array of squares, neglecting the interaction between the connected
parts of M1b.

7. Long-range preconditioning

As the number of squares in a unit cell grows, the problem of computing r⁄ gets harder, see Section 1.1. This section im-
proves on Section 4 of [15] and describes a long-range preconditioner for (9) which cures these problems. The main idea is to
split the unknown layer density into two parts and capture all long-range interaction in a matrix S, which can be rapidly
inverted and used in a right-preconditioner. In combination with the short-range preconditioner R of Section 5, applied from
the left, this results in a scheme whose computational cost for checkerboards with large random unit cells at high contrast
ratios is almost linear in Nsq.

7.1. An expanded equation

Each square in D0 has a boundary consisting of four straight segments, see Fig. 2. Introduce piecewise constant local basis
functions sk(z), k = 1, . . . ,Nsq, on C0 [ L0 such that sk(z) = 1 when z lies on a boundary part of square k with positive orienta-
tion, sk(z) = �1 when z lies on a boundary part with negative orientation, and sk(z) = 0 otherwise.

Following Section 4.1 of [15], we take (9) in the general form (1) and expand it into the system
ðI þ KÞl0ðzÞ þ
XNsq�1

k¼1

ak skðzÞ � kðzÞjskðzÞj þ
2kðzÞ
Nsq

� 	
¼ gðzÞ: ð28Þ

Z
skðzÞl0ðzÞdjzj ¼ 0; k ¼ 1; . . . ;Nsq � 1; ð29Þ
where l0(z) mimics the rapidly varying behavior of l(z) and ak are unknown coefficients.
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Discretization of (28) and (29) together with left preconditioned compression, compare (19), results in the linear system
ðIcoa þ RK�coaÞl̂0coa þ RðB1 � KcoajB1j þ kcoauTÞa ¼ Rgcoa; ð30Þ
BT

1jZcoajl̂0coa ¼ 0: ð31Þ
Here B1 is a Ncoa � (Nsq � 1) matrix whose kth column is the discretization of sk(z), kcoa is a column vector whose Ncoa entries
is the discretization of k(z), Kcoa is matrix containing kcoa on the diagonal, u is a column vector with Nsq � 1 entries all equal
to 2/Nsq, a is a column vector containing the Nsq � 1 coefficients ak, and vertical bars denote entrywise absolute value.

The effective conductivity (10) can be computed from
r� ¼ I �eT
coaZcoaðl̂0coa þ B1aÞ


 �
; ð32Þ
once (30) and (31) is solved. Compare (21).

7.2. An important simplification

The definition of sk(z) together with Cauchy’s integral theorem implies that
�eT
coaZcoaB1 ¼ 0: ð33Þ
As a consequence, the second term within parenthesis in (32) does not contribute to r⁄ and can be omitted.
The fact that the coefficients ak are not needed in (32) opens up for another, more important, simplification. With the

change of variables
bk ¼ ak þ
ðrðkÞ � rðNsqÞÞ

rðNsqÞ

PNsq�1
i¼1 ai

Nsq
; ð34Þ
where r(k) denotes the conductivity of square k, the expanded Eq. (28) assumes the simpler form
ðI þ KÞl0ðzÞ þ
XNsq�1

k¼1

bkðskðzÞ � kðzÞjskðzÞjÞ ¼ gðzÞ ð35Þ
and (30) reduces to
ðIcoa þ RK�coaÞl̂0coa þ RðB1 � K coajB1jÞb ¼ Rgcoa: ð36Þ
7.3. A Schur complement style preconditioner

The system (36) and (31) can be written in partitioned form
Iþ RK� B
C 0

� 

l̂0

b

� 

¼

Rg
0

� 

; ð37Þ
where subscripts ‘coa’ are omitted and
B ¼ RðB1 � KcoajB1jÞ; ð38Þ
C ¼ BT

1jZcoaj: ð39Þ
The change of variables
l̂0

b

� 

¼

I B
C 0

� 
�1 x

c

� 

¼ I� BS�1C BS�1

S�1C �S�1

" #
x

c

� 

; ð40Þ
where the (Nsq � 1) � (Nsq � 1) matrix S is given by
S ¼ CB; ð41Þ
transforms (37) into
Iþ RK�ðI� BS�1CÞ RK�BS�1

0 I

" #
x

c

� 

¼

Rg
0

� 

: ð42Þ
From (42) it is obvious that c = 0 and we can write (42) as a single equation for x:
ðIþ RK�ðI� BS�1CÞÞx ¼ Rg: ð43Þ
The effective conductivity (32) can be expressed in terms of x as
r� ¼ If�eT
coaZcoaðI� BS�1CÞxg: ð44Þ
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7.4. The inverse of S

The matrix S of (41) is sparse. In the limit k(z) ? 0 it approaches a standard five-point stencil for the discrete Laplace oper-
ator. As we soon shall see, MATLAB’s sparse banded solver, obtained using ‘backslash’, is very efficient at solving linear systems
with S as system matrix, at least for system sizes up to Nsq = 1.6 � 106. We shall use that method in all numerical examples.

The condition number of S seems to be lower when r(Nsq) = r2 than when r(Nsq) = r1. Therefore, in our numerical exam-
ples, we permute the unit cell so that r(Nsq) = r2.

7.5. Reduction in the number of unknowns

Some entries of the unknown vector x in (43) are easy to solve for. To see this, let Ceq be the part of C0 that lies between
squares of equal conductivity. From (6) it follows that k(z) = 0 for z 2 Ceq. This means that all entries of K� and R whose first
index corresponds to a discretization point zi 2Ceq are zero except for the diagonal entries Rii which are one. From (43) we
get the simple entrywise relation
xi ¼ gi; zi 2 Ceq: ð45Þ
Furthermore, the vast majority of these elements gi are zero thanks to l0(z), see the right hand side of (9).
Eq. (45) can be used to reduce the number of unknowns in (43). The savings are huge when the area fraction p is high or

low. For simplicity, we only remove the known entries of x which are zero. The reduced system assumes the form
ð# I
!
þ # R

!
# K�ð I

!
�BS�1 C

!
ÞÞxu ¼# Rg: ð46Þ
Here xu are the remaining entries of x, ‘downarrow’ indicates that rows of a matrix are deleted, and ‘rightarrow’ indicates
that columns are deleted. One can see in (46) that the reduction in the number of unknowns does not induce a similar reduc-
tion in the size of K�. No columns are deleted. Therefore, the speedup resulting from (46) is not as great as the savings in
storage.
8. Numerical examples

This section investigates the complexity and the achievable accuracy of our scheme (18) for ordered arrays of squares and
(43) and (46) for random checkerboards. We also compare with recent numerical results [6] obtained with the finite element
solver ABACUS.

The numerical examples are performed in the MATLAB environment (version 7.9). The GMRES iterative solver [28] and a
threaded version of the fast multipole method [11], coded in C with SIMD instructions, is used for the main linear systems.
The stopping criterion threshold is set to machine epsilon (�mach). See Section 4.1 of [11] and Section 3 of [9] for how to im-
pose periodic boundary conditions on potential fields due to charges in a unit cell. The examples involving Nsq up to around
106 are executed on a workstation equipped with an IntelXeon E5430 CPU at 2.66 GHz and 32 GB of memory while all other
examples are executed on a workstation equipped with an IntelCore2 Duo E8400 CPU at 3.00 GHz and 4 GB of memory.

When estimating accuracy we rely on some exact relations available for two-component media and compiled in Chapters
3.2 and 8.7 of Milton [25]. Let us consider r⁄ and the effective conductivity tensor r⁄ as functions of r1 and r2. Then, using a
duality transform and the homogeneity of r⁄, one can show the following relation between an original material and that of a
material where the components have been interchanged
r�ðr2;r1Þ ¼ r1r2r�ðr1;r2Þ=detðr�ðr1;r2ÞÞ: ð47Þ
Another useful relation which holds for overall isotropic materials is
r�ðr1;r2Þ�r�ð1=�r1;1=�r2Þ ¼ 1: ð48Þ
An ordered checkerboard has
r� ¼
ffiffiffiffiffiffiffiffiffiffiffi
r1r2
p

ð49Þ
and a square array of squares at p = 0.25 has
r� ¼ r1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðr1 þ 3r2Þ=ð3r1 þ r2Þ

p
: ð50Þ
We also observe, see Chapter 1.7 of [25], that the effective conductivity of a random checkerboard at p = 0.5 obeys
lim
Nsq!1

r� ¼
ffiffiffiffiffiffiffiffiffiffiffi
r1r2
p

: ð51Þ
Note that the tensor r⁄ has four elements and that they all can be computed via (43) (or (46)) and (44). For example, choos-
ing e = 1 both in (43), where e appears in g, and in (44) makes r⁄ assume the value of r⁄xx. Choosing e = 1 in (43) and e = i in
(44) makes r⁄ assume the value of r⁄yx.
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8.1. Timing and convergence to statistical limit

A sequence of 105 random checkerboards is constructed with unit cell sizes ranging from Nsq = 4 to Nsq = 1615441. All
unit cells have r2/r1 = 106 and p = 0.5, see Fig. 6 for two layouts. The effective conductivities r⁄yy of the checkerboards
are computed via (46) and (44).

Almost all computing time is spent in the GMRES solver. The setup time for S of (41) at Nsq = 106, for example, is only
about 0.4% of the total computing time. The number of iterations needed for full convergence is bounded by 18 and the left
image of Fig. 7 shows that the time spent in GMRES grows approximately linearly with Nsq, reflecting the complexity of the
fast multipole method. The total time spent applying the inverse of S, which is included in the time spent in GMRES, is also
shown separately in the left image of Fig. 7. One can see that while this time grows faster than linearly, it is still less than 9%
of the total computing time at Nsq = 106.

The right image of Fig. 7 shows the actual values for the effective conductivities r⁄ of the checkerboards, presented in
terms of their relative deviation from the statistical limit (51). At Nsq = 1615441, which is the largest unit cell we can handle
due to memory constraints, the deviation is about 1%.

8.2. Achievable accuracy

Fig. 8, left image, illustrates how the placement of quadrature nodes influences the achievable accuracy for progressively
higher contrast ratios. The unit cell is that of an ordered checkerboard with Nsq = 4. The circles show that the relative error in
r⁄ grows roughly as (r2/r1)1.5 when Legendre nodes are used on all panels. This was the strategy in [15]. The stars show that
the growth rate becomes linear in r2/r1 when Jacobi nodes are used on special panels. This is the strategy of the present
paper, see Section 3. Several extra digits can be obtained at high contrast ratios.

Note that for r2/r1 > 1016, accurate results are impossible in double precision arithmetic. This is so since k(z) of (7) and (9)
is then indistinguishable from unity. The integral equations become independent of r2 while the reference solution (49) is
not. The error growth rate produced by the Jacobi nodes in Fig. 8 could therefore be thought of as optimal.

Three sequences of checkerboards are now constructed with unit cell sizes ranging from Nsq = 4 to Nsq = 1468944 and
with p = 0.5. The first sequence consists of random checkerboards with r2/r1 = 106. The relative errors in their computed
effective conductivities are estimated via (47) as
Fig. 6.
Right: N
kr�ðr2;r1Þ � r1r2r�ðr1;r2Þ=detðr�ðr1;r2ÞÞk2

kr�ðr2;r1Þk2
: ð52Þ
The second sequence consists of ordered checkerboards with r2/r1 = 106 and (49) is used as reference solution. The third
sequence is the same as the second sequence, but the contrast ratio is increased to r2/r1 = 108.

Fig. 8, right image, shows the results and it has several interesting features. For example, one can see that:

� the error in r⁄ seems to be independent of the unit cell size. This is so because the total error is dominated by the error
caused by corner self-interaction, computed in local coordinates. The error from long-range interaction is comparatively
small except for Nsq > 5 � 105.
Unit cells of two random checkerboards used in the numerical examples. The area fraction of squares with conductivity is r2 is p = 0.5. Left: Nsq = 104.
sq = 106. Please zoom to see the details of the microstructure in the right image.
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� the error estimate for r⁄ of random checkerboards (52), based on duality, agrees well with the error estimate for r⁄ of
ordered checkerboards, based on an exact answer (49).

8.3. Continuum percolation

In theoretical materials science it is of interest to study the effective conductivities of continuum two-component random
composites as p varies. Fig. 9 shows such a study for a unit cell with Nsq = 90000 and r2/r1 = 108 along with the error esti-
mate (52). Two sequences of realizations are shown – one based on sequential random addition and one where all realiza-
tions are independent. It is obvious, from the jagged shape of the curve in the left image and also from the results in
Section 8.1, that we are far from the statistical limit. Percolation thresholds are visible at p 	 0.41 and at p 	 0.59. These
numbers are consistent with classic results on site percolation for a square lattice [22]. The overall behavior of r⁄ as a func-
tion of p in Fig. 9 is in agreement with the discussion on p. 207 in Milton [25] and also with results obtained with a discrete
network model [23] but it stands in contrast to results obtained with the finite element method in Fig. 2(a) of [6]. There only
one percolation threshold is observed.
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8.4. The square array of squares

Fig. 10 shows computed values of r⁄/r1 for the square array of squares at p = 0.25 for negative ratios r2/r1. The relative
error, with (50) as reference solution, is shown in the right image. The error is close to �mach except for in a neighborhood of
three points where it is higher: the ‘pole’ or ‘resonance’ at r2/r1 = �3, the ‘essential singularity’ at r2/r1 = �1, and the ‘zero’
at r2/r1 = �1/3. See [27] for an explanation of the significance and physical meaning of these terms. Note that at r2/r1 = �1
we have k = ±1 and that (7) then becomes a first kind equation. Compare also Fig. 2 of [27], which is similar to the left image
of our Fig. 10, but where some problems are encountered along the branch cut r2/r1 2 [�3,�1/3].

8.5. The staggered array of squares

Staggered arrays of squares at area fractions close to p = 0.5 exhibit rich resonant spectra on the negative real axis and
pose greater challenges to numerics than the example of Section 8.4. More data points are required to resolve r⁄. For mod-
eling purposes it is convenient to describe staggered arrays in terms of a parameter d0, related to the area fraction p and to
the vertex separation distance d, see Figs. 1 and 4, as
p ¼ 2

ðd0 þ 2Þ2
and d ¼ d0ffiffiffi

2
p
ðd0 þ 2Þ

: ð53Þ
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The left image of Fig. 11 for d0 = 10�10 shows an oscillatory behavior of r⁄/r1 for r2/r1 2 [�3,�1/3] and a number of reso-
nances on the negative real axis outside of this interval. The right image shows that the relative error in these computations,
estimated via how well (48) is met, is typically on the order of 102�mach. Close to the eigenvalues of (7), some of which cor-
respond to poles of r⁄, the error is of course larger. The largest relative error encountered in this example is estimated to
10�8.

9. Conclusions

The homogenization of composite materials with large random unit cells of squares at extreme material property ratios is
a canonical problem in the theory of composite materials. It has fascinated researchers for decades [25]. The domains look
simple, yet they are intriguing. There are analytical results available for special cases, yet numerical solvers run into trouble.
Only a few years ago, numerical solutions to the type of homogenization problems presented in this paper would be consid-
ered far out of reach.

The present work epitomizes and stretches a recent line of research [13–15,17,18] to a new high. We first show how to
treat simple unit cells with (almost) optimal accuracy using a short-range preconditioner. We then show that larger unit
cells pose no extra problems when a new long-range preconditioner is added. Our algorithm has (almost) linear complexity
in both execution time and storage requirement. Problems involving unit cells with a million of squares can be solved to very
high precision in a few hours. Homogenization on checkerboard-like domains have become a simple task.

How useful is our new scheme? The coupling of checkerboard problems to real-world physics is elusive. One may ques-
tion the relevance of the small length-scales needed for the resolution of various singular fields. Nevertheless, a recent surge
in physicists’ interest in metamaterials has given new momentum to the study of these issues [27]. The difficulties arising in
random checkerboard problems may, further, be representative of the sort of troubles that arise in several real-world prob-
lems. Since integral equation methods are widely applicable, it is therefore likely that our scheme and generalizations there-
of have many immediate applications. Further work based on the present scheme and directed towards metamaterial
applications is in progress [16].
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