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We develop a numerical method for the coupled motion of Navier–Stokes flow with an
elastic interface of zero thickness which exerts tension and bending forces on the fluid.
The interface motion is made partially implicit by approximating a backward Euler step
in the high wavenumbers as in the small scale decomposition method of Hou, Lowengrub
and Shelley. This modified step is combined with the method of Beale and Layton [J.T.
Beale, A.T. Layton, A velocity decomposition approach for moving interfaces in viscous flu-
ids, J. Comput. Phys. 228 (2009) 3358–67]; the fluid velocity is found by computing the
Stokes velocity and a more regular remainder. The resulting scheme is second order in
space and first order in time; it can be made second order in time by extrapolation. The dis-
continuities in the pressure and velocity gradient are preserved. The partially implicit
method allows much larger time steps than an explicit method with negligible added
effort. The formulas in the Fourier transform for the implicit approximation in high wave-
numbers are similar to those derived in Hou and Shi [T.Y. Hou, Z. Shi, An efficient semi-
implicit immersed boundary method for the Navier–Stokes equations, J. Comput. Phys.
227 (2008) 9138–69] in a different context.

� 2012 Elsevier Inc. All rights reserved.
1. Introduction

We are concerned with models for the coupled motion of a viscous, incompressible fluid and an immersed material
interface which imposes an elastic force on the fluid in response to its deformation. We assume the fluid is described by
the Navier–Stokes equations (NSE) and the interface is a closed curve with zero thickness. There has been extensive devel-
opment of numerical methods in which the fluid pressure and velocity are computed on a rectangular grid and the interface
is represented separately by Lagrangian variables and moved with the fluid velocity. The most widely used method is the
immersed boundary method (IBM) introduced by Peskin [26,8,23,24,27,33] in which the interfacial force is conveyed to
the fluid by a carefully designed discrete delta function on the grid points. In another class of methods, including the
immersed interface method (IIM) the interfacial force is incorporated by imposing jump conditions directly on the fluid
variables [19,17,18,20,31,36].

It has long been recognized that the time step in such methods can be severely limited if the motion of the interface is
explicit. Considerable effort has led to the design of implicit and semi-implicit methods to alleviate the difficulty [5,16,23–
25,33]. Another approach, however, is to identify the source of greatest stiffness arising from small scales or large wavenum-
bers in the interface motion and to modify the velocity to approximate an implicit step in the high wavenumbers, thereby
avoiding the iterative solves needed for a fully implicit method. This was the approach introduced in [9] for certain interface
models. It has been successfully used for elastic interfaces in Stokes flow [10,14,30,32,34,15]. This approach was also applied
in [11] for NSE flow using the IBM. In the present work we develop a partially implicit time-stepping procedure for interfaces
. All rights reserved.
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in NSE flow appropriate for sharp interface methods such as the IIM. As in [3] we decompose the Navier–Stokes velocity as
the sum of the Stokes velocity and a remainder which is less singular at the interface. The resulting method is only slightly
more involved at each time step than an explicit method; the time step can be much larger than for an explicit method but
less than that of an implicit method. Such a method should be useful when the flow is not far from the Stokes regime but the
full NSE evolution is desired.

We assume the fluid flow is two-dimensional and periodic on a rectangular domain X, and the interface is a closed curve
C inside X. We write the interface as a function X ¼ Xða; tÞ of a material coordinate a;�A 6 a 6 A. We denote the unit tan-
gent and normal vectors by t ¼ ð@X=@aÞ=j@X=@aj and n, and the current arclength by s, so that sa ¼ @s=@a ¼ jXaj; our notation
is slightly different from that used with the IBM. We suppose the fluid has the same constant density on both sides of C. The
Navier–Stokes equations in nondimensionalized form are
@u
@t
þ u � ruþrp ¼ mr2uþ Fþ G ð1Þ

r � u ¼ 0 ð2Þ
where u is the fluid velocity, p is the pressure, m is the kinematic viscosity. Here G is a background force and F is the inter-
facial force, supported on C; that is, F ¼ fdC, where the density f is a function on C, so that for a test function wðxÞ on X
Z
X

FðxÞwðxÞdx ¼
Z

C
fðxðsÞ; tÞwðxðsÞÞds ¼

Z A

�A
fðXða; tÞ; tÞwðXða; tÞÞsada ð3Þ
We consider forces due to stretching and bending, f ¼ fðsÞ þ fðbÞ, with fðsÞ a function only of sa. As in [26] we suppose fðsÞ is
determined by an energy density �ðsaÞ, with the form fðsÞ ¼ ð@=@sÞð�0ðsaÞtÞ. The most familiar case is �ðrÞ ¼ ðc0=2Þðr� 1Þ2,
so that
fðsÞða; tÞ ¼ c0@s ðsa � 1Þtð Þ; ð4Þ
a linear response to the stretching of the material from its natural length. We consider a bending force of the form
fðbÞ ¼ �cb@
4
s X ¼ �cb@

3
s t: ð5Þ
It will be important that f always has the form f ¼ @sU. The interfacial force can be expressed in jump conditions for the
pressure and velocity gradient (see e.g. [18,20,27]),
½p� ¼ f � n; @p
@n

� �
¼ @

@s
f � tð Þ ð6Þ

½u� ¼ 0; m
@u
@n

� �
¼ � f � tð Þt: ð7Þ
The equations of motion are completed by setting the velocity of the Lagrangian markers on C to the fluid velocity
d
dt

Xða; tÞ ¼ uðXða; tÞ; tÞ ð8Þ
As in [3] we compare the NSE velocity and pressure with those of the Stokes equations
rps ¼ mr2us þ Fþ G; r � us ¼ 0: ð9Þ
In the velocity decomposition method of [3], we write the NSE velocity u as the sum of the Stokes velocity and a remainder
ur , and similarly for the pressure,
u ¼ us þ ur; p ¼ ps þ pr: ð10Þ
The jump conditions for us; ps are the same as in (6), (7) essentially because the velocity, and therefore its material derivative,
are continuous across C ([20]). Thus the remainder variables ur; pr are more regular than u; p. Subtracting (9) from (1), we get
equations for ur ; pr resembling NSE,
@ur

@t
þ u � rur þrpr ¼ mr2ur þ Fb ð11Þ

r � ur ¼ 0; ð12Þ
where Fb is minus the material derivative of the Stokes velocity,
Fb ¼ �
@us

@t
� u � rus ð13Þ
and is also continuous at C. This formulation has the advantage that the two problems can be solved separately, with a
choice of methods for each. In [3] we solve the Stokes problem with the IIM [18] and the remainder problem using the
semi-Lagrangian method [7,35], which preserves the material derivatives.
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The method of [3] was second order accurate in space and time with explicit time steps for the interface. In the present
paper we develop a similar method, second order in space and first order in time, with partially implicit time steps for the
interface. Second order accuracy in time can be achieved by extrapolation. In Section 2 we outline the complete method and
explain the treatment of the fluid variables. In Section 3 we begin with a first order accurate time discretization with a back-
ward Euler step in place of (8). Since the new interface is unknown, we derive an approximation in which a primary contri-
bution is the update of the interfacial force resulting from the change in the interface. In Section 4 we write the force update
by using a singular integral representation and approximating the most singular contribution. This contribution is computed
in the discrete Fourier transform on the interface. This procedure is motivated by the small scale decomposition method of
[9]. A similar procedure was used in [11], for an elastic interface in Navier–Stokes flow with force of the form (4), but the
context and derivation here are different. In [11] the flow was computed using the IBM and the interface was represented
by tangent angle and arclength, as in [9].

In Section 5 we present numerical results. We verify convergence, test the validity of the partially implicit approximation,
and estimate time steps with the force (4). We illustrate the application to a nonlinear force, as in [24,5]. We also present
examples with a bending force which can be compared with calculations of inextensible vesicles [13,12,34]. Brief conclu-
sions are given in Section 6.

2. Summary of the method

We outline the method with first-order time discretization but with the equations exact in the spatial variables. The mod-
ification to second order in time is discussed later. At time n we assume that the quantities un

s ;u
n
r , Xn;un

sB, and fn are known.
Here un

s ;u
n
r are the Stokes and regular velocity fields at time n, Xn is the current interface position, as a function of the

Lagrangian coordinate, un
sB is the restriction of un

s to the interface, and fn is the force density on the interface Cn determined
by Xn. With time step Dt ¼ s, we advance to time nþ 1 in three steps:

(1) Update X to Xnþ1 using an interface velocity u�B, discretizing (8) as
Xnþ1 � Xn

s
¼ u�B ð14Þ
As derived in the next two sections, u�B is obtained from un
sB and un

r by a modification in the high wave numbers to approx-
imate the velocity at time nþ 1. Compute the force fnþ1 determined by Xnþ1.

(2) Solve for the new Stokes velocity unþ1
s ,
rpnþ1
s ¼ mr2unþ1

s þ Fnþ1; r � unþ1
s ¼ 0 ð15Þ
where Fnþ1 ¼ fnþ1dCnþ1 .
(3) Solve for the new regular velocity unþ1

r discretizing (11), (12) with the viscosity implicit and the material derivatives
formed with velocity values at time n along backward characteristics,
unþ1
r � Tun

r

s
þrpnþ1

r ¼ mr2unþ1
r � unþ1

s � Tun
s

s
; r � unþ1

r ¼ 0 ð16Þ
Here Tun
r ðxÞ ¼ un

r ð~xÞ, where ~x is the location reached at time n by traveling backwards in time with velocity u, starting at
time nþ 1 at x; this earlier location ~x is often called the ‘‘departure point’’.

For the solution of the Stokes problem in (2), it is natural to use the IIM, as applied to Stokes flow in [18], and this was
done in [3]. In the present work, as in [15], we use the boundary integral representation of the free space Stokes pressure and
velocity (e.g. see [29]). We first compute the values at grid points near the interface, written as nearly singular integrals. We
compute the integrals using the method of [2] as applied to Stokes flow in [6]. We regularize the singularity, calculate a value
with a standard quadrature, and then add an analytical correction for the regularization. With these values at nearby grid
points, we form a discrete Laplacian and invert to obtain the pressure and velocity at all grid points; this procedure was sug-
gested in [22] and used in [2]. The periodic boundary conditions are incorporated in the discrete Poisson problem. This meth-
od for solving the Stokes equations in the fluid domain was described in detail in [15].

In solving (3) we use the semi-Lagrangian method [7,35], as was done in [3], but the first order version (16) is simpler
than the BDF2 version used before. Starting with a grid point x for time nþ 1, we approximate the departure point ~x by
x� ¼ x� ðs=2ÞunðxÞ; ~x ¼ x0 � sunðx�Þ ð17Þ
We have to interpolate un in the second equation, and we have to interpolate un
s and un

r to ~x in (16). Since us has discontin-
uous gradient at C, we extrapolate grid values across C to find un

s ð~xÞ. We then solve for unþ1
r using the projection method. We

rewrite (16) as
unþ1
r � smr2unþ1

r ¼ �srpnþ1
r þ Tun

r � unþ1
s þ Tun

s ð18Þ
and apply the projection P onto divergence free vector fields,
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P ¼ I �rðr2Þ�1r� ð19Þ
resulting in the equation
unþ1
r � smr2unþ1

r ¼ P Tun
r � unþ1

s þ Tun
s

� �
: ð20Þ
Finally, with
R ¼ ðI � smr2Þ�1 ð21Þ
we have
unþ1
r ¼ RP Tun

r � unþ1
s þ Tun

s

� �
: ð22Þ
It is important here that R and P commute with each other and withr2 with periodic boundary conditions. We replace R and
P with grid operators based on the usual second order differences forr andr2 and perform the operations with the Fourier
transform. The discrete projection is approximate rather than exact. In [3] the pressure was treated slightly differently.

We now describe the modification for second order accuracy in time. For the regular velocity ur we use the backward
difference formula (BDF2) discretization of (11), (12) as in [3], Section 2.2, rather than (16). Because we do not know a second
order version of the derivation in Sections 3 and 4 for partially implicit update of the interface position X, we use extrapo-
lation with respect to time to eliminate Oðs) errors that were introduced. To describe the second order method, let
SXðXn;un; sÞ be the update of X as in (14), with time step s, and let SuðXnþ1;un;un�1; sÞ be the update of u resulting from
(15) and the BDF2 solution of (11), (12) replacing (16). Now, supposing X and u are known up to time n, we set
X� ¼ SXðXn�1;un�1; sÞ; u� ¼ SuðX�;un�1;un�2; sÞ;
Xnþ1 ¼ 2SXðX�;u�; sÞ � SXðXn�1;un�1;2sÞ; ð23Þ
unþ1 ¼ SuðXnþ1;un;un�1; sÞ
Thus two velocity evaluations are needed for each time step.
The overall operation count for either version is OðN2 log NÞ per time step, where N is the number of grid points in each

direction and we assume that OðNÞ points are used on the interface. The largest cost is for two-dimensional FFT’s used in the
inversion for the Stokes problem and for RP in (22). The direct computation of integrals for Stokes flow uses OðN2Þ; in prin-
ciple this could be replaced by a fast method. The partially implicit update of the interface used here can be done with a 1D
FFT, having negligible cost.

3. Approximating the backward Euler step

We begin with the problem discrete in time, exact in space, and implicit in Xnþ1. We will approximate the new velocity
unþ1 on Cnþ1 to obtain u�B mentioned earlier. The implicit equations are
Xnþ1 ¼ Xn þ sunþ1ðXnþ1Þ; ð24Þ

unþ1 � Tun þ srpnþ1 ¼ smr2unþ1 þ sFnþ1; r � unþ1 ¼ 0 ð25Þ
where Fnþ1 is the force determined by Xnþ1 . We suppose G ¼ 0 for simplicity. Our task is to replace the right side of (24) with
a quantity which can be computed at time n. It will be important that for each material location a on the interface, and any
function wðxÞ,
ðTwÞðXnþ1ðaÞÞ ¼ wðXnðaÞÞ ð26Þ
As before we can write un ¼ un
s þ un

r , each with divergence zero. As in (18)–(22) we apply the projection P and then the Pois-
son solver R to (25) to obtain
unþ1 ¼ sRPFnþ1 þ RPTun ð27Þ
Also for the Stokes part we will use the projection of (9) at time n,
0 ¼ smr2un
s þ sPFn ð28Þ
Note that Rðsmr2Þ ¼ R� I and therefore
Rðsmr2un
s Þ ¼ Run

s � un
s ð29Þ
and thus from (28)
sRPFn ¼ �Rðsmr2un
s Þ ¼ un

s � Run
s ð30Þ
Now we subtract and add sTðRPFnÞ to Eq. (27) for unþ1, using T applied to Eq. (30):
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unþ1 ¼ sRPFnþ1 � sTðRPFnÞ þ Tun
s � TðRun

s Þ þ RPTun
s þ RPTun

r ð31Þ
We have substituted un ¼ un
r þ un

s in the last term in (27) so that in (31) the last two terms with un
s appear to be a commu-

tator. Now add and subtract TðRun
r Þ,
unþ1 ¼ sRPFnþ1 � sTðRPFnÞ þ Tun
s þ TðRun

r Þ � TðRun
s Þ þ RPTun

s þ RPTun
r � TðRun

r Þ ð32Þ
and combine the terms with un
s and un

r at the end:
unþ1 ¼ sRPFnþ1 � sTðRPFnÞ þ Tun
s þ TðRun

r Þ þ RPTun � TðRunÞ ð33Þ
We need to use this at Xnþ1, the location of the new interface. Using (26) we simplify most of the terms in (33) to obtain
unþ1ðXnþ1Þ ¼ sRPFnþ1ðXnþ1Þ � sRPFnðXnÞ þ un
s ðX

nÞ þ Run
r ðX

nÞ þ RPTun � TðRunÞ½ �ðXnþ1Þ ð34Þ
So far we have an exact equation. We will make two approximations for use in (24). Since Run ¼ RPun, the last term in (34) is
a commutator of T and RP applied to un. For a velocity with bounded gradient, it is no larger than OðsÞ since ðT� IÞun ¼ OðsÞ.
As a contribution to the truncation error in (24), we can neglect this OðsÞ term in the velocity in (24) while deriving a first-
order method. (Of course we should expect the error to grow as 1=m and the force coefficients become large.) The velocity
expression is now reduced to
unþ1ðXnþ1Þ � sðRPFnþ1ÞðXnþ1Þ � sðRPFnÞðXnÞ þ ~unðXnÞ ð35Þ
where we have set
~un ¼ un
s þ Run

r ð36Þ
The terms RPFnþ1 and RPFn can be written as integrals on the interface whose kernel is the fundamental solution K of the
‘‘modified Stokes operator’’ RP; see (40)–(43). Each term is actually Oðs�1=2Þ on the interface. (This can be seen from Eq.
(53) for the transform of K, with k ¼ Oð1Þ, or more directly from the fact that the K must have the form s�1Gðx=

ffiffiffi
s
p
Þ.)

Now since Fnþ1 � Fn ¼ OðsÞ, the term appearing in the velocity is Oðs � s � s�1=2Þ ¼ Oðs3=2Þ. Thus it is negligible in the trunca-
tion error in (24). This suggests that we can replace it by our guess of its most important part without losing first order accu-
racy. We do this in order to gain stability. In the next section we will derive an approximation
sRPFnþ1ðXnþ1Þ � sRPFnðXnÞ � AðXnþ1 � XnÞ ð37Þ
where A is a linear operator. Then, combining (24) with (35)–(37) we get
Xnþ1 � Xn ¼ sAðXnþ1 � XnÞ þ s~unðXnÞ ð38Þ
and solving for Xnþ1,
Xnþ1 � Xn ¼ sðI � sAÞ�1 ~unðXnÞ � su�B ð39Þ
with the modified velocity written earlier in (14).
We use (39) in this work, but we comment briefly on the possibility of computing the neglected terms. For the commu-

tator at the end of (34), we could calculate RPTun at grid points by following a point backward in time, as in (17), to obtain
Tun, and then apply RP in the Fourier transform as described after (22). Similarly we can find TðRunÞ. Having values at the
grid points, we need to interpolate the difference to Xnþ1; we could extrapolate the location from earlier time steps, although
it is not clear how this would affect the stability. Rather than using the approximation (37), we could replace the exact quan-
tity on the left by the integral expression in (43) and write fnþ1 in terms of Xnþ1, leading to a nonlinear integral equation for
Xnþ1, and resulting in a fully implicit method. It could be simplified by lagging the update of the interface location in the first
integral, as has been done with implicit methods for the immersed boundary method, giving a more refined approximation
than the one used here. For recent work on implicit methods for the IBM applied to Navier–Stokes flow, see [4,5,11,24,25].

4. Approximating the stiff part of the force

To derive an expression of the form (37) we think of
_v � sRPFnþ1ðXnþ1Þ � sRPFnðXnÞ ð40Þ
as a change or variation in the velocity due to the variation in interface position, _X ¼ Xnþ1 � Xn. We approximate the changes
with variational derivatives and derive simple formulas in the Fourier transform on the interface by identifying the most sin-
gular part, as in [9,11] and other work. We will assume for now that the force exerted by the interface C has the form
F ¼ fdC; f ¼ @sU; U ¼ �0ðsaÞt ð41Þ
The operator RP is given by a convolution with the fundamental solution. Although the problem is in a periodic box, we can
replace the operators with those for free space, since the difference at the interface is smooth, and we are interested in
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approximating high wave numbers. The free space fundamental solution consists of functions Kij; i; j ¼ 1;2, where KijðxÞ is
the ith component of RPðdejÞ, d is the usual delta function in R2, and P and R are defined in (19),(21).
RP ¼ ðI � smDÞ�1ðI �rðr2Þ�1r�Þ ð42Þ
The convolution of this fundamental solution with F results in an integral over C, so that _v i as a function of a; i ¼ 1;2, is
_v i ¼ s
Z

Cnþ1

X
j

KijðXnþ1ðaÞ � yÞfnþ1
j ðyÞdsðyÞ � s

Z
Cn

X
j

KijðXnðaÞ � yÞfn
j ðyÞdsðyÞ ð43Þ
We can rewrite each integral in Lagrangian coordinates, with y ¼ Xða0Þ at time nþ 1 or n. For simplicity, we will replace Xnþ1

inside K in the first term by Xn, for both a and a0, and similarly for s0a in the change of variables. (That is, in the first term we
use the old interface but the new force; see [25] for comments about this replacement.) Thus, with _U ¼ Unþ1 �Un we get
_vðaÞ � s
Z

KðXnðaÞ � Xnða0ÞÞ@s
_Uða0Þsn

a0da
0 ð44Þ
or, after canceling two factors of sa0 ,
_vðaÞ � s
Z

KðXðaÞ � Xða0ÞÞ@a0
_Uða0Þda0 ð45Þ
We have omitted superscript n’s and indices i; j.
The change _U in U is determined by _X ¼ Xnþ1 � Xn. We will need to write _X in tangential and normal components, de-

noted _X1; _X2
_X ¼ _X1tþ _X2n ð46Þ
as functions of a, where t;n are the unit tangent and normal vectors at XnðaÞ. Varying UðaÞ ¼ �0ðsaÞt, we have
_U � �00ðsaÞ_satþ �0ðsaÞ_t:
From s2
a ¼ Xa � Xa, we get _sasa � _Xa � Xa, so that _sa � _Xa � t ¼ @að _X � tÞ � _X � @at or
_sa � @a
_X1 � saj _X2 ð47Þ
where j is the curvature, defined by ts ¼ jn. The variation _t must be normal, so that _t � ðs�1
a

_Xa � nÞn and
_t � s�1
a @a

_X2 þ j _X1

� �
n ð48Þ
(Further details are given e.g. in [1], p. 1284.) We neglect the second terms in both (47), (48) as less important since they do
not have a-derivatives on _X. Thus we obtain
_UðaÞ � c1ðaÞð@a
_X1Þtþ c2ðaÞð@a

_X2Þn; c1ðaÞ ¼ �00ðsaÞ; c2ðaÞ ¼ s�1
a �

0ðsaÞ ð49Þ
To calculate (45) with a fixed, we can temporarily assume, because of the rotational invariance of the problem, that the x1-
axis is tangent to C at XðaÞ in the x ¼ ðx1; x2Þ plane. For our approximation we need only be concerned with the singular part
of the integrand. Since the singular behavior is for a0 near a, we will replace XðaÞ � Xða0Þ in (45) by ðsaða� a0Þ; 0Þ, where
sa ¼ saðaÞ ¼ j@aXðaÞj; the difference is much smoother than either term. We also replace K with a localized version Kð0Þ, mul-
tiplying K with wða� a0Þ, where wðbÞ ¼ 1 for b small and w ¼ 0 outside a small interval about b ¼ 0; the difference is again
smooth. Thus we have
_v � s
Z

Kð0Þðsaða� a0ÞÞ@a0
_UðXða0ÞÞda0 ð50Þ
We use the Fourier transform of K, first in two dimensions and then one. We write the transform and its inverse for
u : R2 ! R, as
~uðnÞ ¼ ð2pÞ�2
Z

R2
uðxÞe�ixndx; uðxÞ ¼

Z
R2

~uðnÞeixndn ð51Þ
Thus in R2 we have ~d ¼ ð2pÞ�2 and ½ðI � smDÞ�1d��ðnÞ ¼ ð2pÞ�2ð1þ smn2Þ�1. We set n ¼ ðk; ‘Þ and n2 ¼ k2 þ ‘2, so that in the
transform P11 multiplies by 1� k2

=n2 ¼ ‘2=n2 etc., and thus
~K11 ¼
‘2

4p2n2ð1þ smn2Þ
; ~K22 ¼

k2

4p2n2ð1þ smn2Þ
; ~K12 ¼ �

k‘

4p2n2ð1þ smn2Þ
ð52Þ
and ~K21 ¼ ~K12. Next we form the one-dimensional transform K̂ij of Kij as a function of x1 on x2 ¼ 0, with a similar definition; it
results from integrating ~Kij in ‘. With k2 ¼ ðsmÞ�1, we get K̂12 ¼ K̂21 ¼ 0 and
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K̂11ðkÞ ¼
1

4p
k2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

k2 þ k2
p

þ jkj
; K̂22ðkÞ ¼

1
4p

k2jkjffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þ k2

p
ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þ k2

p
þ jkjÞ

ð53Þ
These could also be derived from the formulas for Kij in terms of Bessel functions, as was done in [11].
We are now ready to approximate the integral (50). Suppose �A 6 a 6 A; since _U is periodic in a we can write
_Uða0Þ ¼
X

k

_Ukeipka0=A; _Uk ¼
1

2A

Z A

�A

_Uða0Þe�ipka0=Ada0 ð54Þ
and similarly for _X. Assuming _U is smooth, so that the series converges rapidly enough, we substitute into (50) obtaining
_vðaÞ ¼ s
X

k

ipk
A

_Uk

Z A

�A
Kð0Þðsaða� a0ÞÞeipka0=Ada0 ð55Þ
We set x1 ¼ saða� a0Þ and change variables in the integral. We extend the integral to all x1, since Kð0Þ is local, and finally we
replace Kð0Þ by K; since the difference is smooth it contributes terms rapidly decreasing in k. We now rewrite the integral in
terms of K̂:
_vðaÞ ¼ s
X

k

ipk
Asa

_Ukeipka=A
Z 1

�1
Kðx1; 0Þe�iðpk=AsaÞx1 dx1 ð56Þ

_v‘ðaÞ ¼ 2ps
X

k

ipk
Asa

_Uk;‘eipka=AK̂‘‘

pk
Asa

	 

; ‘ ¼ 1;2 ð57Þ
We set g ¼ pk=ðAsakÞ so that
K̂11
pk
Asa

	 

¼ k

4p
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

g2 þ 1
p

þ jgj
; K̂22

pk
Asa

	 

¼ k

4p
jgjffiffiffiffiffiffiffiffiffiffiffiffiffiffi

g2 þ 1
p

ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g2 þ 1

p
þ jgjÞ

ð58Þ
and thus, since k2s ¼ 1=m,
_v‘ðaÞ ¼
i

2m
X

k

eipka=AsgnðgÞg‘ðgÞ _Uk;‘; ‘ ¼ 1;2 ð59Þ
where we define
g1ðgÞ ¼
jgjffiffiffiffiffiffiffiffiffiffiffiffiffiffi

g2 þ 1
p

þ jgj
; g2ðgÞ ¼

g2ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g2 þ 1

p
ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g2 þ 1

p
þ jgjÞ

: ð60Þ
From (49) we have _U‘ða0Þ ¼ c‘ðsaÞ@a
_X‘ða0Þ. Here sa is evaluated at a0, but we replace it with the value at a in keeping with the

local approximation. The corresponding relation in Fourier coefficients is _Uk;‘ ¼ c‘ðsaÞðipk=AÞ _Xk;‘. Combining with the above,
we get
_v‘ðaÞ ¼ �
1

2m
c‘ðsaÞ

X
k

eipka=A pjkj
A

g‘ðgÞ _Xk;‘; ‘ ¼ 1;2 ð61Þ
So far we have considered a arbitrary but fixed with horizontal tangent at XnðaÞ. We now consider a arbitrary and write
_X ¼ _X1tþ _X2n and similarly for _v. The expressions (61) give _v in the form _v ¼ A _X, as stated in (37), and we are ready to solve
for _X as in (38),(39). To calculate the solution, we use the discrete Fourier transform, replacing the exact Fourier series above.
With �A 6 a 6 A, we discretize with a ¼ jhB, �NB=2þ 1 6 j 6 NB=2. The discrete transform of _X‘ðjhBÞ, for ‘ ¼ 1;2, is _Xk;‘, with
�NB=2þ 1 6 k 6 NB=2,
_X‘ðjhBÞ ¼
X

k

_Xk;‘eipkjhB=A; _Xk;‘ ¼
1

NB

X
j

_X‘ðjhBÞe�ipkjhB=A ð62Þ
and similarly for _v; ~u. To discuss the approximate solution of (38) further we will consider specific cases separately.
Linear tension force. For the familiar case U ¼ c0ðsa � 1Þ, we have �ðrÞ ¼ c0ðr� 1Þ2=2, and we see from (49) that c1 ¼ c0

and c2 ¼ c0ð1� s�1
a Þ in (61). The coefficient of _Xk;‘ in (61) depends on a as well as k. To simplify the equation to be solved, we

can replace saðaÞ in the definition of g by min sa, so that now
g ¼ c0k; c0 ¼
p

Aðmin saÞk
ð63Þ
The functions g1; g2 are increasing in g, so that replacing sa by its minimum has the effect of magnifying the coefficient of _Xk;‘.
Similarly in c2 we replace sa by the maximum. In the resulting approximate version of Eq. (38) we can solve directly for _Xk;‘ in
terms of the Fourier coefficients of ~u. For �NB=2þ 1 6 k 6 NB=2 we set
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m1ðkÞ ¼ 1þ sc0

2m
p
A
jkj

� �
g1ðc0kÞ

h i�1
ð64Þ

m2ðkÞ ¼ 1þ sc0

2m
1� 1
ðmax saÞ

	 

p
A
jkj

� �
g2ðc0kÞ

� ��1

ð65Þ
Then combining (61) as modified with (38) and inverse transforming, we get
_X‘ðjhÞ ¼ s
XNB=2

k¼�NB=2þ1

m‘ðkÞ~uk;‘eipkjhB=A ð66Þ
and finally Xnþ1 � Xn ¼ _X1tþ _X2n. The replacement of sa by constants gives us the simplest version of the approximate solu-
tion of (38). Such a procedure was used in [11], leading to formulas similar to (64), (65), and this version is used in our exam-
ples in Section 5.

General tension force. For a general force as in (41) we can proceed as above with
m‘ðkÞ ¼ 1þ s
2m

cð0Þ‘
p
A
jkj

� �
g‘ðc0kÞ

h i�1
ð67Þ
where cð0Þ‘ is an upper bound for c‘ðaÞ. For example, if �ðrÞ ¼ c0r2=2þ c1r3=3, so that �0ðrÞ ¼ c0rþ c1r2 then
cð0Þ1 ¼ c0 þ 2c1ðmax saÞ; cð0Þ2 ¼ c0 þ c1ðmax saÞ: ð68Þ
Bending force. With a bending force we have, in place of (41), f ¼ �cb@
4
s X � @sU, with U ¼ �cb@

3
s X or U ¼ �cb@

2
s t ¼

�cbs�1
a ð@aðs�1

a @atÞÞ. In the variation of U, the most important term (having the highest derivative) is �cbs�2
a @2

a
_t. With

_t � ðs�1
a @a

_X2Þn as before, we get _U � �cbs�3
a @3

að _X2Þn in place of (49). From this we find _Uk;1 ¼ 0; _Uk;2 ¼ �cbs�3
a ðipkÞ=AÞ3. In

place of (61) we get _v1 ¼ 0 and
_v2 ¼ �
cb

2m
s�3
a

X
k

eipka=A pjkj
A

	 
3

g2ðgÞ _Xk;2: ð69Þ
If we have only the bending force, then _X is given by (66) with m1 ¼ 1 and
m2ðkÞ ¼ 1þ scb

2m
ðmin saÞ�3 p

A
jkj

� �3
g2ðc0kÞ

� ��1

ð70Þ
If the force is a sum of bending and elastic terms, e.g. f ¼ c0@s ðsa � 1Þtð Þ � cb@
4
s X, then m1 is given by (64), and m2 has terms

as in (65) and (70) added inside the brackets.

5. Numerical results

We suppose the Eqs. (1)–(8) have been nondimensionalized with length scale L, time scale T and velocity U ¼ L=T , so that
if x0; t0;u0 are dimensional variables, then x ¼ x0=L; t ¼ t0=T;u ¼ u0=U etc. The nondimensionalized viscosity coefficient is
m ¼ m0=LU ¼ 1=Re, with Re the usual Reynolds number. If the tension force has the form (4), the nondimensional tension coef-
ficient c0 is c00T2=ðq0L3Þ;q0 being the density, and for a bending force as in (5) the bending coefficient is cb ¼ c0bT2=ðq0L5Þ. Thus,
for example, with the tension force (4), two problems reduce to the same nondimensional equations if Lð1Þ ¼ Lð2Þ,
Tð1Þ ¼ T ð2Þ=k;Uð1Þ ¼ kUð2Þ, m0 ð1Þ ¼ km0ð2Þ, and c0ð1Þ0 ¼ k2c0ð2Þ0 for some constant k. We can rescale a given problem so that c0 is
1, changing the other parameters. In our experiments with the force (4) we will consider the problem nondimensionalized
with L fixed and c0 ¼ 1, and vary the viscosity m.

We use a square computational region 0 < x1; x2 < 1 and periodic boundary conditions. We discretize x ¼ ðx1; x2Þ on a
square grid with spacing h ¼ 1=N and use NB markers on the interface, equally spaced in the Lagrangian coordinate a. We
always choose NB ¼ 2N.

For our accuracy tests we use the familiar test problem in which the initial interface is an ellipse stretched from its natural
circular configuration, as in [5,10,11,17,18,24,25,33]. Usually the initial velocity is set to zero and the interface markers are
equally spaced in the parameter h as in (71) below. If this is done, there is a nonzero initial tangential force due to the var-
iation in @s=@a, and the initial velocity zero violates the jump condition (7). Thus the initial state is inconsistent with the
governing equations. The problem is meaningful, but an extra singularity is introduced. For this reason, we prefer to use
the Stokes velocity as the initial state in our accuracy tests. (Another way to avoid this extra singularity would be to use ini-
tial velocity zero but space the markers equally in arclength, so that @s=@a is constant on the interface, leading to zero tan-
gential force. This was apparently done in [11].)

For our first tests we choose the initial curve as the ellipse parametrized by h,
x1 ¼ :5þ ð1=3Þ cos h; x2 ¼ :5þ ð1=4Þ sin h � p 6 h 6 p ð71Þ
We choose the unstretched configuration to be the circle of radius 1=5 and the material coordinate to be
a ¼ h=5; jaj 6 A ¼ p=5. This choice is comparable to that in [24,5]. We place the initial interface markers equally spaced in
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h and assume the initial pressure and velocity are those determined by the Stokes equations. We assume a tension force of
the form (4) with c0 ¼ 1.

If m > :1, the ellipse relaxes toward the circle of the same area. For m < :1, it undergoes a damped oscillation before
approaching the circle. We will say that a ‘‘half-cycle’’ is the first time that the x1-intercept has a local minimum and the
x2-intercept a local maximum. For m ¼ :1; :05; :01, this time is :9; :45; :3. Fig. 1 shows the x1 – and x2-intercepts as functions
of time with m ¼ :01. For comparison, Fig. 2 gives the intercepts with the initial velocity zero rather than Stokes. Fig. 2 is sim-
ilar to Fig. 8.5 in [17].

Stability. We compare three versions of the method: the code with first order partially implicit time step, as described in
Section 2; the second order partially implicit version as in (23); and a code with second order explicit time steps of Adams–
Bashforth type. All three are designed to be second order in space. For brevity we refer to the three codes as ‘‘first order’’,
‘‘second order’’ and ‘‘explicit’’. We first estimated experimentally the largest stable time step for the test problem described
above with various choices of m. We performed 50 time steps and judged stability by the absence of unphysical oscillations in
the tangent to the interface or in the velocity at the interface. (With too large a time step our method of interpolation near
the interface often fails before these oscillations appear.)

The results are shown in Table 1. Values of Dt=h are shown. The maximum velocity that occurs in the solution is the
maximum initial Stokes velocity, about :04=m. Thus the CFL condition predicts Dt=h ¼ 25m. The maximum Dt=h is consider-
ably larger than the CFL prediction, for the first or second order implicit code, for m P :01. For m ¼ :005 it is worse for lower N,
but almost matches the CFL step in the highest resolution. It appears that for smaller m, higher spatial resolution is needed to
run with the CFL time step. To test this hypothesis, we tried the second order implicit code with
m ¼ :001; N ¼ 600; NB ¼ 1200; it ran successfully for 50 time steps with Dt=h ¼ :025, the CFL velocity.

Validity of the partially implicit formula. To test the validity of the approximations made in Sections 3, 4 for the inter-
face motion, we compared solutions calculated by the first and second order partially implicit codes with a solution from the
explicit code with small steps. For each test we ran the implicit code twice, reducing Dt in the second run by a factor of 2 and
doubling the number of time steps. The spatial resolution was fixed at N ¼ 400; NB ¼ 800. We chose m ¼ :1; c0 ¼ 1 and final
time :4. For the explicit code Dt=h ¼ :1, requiring 1600 time steps. We computed relative errors in velocity and interface loca-
tion, treating the explicit solution as exact, even though it has OðDt2Þ error. The relative error in velocity is
kuDt � uexplk=kuexplk, or the same with Dt replaced by Dt=2, where the norm is the discrete L2 norm on square grid points.
The definition for the interface position is similar, with L2 norms with respect to the material parameter on the curve.
We found empirical rates of convergence, also based on L2 norms. Thus for the velocity field the rate is
p ¼ log2kuDt � uexplk=kuDt=2 � uexplk ð72Þ
and similarly for the interface. Results are shown in Table 2. For each pair of runs we display the larger of the two values of
Dt=h, the relative errors with the larger time step, and the empirical rates of convergence. The errors and rates based on L1 or
maximum norm errors are similar. E.g., for the second order code with Dt=h ¼ :5 the relative errors in maximum norm for
u1;u2, and X are 1.5e�3, 1.7e�3, and 4.5e�5. The results for the first order code clearly show the expected OðDtÞ error. For
the second order code, the order in Dt increases with refinement well past first order. It does not approach 2, probably
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Fig. 1. x1-intercept (solid) and x2-intercept (dashed) for the ellipse initialized with Stokes velocity.
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Fig. 2. x1-intercept (solid) and x2-intercept (dashed) for the ellipse initialized with zero velocity.

Table 1
Largest observed stable values of Dt=h, tension force.

m Explicit First order Second order

N ¼100 200 400 N ¼100 200 400 N ¼100 200 400

1 3 3 3 300 300 400 180 180 250
.1 .3 .3 .3 30 40 50 20 25 35
.01 .02 .04 .04 2.5 5 5 .5 1 2.5
.005 .003 .01 .015 .008 .07 .15 .005 .02 .12

Table 2
Empirical rates of convergence to the explicit code as Dt ! 0.

Dt=h First order Second order

Velocity Interface Velocity Interface

rel err Rate rel err Rate rel err Rate rel err Rate

2 1.91e�2 1.16 1.20e�2 1.15 5.58e�3 1.18 2.31e�3 1.13
1 8.56e�3 1.11 5.43e�3 1.12 2.46e�3 1.35 1.06e�3 1.34
.5 3.96e�3 1.07 2.50e�3 1.09 9.63e�4 1.43 4.17e�5 1.43
.25 1.89e�3 1.04 1.17e�3 1.07 3.58e�4 0.57 1.55e�5 �1.12
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because the two codes being compared each have OðDt2Þ errors. The rate deteriorates at the finest level, as should be ex-
pected. The rate of convergence of the second order code is tested directly in Table 4 below.

Convergence. Next we test the order of spatial accuracy in the first order partially implicit code; it is designed to be sec-
ond order in space. With time step Dt and number of time steps fixed, we perform runs with N ¼ 100;200;400. We then
calculate an empirical order of accuracy, as in [24], except that we do not interpolate; we compare values only on the coars-
est grid for both velocity field and interface position. Thus the order for the velocity field is
p ¼ log2kuh � uh=2k=kuh=2 � uh=4k; ð73Þ
where the norm is on the coarsest grid, and similarly for the interface. In Table 3 the smallest value of Dt=h, the number of
time steps, and the final time are displayed. (E.g. in the first line for N ¼ 100;200;400;Dt=h ¼ 10;20;40, resp.) Empirical con-
vergence rates are given for the velocity field and for the interface position, at the final time, in discrete L2 and L1 norms. In
the longer runs with m ¼ :1 the relative errors in interface position are 10�5 to 4 � 10�5, even though the order of accuracy
deteriorates. In similar tests with N fixed and Dt reduced we observe first order convergence in time.

To assess temporal convergence we must note the unusual dependence of the error in semi-Lagrangian methods on Dt.
With second order accuracy in space and time, the expected error has the order h2 þ ðDtÞ2 þ hp

=Dt, where p is the order of



Table 4
Empirical convergence rates for the second order implicit scheme, Dt=h fixed.

m Dt=h Time steps Final time Velocity Interface

L2 L1 L2 L1

1 50 10 5 1.34 1.41 1.35 1.34
5 10 .5 2.02 2.10 2.29 2.21
5 100 5 2.98 2.55 4.81 4.59

.1 10 10 1 2.27 2.24 1.82 1.80
5 10 .5 2.58 2.50 2.26 2.23
5 20 1 2.10 2.04 1.30 1.29

.05 5 10 .5 2.23 2.36 1.63 1.65
5 20 1 2.94 2.91 2.27 2.24
2 10 .2 1.46 .85 2.40 2.41
2 22 .44 3.90 3.15 3.24 3.33
1 10 .1 2.23 2.24 1.88 1.81
1 45 .45 .80 1.18 .71 1.01

.01 .25 10 .025 1.80 2.25 2.21 2.22
.25 50 .125 1.90 1.84 1.72 1.62
.25 100 .25 1.68 2.00 2.31 2.48

Table 3
Empirical convergence rates for the first order implicit scheme as h! 0;Dt fixed.

m Smallest Dt=h Time steps Final time Velocity Interface

L2 L1 L2 L1

.1 10 20 2 1.85 1.81 2.28 2.24
10 100 10 1.85 1.81 1.44 1.45
5 20 1 1.86 1.81 2.08 2.13
5 100 5 1.85 1.82 1.44 1.45

.05 5 20 1 1.85 1.80 2.04 2.05
5 100 5 1.85 1.81 1.32 1.34
2.5 20 .5 1.90 1.88 1.96 1.97
2.5 50 1.25 1.86 1.83 1.86 2.02
2.5 100 2.5 1.85 1.82 1.58 1.61

.01 1 25 .25 1.85 1.63 1.37 1.49
.5 25 .125 1.98 1.82 1.90 1.90
.5 100 .5 1.96 1.86 1.97 1.88

t = 0 t = .25 t = .5 t = .75 t = 1

Fig. 3. The interface with c0 ¼ 1; c1 ¼ 1 at times t = 0, .25, .5, .75, 1.

γ1 = 0 γ1 = 1 γ1 = 5 γ1 = 10 γ1 = 20

Fig. 4. The interface at time t = .25 with c0 ¼ 1 and c1 ¼ 0;1;5;10;20.
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Table 5
Largest observed stable values of Dt=h, bending force.

cb m Explicit First order Second order

100 200 400 100 200 400 100 200 400

.01 1 1.2e�2 3e�3 1e�3 >50 >50 >50 >50 >50 >50

.1 1 1.5e�3 4e�4 1.2e�4 .5 1.0 1.6 .15 .25 .5
1 1 2e�4 5e�5 8e�6 .02 .03 .04 .007 .009 .012
10 1 1e�5 2e�6 6e�7 1e�4 1.5e�5 3e�6 3.5e�5 8e�6 2e�6
10 10 6e�6 2e�6 6e�7 .03 .05 .05 .015 .025 .05

Table 6
Angle of inclination and frequency of a vesicle in shear flow.

Minor radius Reduced area Angle=p Frequency=v

v ¼ 1 10 50 100 v ¼ 1 10 50 100

1/4 .55 .11 .09 .09 .09 .19 .22 .21 .21
1/3 .66 .12 .11 .11 .11 .23 .27 .26 .26
2/5 .75 .14 .12 .12 .12 .26 .30 .30 .29
1/2 .84 .15 .14 .14 .13 .31 .31 .34 .33
2/3 .94 .18 .15 .16 .15 .37 .38 .38 .36
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accuracy of the interpolation (see [7,35]). Thus the error can actually get worse if Dt is decreased with h fixed. Indeed, we see
this effect with our second order code. Instead we test accuracy by reducing Dt and h with Dt=h constant. In Table 4 empirical
orders of accuracy are found for the second order implicit code. We take N ¼ 100;200;400, with Dt=h and the final time
fixed. We compute the order of accuracy according to (71) as before. The number of steps with N ¼ 100 and the final time
are displayed. Rates are given for the velocity field and for the interface position, at the final time, in discrete L2 and L1

norms. In some cases the time is chosen to correspond to the half-cycle mentioned above. We see second order convergence
with a small number of time steps, but with more steps the rate is less predictable.

Nonlinear tension force. We performed calculations with the same test problem as above, changing the force density to
f ¼ @s ðc0sa þ c1s2

aÞt
� �

, similar to examples used in [24,5]. We used a partially implicit approximation as in (66)–(68). We take
a to be the angle h above and choose m ¼ :01. In contrast to the earlier case, the interface buckles inward at the left and right
and later becomes convex again. The buckling is more pronounced if either c0 or c1 is increased. In Fig. 3 we show the inter-
face position at times 0; :25; :5; :75;1 with c0 ¼ c1 ¼ 1. At time 1 the intercepts have reached a local extreme. Afterwards the
interface oscillates and approaches equilibrium in a way similar to Fig. 1. In Fig. 4 we show the interface at time :25 for sev-
eral choices of c1, with c0 ¼ 1. The initial velocity is the Stokes velocity and thus depends on c1. The partially implicit time
step appeared to have a stabilizing effect but less so than for the linear force.

Bending force. We compute examples of interface motion in Navier–Stokes flow with a bending force (5) on the interface
combined with a tension force of the form (4), that is
f ¼ c0@s ðsa � 1Þtð Þ � cb@
3
s t; t ¼ @sX ð74Þ
where c0 and cb are constants.
We begin by estimating stable time steps, as we did for the tension force in Table 1. We use the same initial curve (71),

but we choose the initial markers to be equally spaced in arclength, and we take the initial arclength to be the material coor-
dinate. The initial velocity is the Stokes velocity. We set m ¼ 1; c0 ¼ 1, and vary cb. In this case the initial maximum Stokes
velocity is about 5:9cb. Results are reported in Table 5. For the explicit scheme, we see Dt ¼ Oðh3

=cbÞ, which we would expect
from Eq. (69) as well as the case of Stokes flow. For the implicit schemes, for each cb 6 1 the time step is OðhÞ, but for cb ¼ 10,
it reverts to Oðh3Þ. This seems to occur for large cb and small m. We tried increasing m to 10 with cb ¼ 10 (last line of the table)
and found that the relation Dt ¼ OðhÞ was restored.

There have been careful numerical studies of inextensible vesicles in Stokes flow; the inextensibility means that the inter-
face cannot stretch or contract, so that sa ¼ @s=@a � 1. This constraint is imposed by the choice of a variable, unknown ten-
sion force [28,13,30,34]. Methods for inextensible vesicles in Navier–Stokes flow have also been introduced [12,21]. In [12]
results were compared with those for Stokes flow in [13]. Here we do not impose inextensibility but instead choose large
constant c0 in (74), with the expectation that the tension term will keep sa near 1 and thus approximate the inextensible
constraint. (This analogy was suggested by M.-C. Lai.) We find behavior similar to that reported for the inextensible case.

We use a choice of physical parameters as in [12], Section 4.1, similar to that in [13], in order to compare with the earlier
work. We compute nondimensionalized solutions in a square ð�p;pÞ 	 ð�p;pÞ with periodic boundary conditions. We
choose time scale T ¼ :1 sec as in [12]. Our typical initial state is an ellipse with semimajor axis 1 in nondimensional units,
corresponding to about L ¼ 20 lm. With scales T and L, the parameters in [12] lead to nondimensional bending coefficient
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cb ¼ 30 and viscosity m ¼ 250. We choose c0 ¼ 105 to 106 to keep sa near 1. In the regime described, the flow is dominated by
Stokes flow. We impose the shear velocity vðsin y;0Þ, where v is the dimensionless shear rate in [12,13].

In the study of inextensible vesicles in 3D shear flow in [13] it was noted that, with shear flow imposed, the vesicle ap-
proaches a state with a characteristic angle of inclination. The velocity on the interface becomes nearly tangential, so that
particles on the interface follow a ‘‘tanktreading’’ motion, rotating with a frequency x. The angle and x=v were found to
depend significantly on the reduced volume but much less on the shear rate v. Subsequent studies have found quantitatively
similar results for 2D Stokes flow [34] and 2D Navier–Stokes flow [12]. In 2D we use the reduced area A=ðpR2

0Þ where
R0 ¼ L0=ð2pÞ;A is the area of the vesicle, and L0 is its perimeter. In our experiments we chose the initial state as an ellipse
with semimajor axis 1 and semiminor axis b, with b ¼ 1=4;1=3;2=5;1=2;2=3; the reduced area is determined by b. We tested
shear rates v ¼ 1;10;50;100. After the interface velocity became close to tangential, we measured the angle and the fre-
quency x ¼ 2p=T0, where the period of rotation T0 was found as T0 ¼

R
ðv tanÞ�1ds. Values of the angle of inclination and

x=v are shown in Table 6. The results are generally consistent with those in [13,34,12].
6. Conclusions

We have developed a numerical method for a moving elastic interface in Navier–Stokes flow which is partially implicit in
the sense that the time step (30) for the interface location uses a modification of the current velocity in the high wavenum-
bers to predict the new interface. The approximation is derived analytically in Section 4 using a procedure like that in [9,11].
The partially implicit interface motion is combined with the velocity decomposition method of [3]. The numerical tests in
Section 5 demonstrate that the new method is practical and accurate for a variety of problems with tension and bending
forces at the interface. Stability was maintained with time steps much larger than for the corresponding explicit method,
with negligible extra effort per step. The validity of the partially implicit approximation was demonstrated and convergence
was verified. The discontinuities in pressure and velocity gradient are preserved in this method, as in the IIM, whereas they
are regularized in the IBM. This distinction between the two methods makes their performance difficult to compare, but both
are representative of widely used approaches for dealing with subgrid effects in difference methods for continuum problems.

The derivation in Section 4 amounts to a linear stability analysis of the direct contribution to the interface velocity from
the force. Formula (61) predicts that explicit interface motion should have time step constraint Dt ¼ Oðhm=c0Þ for linear ten-
sion force, whereas (69) gives Dt ¼ Oðh3m=cbÞ for the bending force. These are obtained in the limit k! Oð1=hÞ and are the
same as for Stokes flow. However, the factor g‘ðgÞ introduces a second length scale, since g ¼ Oð

ffiffiffiffiffiffi
ms
p

kÞ, distinct from Stokes
flow. The partially implicit method controls the term that appears most important, and the time step is greatly improved, but
it depends on the physical parameters, and the method is far from being unconditionally stable.

The time step in this implementation appears to be determined by the CFL condition, Dt � h=V , where V is the magnitude
of velocity. This may be due to the manner of interpolation of the Stokes velocity, needed for the semi-Lagrangian method,
taking into account the jump in the velocity gradient. In principle the stability could be improved, especially since the veloc-
ity decomposition offers flexibility in the separate choices of methods for solving the Stokes problem and the remainder
problem. With the IBM, convection can be treated implicitly to overcome the CFL limitation [24], and presumably a similar
method could be used here for the remainder problem.

The primary method developed here is second order in space and first order in time. It can be made second order in time
by extrapolation. With the first order method it is easy to use adaptive time steps based on the CFL condition. The second
order method gains accuracy but has somewhat smaller time steps, though still much larger than those of the explicit
method.

The derivation of the partially implicit time step applies to Navier–Stokes flow with a variety of forces, including the
bending force (5), which especially leads to stiffness because of the high order derivative. The analysis is general enough
to apply to other models. The combination of bending and tension forces can mimic the case of an inextensible membrane,
but our approach here does not apply directly to the inextensible case. The approximation derived here could in principle be
used with other sharp interface methods not using the velocity decomposition. A promising alternative would be to use an
approximation such as the present one as a preconditioner in an implicit method. Such a connection was made in the case of
Stokes flow in [30,34].
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