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obtained as an extension of the relaxation scheme designed in [16] for the isentropic Baer-
Nunziato model and consequently inherits its main properties. To our knowledge, this is
the only existing scheme for which the approximated phase fractions, phase densities and

Keywords: phase internal energies are proven to remain positive without any restrictive condition
Compressible multi-phase flows other than a classical fully computable CFL condition. For ideal gas and stiffened gas
Hyperbolic PDEs equations of state, real values of the phasic speeds of sound are also proven to be
Energy-entropy duality maintained by the numerical scheme. It is also the only scheme for which a discrete
Entropy-satisfying methods entropy inequality is proven, under a CFL condition derived from the natural sub-
Relaxation techniques characteristic condition associated with the relaxation approximation. This last property,

Riemann problem
Riemann solvers
Finite volumes

which ensures the non-linear stability of the numerical method, is satisfied for any
admissible equation of state. We provide a numerical study for the convergence of the
approximate solutions towards some exact Riemann solutions. The numerical simulations
show that the relaxation scheme compares well with two of the most popular existing
schemes available for the Baer-Nunziato model, namely Schwendeman-Wahle-Kapila’'s
Godunov-type scheme [39] and Tokareva-Toro’s HLLC scheme [44]. The relaxation scheme
also shows a higher precision and a lower computational cost (for comparable accuracy)
than a standard numerical scheme used in the nuclear industry, namely Rusanov’s scheme.
Finally, we assess the good behavior of the scheme when approximating vanishing phase
solutions.

© 2016 Elsevier Inc. All rights reserved.

1. Introduction

The modeling and numerical simulation of two-phase flows is a relevant approach for a detailed investigation of some
patterns occurring in water-vapor flows such as those encountered in nuclear power plants. The targeted applications are
the normal operating mode of pressurized water reactors as well as incidental configurations such as the Departure from
Nucleate Boiling (DNB) [46], the Loss of Coolant Accident (LOCA) [47], the re-flooding phase following a LOCA or the Re-
activity Initiated Accident (RIA) [31]. In the normal operating mode, the flow in the primary circuit is quasi monophasic
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as there is a priori no vapor in the fluid. In the incidental configurations however, the vapor statistical fraction may take
values ranging from zero to nearly one if some areas of the fluid have reached the boiling point. The modeling as well as
the numerical simulation of such phenomena remains challenging since both models that can handle phase transitions and
robust numerical schemes are needed. While in the normal operating mode of pressurized water reactors, homogeneous
models assuming thermodynamical equilibrium between the phases are used (in practice, only the liquid phase is present),
the simulation of incidental configurations requires more detailed two-phase flow models accounting for thermodynamical
disequilibrium. Naturally, as opposed to the numerical approximation of homogeneous models, explicit schemes are needed
for the simulation of these potentially highly unsteady phenomena, and one major challenge therefore is the control of the
numerical time step. In addition, the derived schemes are expected to ensure important stability properties such as the pos-
itivity of the densities and internal energies, as well as discrete entropy inequalities. In this context, the aim of this work is
to design a robust positivity-preserving and entropy-satisfying scheme for the numerical approximation of two-phase flows
with vapor or liquid fractions arbitrarily close to zero.

This paper is concerned with the Baer-Nunziato two-phase flow model introduced in [9], and studied in various pa-
pers [20,6,12,24,33]. The model consists of two sets of partial differential equations accounting for the evolution of mass,
momentum and total energy for each phase, in addition to a transport equation for the phase fraction. The evolution equa-
tions of the two phases are coupled through first order non-conservative terms depending on the phase fraction gradient.
A major feature of the Baer-Nunziato model is the assumption of two different velocities and two different pressures for
the two phases. This approach is not genuinely usual in the nuclear industry where the commonly implemented methods
assume the same pressure for the two phases at every time and everywhere in the flow. This latter assumption is justified
by the very short time-scale associated with the relaxation of the phasic pressures towards an equilibrium. In the two-fluid
two-pressure models (such as Baer-Nunziato’s), zero-th order source terms are added in order to account for this pressure
relaxation phenomenon as well as a drag force for the relaxation of the phasic velocities towards an equilibrium. Other
source terms can also be included in order to account for the relaxation of phasic temperatures and chemical potentials.
However, this work is mainly concerned with the convective effects and these zero-th order relaxation terms are not con-
sidered in the present paper. We refer to [12] for some modeling choices of these zero-th order relaxation terms and to
[30,35] for their numerical treatment. We also refer to the Conclusion section 6 for some explanation on how the treatment
of these terms will affect the numerical method presented in this paper. Various models exist that are related to the Baer-
Nunziato model. One may mention various closure laws for the interfacial velocity and pressure [23,38,25] or extensions to
multi-phase flows [29,27,36].

Various approaches were considered to approximate the admissible weak solutions of the first order Baer-Nunziato
model. One may mention exact Riemann solvers [39] or approximate Riemann solvers [4,44,5]. Let us mention some other
schemes grounded on flux or operator splitting techniques [11,15,18,43,34,37,42,45]. Let us also mention the original work
of [2,17] where two staggered grids are used (one for the scalar unknowns and the other for the velocities) and where the
internal energies are discretized instead of the total energies.

The finite volume scheme we describe in the present paper for the convective part of the Baer-Nunziato model relies
on two main building blocks. The first block is a relaxation finite volume scheme previously designed in [16] for the isen-
tropic version of the Baer-Nunziato model (the phasic entropies remain constant in both time and space along the process),
a scheme which was proved to ensure positive densities and to satisfy discrete energy dissipation inequalities. The second
building block is a duality principle between energy and entropy which, according to the second principle of thermodynam-
ics states that, keeping all the other thermodynamic variables constant, the mathematical entropy is a decreasing function
of the total energy. This duality principle was already used in previous works to extend schemes designed for the isentropic
Euler equations to the full Euler equations (see [13] and [10]), and in this work, we apply these techniques to the Baer-
Nunziato two-phase flow model. In [16], a relaxation Riemann solver was designed for the isentropic Baer-Nunziato model.
The main properties of this scheme are firstly, to compute positive densities thanks to an energy dissipation process, sec-
ondly to satisfy discrete energy inequalities for each phase, and finally to compute robust approximations of vanishing phase
cases where one (or both) of the phase fractions are arbitrarily close to zero in some areas of the flow. The fact that the
phasic entropies are simply advected for smooth solutions of the Baer-Nunziato model, combined with the energy-entropy
duality principle, actually allows us to use the very same Riemann solver designed in [16], provided that one supplements
it with a correction step which consists in recovering the energy conservation and entropy dissipation for each phase. Con-
cerning the neglected zero-th order source terms, there exist methods that allow their numerical treatment in accordance
with the total entropy (the sum of both phasic entropies) dissipation (see [30,35] and the Conclusion section 6).

Nevertheless, we draw the reader’s attention to the fact that the relaxation scheme for the isentropic model, and its
extension to the full model described here, are restricted to the simulations of flows with subsonic relative speeds, i.e. flows
for which the difference between the material velocities of the phases is less than the speed of sound in the dominating
phase, which would be the liquid phase in the usual operating of a nuclear power plant. For the simulation of nuclear
liquid-vapor flows, this is not a restriction, but it would be interesting though to extend the present scheme to sonic and
supersonic flows. An interesting work on this subject is done in [8].

The resulting scheme is proven to preserve positive phase fractions, densities and internal energies, as well as real values
of the phasic speeds of sound for stiffened gas and ideal gas equations of state (e.o.s.). In addition, it is proven to satisfy
a discrete entropy inequality for each phase, under a sub-characteristic condition (Whitham’s condition). To our knowledge,
there exists no other scheme that is proved to satisfy these properties altogether. The relaxation scheme compares well with
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two of the most popular existing schemes available for the Baer-Nunziato model, namely Schwendeman-Wahle-Kapila’s
Godunov-type scheme [39] and Tokareva-Toro’s HLLC scheme [44]. In addition, for the same level of refinement, the scheme
is shown to be much more accurate than Rusanov’s scheme, and for a given level of approximation error, the relaxation
scheme is shown to perform much better in terms of computational cost than this classical scheme. This is an important
result because the approximate Riemann solver designed in [16] and re-used here relies on a fixed-point search for an
increasing scalar function defined on the interval (0, 1). Hence, the numerical tests assess that no heavy computational
costs are due to this fixed-point search. Actually, comparing with Rusanov’s scheme is quite significant since for such
stiff configurations as vanishing phase cases, this scheme is commonly used in the industrial context because of its known
robustness and simplicity [30]. Our relaxation scheme is first-order accurate and an interesting further work is the extension
to higher orders (see [19,22,39,44] for examples of high order schemes).

The paper is organized as follows. Section 2 is devoted to the presentation of the first order Baer-Nunziato model. In
Section 3, an auxiliary two-phase flow model is introduced, where the phasic entropies are conserved and the phasic total
energies are dissipated. We explain how to extend the relaxation scheme designed in [16] to this auxiliary model. For
the sake of completeness, the fully detailed Riemann solution is given in Section 7.1 of the Appendix. In Section 4, we
give the correction step which relies on the energy-entropy duality principle, and the resulting finite volume scheme for
the Baer-Nunziato model is fully described. Finally, Section 5 is devoted to the numerical tests. The relaxation finite volume
scheme is compared with Schwendeman-Wahle-Kapila’s Godunov-type scheme [39], Tokareva-Toro’s HLLC scheme [44] and
Rusanov’s scheme. In addition to a convergence and CPU cost study, one test case simulates a near-vacuum configuration,
and two test-cases assess that the scheme provides a robust numerical treatment of vanishing phase solutions. For the
reader who is eager to rapidly implement the numerical scheme, we refer to Section 7.2 of the Appendix, where the
procedure for computing the finite volume numerical fluxes is fully described.

2. The first order Baer-Nunziato model

The Baer-Nunziato model is a non-viscous two-phase flow model formulated in Eulerian coordinates and describing the
evolution of the mass, momentum and total energy of each phase. Each phase is indexed by an integer k € {1, 2}, the density
of phase k is denoted py, its velocity uy, and its specific total energy Ej. At each point x of the space and at each time ¢, the
probability of finding phase k is denoted o (x, t). We assume the saturation constraint «1 +a = 1. In one-space dimension,
the convective part of the model introduced in [9] reads:

U + IxFU) +CU)IU =0, xeR,t>0, (1)
where
o T i 0] ] )
o101 101U 0
o202 Q2 02U2 0
U=|aipiur |,  FU=| a1piud+aip . CU)oU=| —p1 |3oq. (2)
a2 02U2 a2p2u§ +azp2 P1
a1p1Eq a101Equr +a1prug —piuz
Loz 02E> | | a202E2un +aapatis | L+piuz |

In the complete model, zero-th order source terms are added in order to account for the pressure relaxation phenomenon
as well as a drag force for the relaxation of the phasic velocities towards an equilibrium. Other source terms can also be
included in order to account for the relaxation of phasic temperatures and chemical potentials. However, this work is mainly
concerned with the convective effects and these zero-th order relaxation terms are not considered in the present paper. We
refer to the Conclusion section 6 for some explanation on how to treat these relaxation terms without deteriorating the
properties of the numerical method presented in this paper.

The state vector U is expected to belong to the natural physical space:

Q= ’u eR7, a1 € (0. 1), apy > 0, and aepr(Ex — u2/2) > 0 fork e {1, 2}} . 3)

For each k € {1, 2}, px denotes the pressure of phase k. Defining ey := Ej — ui/Z the specific internal energy of phase k, the
pressure px = pr(Pk, €x) is given by an equation of state (e.o.s.) as a function defined for all positive p, and all positive ey.

We assume that, taken separately, the two phases follow the second principle of thermodynamics so that for each phase
k € {1, 2}, there exists a positive integrating factor Ty (o, ex) such that the following differential form

1 ( pk
T, _Zd,olc —dey |, (4)
k\ P
is the exact differential of some strictly convex function si(pk, ex), called the (mathematical) entropy of phase k.
The following proposition characterizes the wave structure of this system:
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Proposition 2.1. For all U € yy, the Jacobian matrix 7' (U) + C(U) admits the following seven eigenvalues:

o1(U) =02(U) =uz, o3U) =uq
o4(U) =uy —c1(p1,€1), osU) =uq +c1(p1,e1) (5)
o6(U) = Uz — C2(02,€2), 07(U) =Uz +C2(02,€2),

where ci(px. ex)? = 9, Pk (Pk- €k) + Pr(Pk. ek)/ﬂ,f e, Pic(Pk- €x). If e (px, ex)? > 0, then system (1) is weakly hyperbolic in the fol-
lowing sense: all the eigenvalues are real and the corresponding right eigenvectors are linearly independent if, and only if,

a1#0, ax#0, |up —uz|#c1(p1,e1). (6)

When (6) is not satisfied, the system is said to be resonant. The characteristic fields associated with o4, 05, 06 and o7 are genuinely
non-linear, while the characteristic fields associated with o1 3 and o3 are linearly degenerate.

Remark 2.1. The condition c,(ox, ex)% > 0 is a classical condition that ensures the hyperbolicity for monophasic flows. In
general, assuming If € €, is not sufficient to guarantee that ci(py, ex)? > 0. For the stiffened gas e.o.s. for instance, where
the pressure is given by

Pr(Pk» €k) = (Vk — 1) pker — VkPoo,k> (7)

where y, > 1 and py > 0 are two constants, a classical calculation yields pgci(ok, e)? = Y — D(prex — Poo.k). Hence,
the hyperbolicity of the system requires a more restrictive condition than simply the positivity of the internal energy which
reads: prex > Poo k. For the stiffened gas e.o.s., the relaxation scheme proposed in this article will be proven to preserve
this condition at the discrete level.

Remark 2.2. The system is not hyperbolic in the usual sense because when (6) is not satisfied, the right eigenvectors do not
span the whole space R’. Two possible phenomena may cause a loss of the strict hyperbolicity: an interaction between the
advective field of velocity u; with one of the acoustic fields of phase 1, and vanishing values of one of the phase fractions
o. In the physical configurations of interest in the present work (such as two-phase flows in nuclear reactors), the flows
have strongly subsonic relative velocities, i.e. a relative Mach number much smaller than one:

_|ur —uy|
c1(p1,€1)

so that resonant configurations corresponding to wave interaction between acoustic fields and the u;-contact discontinuity
are unlikely to occur. In addition, following the definition of the admissible physical space €;;, one never has oy =0 or
oy = 0. However, o, = 0 is to be understood in the sense o — 0 since one aim of this work is to construct a robust enough
numerical scheme that could handle all the possible values of oy, k € {1, 2}, especially, arbitrarily small values.

<1, (8)

A simple computation shows that the smooth solutions of (1) also obey the following additional conservation laws on
the phasic entropies:

¢ (e i Sk) + Ox (e piSk) =0, ke {1,2}. (9)

As regards the non-smooth weak solutions of (1), one has to add a so-called entropy criterion in order to select the
relevant physical solutions. In view of the convexity of the entropy si(o, ex), an entropy weak solution is a weak solution
of (1) which satisfies the following entropy inequalities in the usual weak sense:

O (0t Ok Sk) + Ox (g oxSkuk) <0, ke {l,2}. (10)

When the solution contains shock waves, inequalities (10) are strict in order to account for the physical loss of entropy due
to viscous phenomena that are not modeled in system (1).

The existence of the phasic entropy conservation laws (9) and (10) will play a central role in the numerical approximation
of the solutions of the Baer-Nunziato model. They permit an energy-entropy duality principle which allows a natural
extension to the non-isentropic model (1) of the energy-dissipative relaxation scheme designed for the isentropic model
in [16].

For the sake of completeness, let us recall the system of PDEs corresponding to the first order isentropic model: for
xeR,t>0:

dor1 + updyar; =0,

O (101) + (1 p1u1) =0,

3 (e prur) + (a1 p1u? + a1 p1(11)) — p1(T1) et =0, (11)
0t (02 02) + 9x (02 p2u2) =0,

3 (02 p2u2) + (@223 + c2p2(12)) — p1(T1)dxetz = 0.
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In this case, the phasic pressures are functions solely of the phasic specific volumes py(tx), where 7, = pk’l, and the
admissible weak solutions are seen to dissipate the phasic energies according to:

O (ot o Eg) 4 Ox (ot i Excuige + e pic(ti)ug) — u2p1(t1)oxar <0, ke (1,2}, (12)

with E = u,%/z + ex(tx) where ey is an anti-derivative of —py.

In [16], a relaxation scheme was designed for this isentropic Baer-Nunziato model. This scheme was proved to satisfy
desirable properties such as maintaining positive phase fractions and densities, ensuring discrete counterparts of the energy
inequalities (12), and finally computing with robustness solutions where some phase fractions are arbitrarily close to zero.

3. Approximating the weak solutions of an auxiliary model

As an intermediate step towards the purpose of approximating the entropy weak solutions of (1), let us introduce the
following auxiliary system

3% U + oF(U) + C(U)U=0, xeR,t>0, (13)
where
o ] B 0 7 M uz
o101 101U 0
o202 02 02U2 0
U=|aipiur |,  FOU=|aipf+aiPr |, COKRU=| —P1 | . (14)
a2 023 o2 p2U5 + 02 P P
10151 a10151U1 0
L &¢20252 | o2pasauz L 0

Compared to the classical Baer-Nunziato model (1), the phasic energy equations have been replaced by the two conservation
laws for the phasic entropies. Hence, o prSxy now play the role of independent conservative variables whose evolution is
governed according to their own conservative equations. The phasic pressures P, are now seen as functions of the phasic
specific volumes 7y = o} ! and the phasic entropies s, so that P = Pk (T, Sk). These pressure functions are computed as
follows: by the second law of thermodynamics, one has:

Sk ( ) 1

a pk? el = >

dex ‘ Ty (0k ex)
Hence, the mapping e > si(pk,e) is monotone and thus invertible for all p; > 0. We denote by s+ ey (7, s) the inverse
of this mapping, which is a positive function. The dependency on the density p, has been replaced here by a dependency
on the specific volume 7. The pressure function Py (ty, Sk) is then defined as follows : Py (tk, Sx) = pk(‘rlfl,ek(fk,sk)). The
phasic total energy is recovered by computing Ej(ug, Tk, Sx) = uﬁ/Z —+ ey (Tk, Sk)-

The auxiliary state vector U is now expected to belong to the physical space:

with Ty (pk, ex) > 0.

Qu = {U eR’, a1 €(0,1), agoy > 0, and aprex (i, sp) > 0 for k € {1, 2}} : (15)

We have the following property:

Proposition 3.1. The two following equivalent assertions are satisfied:
(i) The mapping

(Ootk PKSK) - wo—
kOkSk) - u > (g PrSK) (U)

satisfies O, p, £, (i Pk Sk) U) = —1/Ty and is convex.
(ii) The mapping

Q[U — R+
Ep) :
(@kprEr) iU —  (oE ()

satisfies O, p, s, (0tk Pk E) (U) = =T} and is convex.
Proof. In order to compute the partial derivative of (o orSk) ) with respect to o prEg, let us calculate the differential of

o PkSk. Invoking the second law of thermodynamics Tydsy = —dey, + pk,ok’zdpk and the definition e, = E — u,%/2 of the
internal energy, we obtain:
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Tid(otk pisk) = (otk i) Tredsk + Tised(ctk pk)
= —(opi)dey + prpoy > (i) dpic + Tisid(@or)
= —(oxpr)dey — prdoy + (poy ' + Ties) (k)
= — (o p)dEk + (o) duy — prdo + (prpy " + Trsi)d (o)
= — (o) dEy + uped (e prctage) — upd(atepr) — predor + (Pk,O;Z] + Tisi)d (o o)
= —d(oneprEr) + ugd(aypcur) — prdo + (Ex — ug + prpg '+ Tisi)d(@eor)-

For k € {1, 2}, 0o pE, (@kpokSk)U) is the derivative of oy s, with respect to ayorEr when keeping constant the variables
(@i, o pi, ajpiu;) for i e {1,2}, and the variable a3_g03_gE3_k. Hence, Oy, p,E, (ctk okSk) () = —1/T) and the same computa-
tion proves that dg, p,s, (@k ok Ex) (U) = —Ty. The proof of the convexity of these two mappings relies on the convexity of the
function sy (o, ex). It follows lengthy calculations (see [26]). We admit this result. O

Of course, smooth solutions of (13) also solve (1) in the classical sense, which implies that the two systems share the
same hyperbolic structure, but entropy weak solutions of (1) and (13) do differ. Indeed, following Proposition 3.1, since
U+ (ogprEr)(U) is convex, while the entropy weak solutions of (1) are defined so as to dissipate the phasic entropies, it
is natural to select weak solutions of the hyperbolic model (13) according to the differential inequalities:

O (ot Pk Ege) + 0x (ot ox Excty, + 0t Pi(Th, Sk Uk) — P1(T1, S1)U20%0 <0, ke {1,2}. (16)

Observe that for constant initial entropies si(x,0) = s,?, the auxiliary model (13) reduces to the isentropic model (11),
with the pressure laws 7y — P(rk,s,‘g). Therefore, in the case of constant entropies, extending the relaxation scheme de-
signed in [16] to the auxiliary model (13) is straightforward. Furthermore, even for non-constant initial entropies, the
derivation of the self-similar solutions for (13) is very close to the isentropic setting because the specific entropies are now
just advected by the corresponding phase velocity:

OrSk + UrdySk =0, ke{l,2}. (17)

For this reason, the Riemann solutions of the auxiliary model (13) are simpler to approximate than those of (1). But again, if
smooth solutions of (1) and (13) are the same, their shock solutions are distinct. Hence, a numerical scheme for advancing
in time discrete solutions of the original PDEs (1)-(10) based on solving a sequence of Riemann solutions for the auxiliary
model (13)-(16) must be given a correction which enforces an energy discretization which is consistent with the original
model (1), while ensuring discrete entropy inequalities consistently with (10). The required correction step is in fact im-
mediate because of the general thermodynamic assumptions made on the complete equation of state. It relies on a duality
principle in between energy and entropy, which, according to Proposition 3.1, states that a oSk is a decreasing function of
APk E.

In the present section, we provide a relaxation scheme for approximating the energy dissipating weak solutions of
the auxiliary system (13). This relaxation scheme is straightforwardly obtained as an extension of the relaxation scheme
designed in [16] for the isentropic Baer-Nunziato model and consequently inherits its main properties (positivity of the
phase fractions and densities, numerical energy dissipation, robustness for vanishing phase fractions). Again this extension
is made possible thanks to the advective equations (17) on the entropies. In Sections 3.1 and 3.2, we define the relaxation
approximation for system (13) and state the existence theorem for the corresponding Riemann solver. This existence result,
as it directly follows from the isentropic case, is not proven here. We refer the reader to [16] for the complete proof. In
Section 3.3, we derive, thanks to this approximate Riemann solver, the numerical scheme for the auxiliary model (13).
Finally, in Section 4, we explain how to obtain a positive and entropy-satisfying scheme for the original model (1), thanks
to the above mentioned duality principle between energy and entropy.

3.1. Relaxation approximation for the auxiliary model (13)

System (13) shares the same hyperbolic structure as system (1). Therefore, it has four genuinely non-linear fields associ-
ated with the phasic acoustic waves, which make the construction of an exact Riemann solver very difficult. In the spirit of
[32], the relaxation approximation consists in considering an enlarged system involving two additional unknowns 7y, asso-
ciated with linearizations sy of the phasic pressure laws. This linearization is designed to get a quasilinear enlarged system,
shifting the initial non-linearity from the convective part to a stiff relaxation source term. The relaxation approximation
is based on the idea that the solutions of the original system are formally recovered as the limit of the solutions of the
proposed enlarged system, in the regime of a vanishing relaxation coefficient & > 0. For a general framework on relaxation
schemes we refer to [13,14,10].

We propose to approximate the Riemann problem for (13) by the self-similar solution of the following Suliciu relaxation
type model (see [10,40,41]):

1
W + 0,g(W®) + d(W®)9,W® = ER(W‘E), xeR, t>0, (18)
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where the state vector W and the functions g, d and R are defined by:

roap 0 Uy ] B 0 7
o101 101U 0 0
o202 02 02U 0 0
o1 p1Uq 06101“%-#0617[1 -1 0
W=| a0tz |, 8W)=| axppus+army |, dW)HW=| 71 |dxt1, R(W)= 0 (19)
10151 a1p151U1 0 0
Q30252 o2 P252U7 0 0
a101h a1p1T1un 0 a1p1(t1 —T1)
L2027 | op,mTuz | L 0 Loz p2(T2 — T2) |

For each phase k in {1, 2} the pressure 7y is a (partially) linearized pressure (i, 7k, Sk), the e.o.s. of which is defined by:

(ks T Sk) = Pr (T Sk) + @ (T — ). (20)

In the formal limit & — 0, the additional variable 7, tends towards the specific volume 7}, and the linearized pressure
law 7 (¢, Tk, Sk) tends towards the original non-linear pressure law P (ty, sk), thus recovering system (13) in the first
seven equations of (18). The solution of (18) should be parametrized by ¢. However, in order to ease the notation, we
further omit the superscript ¢ in W¢. The constants a; in (20) are two positive parameters that must be taken large enough
so as to satisfy the following sub-characteristic condition (also called Whitham'’s condition):

ai > —dg, Pe(Tks s, kin{1,2}, (21)

for all 7y and s encountered in the solution of (18). Performing a Chapman-Enskog expansion, we can see that Whitham’s
condition expresses that system (18) is a viscous perturbation of system (13) in the regime of small €. In addition, there
exists two energy functionals & (ug, T, Tk, Sk), which under Whitham’s condition, provide an H-theorem like result as stated
in

Proposition 3.2. The smooth solutions of (18) satisfy the following energy equations
1
Ot (kP Ek) + Ox (Ot PR Ex UK + QT UE) — U2 TT1 Oyl = 2 Pk (a% + 0¢, Pe(Tk, Sk)) (T — To)?, (22)

where

2 2 2
u 70 (Thes Ties Sk) — Pig (Tkes k)
Ek = Ek(u, Tk, Tk, Sk) = 7’( + e (T, si0) + - 202 ¢ :
k

, ke{1,2}. (23)
Under Whitham’s condition (21), to be met for all the (T, si) under consideration, the following Gibbs principles are satisfied for
ke{1,2}:

Tk:arg;_nin{gk(uk,Tka'ﬁosk)}a and  E(uk, Tk, Tk, Sk) = Ex (U, Tk, Sk), (24)
k

where Ej(uy, T, sk) = ug /2 + ex(Ti. S)-

At the numerical level, a fractional step method is commonly used in the implementation of relaxation methods: the
first step is a time-advancing step using the solution of the Riemann problem for the convective part of (18):

W + xg(W) + d(W)a,W =0, (25)

while the second step consists in an instantaneous relaxation towards the equilibrium system by imposing 7, = 7 in the
solution obtained by the first step. This second step is equivalent to sending & to O instantaneously. As a consequence, we
now focus on constructing an exact Riemann solver for the homogeneous convective system (25). Let us first state the main
mathematical properties of the convective system (25), the solutions of which are sought in the domain of positive densities
pr and positive T:

Quy = {W eR”, a1 € (0,1), arpr >0, i Ti > 0, fork € {1, 2}}. (26)

Proposition 3.3. System (25) is weakly hyperbolic on Qyy in the following sense. For all W € Qvy, the Jacobian matrix g' (W) + d(W)
admits the following real eigenvalues
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01(W) = 02(W) = a3(W) = u3, 04(W) = 05(W) = uy,
o6(W) =u1 —a171, o7(W) =uy +a171, (27)
03(W) =uy —axt2, 0g(W) =ux + ax1o.

All the characteristic fields associated with these eigenvalues are linearly degenerate and the corresponding right eigenvectors are
linearly independent if, and only if

a1 #0, a2 #0, |up—up|#ai7y. (28)
The smooth solutions of system (25) satisfy the following phasic energy equations:
¢ (ot P ) + Ox (Otk P ExeUlie + TR k) — U2TT1 Ox0tk = 0. (29)

Summing over k € {1, 2}, the smooth solutions are seen to conserve the total mixture energy:

2 2
d (Z akpk5k> + O (Z (ot pi ity + alﬂk”k)) =0. (30)

k=1 k=1

Remark 3.1. In the definition of Qyy, the space of admissible states for the solutions of system (25), no positivity requirement
has been given for the phasic specific entropies s;. However, since all the waves are linearly degenerate, the weak solutions
are expected to obey a maximum principle on the specific entropies since these two quantities are simply advected:

0rSk + Uk xSk =0, fork ={1,2}. (31)

Remark 3.2. We look for subsonic solutions which are solutions that remain in the domain of Qw where |u; — uy| < a;t.
Here again, one never has a1 =0 or oz = 0. However, o = 0 is to be understood in the sense o — 0.

Remark 3.3. Since all the characteristic fields of system (25) are linearly degenerate, the mixture energy equation (30) is
expected to be satisfied for not only smooth but also weak solutions. However, for the Riemann problem, in the stiff cases of
vanishing phases where one of the left or right phase fractions «y ; or oy g is close to zero, ensuring positive values of the
densities requires an extra dissipation of the mixture energy by the computed solution (see the comments on Definition 3.1
below).

3.2. The relaxation Riemann problem

Let (W, Wg) be two elements of Qw. We now consider the Cauchy problem for (25) with the following Riemann type
initial data:

W, if x<0,

W if x> 0. (32)

W(x,0) = {

Extending the relaxation Riemann solution computed in [16, Section 3] for the isentropic setting to the present Riemann

problem (25)-(32) follows from the crucial observation that both the relaxation specific volume 7) and the specific entropy
s are advected in the same way by the phasic flow velocity u:

0t Tk + ugdx Ty =0,
¢Sk + ug xSk = 0.

Therefore, for self-similar initial data, the Riemann solution, as soon as it exists, necessarily obeys

T, E<ug, sk, & <ug,
W‘(S)_{ﬁ,x, ur <, sk(§) = Sor U <. (33)

where & = x/t is the self-similar variable, and u;; is the effective propagation speed associated with the eigenvalue uy in
the Riemann solution. Furthermore, any given combination of these variables, say ¢ (7, si), is also advected by uy. Hence,
we obtain from (33), that the non-linear laws arising from the equation of state evolve in the Riemann solution, virtually
the same way as within the isentropic setting. Indeed, the entropies s in the relaxation model (25) and in the associated
energies (23), are systematically involved in non-linear functions already depending on the variable 7;: namely Py (7, k)
and ey (7, sk). Such functions are solely evaluated on the left and right states in the self-similar initial data and hence
always contribute to any given jump conditions in terms of P (7k 1, Sk.1), ex(Tk.L-Sk.L)» Pik(Tk.r, Sk.r) or ex(Tk r,Sk.r). For
instance, computing the value of the linearized pressure 7 (§) at some point & of the Riemann fan goes as follows:

T (§) = T (T (€), Tr(®), 5k(§)) = Pr(Tr(§), 5k (§)) + @ (Tk (€) — Tk(€)),
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where Pp(Tk(§), sk (&) = Pe(T,L, Sk,1) if & < uy and Pp(Te(§), sk (§)) = Px(T,r» Sk,r) if & > uy, whereas in the isentropic
setting, one would have Py (7y 1) or Px(7Tk r). The same observations can be made for the internal energy ey (7, sy) when
computing the total energy & (u(§), T (€), Te(£), sk(§)). Hence, compared to the isentropic case, it is just as if the relaxation
unknown 7} is replaced by a two-dimensional vector (7, si). We formalize these observations in

Proposition 3.4. Let (W, Wg) € Qw x Q. The Riemann problem (25)-(32) admits a solution if, and only if, the isentropic Riemann
problem obtained when taking constant initial entropies s, | = Sk g, k € {1, 2} while keeping the other initial data unchanged, admits
a solution. When such a solution exists, the mathematical formulae for defining the phasic quantities Ty, uy, 7, ey and the void fraction
oy, within the Riemann fan read exactly the same as in the isentropic framework [16, Section 3], provided the following replacements:

Pr(Tk,L) —> Pi(Te,Ls Sk,)s Pe(Tie,r) —> Pe(Tk,R» Sk,R)>

34
ee(Tor) — ex(Ters Sk ee(Tir) — ex(Tigs Skp). (34)

In the following definition, we recall the main features of a solution to the Riemann problem (25)-(32).

Definition 3.1. Let (W, Wg) be two states in Qyy. A solution to the Riemann problem (25)-(32) with subsonic wave or-
dering is a self-similar mapping W(x, t) = W, (x/t; W, Wg) where the function & > W,(&; W, Wg) satisfies the following
properties:

(i) W, (&; W, Wpg) is a piecewise constant function, composed of (at most) seven intermediate states belonging to Qwy,
separated by (at most) six contact discontinuities associated with the eigenvalues uq +a;71, Uy a1y, u1, Uy and such
that

§ < kg{llig} {urr — axmi L} = Wi (6, W, Wr) =W,
’ (35)
§> kfefﬁvé} {ukr + @kt ) = Wi (§; W, Wg) = Wk.

(ii) There exists two real numbers u3 and ;" (depending on (W, Wg)) such that the function W(x, t) = W (x/t; W, Wg)
satisfies the following PDEs in the distributional sense: for k € {1, 2},
Aoty + ubdka =0, (36)

0 (g ox) + Ox (g prug) =0, (37)

O (ot pretge) + ax(akpkulz + Q) — nraxak =0, (38)

O (0t i Sk) + Ox (e PreSiUg) = 0, (39)

O (o o Tie) + Ox (g ox Teuik) = 0, (40)

where 0y, identifies with the Dirac measure AakSX_u;t, with Aoy =og g — otk .
(iii) Furthermore, the function W(x, t) = W, (x/t; W1, Wg) also satisfies the following energy equations in the distributional
sense:

O (@202E2) + Ox (@2 p2E2up + 0 T2UR) — USTT{ Ox0r =0, (41)
(o1 p11) + dx(cr pr&uy + aqmmiun) — usmry oxory = —Q(uy, Wi, Wr)dy_yse, (42)

where Q(uj, W, Wg) is a non-negative number.
(iv) The solution has a subsonic wave ordering in the following sense:

*
U1, —a1T1,L < U5 <UjR+A1T1,R. (43)

Before stating the existence theorem for subsonic solutions proved in [16, Section 3], let us introduce some notations
built on the initial states (W;, Wg) and on the relaxation parameters (a, az). For k in {1, 2},

1 1
ug = 5 (Uk,L + Uk,R) - E (JTk(Tk'R, 7,'<7R, Sk.R) — Tk (Tk.L, Tr.Ls sk,L)) , (44)
k
4 1 a
T =5 (7 (Tth.r> Tk.Rs SkR) + Tk (T Ly T Skn)) — 3‘ (uk.r — kL), (45)
1
TIE,L =Tk L+ a_k(u]ti — Ug,1), (46)

1
Tf R =Tk — a(”i — U ). (47)
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We also introduce the following dimensionless number that only depends on the initial phase fractions:

_apR—Qp)

AO( —
QR+ 02|

(48)

We may now state the existence result for the Riemann problem (25)-(32), which is directly inferred from the existence
Theorem for the solutions to the relaxation Riemann problem for the isentropic case designed in [16, Section 3]|. The
construction of the self-similar solution is fully provided in Appendix 7.1.

Theorem 3.5. Given a pair of admissible initial states (W, Wg) € Qw x Quy, assume that the parameter ay is such that ‘L'kjL >0

and r,f g > 0forkin {1,2}. Then there exists solutions with subsonic wave ordering to the Riemann problem (25)-(32), in the sense of
Definition 3.1, if the following condition holds:

f f 1 # f
uy —u; — EA“(T[l —75)

1+ 2A%]

<a]‘C]IiL.

(A) — G]Tlﬁ’R <

Proof. Following Proposition 3.4, see [16, Section 3] for a constructive proof and the remarks below. See Appendix 7.1 for
the expressions of the intermediate states of the solution. 0O

Some comments on Definition 3.1 and Theorem 3.5:

1. Assumption (A) can be explicitly tested in terms of the initial data and the parameters ay, k € {1, 2}. The quantities
alrf.L and aﬂf’R can be seen as two sound propagation speeds, while the quantity (u? - ug - éA"‘(nlﬁ - nzn))/(l +
Z—;|A“|), which has the dimension of a velocity, measures the difference between the pressures and kinematic velocities
of the two phases, in the initial data. Observe that if the initial data is close to the pressure and velocity equilibrium
between the two phases, this quantity is expected to be small compared to a; rl’:’ . and alrfy g- This is actually the case
when, in addition to the convective system (1), zero-th order source terms are added to the model in order to account
for relaxation phenomena that tend to bring the two phases towards thermodynamical (T; = T;), mechanical (u1 = u»
and p1 = p2) and chemical equilibria (see [12,21] for the models and [30,35] for adapted numerical methods).

2. The quantity u3 is the propagation velocity of the phase fraction wave. It is computed as the zero of a monotone
real function z +— Wy, wg)(z) on a bounded interval. Assumption (A) is a sufficient and necessary condition for this
function W, wy) to have a unique zero (i.e. a unique number uj satisfying W, wp)(u3) = 0). Hence, solving this
fixed-point problem enables to locate the phase fraction wave by coupling two monophasic systems. Let us stress again
on the fact that this fixed-point problem is very easy to solve numerically, since it boils down to searching the zero of
a strictly monotone function on a bounded interval. We refer the reader to equation (80) in Appendix 7.1 and to the
paper [16] for more details.

3. The phase fraction derivative dyr1 identifies with the Dirac measure Aa18o(x — u5t). This means that for all open subset
o C R and for any self-similar function g(x, t) = g-(x/t), one has:

_ ) Aargr(uy), ifuj e,
/ 8X0l1 (51’1 t)g(‘izt, t)dg dt = { 0’ otherwise.

E,HewxRt

Item (ii) implies that, away from the u;-wave, the system behaves as two independent relaxation systems, one for each
phase.
4. Positivity of phase 1 densities. If the ratio 2‘}—; is in a neighborhood of 1, the solution computed thanks to condition

(A) has positive densities and satisfies the phésic energy equations (29) in the weak sense. In this case, the solution is
said to be energy-preserving and the total mixture energy is also conserved according to the conservative equation (30).

If z:_; is too large, or too small, depending on the wave ordering between u} and uj, the solution computed thanks to

condition (A) may have non-positive densities in phase 1. In such stiff cases, ensuring positive densities for phase 1 is
recovered by allowing a strict dissipation of the phase 1 energy:

I (1p1&1) + Ok (@1 p1E1ur + ar ) — UZTT{ oy = —Q(u5, Wi, WR)Sx—use, (49)

where Q(u3, Wi, Wg) < 0. The function Q(u;, Wi, Wg) is a kinetic relation which is chosen large enough so as to
impose the positivity of all the phase 1 densities. The value of Q(u}, W, W) parametrizes the whole solution and the
choice of Q(uj;, Wi, W) prescribes a unique solution.

5. Positivity of phase 2 densities. Assumption (A) allows to compute the value of the wave propagation velocity uj (see
comment 2). With this value, one has to verify that the following property, which is equivalent to the positivity of the
phase 2 densities, is satisfied:
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(B) ug - azr;L <uj <u +a2t2:7R. (50)

In the numerical applications using this Riemann solver (see Section 5), it will always be possible to ensure property
(B) by taking a large enough value of the relaxation parameter a, (see Appendix 7.2). Note that this condition is a
monophasic condition which is not related to the two-fluid modeling. Indeed, the same condition is required when
approximating Euler’s equations with a similar relaxation scheme.

6. Maximum principle for the entropies. The phasic entropies si, k € {1, 2} satisfy a maximum principle in the solution
since they are simply advected by the phasic velocities according to (31).

7. For the applications envisioned for this work, such as nuclear flows, we are only interested in solutions which have a
subsonic wave ordering, i.e. solutions for which the propagation velocity u3 of the phase fraction o lies in-between the
acoustic waves of phase 1, which is what is required in item (iv). However, the considered solutions are allowed to have
phasic supersonic speeds |u;| > a, 7. Indeed, the subsonic property considered here is related to the relative velocity
uq — up with respect to the phase 1 speed of sound a; 7.

3.3. The relaxation scheme for the auxiliary model

In this section, the exact Riemann solver W, (&; W, Wg) for the relaxation system (25) is used to derive an approximate
Riemann solver of Harten, Lax and van Leer [28] for the simulation of the auxiliary system (13). The aim is to approximate
the admissible weak solution of a Cauchy problem associated with system (13):

(51)

3 U+ FU) +C(a,U=0, xR, t>0,
U(x,0) =Up(x), xeR,

with a discretization which provides discrete counterparts of the energy inequalities (16) satisfied by the exact solutions
of the auxiliary model. As expected, the numerical scheme is identical to the relaxation scheme designed in [16] for the
isentropic model.

We define a time and space discretization asA tfollows: for simplicity in the notations, we assume constant positive time

and space steps At and Ax, and we define A = 2. The space is partitioned into cells R = UjeZ C;j where Cj = [Xj,% , Xj+%[

with X1 = (J+ %)Ax for all j in Z. The centers of the cells are denoted x; = jAx for all j in Z. We also introduce the

discrete intermediate times t" =nAt, n € N. The approximate solution at time t", x € R — U, (x,t") € Qu is a piecewise
constant function whose value on each cell C; is a constant value denoted by [U’}.. Since U, (x, t") is piecewise constant, the
exact solution of the following Cauchy problem at time t"

{atU—i—axIF(U)—HC(U)axU:O, xeR,t>0, (52)

U(x, 0) = Uy (x, t"), xeR,

is obtained by juxtaposing the solutions of the Riemann problems set at each cell interface x il provided that these Rie-
2

mann problems do not interact. The relaxation approximation is an approximate Riemann solver which consists in defining:

X}.+%

1
U?H = / Ugpp (x, At) dx, jez,
X'7

J

[NE

where Ugpp (x, £) is the following approximate solution of (52):

X—X., 1
its
Uapp (%, 1) 1= ) PW; (T A (U}), ///(U’}+1>) Ly 110, (53)
JEZ
where 1y, x;,,1 is the characteristic function of the interval [xj, xj;1] and the mappings P and . are defined by:
_ R’ — R (54)
| Kk=1...7 > (X1,X2,X3, X4, X5, X6, X7, X1, 1 — X1).
) R? — R’ (55)
| Kk=1,..0 > (X1,X2,X3, X4, X5, X5, X7).

For a given vector U, W = .# (U) is the relaxation vector obtained by keeping oy, ook, ko and oy prSx unchanged,
while setting 7, to be equal to 7. One says that W € Qyy is at equilibrium if there exists U € Qp such that W =_.#(U).
For a given relaxation vector W, U= #W is the projection of W which consists in dropping the relaxation unknowns 7.

In order for the interface Riemann problems not to interact and thus for Ugpp (,t) to be a correct approximate solution
of (52) at time At, the time step At is chosen small enough so as to satisfy the CFL condition
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At max ma [|(u ar )", | (g + a 7)™ |} ! (56)

X X - il ; < —.
AX ke(1,2}, jeZ. ke Tk RSk Rk 2

Of course, at each interface Xji1 the relaxation Riemann solver W, (E M (U”) WAUH +])> depends on two parameters

(ak)3+1 ,k € {1,2} which must be chosen so as to ensure the conditions stated in the existence Theorem 3.5, and to satisfy
2

some stability properties. Observe that one might take different relaxation parameters ay, k € {1, 2} for each interface, which
amounts to approximating the equilibrium system (13) by a different relaxation approximation at each interface, which
is more or less diffusive depending on how large are the local parameters (ak)” 1,k € {1, 2}. Further discussion on the
practical computation of these parameters is postponed to Section 7.2 of the Appendlces

Since W,(&; W, Wg) is the exact solution of the relaxation Riemann problem (25)-(32), the updated unknown U’}H
may be computed by a non-conservative finite volume formula as stated in

Proposition 3.6. Provided the CFL condition (56) is satisfied, the updated unknown U?“ is given by:

At
U =) - = (F UL U ) —FF U, U)). (57)
where the numerical fluxes read
F~(Ur, Ug) = 28 (W; (073, (Up), 4 (Up))) + 2D (4 (U), A (Ur) 15 o) (58)
F' (UL, Ug) = 2 (W, (0*; . (Uy), # (Ug))) — 2D* (# (Uy), .4 (Ug)) Tysoo)s (59)

with D*(Wp, W) := (a1.r — o1.0)(@3(Wr, Wg), 0,0, =75 (W, Wg), 75 (Wy, Wg),0,0,0,0)". The quantity 1z o) (Tesp.
1{u3>0}) equals one when u < 0 (resp. u3 > 0) and zero otherwise.

Proof. Under the CFL condition (56), the exact solution of (25) with the piecewise constant initial data W(x, 0) :=
ZjeZ //(U’})]l[xj,xm](x) is the function:

X — X-+1
W, 0):=) W, (t’ AU, A (U ) | L0130

JjEZ
since the interface Riemann problems do not interact. In addition, under (56), (25) may be written:
0 W + dxg(W) + D" (. (U}). . (U] 4))d0 (x — X1 (u3>;¥+%r> =0,
JEZ
where D*(W , Wg) is defined in the proposition. Integrating this PDE over (x 1.%; 1) x [0, At] and dividing by Ax, one
obtains:

X1
— /ZW(X AD dx =2/ (U") — ﬂ(g(wr (07 W, ) — g (Wi (07 AWy, WD) )

J

N\'—‘

At k n n At * n n
- 2D (///(Uj),///(IUjH))l{ - =D (///(Uj,l),///(rujm{

)" <o} Ax )" >0}'
Yty -1

Applying operator & to this equation yields (57). O

This approximate Riemann solver is proved to ensure a conservative discretization of the partial masses, partial entropies
and total mixture momentum and to satisfy important stability properties such as the preservation of the densities posi-
tivity, a maximum principle for the entropies, and hence the positivity of the phasic internal energies, and discrete energy
inequalities which are discrete counterparts of the energy inequalities (29) satisfied by the exact weak solutions of the
model. Indeed, we have the following result:

Proposition 3.7. The numerical scheme (57) for the auxiliary model has the following properties:

e Positivity. Under the CFL condition (56), the scheme preserves positive values of the phase fractions, densities and internal energies:
foralln € N, if U} € Qu for all j € Z, then (ak)'}“ €(0,1), (ozk,ok)’frl > 0, and (o pxex(Ti, sk))’}+l >0fork=1,2andall j€Z,
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ie. U'}“ € Qu for all j € Z. Moreover, if the thermodynamics of phase k follows an ideal gas or a stiffened gas e.o.s.(see (7)), then the
finite volume scheme (57) preserves positive values of the quantity prek(Tk, Sk) — Poo k-

(Okek (T 5K} — Pook >0, Vi€Z = (pek(Ti, 51| = pook > 0, Vj € Z.

e Phasic mass conservation. Denoting Fii the ith component of vector F=, the fluxes for the phasic partial masses o py are conser-

vative: F; (Ur, Ug) = F;L([UL, Ug) foriin {2, 3}. Hence, denoting (ozk,okuk);+ H_k(IU”, U"H)fork =1, 2, one has:

2

At
(O!kpk)"H (kpi)j _—<(akpkuk) —(akpkuk)'}_1>- (60)

o Phasic entropy conservation. The fluxes for the phasic entropies o sy, are conservative: F; (U, Ug) = Fi+ (U, Ug) foriin{6,7}.

Hence, denoting (akpkskuk)” 1= F5+k(U’7, [U?H)fork =1, 2, one has:
@50 = @eores)” — 25 (s, — (st (61)
kkk] kPksk) Ax kkkkj+% kkkkji%-

o Total momentum conservation. The fluxes for the mixture momentum 3 _;,_; 5 0 Pkl are conservative: > _; 5 F5, (Ur, Ug) =
; +
D=1 F;_k(lUL, Ug). Hence, denoting (3_y._; 5 kpxtp + aknk)?Jr% =Y 412 F (U, U ) for k=1, 2, one has:

At n n
Yie 1 (ko) =% 1 (@ PrU)] i A ( Z Otk Pk U +05k7[k)1 ) —( > apruf +Oll<7T1<>j |- (62)
k=1, 2 k=1,2 T2

o Discrete energy inequalities. Assume that the relaxation parameters (ak)'},+l , k =1, 2 satisfy Whitham’s condition at each time
2

step and each interface, i.e. thatforallneN, j € Z, (ak)2+1 , k=1, 2 are large enough so that
2
(@), 1)* > =00 Pe(The 500, (63)

for all Ty and s, in the solution & — W, (5 ///(IU”) WAL
the following discrete energy inequalities:

+1)) Then, the values IU?, j €Z, n e N, computed by the scheme satisfy

At
(@ pkE) (U < (arprE) (U) —— ((akpl<51<ul< + T G Olkﬂkuk)k%>

+—Atﬂ sy (e - @)

Ax {(u;);i%z} 27 k j-1 (64)
5 ), (@l — @)

AX {(uﬁ)’jﬁ+%50} 27 g J+1 1)

where for j € Z, (g prExlix + otknkuk)’}+] = (o prEly + oI UY) <Wr <O+; //(U’}), ,//(IU’}H))) is the right hand side trace of
2

the phasic energy flux evaluated at Xjp1

Note that (60) and (61) are updating formulae for the next time step unknown U'}“ whereas (62) and the energy
inequalities (64) are properties satisfied by the values U", j € Z, n € N, computed by the numerical scheme.

Proof of Proposition 3.7. The approximate Riemann solver is a Godunov type scheme where U?“ is the cell-average over C;
of the function Ugpp (x,t). Hence, the positivity property on the phase fractions and phase densities is a direct consequence
of Theorem 3.5. For this purpose, energy dissipation (42) across the uj-contact discontinuity may be necessary for enforcing

this property when the ratio allj} (or its inverse) is large for some j € Z.

The positivity of the phasic internal energies is more intricate. Under the CFL condition (56), (sk)"“ is a convex combi-

nation of (s)" | (sk)'? and (s)" L1 since the phasic entropies are advected in the solutions of the local Riemann problems
for (25). Let us define jmax € {j — 1, j, j + 1} such that (sp)" imax = n}ax (sx)}. Since s ek((tk)'}+1
i=j—1,j,j+1

decreasing function by the second law of thermodynamics, one has:

,S) is a positive

e (@1 601 ) 2 e (@ (50 ) = 0.
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Note that the quantities ey ((rk)”“ s) are well defined (and positive) since (rk)’]?+1 > 0.

In a similar way, we prove that, if the thermodynamics of phase k follows a stiffened gas e.o.s. according to (7), then
the numerical scheme (57) preserves positive values of the quantity pxey(k, Sk) — Poo k- It follows from the fact that for a
stiffened gas e.o.s., one has:

Sk,0 — Sk)
Cvk

where sk o is a constant reference entropy and Cy is the (constant) heat capacity at constant volume. Hence, the function
S+ prek(Tk, S) — Poo k iS also a positive and decreasing function whenever oy > 0. This yields:

Prek(Ti: k) — Pook = P} €XP (

n+1

(Prer(Ti: k)T = Pook = (1) Jrl@k((fk)"Jrl (Sk)JmaX) — Poojk-

The right hand side of this inequality reads:

Sk,0 — (Sk)jlmax>
Cvk

(P! sk,0 — (51"
Il B oYk o Trmax
( ('Ok)?max ) ((pk)JmaX) exp ( Cvk )

( (o)1

(Px )Jnm ax

P i (01, (510lan ) = Poc = (01 exp

Yk
) ((,Okek(fk, Sk))?max - poo,k>

and is therefore positive since at time t", we have (ogex (T, sk))’} — Dok >0 for all j eZ.

The proof of (60), (61) and (62) involves no particular difficulties. It is a direct consequence of equations (37), (38) and
(39) satisfied by the relaxation Riemann solutions at each interface.

Let us prove the discrete energy inequalities (64) satisfied by the scheme under Whitham'’s condition (63). Assuming the
CFL condition (56), the solution of (25) over [xj_% , xH_%] x [t", t"T1] is the function

X—X:. 1
W(x, t) := W, (th //(U 1), ///(U'})) ]l[xji%,xj](x)

X—Xj+% 0 .
+ W, _t——l'" ;//(Uj),l///(UH_l) IL[xj,xH_%](X)- (65)

According to Theorem 3.5, this function satisfies the phase 1 energy equation:

A (a1 01€1) + (o1 p1&E1ur +ormiug) — uST{ Ity =

—Qg?_%so(x Xj_1— )] 1(t—t”)> Q 180(x Xjp1 — W) 1(t—t")>, (66)

where for i € Z, we have denoted Q’; =9 ((u;)z1 1,///(U?_1),//(IU?)>. Integrating this equation over (x 1,x]+1) X
-2 -2

[t", t"*1] and dividing by Ax yields:

X,
it}

— / (@101 EDW(x, 1)) dx < (01,0181 (A4 (UT)

J

N\'—‘

At & W, (072U, .4 U"
Ay 1méaitn + o) r( s A (U5), (]’+]))>

(
+%(Ol1,01€1u1 +a1miur) (Wr <0+; A (Uf_y), ///(U?)» !

At -’

Aw *\n
AX [(uz)]_+%

At . % n n
(

o (@) - @),

}(”2771
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because Q” : >0 and Q” ! > 0. Since the initial data is at equilibrium: W(x, t") = ///([U") for all x e Cj (i.e. (T)” is set to

be equal to (1:1)”) one has (alplc‘fl)(///(U")) = (a1p1E1)(U") according to Proposition 3.2. Applying the Rankine-Hugoniot
jump relation to (66) across the line {(x, t) X=X 1, t > 0}, ylelds

@ pr&rur +anmun) (W (074U, 4 (UL, ) )

— (1 p1 €111 + 0T U (W(OJF;///U”-,///U’? ))+ nog .
(@1p1&1u1 + aqmiug) (Wi U, A4 (Uj, 1) Qﬁ% {(u;)ﬁ 1:0}
2
Hence, since Q” > 0, for the interface Xy 1 taking the trace of (a1p01&1u1 + aqmuq) at 0T instead of 0~ in (67) only

improves the 1nequa11ty Furthermore, assuming that the parameter a; satisfies Whitham’s condition (63), the Gibbs principle
stated in (24) holds true so that:

X X. 1
3 i+5

— / (@101E1) (Ugpp (%, r"“))dx<— / (1p1E)(W(x, £"1)) dx.

]

N\'—‘

J

N\

Invoking the convexity of the mapping U+ (a1p01E1)(U) (see Proposition 3.1), Jensen’s inequality implies that

1
J+2

(0!1,0151)(U"+]) <— / (@101E1) (Ugpp (x, 1)) dx,

J

N\—

which yields the desired discrete energy inequality for phase 1. The proof of the discrete energy inequality for phase 2
follows similar steps. O

4. A positive and entropy-satisfying scheme for the first order Baer-Nunziato model

In the previous section we have designed a numerical scheme for an auxiliary two-phase flow model where the exact
solutions conserve the phasic entropies while the phasic energies are dissipated by shock solutions. The scheme has been
proven to satisfy discrete counterparts of these features while ensuring the positivity of the relevant quantities.

In the present section, we describe the correction to be given to the auxiliary scheme in order to conserve the phasic
energies while dissipating the phasic entropies. We end up with a numerical scheme which is consistent with the entropy
weak solutions of any Cauchy problem associated with the original Baer-Nunziato model (1):

(68)

U + KFU) +CUIMU=0, xeR,t >0,
Ux,0) =Up(x), xeR.

We keep the same time and space discretization as described in Section 3.3. The approximate solution at time t",
xe R U (x,t") € @y is a piecewise constant function whose value on each cell C; is a constant value denoted by L{}l.

The updated value Z/l}1+l is computed through a two-step algorithm described hereunder:
4.1. A fractional step algorithm
e Step 1: updating the auxiliary unknown. Given

T
uj = ((Ofl)'}, (@101)], (@2p2)}, (a1 p1u1)], (02 p2u2)7, (@1 p1E1)], (Olz,OzEz)'}) ;

we begin with setting the auxiliary unknown IU']? as follows:

T
U = (@)l @10 (@202}, (@1 prun) (@2 0202)], (01 p1sDWUD, (02025 UN )

where (akpksk)(ug’) is the partial entropy of phase k, computed from Z/I;?, knowing the density py, the total energy Ej and
the kinetic energy u? /2:

(@)U} = (episi) (o)) (Ex = uE/2)7) .

Observe that, with this definition of IU’}, one has (akpkEk)(IU’}) = (o:kpkEk)’j?.



416 E Coquel et al. / Journal of Computational Physics 330 (2017) 401-435

We then compute IU?H’_ by applying the relaxation scheme designed for the auxiliary model:

At
= (F UL, ) — FF (UL, )). (69)

According to Proposition 3.7 the phasic energies are dissipated at the discrete level following:

n+1,— _ ym
Uj _IUj

- At
(OlkPkEk)(U'}H' ) < (akprE) — <(Olk/0k5kuk + onemur)”, 1 — (Pl + Q)" )

A j-‘r% J=3
At n n

2
At n n n

I3

e Step 2: Exchanging energy and entropy. This final step is a correction step which aims at enforcing conservative updates
for the energies of the original unknown Z/[}”l. It simply consists in keeping unchanged the updates of the phase fractions,

partial masses and momentum:

@)= @)™, @et =TT ot = (o, k=1,2, (71)

while enforcing energy conservation by defining the energies updates as:

At
(kBT = (wprER)t — Ax ((akpkgkuk-lrakﬂkuk) 1 (il + QT ) 7%)

+_At 1 (u§ ( ak ((xk )
Ax {(u;)";lzo} -1 (72)
Aty 2 (Wt ((ock) — ()" ) k=1,2.
AX {(u§)’}+%go} 277) % j+1 )

4.2. Finite volume formulation of the scheme

In practice, in the implementation, when performing the first step of the method, i.e. when applying the relaxation
scheme to the auxiliary variable U, one does not update the last two variables which are the phasic entropies. Indeed,
computing the phasic entropies (akpksk);ﬂ‘* is not needed for the update of the phasic energies which is performed in
the second step. Therefore, the two step algorithm described in the previous section can be reformulated as a classical
non-conservative finite volume scheme. Indeed, we have the following result:

Proposition 4.1. The two step algorithm described in equations (69)-(72) is equivalent to the following non-conservative finite volume
scheme:

At
U =y - (]—' ULy = FH UD). (73)

where the first five components of F*(Uy, Ug) coincide with the first five components of F* (U, Ug) with U computed from U by
imposing o pisk = (e rSk) (U). The last two components of F* Uy, Ug) are given for k € {1, 2} by:

Fo UL, UR) = (i picitik + awmmiu) (Wy (0% .2 (Uy), 4 (Ug))) + 1z <o) (U3 7)) ()R — (@)L »
Fo UL, Ug) = (arprictay + ammiege) (Wr (075 . (UL), .4 (Ug))) — Tuss0) (U3 777) (@R — (@)1) -

Proof. The proposition follows from elementary verifications using equations (69)-(72) and the expressions of the energy
numerical fluxes (ot o0&t + aknkuk)H% given in Proposition 3.7. O

For the reader who is eager to rapidly implement the numerical scheme, we refer to Appendix 7.2 where the expressions
of the numerical fluxes F* (U, Ug) are given in detail.

Recasting the scheme in a finite volume formulation with two interface fluxes F* (U, U) is very interesting since it
allows a nearly straightforward extension of the scheme to the 2D and 3D versions of the Baer-Nunziato model on un-
structured meshes. Indeed, the multi-dimensional Baer-Nunziato model is invariant by Galilean transformations. Therefore,
by assuming that, in the neighborhood of a multi-D cell interface, one has a local 1D Riemann problem in the orthogonal
direction to the interface, it is possible to use the very same fluxes F UL, UR).
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4.3. Main properties of the scheme

We may now state the following theorem, which gathers the main properties of this scheme, and which constitutes the
main result of the paper.

Theorem 4.2. The finite volume scheme (73) for the Baer-Nunziato model has the following properties:

e Positivity: Under the CFL condition (56), the scheme preserves positive values of the phase fractions, densities and internal ener-
gies: for alln e N, if (U € Qq for all j € Z), then (ak)'}ﬂ € (0,1), (ock,ok)’}+l >0, and (Ey — uf/Z)’}+l >0fork=1,2andall

jeZ,ie. ( Z/I;'H € @ for all j € Z). Moreover, if the thermodynamics of phase k follows an ideal gas or a stiffened gas e.o.s., then

2
the finite volume scheme (73) preserves real values for the speed of sound of phase k: for all n € N, if c;, ((pk)’?, (ek)’1?> > 0, for

2
all j € Z, then ¢y, ((,ok)’}“, (ek)'ﬁl) > 0, for all j € Z (see Proposition 2.1 and Remark 2.1 for the definition of ci(pk, ex)?).

e Conservativity: The discretizations of the partial masses oo, k € {1, 2}, the total mixture momentum o1 p1u1 + o2 Uy and
the total mixture energy a1 01E1 + a2 02 E2, are conservative.
o Discrete entropy inequalities: Assume that the relaxation parameters (ak);!+1 , k =1, 2 satisfy Whitham’s condition at each
2

time step and each interface, i.e. that foralln e N, j € Z, (a,<)'}+] , k=1, 2 are large enough so that
2

(@), )% > =05 Pe(Ti 56, (74)

for all T and s, in the solution & > W, <§; ///(IU']?), ///(U;?H )). Then, the values L{}1 computed by the scheme satisfy the follow-
ing discrete entropy inequalities: fork =1, 2:

At
(alcplcsk)(u;l+]) = (OkakSk)(U;') ~ Ax ((akpkskuk)?Jr% - (OlkPkSkUk)LQ s (75)

where the entropy fluxes (o pkskuk)’}+1 are defined in Proposition 3.7. These inequalities are discrete counterparts of the entropy
2

inequalities (10) satisfied by the admissible weak solutions of the Baer—Nunziato model (1).

Note that preserving positive values of the phase fractions, the phasic densities and also the phasic internal energies
altogether is an unprecedented result. Furthermore, to our knowledge, this scheme is the first scheme approximating the
solutions of the Baer-Nunziato model, for which discrete entropy inequalities (10) are proven.

Proof. The positivity of the phase fractions (ozk)’}'H and partial masses (ozk,ok)';‘H follows directly from Proposition 3.7. To

check that the proposed algorithm preserves the positivity of the internal energies, namely (ek);ﬂ = (Ex — u,f/Z)'}“ >0,
n+1,— . _
i =
ek((rk)TLl’_, (sk)'}H’_) is positive according to Proposition 3.7. The second step results in increasing the total energies and

one has (akpkE")?H = (a"p"E")(U;H’?) by (70)-(72), while (O‘kpk)?ﬂ = (Olkpk);ﬂ'i- which yields (Ek)Trl > Elc(U1}+1’7).
Now, as the kinetic energy ((uk)?“‘*)z/Z is unchanged by the second step and Ek(U'}H‘f) = (ek)'}.“‘* + ((uk)'}+]‘7)2/2,

we infer that (ek)'}+l > (ek)'}“’_ > 0 and hence the required positivity property for the internal energies.

In the same way, for an ideal gas or a stiffened gas e.o.s., we prove that the scheme preserves real values of the speed of

it is sufficient to notice that before the update of the energy in the second step, the internal energy (ey)

2
sound. One has piCk(ok, ex)? = Ve (Vi — 1) (orer — Dook) (With pso x = 0 for an ideal gas). If ¢ ((pk ’} (ek)’}) >0 forall jeZ,
then, before the update of the energy in the second step, the quantity (oxex — poo,k)’;.“’_ is positive by Proposition 3.7. The
update of the energy in the second step amounts to increasing the internal energy (ek);?'H > (ek)'}“’f while keeping the
n+1

J
We now prove the discrete entropy inequalities (75). The first step provides a conservative update of the phasic entropy

equations. Indeed, the last two components of the vector equation (69) yield

2
density unchanged (p)""! = (pk)'}“‘*, which yields (pxex — poo,k)?Jr1 > 0, hence the positivity of c; ((pk)'}H, (ek)’]&]) .

_ At
(OlkPkSk)'}H’ = (o kS UF) — . <(ak,0k5kuk)l}+% - ((kakslcuk);7%> . (76)

Then, thanks to the thermodynamics assumptions, we know from Proposition 3.1 that

aakpkEk (akpksk)(u) = _l/Tk
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Table 1
E.O.S. parameters, initial discontinuity position, final time, Courant-Friedrichs-Lewy number.
Test 1 Test 2 Test 3 Test 4 Test 5

71 1.4 1.4 1.4 3 3
Poo,1 0 0 0 0 0
Y2 1.4 3 1.4 1.4 1.4
Poo.2 0 100 0 0 0
X0 0 0.8 0.5 0 0
Tmax 0.15 0.007 0.15 0.15 0.05
CFL 0.45 0.45 0.45 0.45 0.45

Table 2
Test-case 1: left, right and intermediate states of the exact solution.
Region L Region Lx Region — Region + Region R

o 0.2 0.2 0.2 0.7 0.7
£1 0.21430 0.35 0.698 0.90583 0.96964
uq —0.02609 —0.7683 —0.7683 —0.11581 —0.03629
D1 0.3 0.6045 0.6045 0.87069 0.95776
02 1.00003 1.00003 0.9436 1.0591 0.99993
uy 0.00007 0.00007 0.0684 0.0684 —0.00004
D2 1.0 0.9219 0.9219 1.08383 1.0

Consequently, we infer from (ak,okEk)Z?“ > (ak,okEk)(U'}H’_) that (ozkpksk)(u;’+1) < (akp,<sk)'}+]’_. Injecting in (76) yields
the discrete entropy inequalities (75). O

For most equations of state, that are given as a function py (o, ex), the quantity oy oSk cannot be expressed as an explicit
function of ¢/, which makes it even impossible to compute the time step initial values of the entropies (akpksk)(u;f‘). Still,
this does not prevent the discrete inequalities (75) from holding true.

The impossibility, for many equations of state, to express the entropies s, explicitly does not prevent the computation
of the numerical fluxes }'ii(l/{'?,l/l]flﬂ), i=1,..,7, for the updates of (al)'}H, (akpk)'}.“, (ak,okuk)?ﬂ in the first step,
and the updates of (ock,okEk)’}+l in the second step. Indeed, even though these numerical fluxes involve terms of the form
ex(Tk, sk) and 7y (ty, T, Sk) to be evaluated on the relaxation Riemann solution of the first step, the discussion of Section 3.2
shows that these functions are solely evaluated on the piecewise constant initial data in terms of ey ((7k ’j?, (sk)’}) and

Pr((T)", (sk)?). But observe that by the thermodynamics, ey ((7 7 (sk)’]?) is nothing else but (ek)? = (Ex — ui/Z)’} and
Pr((T)", (sk)?) is equal to pr((or)", (ek)’j?). Hence, even though the entropy is used for the analysis of the numerical method,
one may implement this scheme even for general and possibly incomplete equations of state that are given as a function
Pr(Pk, ex), since the numerical fluxes may still be computed at each time step in terms of the initial unknowns U", j € Z.
In particular, this allows the use of tabulated equations of state.

5. Numerical tests

In this section, we present Riemann-type test-cases on which the performance of the relaxation scheme is tested and
compared with that of three other schemes: Schwendeman-Wahle-Kapila’s first order Godunov-type scheme [39], Tokareva—
Toro’s finite volume HLLC scheme [44] and Rusanov’s scheme (a Lax-Friedrichs type scheme, see [23]). The thermodynamics
follows either an ideal gas or a stiffened gas law:

P (k> ex) = (Ve — 1) prek — YiPoo k>

where y, > 1 and po x > 0 are two constants. The e.o.s. parameters of each test-case are given in Table 1 as well as the
initial discontinuity position, the final time of the simulation and the CFL number. The initial and intermediate states of
each solution are given in Tables 2 to 6. The u;-contact discontinuity separates two regions denoted — and + respectively
on the left and right sides of the discontinuity. If the uq-contact discontinuity has non-zero strength, an additional region
L% or Rx* also exists according to the sign of uy — uq as described in Fig. 1.

We recall that the scheme relies on a relaxation Riemann solver which requires solving a fixed-point problem in order to
compute, for every cell interface Xjp1s the zero of a scalar function (see eq. (80) in Appendix 7.2). A dichotomy (bisection)
method is used in order to compute this solution. The iterative procedure is stopped when the error is less than 10712,

5.1. Results for Test-case 1

In this first test-case, both phases follow an ideal gas e.o.s. (see Table 1). The wave pattern for phase 1 consists of a
left-traveling shock, a material contact discontinuity u1, a phase fraction discontinuity of velocity u, and a right-traveling
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Table 3
Test-case 2: left, right and intermediate states of the exact solution.
Region L Region — Region + Region Rx Region R
o 0.3 0.3 0.8 0.8 0.8
01 1.0 0.4684 0.50297 5.9991 1.0
uq —19.59741 6.7332 —1.75405 —1.75405 —19.59741
D1 1000.0 345.8279 382.08567 382.08567 0.01
02 1.0 0.7687 1.6087 1.6087 1.0
uy —19.59716 —6.3085 —6.3085 —6.3085 —19.59741
D2 1000.0 399.5878 466.72591 466.72591 0.01
Table 4
Test-case 3: left, right and intermediate states of the exact solution.
Region L Region — Region + Region R
o 0.2 0.2 0.5 0.5
01 0.99988 0.0219 0.0219 0.99988
uq —1.99931 0.0 0.0 1.99931
P1 0.4 0.0019 0.0019 0.4
02 0.99988 0.0219 0.0219 0.99988
uy —1.99931 0.0 0.0 1.99931
P2 0.4 0.0019 0.0019 0.4
Table 5
Test-case 4: left, right and intermediate states of the exact solution.
Region L Region — Region + Region Rx Region R
o 1.0 1.0 0.4 0.4 0.4
01 1.6 2.0 1.84850 2.03335 1.62668
uq 0.80311 0.4 0.91147 0.91147 0.55623
P1 1.3 2.6 2.05277 2.05277 1.02638
02 — — 4.0 4.0 7.69667
uy — — 0.1 0.1 0.74797
D2 — — 2.45335 2.45335 6.13338
Table 6
Test-case 5: left, right and intermediate states of the exact solution.
Region L Region — Region + Region R
o 1.0 1.0 0.0 0.0
P1 1.6 2.0 - -
us 1.79057 1.0 - -
P1 5.0 10.0 — —
02 — — 2.0 2.67183
uy — — 1.0 1.78888
D2 10.0 15.0
t t
U1 Us U2 U1
-‘ 1 “ 1
' ) ' )
' ) ' )
up —c1 “ ' u + 1 up — 1 ‘| 1 ur ¢
up — C2 Ls v |- + ug + 2 ug — C2 - 4|+, Rx ug + C2
1 ] 1 ]
1 1 1 ]
1 1 1 1
o o
L3 W
W\ W\
w ys
> T > T

Fig. 1. Structure of the Riemann solutions, notations for the intermediate states.

rarefaction wave. For phase 2 the wave pattern is composed of a left-traveling rarefaction wave, the phase fraction discon-
tinuity, and a right-traveling shock.

In Fig. 2, the approximate solution computed with the relaxation scheme is compared with the exact solution, and
with the approximate solutions obtained with the Godunov-type scheme, the HLLC scheme and Rusanov’s scheme. The
results show that unlike Rusanov’s scheme, the three other methods, which give very similar results, correctly capture the
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Fig. 2. Test-case 1: Structure of the solution and space variations of the physical variables at the final time Tmax = 0.15. Mesh size: 100 cells.

L @
&
4
@

Rusanov ~ +
HLLC =
Godunov-type A
Relaxation O
0.4

Exact

-0.4 -0.2 0 0.2

Rusanov  +

HLLC =
Godunov-type A
Relaxation O
0.4

Exact

-0.4 -0.2 0 0.2

Rusanov  +
HLLC =
4 Godunov-type A ]
Relaxation O
) ) | Exact —
-0.4 -0.2 0 0.2 0.4

0.9

0.8 -

0.7 |

0.6

0.5 -

Rusanov
HLLC
Godunov-type

Exact

0.08

0.06

0.04

0.02

-0.02

-0.04

0.98

0.96

0.94

+
A
Relaxation O
0.4

0 0.2

Rusanov
HLLC
Godunov-type

Exact

+
o
A
Relaxation O |
0.4

0 0.2

p2

Rusanov
HLLC
Godunov-type

Exact

+
A

Relaxation O

0 0.2 0.4

p2

Rusanov ~ + 1
HLLC =
Godunov-type A 1
Relaxation O
Exact - 1
0.2 0.4



E Coquel et al. / Journal of Computational Physics 330 (2017) 401-435 421

intermediate states even for this rather coarse mesh of 100 cells. This coarse mesh is a typical example of an industrial
mesh, reduced to one direction, since 100 cells in 1D correspond to a 108-cell mesh in 3D. It appears that the contact
discontinuity is captured more sharply by the relaxation scheme, the Godunov-type scheme and the HLLC scheme than
by Rusanov’s scheme for which the numerical diffusion is larger. However, we observe that the Godunov-type and HLLC
schemes seem to be slightly more accurate than the relaxation scheme when capturing the u,-contact discontinuity for
the phase 1 variables. Indeed, for the relaxation scheme, there is one more point within the contact discontinuity for
these variables. We can also see that for the phase 2 variables, there are no oscillations as one can see for Rusanov’s
scheme: the curves are monotone between the intermediate states. For phase 1, the intermediate states are captured by
the relaxation, the Godunov-type and the HLLC methods, while with Rusanov’s scheme, this weak level of refinement is
clearly not enough to capture any intermediate state. These observations assess that, for the same level of refinement, the
relaxation method (as well as the Godunov-type scheme and the HLLC scheme) is much more accurate than Rusanov’s
scheme.

A mesh refinement process has also been implemented in order to check numerically the convergence of the method,
as well as its performances in terms of CPU-time cost. For this purpose, we compute the discrete L'-error between the
approximate solution and the exact one at the final time Tpmax = NAt, normalized by the discrete L'-norm of the exact
solution:

D 17 — Pex(Xj, Tmax) | AX
J
Z |Pex(Xj, Tmax)| AX

]

E(AX) =

(77)

where ¢ is any of the non-conservative variables («1, p1, U1, P1, 02, U2, p2). The calculations have been implemented on
several meshes composed of 100 x 2" cells with n =0, 1, .., 10 (knowing that the domain size is L = 1). In Fig. 3, the error
E(Ax) at the final time Tp,x = 0.15, is plotted against Ax in a log — log scale. We can see that all the errors converge
towards zero with the expected order of Ax'/2, except the error for u; which seems to converge with a higher rate.
However, Ax!/2 is only an asymptotic order of convergence, and in this particular case, one would have to implement the
calculation on more refined meshes in order to reach the theoretically expected order of Ax'/2.

Fig. 3 also shows the error on the non-conservative variables with respect to the CPU-time of the calculation expressed in
seconds for both the relaxation scheme and Rusanov’s scheme. Each point of the plot corresponds to one single calculation
for a given mesh size. One can see that, if one prescribes a given level of the error, the computational cost of Rusanov’s
scheme is significantly higher than that of the relaxation method for all the variables. For instance, for the same error on the
phase 1 density p1, the gain in computational cost is more than a hundred times when using the relaxation method rather
than Rusanov’s scheme which is a quite striking result. Indeed, even if Rusanov’s scheme is known for its poor performances
in terms of accuracy, it is also an attractive scheme for its reduced complexity. This means that the better accuracy of the
relaxation scheme (for a fixed mesh) widely compensates for its (relative) complexity.

5.2. Results for Test-case 2

The second test-case was taken from [44]. Phase 1 follows an ideal gas e.o.s. while phase 2 follows a stiffened gas e.o.s.
(see Table 1). From left to right, the solution for phase 1 consists of a left-traveling rarefaction wave, the phase fraction
discontinuity, a material contact discontinuity uq, and a right-traveling shock. For phase 2 the wave pattern is composed of
a left-traveling rarefaction wave, the phase fraction discontinuity, and a right-traveling shock.

The results are given in Fig. 4. As the jump of initial pressures is very large, strong shocks are generated in each phase.
The distance between the right shock and contact waves is small in phase 1, which makes it difficult for all the schemes
to capture the intermediate states at this weak level of refinement (100 cells). We observe however that the Godunov-type
scheme, the HLLC scheme and the relaxation scheme remain more accurate than Rusanov’s scheme. We also observe that
the narrow intermediate state for p; between the u-contact discontinuity and the {u; + c1}-shock is better captured with
the Godunov-type and the HLLC schemes than by the relaxation scheme. For phase 2, Rusanov’s scheme fails to correctly
capture the speed of the right-going shock due to the large difference between the pressures before and after the shock. On
the contrary, the other schemes capture the shock with the correct speed.

A convergence study has also been performed for this test-case, the results of which are given in Fig. 5. The observed
convergence rate is slightly larger than Ax!'/2, and the error v.s. CPU plots show a smaller computational cost for the
relaxation scheme than for Rusanov’s scheme. However, on this test-case, the observed gain in the computational time is
less than in the first test-case and is not the same for all the variables.

5.3. Results for Test-case 3
This test was also taken from [44]. Both phases consist of two symmetric rarefaction waves and a stationary u,-contact

discontinuity. As the region between the rarefaction waves is close to vacuum, this test-case is useful to assess the pressure
positivity property. Note that the positivity of the pressures is expected here since both phases follow an ideal gas e.o.s.
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Fig. 3. Test-case 1: L!-Error with respect to Ax for the relaxation
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The results are given in Fig. 6. We can see that the computed pressures are positive for all the schemes. On the density and
pressure variables, all the schemes seem to give similar results. However, we can see on the velocities that the constant
middle states between the rarefaction waves are smeared out by the relaxation method, the HLLC method and by Rusanov’s
scheme, while there is some evidence of these constant states in the approximate solution obtained by the Godunov-type
scheme. Since all methods are first-order accurate and since the Godunov-type scheme is essentially an upwind method, it
is expected that its solutions would be less diffusive than the other methods. Finally, the resolution of the phase fraction
discontinuity appears to be very diffused by Rusanov’s scheme while it is exactly captured by the other three schemes. For
the relaxation scheme, this is a property satisfied by the relaxation Riemann solver for this type of discontinuities. It is also
naturally satisfied by the Godunov-type scheme and by the HLLC scheme (see [44]).

5.4. Results for Test-case 4

We now consider a Riemann problem in which one of the two phases vanishes in one of the initial states, which means
that the corresponding phase fraction a1 or o is equal to zero. For this kind of Riemann problem, the u;-contact separates
a mixture region where the two phases coexist from a single phase region with the remaining phase. Various examples of
such problems were introduced in [39,38,3] or [44].

The solution is composed of a {u; — c1}-shock wave in the left-hand side (LHS) region where only phase 1 is present.
This region is separated by a uj-contact discontinuity from the right-hand side (RHS) region where the two phases are
mixed. In this RHS region, the solution is composed of a u1-contact discontinuity, followed by a {u; + c3}-rarefaction wave
and a {uq + cq}-shock (see Fig. 7).

In practice, the numerical method requires values of o1, and o g that lie strictly in the interval (0, 1). Therefore, in the
numerical implementation, we take a1 ; = 1—107%. The aim here is to give a qualitative comparison between the numerical
approximation and the exact solution. Moreover, there is theoretically no need to specify left initial values for the phase 2
quantities since this phase is not present in the LHS region. For the sake of the numerical simulations however, one must
provide such values. We choose to set py 1, Uz and p to the values on the right of the uz-contact discontinuity, which is
coherent with the preservation of the Riemann invariants of this wave, and avoids the formation of fictitious acoustic waves
for phase 2 in the LHS region. For the relaxation scheme, this choice enables to avoid oscillations of phase 2 quantities in
the region where phase 2 is not present. However, some tests have been conducted that assess that taking other values of
(p2,1, U2,1, p2,1) has little impact on the phase 1 quantities as well as on the phase 2 quantities where this phase is present.

We can see that for the same level of refinement, the relaxation method, the Godunov-type method and the HLLC
method are more accurate than Rusanov’s scheme, which can be seen especially for phase 1. As regards the region where
phase 2 does not exist, we can see that the three other methods are much more stable than Rusanov’s scheme. Indeed,
theses schemes behave better than Rusanov’s scheme when it comes to divisions by small values of «;, since the solution
approximated by Rusanov’s scheme develops quite large values.

5.5. Results for Test-case 5

The last test-case considers the coupling between two pure phases. A left region, where only phase 1 exists (a1, =1),
is separated by a up-contact discontinuity from a right region, where only phase 2 is present (c1,g = 0). In the existence
region of each phase, the solution is composed of a shock (phase 1) or a rarefaction wave (phase 2).

In the numerical implementation, we set a1 =1 — 10~? and o1 R = 10~2. In addition, in the LHS region, where phase
2 is absent, we choose to set 0y, uz and py to the values on the right of the uy-contact discontinuity ie. to the
values ,0;', u}' and p; The symmetric choice is made for phase 1 in the RHS region: we set p1,r = p;, U1,g =u; and
p1,r = p; . Another choice could have been made for the initialization of the absent phase by imposing an instantaneous
local thermodynamical equilibrium between the phases at time t = 0. This would be coherent with the relaxation zero-th
order source terms that are usually added to the model when simulating practical industrial configurations.

The results are given in Fig. 8. One can see that, in the LHS region, the quantities of the only present phase 1 are correctly
approximated while the quantities of the vanishing phase 2 remain stable despite the division by small values of «;. The
same observation can be made for the RHS region. On the contrary, Rusanov’s scheme fails to approximate such a vanishing
phase solution.

6. Conclusion

The work performed in [16] and in the present paper provides an accurate and robust finite volume scheme for ap-
proximating the entropy dissipating weak solutions of the Baer-Nunziato two-phase flow model. The scheme relies on an
exact Riemann solver for a relaxation approximation a la Suliciu of the convective part of the Baer-Nunziato model. To our
knowledge, this is the only existing scheme for which the approximated phase fractions, phase densities and phase internal
energies are proven to remain positive without any smallness assumption on the data or on the phase fraction gradient. In
addition, it is the only scheme for which discrete counterparts of the entropy inequalities satisfied by the exact solutions of
the model are proven for all thermodynamically admissible equations of state, under a fully computable CFL condition.
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Fig. 8. Test-case 5: Structure of the solution and space variations
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The scheme is well-adapted for subsonic flows (in terms of the relative velocity between the phases) and flows for which
the phases are close to the thermodynamical and mechanical equilibrium, a state which is characterized by the equality of
pressures, velocities and temperatures of both phases. This numerical method is therefore a natural candidate for simulating
the convective part of the complete two-phase flow model, where zero-th order source terms are added to account for the
relaxation phenomena that tend to bring the two phases towards thermodynamical, mechanical and chemical equilibria.
When these source terms are added, the relaxation scheme can be implemented within a fractional step procedure in order
to account for all the physical effects. In such a procedure, the first step is the treatment of the first order part of the
Baer-Nunziato model thanks to the relaxation scheme, while the following steps consist in successive ODE solvers where
the various relaxation effects are treated separately. To fix ideas, let us recall the general form of the full Baer-Nunziato
model with relaxation source terms:

00ty + UpOxaty = Dy,

Ot (g ox) + Ox (ko) = Ty,

3t (e prur) + (o Pt + o Pi) — P10xotk = Dy + T,

Ot (o PrEg) + Ox (e P EUiy + ot pty) — U2 p10xty = Qg + % Dy + T — p1 Py,

(78)

where % = %(ul + uy) and 72 = %uluz. The quantities &y, I'y, D and Qj account respectively for the relaxation of
pressures, chemical potentials, velocities and temperatures according to:

D = Op(pr — P3-k)> =0, (3K — Uk)»
Dy = Oy (u3_k — Ug), Qr =071 (T3_k — Tg).

We refer to [35] for the precise definition of the chemical potentials wj and that of the positive quantities ®,, ®,, Oy
and Or. In [35], a fractional step method is described for the treatment of these source terms. It is proven that, provided
stiffened gas e.o.s. for both phases, every ODE-type step of this method is well posed in the sense that existence and
uniqueness of the considered quantities are guaranteed in the relevant intervals. Moreover, at the semi-discrete level in
time, each one of these steps is compatible with the total entropy inequality satisfied by (78):

3t< Z akpksk) + ax( Z akpkskuk)

k=1,2 k=1,2
T1+T>
Y 2T Ty

The relaxation scheme was specially designed for the simulation of vanishing phase solutions, where in some areas of the
flow, the fluid is quasi monophasic i.e. one of the phases has nearly disappeared. In particular, the scheme has been proven
to robustly handle sharp interfaces between two quasi-monophasic regions as assessed by the results of Test-case 5 (see
Section 5.5). Simulating vanishing phase solutions is a crucial issue for a detailed investigation of incidental configurations
in the nuclear industry such as the Departure from Nucleate Boiling (DNB) [46], the Loss of Coolant Accident (LOCA) [47]
or the Reactivity Initiated Accident (RIA) [31]. Some numerical methods had already been proposed for the approximation
of vanishing phase solutions ([39,44]). The work performed in [16] and in the present paper provides a detailed theoretical
and numerical answer to the robustness issues rising up when attempting to simulate vanishing phase solutions.

Despite a relatively complex theory aiming at constructing the underlying approximate Riemann solver, and at analyzing
the main properties of the numerical method (positivity, discrete entropy inequalities), the proposed scheme is a rather
simple scheme as regards its practical implementation as explained in the Appendices 7. The scheme applies for all equa-
tions of state for which the pressure is a given function of the density and of the specific internal energy. In particular, this
allows the use of incomplete or tabulated equations of state.

It appears that the relaxation scheme has similar performances as two of the most popular existing schemes available
for the Baer-Nunziato model, namely Schwendeman-Wahle-Kapila’s first order accurate Godunov-type scheme [39] and
Tokareva-Toro’s finite volume HLLC scheme [44]. In addition, the scheme compares very favorably with Lax-Friedrichs type
schemes that are commonly used in the nuclear industry for their known robustness and simplicity. As a matter of fact,
the relaxation finite volume scheme was proved to be much more accurate than Rusanov’s scheme for the same level of
refinement. In addition, for a prescribed level of accuracy (in terms of the L!-error for instance), the computational cost
of the relaxation scheme is much lower than that of Rusanov’s scheme. Indeed, for some test-cases, reaching the same
level of accuracy on some variables may require a hundred times more CPU-time with Rusanov’s scheme than with the
relaxation scheme! In a recent benchmark on numerical methods for two-phase flows [1], the relaxation scheme was proven
to compare very well with various other schemes in terms of CPU-time performances as well as robustness [17].

Thanks to the invariance of the Baer-Nunziato model under Galilean transformations, the finite volume formulation of
the relaxation scheme allows a straightforward extension to 2D and 3D unstructured meshes. As a matter of fact, the scheme
has already been implemented in a proprietary module for 3D two-phase flows developed by the French national electricity
company EDF within the framework of the industrial CFD code Code_Saturne [7]. The scheme has been successfully applied
within nuclear safety studies, for numerical simulations of the primary circuit of pressurized water reactors. A forthcoming
paper is in preparation, where the relaxation scheme is used for the simulation of 3D industrial cases.

® )
<—L(p1—p2)? —Ou(u1 — 12)*> - © (U1 — up)® — ——(T1 — T2).
Ty TT,
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7. Appendices
7.1. Construction of the solution to the Riemann problem (25)-(32)

Given (W, Wg, a1, az) (satisfying 7.1 = Tx,L and Ti g = Tk g for k € {1, 2}) such that the conditions of Theorem 3.5 are
met, we give the expression of the piecewise constant solution of the Riemann problem (25)-(32). For the sake of simplicity,
the solution will be expressed in non-conservative variables W= (a1, T1, T2, U1, U, 1, T2, &1, E2).

In practice, when implementing the numerical scheme, the relaxation Riemann solution of (25)-(32) is used to com-
pute the numerical fluxes at each interface between two states (Uy,Ur) and the relaxation states (W, Wg) are actually
computed from these two states (U4, UR). For this reason, the solution will be denoted

£ — W(E; Up, Ug; a1, a2).

We recall the following notations built on the initial states (W, W) (and therefore depending on (I/;,Ug)) and on the
relaxation parameters (ai, az), which are useful for the computation of the solution.
For k in {1, 2}:

U,E(UL,UR; ag) := — (Pk,R — Pk.L) »

(uk,L + uk,R) - 2,

|'—‘ NI'—*

a
U, Ug; ag) = (pk R+ DkL) — zk (ugR — UgL)
(79)

T UL UR: a) =T + —(uk(uL, Ur: @) — g 1),
5 ak

1
T,ER(UL:UM ag) := Tk R — —(uﬁ(UL,UR; ag) — Uk R)-
’ ag

We also recall the dimensionless number of equation (48):

Oy R—0Q
A% Uy, Up) 1= 22—,
o R+
and define as U% Uy, Ug; a1, az) the central expression of assumption (A) of Theorem 3.5:

U Ui 01) — U2 Ui 42) = 5 A U ) (] Qs Ui 1) — T30 Ui 02))
1+ ZAY UL UR)I

Later in this section we will omit the dependency of these quantities on (U, Ug; a1, az). Following Theorem 3.5, if a4
and a; are such that 1'1 I tfR. ran, 1:2’: g are positive, and if condition (A) which reads aﬂfR <Uf < a1‘L'1 , holds true,
then there exists a self-similar solution to the Riemann problem (25)-(32). Following [16], we distinguish three different
cases corresponding to different orderings of the kinematic waves, uj < uj, uj =u3 or uj > uj. With each one of these
wave configurations is associated a different expression of assumption (A) depending on the sign of U®.

U Uy, Ug; a1, az) :=

Solution with the wave ordering uj < uj:
The solution & — W(&; UL, Ug; aq, az) has the wave ordering u3 < uj if the following assumption holds:

Al 0<U<atf,.

The intermediate states, which are represented in Fig. 9, and the velocities uj Uy, Ur; a1, az) and uj Uy, Ug; ar, az) (sim-
ply denoted uj and u3 hereafter) are computed through the following steps performed in the very same order.

f it f f

o ut —u '

1. Define v 1= —£, M = 1 : 2 and P’L: = 17112
o1,R a1ty a211 L

2. Define successively the functions

1(1+w? 1 1+ w2\ 1\%2 4
= T+ )= (== (1+=) =2,
Mo(@):= 2 l—a)2< +v> \/<1—w2> ( +v> v

71:IR
1m+(1—M)T

My (m) = — —Tt” with w € (0, 1). For instance 4 = 0.1,

1-(1 -t

1L
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1+m

. 1—-m
M(m) ;= min <Mo (—)

a o
W(m) =m4 — 0k

ap o2 + 02 R

, M,u(m)> )

(1 +v)ym—-2vM(@m)).

x

. Use an iterative method (e.g. Newton’s method or a dichotomy (bisection) method) to compute Mj € (0, 1) such that

" a "
UM =M — éA“P,:.

(80)

According to [16], M7 always exists under (A1) and is unique if u is close enough to one. In practice, the iterative
method is initialized at m°® = max(0, min(Mn, 1)).
. The velocity uj is obtained by uj = uf —a Tf,LMI-

. The velocity u7 is obtained by u% =u} + valrfLM(Mf)

1- M}
1T— MM}

. The intermediate states for phase 1 are given by
e Phase fractions: oy =1, oc]+ =01 Rx =01 R.

e Specific volumes:

g 1-M

‘L’l_ = T]’LW

e Velocities:

uy =ud+ a7 MM

e Relaxation pressures 1(71, Tq

g 1AM
R VISV R

3

,81):

1— MM}

_ f
T1,Rx = t],R + t],

1-—M¥
L ul =uq pe =i

ME— VMM
1o MMy)

- 2 - 2 2
Ty =piLtai(tii—1), T =pii+ai(tiL— 1), TR = PR+ a7 (TR — T1Re)-

e Relaxation total energies &1 (u1, 71, 71, 51):

T =W)?/2+ e+ ()% — p3 )/ Qa)),
& =wh?/2+erL + (1) = p2 )/ 2a?),
Erpe = (U1R)/2+ €1 R+ (7T12,R* - P%,R)/(Zﬂ%)

. The intermediate states for phase 2 are then given by

. 1
e Specific volumes: 13 1« =T, + a—(u§ —uz), T2 Rx = T2.R — a—(u’z‘ — U2 R)-
2 2

e Velocities: up, 1« = Uz g« = U3.
o Relaxation pressures 3(T2, 72

,82):

2 2
72,1+ = P2,R +05(T2,L — T2,14), T2, R+ = P2,R + 05(T2,R — T2,R+)-

e Relaxation total energies £;(ua, T2, 72, 52):

Eae=W3?/2+ex 1 + (75, — P35 )/(2a3),
2. ke = (U3)* /2 + €2 R + (705 g, — D5 p)/(205).
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Fig. 10. Intermediate states of the exact solution of the Riemann problem (25)-(32) with the wave ordering u3 = uj.

Solution with the wave ordering u; > uj:
The solution & — W(&; UL, Ug; aq, az) has the wave ordering u} > uj if the following assumption holds:
(A2)  —a7f, <U* <0.

For the determination of the wave velocities and the intermediate states, the simplest thing to do is to exploit the Galilean
invariance of the equations. In this case indeed, the solution is obtained by the transformation

WE UL, Ug; ar, az) == VIW(=§; VUr, VUL; a1, az), (81)
where the operator V changes the velocities into their opposite values:
Vi (X1, X2, X3, X4, X5, X6, X7, X8, X9) > (X1, X2, X3, —X4, —X5, X6, X7, X8, X9). (82)

Of course, the function & +— W(E; VUR, VU;; a1, ay) is computed through the first case, since for these new initial data
(VUR, VUL), it is condition (A1) that holds.

Solution with the wave ordering uj = uj:
The solution & — W(&; UL, Ug; aq, az) has the wave ordering u3 = uj if the following assumption holds:

(A3) U'=o0.

The kinematic velocities are given by u} =uj = uf. The intermediate states for phase 2 are obtained by the same
formulae as in the case uj < uj, while the intermediate states for phase 1 (see Fig. 10) read

af:a“_, O1,Rx = O1,R,
- _ il _ ]j

O =T TR+ = T gs
- f i

ul :u]a ul,R*:uy

;= +a (T — 1)) 1 Rs = +ai (g —1,)
1 = P1L 1(T1,L 1,L)» 1,R+ = P1,R 1(T1,R 1,R%)°

& =W 2+er+ ()2 —p2)/Qad),  Eige = WU1Re)?/2+e1r + (T, — P2 p)/(2a)).
The non-conservative product d(W)oxW:

When o1 | # a1, the non-conservative product d(W)a,W identifies with a Dirac measure propagating at the constant
velocity u3. This Dirac measure is given by

D* (WLa WR)SX—UED
where D* (W, Wg) := (et1,r —or1,1) (u3,0,0, —7f, +75,0,0,0, O)T. The pressure 77} is defined for a1 g # 1,1 by

*

8 o R+ 021
7] —ay—

#t
=7 (U3 — us).
2 01 R —0O1L 2

7.2. Practical implementation of the relaxation finite volume scheme

In this Appendix, we describe in detail the practical implementation of the scheme. We recall the space and time dis-
cretization: we assume a positive space step Ax and the time step At is dynamically updated through the CFL condition.
The space is partitioned into cells R = Ujez[xjf%,xj%[ with Xjp1 = (J+ %)Ax for all j in Z. The centers of the cells are
denoted x; = jAx for all j in Z. We also introduce the discrete intermediate times t" =nAt, neN.
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The solution of the Cauchy problem:

U + I FU) +CU)xU =0, xeR,t >0,
UX,0) =Up(X), xeR,

is approximated at time t" by Z/{]'? on the cell [xj_l Xjp1 [. The values of the approximate solution are inductively computed
2 2
as follows:
Initialization:
Xjv 1
1
U= — Up(x) dx.
=y [ ww
X 1
172
Time evolution:
n+1 _ ,n At — o n n ~+ 7 n 83
U =uj — () — Frad ). (83)
At each cell interface Xj 1 the numerical fluxes fi(U'?,Z/{;?+1) are computed thanks to the relaxation approximate
2
Riemann solver. They depend on the states (L{’.‘,Z/I;? 1) but also on the local values of the relaxation parameters az i1 k=
Jta

1, 2. Denoting U; =Z/{;7 and Ug =L{}1+1 and ay, k = 1,2 for simplicity, the fluxes F*({;,Uz) are computed through the
following steps.

1. Local choice of the pair (aq, ay). The pair of parameters (ai,ay), must be chosen large enough so as to satisfy several
requirements:
e In order to ensure the stability of the relaxation approximation, a, must satisfy Whitham'’s condition (63). For simplic-
ity however, we do not impose Whitham’s condition everywhere in the solution of the Riemann problem (25)-(32)
(which is possible however), but only for the left and right initial data at each interface:

forkin{1,2}, ax > max (o1 Ck(PkL.€kL): Ok.R Ck(Ok.R:€kR)) (84)
where c (g, ex) is the speed of sound in phase k. In practice, no instabilities were observed during the numerical
simulations due to this simpler Whitham-like condition.

e In order to compute the solution of the relaxation Riemann problem, the specific volumes T,fAL(UL,L[R;ak) and
r,f,R(L{L,Z/{R;ak) defined in (79) must be positive. The expressions of r,f’L(Z/{L,Z/IR;ak) and r,f’R(ui,uR;ak) are two
second order polynomials in ak_l whose constant terms are respectively 7y and Tt g. Hence, by taking ay large

enough, one can guarantee that r,f’L(Z/{L,Z/IR;ak) >0 and r,iR(LIL,UR; ax) > 0, since the initial specific volumes 7 |
and 1 g are positive.

e Finally, in order for the relaxation Riemann problem (25)-(32) to have a positive solution, (a;,a;) must be chosen
so as to meet condition (A) of Theorem 3.5 as well as the positivity condition of the phase 2 densities (B) (see the
comments after Theorem 3.5).

Thereafter, we propose an iterative algorithm for the computation of the parameters (aj,ay) at each interface. The

notation not(P) is the negation of the logical statement P.

e Choose 71 a (small) parameter in the interval (0, 1).

e For k in {1, 2} initialize a;:

ay := (1 + 1) max (kL k(Pk.L» €k.L)» Pk.R k(Pk.R» €k.R))-

e For k in {1,2}:
do {ax := (1 + n)ay} while (i , Uy, Ug; @) <0 or T} o UL, Ug: ar) <0).
e do { az:=(1+nay,

do {aq := (14 n)aq} while (not(A)),
compute the value of u3 in the solution WUy, Ug; a1, az),

} while (not(B)).

In this algorithm, the computation of uj requires the computation of the solution of the fixed-point problem (80), using
some numerical method such as Newton’s method or a dichotomy (bisection) algorithm. It is possible to prove that
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this algorithm always converges in the sense that there is no infinite looping due to the while-conditions. Indeed, it
is easy to observe that assumptions (A) and (B) are always satisfied if the parameters (aj, ay) are taken large enough.
Moreover, this algorithm provides reasonable values of a; and ay, since in all the numerical simulations, the time step
obtained through the CFL condition (56) remains reasonably large and does not go to zero. In fact, the obtained values
of a; and a; are quite satisfying since the relaxation scheme compares very favorably with Rusanov’s scheme, in terms
of CPU-time performances (see Section 5).

2. Calculation of the numerical fluxes. Once the relaxation parameters are known, one may give the expressions of the
numerical fluxes F* (4, Ug). Observe that, as a by-product of the above algorithm for the computation of (ay,az),
the propagation velocity uj is already known, and one does not need to redo the fixed-point procedure. Given the
solution & — W(é;ML,L{R;a1,a2) of the relaxation Riemann problem (25)-(32) (see Appendix 7.1 for the expression
of the intermediate states), which we denote W(§) for the sake of simplicity, the numerical fluxes are computed as

follows:
_ 0 - [ @p*
N 0
(a1 p1u1)(W(O0F))
~ 0
(2 p212) (W(0F))
+ 2 0t w)® _,
F=(UL,UR) = (a1p1u? + a17r1) (W (0F)) +| - R (o1,rR —o1,1),
2
(020212 + 02772) (W(0%)) (u3)* -
N u* 1
a1 p1E1uy + aqmiug) (WO 2
(a1p1&1u1 + amyug) (W(OT)) —
Hot
| (02028213 + 027m2U2) (W(OT)) | | whtn:

where uj is already known as a result of the first step (choice of the pair (a1, az)) and the expression of 77 is given
at the end of Appendix 7.1. In the above expression of the numerical fluxes, we have denoted (u;)Jr = max(u3, 0),

(u3)~ =min(u3, 0) and the functions x @ are extended by 0 at x=0.

Finally, the time step is computed so as to satisfy the CFL condition:

Axt 5 max[l(” - )i, | (uk + a i)'y |} 1
ils . < -,
ke{1,2}, jeZ ke Bkt j kT AkTie) 4 q 3

and the scheme (83) can be now applied to update the values of the unknown Z/{;’“ for jeZ.
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