
Accepted Manuscript

A Heterogeneous FMM for Layered Media Helmholtz Equation I: Two Layers in R
2

Min Hyung Cho, Jingfang Huang, Dangxing Chen, Wei Cai

PII: S0021-9991(18)30299-7
DOI: https://doi.org/10.1016/j.jcp.2018.05.007
Reference: YJCPH 8006

To appear in: Journal of Computational Physics

Received date: 12 October 2017
Revised date: 29 March 2018
Accepted date: 4 May 2018

Please cite this article in press as: M.H. Cho et al., A Heterogeneous FMM for Layered Media Helmholtz Equation I: Two Layers in R
2,

J. Comput. Phys. (2018), https://doi.org/10.1016/j.jcp.2018.05.007

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing
this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is
published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all
legal disclaimers that apply to the journal pertain.

https://doi.org/10.1016/j.jcp.2018.05.007


Highlights

• Multipole expansions and translation to local expansions for far fields of free space Helmholtz Green’s functions are proven to be
applicable for those of half space Helmholtz Green’s functions.

• Free space fast multipole method for 2-D Helmholtz equations is extended to the impedance half space, and the O (N log N) complexity
is validated numerically.
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Abstract

In this paper, we introduce a new heterogeneous fast multipole method (H-FMM)
for 2-D Helmholtz equation in layered media. To illustrate the main algorithm ideas,
we focus on the case of two layers in this work. The key compression step in the
H-FMM is based on a fact that the multipole expansion for the sources of the free-
space Green’s function can be used also to compress the far field of the sources of the
layered-media or domain Green’s function, and a similar result exists for the trans-
lation operators for the multipole and local expansions. The mathematical error
analysis is shown rigorously by an image representation of the Sommerfeld spectral
form of the domain Green’s function. As a result, in the H-FMM algorithm, both
the multipole-to-multipole and local-to-local translation operators are the same as
those in the free-space case, allowing easy adaptation of existing free-space FMM.
All the spatially variant information of the domain Green’s function is collected
into the multipole-to-local translations and therefore the FMM becomes heteroge-
neous. The compressed representation further reduces the cost of evaluating the
domain Green’s function when computing the local direct interactions. Preliminary
numerical experiments are presented to demonstrate the efficiency and accuracy
of the algorithm with much improved performance over some existing methods for
inhomogeneous media.

Key words: Helmholtz equation, Impedance boundary condition, Fast multipole
method, Hierarchical model, Low-rank representation, Multi-layered media.

1 Introduction

To compute the interactions of the electromagnetic or acoustic waves with
objects of complex geometry embedded in the multi-layered media, an attrac-
tive numerical method in the engineering community is to reformulate the
frequency domain Helmholtz equation as integral equations using the layered-
media Green’s function where the unknowns are only defined on the surface or
volume of the objects [1–4]. In contrast, integral equation methods based on
the free-space Green’s function require unknowns and equations on the infi-
nite interfaces of the layered-media in the background. Unlike the translation-
invariant free-space Green’s function for wave scattering in homogeneous me-
dia, the layered-media Green’s function incorporates the interface and far-field
boundary conditions and becomes a spatially variant function. In this work, we
will refer to the layered-media Green’s function as the domain Green’s function
or domain kernel function. Subsequently, the boundary integral equations are
discretized using proper numerical integration techniques, for instance, the
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trapezoidal rule with end point corrections [5,6] in two dimensions or the
Quadrature by Expansion (QBX) technique in higher dimensions [7], result-
ing in a dense linear system where the matrix describes how the discretized
source and target particles interact through the domain Green’s function. In
the numerical solver stage, an important and major computational cost in the
GMRES or similar iterative methods is the efficient application of this matrix
to a given vector representing the source contributions, which incurs an O(N2)
cost by a direct matrix-vector multiplication.

There exist several more efficient strategies to compute integral opera-
tors of the spatially variant domain Green’s function efficiently. For simple
geometries, for instance, the half-space or circles, one technique is to repre-
sent the domain Green’s function contribution as the sum of the free-space
Green’s function contributions from both the original source and some im-
age points (the spatial variant properties are incorporated into the locations
of the images). This approximation allows the direct application of existing
free-space fast matrix vector multiplication algorithms specially designed for
the free-space translation-invariant kernels, including the well-developed fast
multipole method (FMM) packages in [8–11]. Representing works along this
direction include the classical Kelvin image for the half-space problem (or cir-
cles) for the perfect conducting media [12], so the spatially variant domain
Green’s function simply consists of two free-space Coulomb potentials, one
from the source charge and one from its image. In the case of dielectric in-
homogeneity, such as a circular cavity embedded in a dielectric medium, the
reaction field from the media can also be approximated by a small number
of image charges [13,14]. Unfortunately, for more complex geometry, the im-
age approximations are extremely hard to derive or non-existent, and for a
few special cases including the multi-layered media, the domain Green’s func-
tions are customarily derived as Sommerfeld integral formulas using integral
transformations. Even when the image approximation formulas are available
(e.g., the two-layered media Helmholtz equation), a large number of images
is usually required. In [15], to approximate the interaction of 6, 400 particles
described by the domain Green’s function of the 2-D Helmholtz equation with
half-space impedance boundary condition, a total of 1, 122, 960 additional im-
ages were introduced in a hybrid approach, which combines the image and
Sommerfeld integral representations. Other efforts to speed up the compu-
tation of integral operator for layered media Green’s functions include the
inhomogeneous plane wave method [16], windowed Green’s function method
for layered-media [17], and cylindrical wave decomposition of the Green’s func-
tion in 3-D and 2-D FMM [18]. Fast Fourier Transform (FFT) has been used
to speed up the solution of volume integral equations in layered media by using
the fact that the Green’s function involves translation invariant convolution
in the two horizontal x and y directions while a correlation along the vertical
z-direction [19,20]. Both the convolution and correlation can be implemented
with FFTs. However, the FFT approach is usually used when the source dis-
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tribution density is almost uniform in space and an interpolation to a regular
Cartesian mesh is also needed when the source locations are random. The
H-FMM method developed in this paper is designed for any type of source
distribution such as sources on lower dimensional surfaces or curves or ran-
domly objects in different parts of the space. Moreover, the H-FMM method
has a complexity of O(N) for static or low frequency wave problems while
FFT based methods’ complexity is O(N logN). Another approach is to com-
press the matrix describing the domain Green’s function interactions directly
using the fast direct solvers (FDS) [21,22] or closely related H-matrix the-
ory [23,24], where the low-rank structures of the sub-matrices are derived and
processed recursively on a hierarchical tree structure using purely numerical
linear algebra techniques. However, evaluating the domain Green’s functions
(entries in the matrix) involves very expensive computation of the Sommerfeld
type integrals, and the compression stage of the FDS is expensive and memory
intensive. It is worth mentioning that the FMM, FDS, and H-matrix are all
hierarchical algorithms that recursively compress the information in a system
to low-rank or low-dimensional forms and transmit the compressed informa-
tion non-locally on a hierarchical tree structure. In this paper, we apply this
hierarchical algorithm design approach to multi-layered media domain Green’s
functions and present a new hierarchical algorithm for evaluating the spatially
variant domain Green’s function interactions. Our algorithm shares many com-
mon features with FMM and FDS algorithms, especially in the information
transmission patterns on the tree structure: the compressed representations
are transmitted through an upward pass from leaf to parent nodes on a hi-
erarchical tree structure, collected by interacting nodes and stored as local
expansions, and then transmitted to the children nodes in a downward pass.
However, compared with the free-space FMM and domain Green’s function
FDS, the new algorithm has the following unique features: (a) It considers
the domain Green’s function (unlike the free-space FMM), but doesn’t re-
quire the entry-wise function evaluation (unlike FDS); (b) It compresses the
free-space Green’s function (unlike FDS) to collect domain Green’s function
far-field contributions from children to parents in the upward pass. Direct
compression of the domain Green’s function is unnecessary (unlike FDS), but
can be recovered from the free-space Green’s function compression and Som-
merfeld integral representation of the domain Green’s function analytically;
and (c) The multipole-to-local translation is heterogeneous (unlike the free-
space FMM), and the translation operator can be derived analytically and
computed efficiently on-the-fly using the Sommerfeld representation (unlike
FDS). These attractive features imply that the new algorithm can be more
efficient when simulating waves in layered media.

In this paper, we will focus on the case of a 2-D half-space (two-layered)
problem where the domain Green’s function can be explicitly represented with
the Sommerfeld integrals or complex line images. The complex line image rep-
resentation intuitively reveals how the compression of the interaction matrix
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can be performed analytically on a transformed matrix which only involves
the free-space Green’s function, and provides rigorous error analysis using
available analytical results from the classical free-space FMM. As the com-
pressed representation separates the spatially variant components and spa-
tially invariant free-space kernels in the domain Green’s function, both the
multipole-to-multipole and local-to-local translations from the existing free-
space Helmholtz FMM algorithm can be easily adapted. Unlike the classical
spatially invariant FMM algorithm, all the spatially variant information are
collected in the multipole-to-local translations and the new algorithm becomes
spatially variant. We refer to this new algorithm as the Heterogeneous FMM
(H-FMM) due to the heterogeneous nature of the multipole-to-local transla-
tions and the use of the free-space Green’s function and similar translations
on the hierarchical tree structure from the classical FMM. We present the al-
gorithm structure and demonstrate its accuracy and efficiency by comparing
with the hybrid method in Ref. [15] for handling inhomogeneous media.

This paper is organized as follows. In Sec. 2, we present both the com-
plex line image and Sommerfeld integral representations of the free-space and
domain Green’s functions for the 2-D Helmholtz equation with half-space
impedance boundary condition. In Sec. 3, we present the hierarchical algorithm
for the efficient evaluation of the spatially variant domain Green’s function in-
teractions for the two-layered case with impedance boundary conditions. We
will discuss the hierarchical tree structure, compression of the complex image
representations as multipole expansions, compression of the local interactions
to allow more efficient evaluations of the integrals, adaptation of the spatially
invariant multipole-to-multipole and local-to-local translations from existing
free-space FMM, analytical formulas for the heterogeneous multipole-to-local
translations and their efficient evaluations, and present the algorithm structure
and some implementation details. Numerical results are presented in Sec. 4 to
demonstrate the algorithm accuracy and efficiency in low frequency. Finally,
we summarize our results in Sec. 5 and outline future work.

2 2-D Helmholtz Equation in Impedance Half-space

We present both the complex line image and Sommerfeld integral represen-
tations of the free-space and domain Green’s functions for the 2-D Helmholtz
equation in half-space with impedance boundary condition.
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2.1 Free-space Green’s function

Consider the 2-D Helmholtz equation in free-space

(Δ + k2)u(x) = 0

with the Sommerfeld radiation condition at infinity

lim
r→∞

√
r

(
∂

∂r
u(x)− iku(x)

)
= 0,

where x = (x, y), r = ||x||, k is the wave number, and i =
√−1. Its Green’s

function is given by the 0th order Hankel function of the first kind as

g(x,x0) =
i

4
H

(1)
0 (k||x− x0||) (1)

which solves the equation

−(Δ + k2)g(x,x0) = δ(x− x0) (2)

with the Sommerfeld radiation condition

lim
r→∞

√
r

(
∂

∂r
g(x,x0)− ikg(x,x0)

)
= 0,

where δ is the 2-D Dirac delta function, x0 = (x0, y0), and r = ||x− x0||.

The free-space Green’s function can be found in the frequency (spectral)
domain by taking the Fourier transform of Eq. (2) in the x-direction and
solving the resulting ordinary differential equations in the y-direction to give
its spectral representation

g(x,x0) =
1

4π

∫ ∞

−∞
e−

√
λ2−k2|y−y0|

√
λ2 − k2

eiλ(x−x0)dλ. (3)

This representation is often referred to as the Sommerfeld identity, which can
be separated into the propagating and evanescent modes for wave number
variable |λ| < k (propagating modes) and |λ| > k (evanescent modes as |y| →
∞), respectively, to arrive at the following form after some changes of variables

g(x,x0) =g(x,x0)prop + g(x,x0)evan

=
i

4π

∫ π

0
eik(|y−y0| sin θ−(x−x0) cos θ)dθ

+
1

4π

∫ ∞

0

e−t|y−y0|
√
t2 + k2

(
ei

√
t2+k2(x−x0) + e−i

√
t2+k2(x−x0)

)
dt (4)
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for |y − y0| > 0 [25].

The free-space Green’s function is commonly used in the potential theory,
where solutions of the Helmholtz equation are represented as combinations
of volume and/or layer potentials defined as the convolution of the Green’s
function or its derivatives with certain density functions either over the vol-
ume or surface area of a given object. Theoretical properties of the free-space
Green’s function and corresponding potentials are well-established in existing
literature [26,27], and their efficient evaluations can be carried out using fast
algorithms such as the well-developed fast multipole method for the Helmholtz
equation [8,28].

2.2 Domain Green’s function for two-layered media

In layered media, it is usually possible to derive the spatially variant do-
main Green’s function analytically either using the method of images (com-
plex image representation) for some simple setting, or applying the integral
transforms (e.g., Laplace and Fourier transforms) for more complex multi-
layer setting to have the spectral domain representation (Sommerfeld integral
representation). In this subsection, we focus on the 2-D half-space Helmholtz
equation with the impedance boundary condition

∂u

∂n
− iαu = 0 (5)

which is imposed on the interface defined by y = 0, and present the complex
image and Sommerfeld integral representations from existing literature (e.g.,
see [29]).

Complex Image Representation. Let ux0(x) be the domain Green’s func-
tion at x due to a point source located at x0. Then, it is decomposed as the
sum of the free-space interaction of the source and target points that is the
free-space Green’s function g(x,x0) and contribution from a scattered field
us
x0
(x), namely,

ux0(x) = g(x,x0) + us
x0
(x). (6)

The us
x0
(x) can be explicitly represented in the two-layered media as complex

image contributions of the free-space kernel as

us
x0
(x) =

∫ ∞

0
g(x,xim

0 − sŷ)τ(s)ds, (7)

where xim
0 = (x0,−y0) is the image of the source point x0, ŷ = (0, 1), and τ(s)

is the complex image charge density distribution. By applying the impedance
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boundary condition, the image function τ(s) can be explicitly found as (see
[15])

τ(s) = δ(s) + μ(s), s > 0, (8)

where a point image is indicated by the Dirac delta distribution δ(s) and a
line image μ(s) is given by

μ(s) = 2iαeiα·s. (9)

As a result, we have

us
x0
(x) = g(x,xim

0 ) +
∫ ∞

0
g(x,xim

0 − sŷ)μ(s)ds, (10)

where the first term on the right hand side represents the contribution from the
point-image source, and the second term represents the contributions from the
line-images. Therefore, the domain Green’s function ux0(x) for the half-space
Helmholtz equation with impedance boundary condition can be represented
in terms of the free-space Green’s function as

ux0(x) = g(x,x0) +
(
g(x,xim

0 ) +
∫ ∞

0
g(x,xim

0 − sŷ)μ(s)ds
)
. (11)

Sommerfeld Integral Representation. The scattered field in (10) involves
an integration of an oscillatory line image density μ(s) = 2iαeiα·s, which can-
not be handled efficiently with numerical quadratures directly as in the case
for the Laplace equation in [14]. However, using the Sommerfeld identity for
g(x,x0) in Eq. (3), we can resolve this difficulty with an analytic integration
of the s variable as follows:∫ ∞

0
g(x,xim

0 − sŷ)eiα·sds

=
∫ ∞

0

⎡
⎣ 1

4π

∫ ∞

−∞
e−

√
λ2−k2|y+y0+s|
√
λ2 − k2

eiλ(x−x0)dλ

⎤
⎦ eiα·sds

=
1

4π

∫ ∞

−∞
e−

√
λ2−k2(y+y0)eiλ(x−x0)

√
λ2 − k2

[∫ ∞

0
e−

√
λ2−k2seiα·sds

]
dλ

=
1

4π

∫ ∞

−∞
e−

√
λ2−k2(y+y0)eiλ(x−x0)

√
λ2 − k2

1√
λ2 − k2 − iα

dλ. (12)

Plugging Eqs. (12) and (3) into Eq. (11), we obtain the following spectral
domain representation for the scattered field (assume y > 0)

us
x0
(x) =

1

4π

∫ ∞

−∞
e−

√
λ2−k2(y+y0)

√
λ2 − k2

eiλ(x−x0)

√
λ2 − k2 + iα√
λ2 − k2 − iα

dλ, (13)

or by defining

σ̂(λ) =

√
λ2 − k2 + iα√
λ2 − k2 − iα

, (14)
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we have

us
x0
(x) =

1

4π

∫ ∞

−∞
e−

√
λ2−k2y

√
λ2 − k2

eiλxe−
√
λ2−k2y0e−iλx0 σ̂(λ)dλ (15)

where σ̂(λ) is independent of x and x0.

Moreover, the Sommerfeld representation of the scattering field in (15) will
be used eventually to extend the algorithm developed for two-layered media
in this paper to multiple-layered media.

2.3 Domain Green’s function in integral equation methods

In most integral equation formulations of the Helmholtz equation, unlike
the translation invariant free-space Green’s function that only depends on
the distance of x and x0, the domain Green’s function for general complex
geometry brings complications for being a two variable function and its values
are simply no longer translation invariant but spatially variant. As a result,
the computation and evaluation of the domain Green’s function are more
expensive than finding the solution of the original differential equation. There
are a few exceptions, including the simulation of the layered-media Helmholtz
equation where the interface or boundary is infinite and flat. For such cases, if
using the free-space Green’s function, the resulting potentials will involve the
evaluations of integrals (potentials) over infinite interfaces. However, due to
the radial symmetry, one can analytically derive the spatially variant domain
Green’s function, in the form of a Sommerfeld integral representation using
integral transformations such as the Laplace and Fourier transforms.

There are many advantages by using the domain Green’s function in form-
ing the integral equation method (IEM) for the multi-layered media problem,
for instance, the interface conditions are naturally enforced by the domain
Green’s function and no unknowns are necessary on the layer interfaces. How-
ever, the numerical solution of the integral equation poses many challenges
and is still an active research topic. In addition to problems common to all
integral equation approaches such as the design of high order quadrature and
derivation of well-conditioned systems, the IEM for layered media using the
domain Green’s function has its specific challenges. In particular, the evalua-
tion of the domain Green’s function interactions with large number of source
and target points is expensive for either the complex image representation [15],
or the Sommerfeld integral, or even the optimized hybrid representations. This
implies that explicitly constructing the discretized interaction matrix is also
expensive, and therefore matrix compression using the FDS will be costly
where purely numerical linear algebra techniques are applied. This paper fo-
cuses on the fast application of the domain Green’s function to a given density

9



function ρ(x0) as in

φ(x) =
∫
ux0(x)ρ(x0)dx0, (16)

where the integral either represents a volume potential or a surface layer po-
tential. After discretization, the resulting linear algebra question becomes how
to efficiently calculate the matrix-vector multiplication of Av where entries in
the matrix A are given by the domain Green’s function [Ai,j] = uxj

(xi). The
main results of this paper include (a) the analysis-based low-rank compression
of the matrix A, which is not directly performed on the matrix itself as in the
FDS methods, but on a closely related matrix after certain transformations;
(b) how the compressed representations can be transmitted through the hierar-
chical tree structure using analysis-based translation operators, and whenever
possible, utilizing existing translation operators for the free-space kernels; and
(c) the selected compression and translation strategies allow the implementa-
tion of a H-FMM algorithm for the layered media by an easy adaptation of
existing free-space FMM codes.

3 Algorithm for Two-layered Media

In this section, we present the technical details of a fast hierarchical al-
gorithm for the two-layered media domain Green’s function. The algorithm is
similar in structure to that of FMM and the compression stage of FDS, and
is developed by considering the design philosophy of the hierarchical mod-
eling technique. This technique identifies any low-rank, or low-dimensional,
or other compact features in a given system, recursively collects the com-
pressed representations from children to parents, and transmits the informa-
tion between different nodes on a hierarchical tree structure using properly
compressed translation operators. It is worth mentioning that the resulting
hierarchical models are often re-expressed as recursive algorithms, which can
be easily interfaced with existing dynamical schedulers from High-Performance
Computing (HPC) community for optimal parallel efficiency [30–32].

In addition to FMM and FDS, different aspects of the hierarchical model-
ing technique have been known and addressed by many researchers previously.
Examples include the classical fast Fourier transform (FFT) [33] where the
Halving Lemma shows how data can be compressed and the odd-even term
splitting of the polynomials creates a hierarchical tree to allow recursively
processing the compressed information efficiently; the multigrid method (MG)
[34,35] where the hierarchical tree structure is formed via adaptively refining
the computational domain, and data compression and transmission are per-
formed using the relaxation (smoother) and projection (restriction) operators
by analyzing the frequency domain behaviors of the error functions between
different levels of the (adaptive) tree to effectively reduce the high frequency
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errors. When there are n terms (FFT) in the polynomial or n approximately
uniformly distributed particles (MG or FMM), the depth of the hierarchi-
cal tree is normally O(log n) and the number of tree nodes is approximately
O(n). Therefore, if each level only requires O(n) operations (e.g., FFT), the
algorithm complexity will be O(n log n). If each tree node only requires a con-
stant amount of operations (e.g. MG or FMM), the algorithm complexity will
be asymptotically optimal O(n). In this section, we describe our algorithm
following the design guidelines of the hierarchical modeling technique.

3.1 Adaptive hierarchical tree structure

Consider the Helmholtz equation in 2-D with half-space impedance bound-
ary condition for the scattering of a finite-sized object with a complex geome-
try in the upper half plane y > 0. A surface integral equation can be derived to
give the scattering solution as layer potentials through a convolution of the do-
main Green’s function or its derivatives with some unknown density functions
over the object’s surface. We assume the surface is discretized into a number
of particles via proper numerical integration techniques. In the hierarchical
modeling technique, a spatial adaptive hierarchical tree is first generated. In
our algorithm, the tree structure is identical to that in FMM or FDS and
is generated by a recursive partition to divide the particle-occupant region
into nested square boxes, where the root box is the smallest bounding box
that contains the entire particle set. Without loss of generality, the root box
is normalized to size 1 along each side. The root box is partitioned equally
along each dimension. The partition continues recursively on the resulting box
until the box contains no more than s particles, at which point it becomes a
leaf node. Empty boxes encountered during partition are pruned off. In our
implementation, the value s is chosen depending on the size of the particle set
and other factors to allow an optimal performance.

3.2 Low rank compression

The low-rank structure for well-separated source and target points has
been extensively studied for the free-space FMM and FDS algorithms. Con-
sider N sources with strength qj placed at xj = (xj, yj) in a circle centered
at xc = (xc, yc) with radius R on top of the half-space, and suppose we are
interested in the field at x due to all the source points given by

uf (x) =
N∑
j=1

qjg(x,xj), (17)
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xc

xl
c

n ∂u

∂n
− iαu = 0

y = 0

ρp

x

xj

ρl
source

image

target

xim
c

xim
j

Fig. 1. Impedance half-space and notation.

where g(x,xj) is the free-space Green’s function contribution. We say x is
well-separated from the sources if the distance between x and the source cir-
cle center xc is at least 3R, see Fig. 1.

Free-space Green’s function compression. Using Graf’s addition theorem
[36], the free-space Green’s function interaction of well-separated sources xj

and target x can be compressed as a multipole expansion given by

uf (x) ≈ i

4

P∑
p=−P

αpH
(1)
p (k|x− xc|)eipθc , (18)

where

αp =
N∑
j=1

qje
−ipθjJp(kρj), (19)

θc is the polar angle of x−xc, (ρj, θj) are the polar coordinates of the complex
number xj − xc, Jp is the pth order Bessel function, and the number of terms
P is a constant independent of the number of the sources N [37].

Domain Green’s function compression: For the half-space problem with
an impedance boundary condition, the field at x due to all the source points
is

u(x) =
N∑
j=1

qjuxj
(x) =

N∑
j=1

qjg(x,xj) +
N∑
j=1

qju
s
xj
(x). (20)
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As the first term on the right hand side represents the free-space Green’s
function interaction and is already compressed in Eq. (18), we focus on the
compression of the second term representing the scattered field. When using
the complex image representation, it can be compressed simply as follows:

us(x) =
N∑
j=1

qju
s
xj
(x)

=
i

4

N∑
j=1

qj

(
H

(1)
0 (k|x− xim

j |) +
∫ ∞

0
H

(1)
0 (k|x− (xim

j − sŷ)|)μ(s)ds
)

≈ i

4

P∑
p=−P

ᾱp

(
H(1)

p (k|x− xim
c |)eipθim +

∫ ∞

0
H(1)

p (k|x− (xim
c − sŷ)|)eipθ̂imμ(s)ds

)

(21)

where xim
j = (xj,−yj) are the coordinates of the point-image charge, ᾱp is the

complex conjugate of the free-space multipole coefficient αp in Eq. (19) (see

[15]), and θim and θ̂im are the polar angles of complex number x − xim
c and

x− (xim
c − sŷ), respectively. Therefore, the multipole expansion for both the

original and image sources is

u(x) ≈ i

4

P∑
p=−P

αpH
(1)
p (k|x− xc|)eipθc + i

4

P∑
p=−P

ᾱp

(
H(1)

p (k|x− xim
c |)eipθim

+
∫ ∞

0
H(1)

p (k|x− (xim
c − sŷ)|)eipθ̂imμ(s)ds

)
, (22)

which is the key formula behind the H-FMM for layered media.

We emphasize that the number of terms P for the scattered field expan-
sion is the same as the one in the free-space expansion for the same accuracy
requirement. This can be rigorously justified by the observation that when
the original sources xj (in the green circle centered at xc) in Fig. 1 are well-
separated from the target point x (in the blue circle centered at xl

c), all the
corresponding point-images xim

j (in the circle centered at xim
c ) are also well-

separated from x, and this is true also for the set of line-images on the rays
starting from xim

c with the same s value.

Remark 1: Eq. (22) suggests that for the domain Green’s function interac-
tions, when the source and target clusters are well-separated, it is possible
to only compress the translation invariant free-space Green’s function using a
P -term multipole expansion with coefficients αp as in Eq. (18) for a prescribed
accuracy requirement, and all other related information in Eq. (22) can be re-
covered from αp to the same accuracy. Also, unlike the FDS, the compression
of the domain Green’s function is not performed directly on the matrix entries,
but on another matrix after some spatially variant transformations implicitly
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described in Eq. (22), and these transformations involve the complex conju-
gation operator. Finally, as the compression is only on the free-space Green’s
function, deriving parent’s compressed representation and corresponding er-
ror analysis are exactly the same as those in the classical FMM algorithms,
where the multipole-to-multipole translation can be used without any modi-
fication. We therefore skip the details of this translation operator in this paper.

3.3 Translations on the hierarchical tree structure

We discuss how the compressed representations can be transmitted on the
hierarchical tree structure in this section. As our selected multipole and lo-
cal representations of the compressed domain Green’s function are the same
as those for the translation invariant free-space Green’s function, existing
multipole-to-multipole and local-to-local translations in the free-space FMM
can be applied without any modification. We therefore focus on the multipole-
to-local (M2L) translation operator, and study how the multipole expansion of
the compressed domain Green’s function can be converted to local expansions.

We start from the following well-known M2L translation operator for the
free-space Green’s function. Consider the same source points xj, j = 1, · · · , N
described in Fig. 1 and the compressed representation of the free-space kernel
in Eq. (18). Then the free-space potential uf (x) can be translated to a local
expansion centered at xl

c using Graf’s addition theorem as

uf (x) ≈ i

4

P∑
p=−P

βf
pJp(k|x− xl

c|)eikθ, (23)

where the coefficients are

βf
p =

P∑
m=−P

αmH
(1)
m−p(kρl)e

i(m−p)θl , (24)

θ is the polar angle of x− xl
c, and (ρl, θl) are the polar coordinates of xl

c − xc

[37]. Because the complex image representation of the domain Green’s function
is given in terms of the free-space Green’s function, we can therefore plug the
free-space M2L translation formula in the compressed image representation of
the scattered field

us(x) ≈ i

4

P∑
p=−P

ᾱp

(
H(1)

p (k|x− xim
c |)eipθim (25)

+
∫ ∞

0
H(1)

p (k|x− (xim
c − sŷ)|)μ(s)eipθ̂imds

)
,
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to derive its local expansion given by

us(x) =
i

4

P∑
p=−P

p∑
m=−p

ᾱm

(
H

(1)
m−p(kρ̃im)Jp(k|x− xl

c|)ei(m−p)θ̃imeipθ.

+
∫ ∞

0
H

(1)
m−p(k ˆ̃ρim)Jp(k|x− xl

c|)ei(m−p)
ˆ̃
θimμ(s)eipθds

)

=
i

4

P∑
p=−P

βs
pJp(k|x− xl

c|)eipθ, (26)

where the local expansion coefficients are given by

βs
p =

p∑
m=−p

ᾱm

(
H

(1)
m−p(kρ̃im)e

i(m−p)θ̃im +
∫ ∞

0
H

(1)
m−p(k ˆ̃ρim)e

i(m−p)
ˆ̃
θimμ(s)ds

)
,

(27)

θ is the polar angle of x − xl
c, and (ρ̃im, θ̃im) and (ˆ̃ρim,

ˆ̃θim) are the polar
coordinates of xl

c − xim
c and xl

c − (xim
c − sŷ), respectively.

The local expansion for u(x) is simply the sum of the free-space Green’s
function and scattered field local expansions. As the translation operator from
the compressed multipole coefficients {αp} to the local coefficients {βs

p} in-
volves the complex conjugate operator, for notation reasons, instead of com-
bining the free-space with the complex image contributions in one single trans-
lation, we only construct the mapping matrix A for the scattered field,

βs
p =

p∑
m=−p

Ap,mᾱm, (28)

where

Ap,m =
(
H

(1)
m−p(kρ̃im)e

i(m−p)θ̃im +
∫ ∞

0
H

(1)
m−p(k ˆ̃ρim)e

i(m−p)
ˆ̃
θimμ(s)ds

)
. (29)

Notice that the integrand in Eq. (29) is highly oscillatory for large s and its
numerical computation usually requires special treatment. Here, using

H(1)
n (kρ)einθ =

(
−1

k

)n
(

∂

∂x
+ i

∂

∂y

)n

H
(1)
0 (kρ)

and the Sommerfeld representation of H0(kρ) given in Eq. (3), the nth order
Hankel function can be expressed as

H(1)
n (kρ)einθ =

(−i)n

iπ

∫ ∞

−∞
e−

√
λ2−k2y

√
λ2 − k2

eiλx
(
λ−√

λ2 − k2

k

)n

dλ, y > 0 (30)

where (ρ, θ) are the polar coordinates of the complex number x + iy. Then,

the first term Hm−p(kρ̃im)e
i(m−p)θ̃im in Eq. (29) is rewritten in terms of the
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plane wave expansion

H
(1)
m−p(kρ̃im)e

i(m−p)θ̃im =
im−p

π

∫ π

0
eik(y sin τ−x cos τ)e−i(m−p)θdτ

+
(−i)m−p

iπ

∫ ∞

0

e−ty

√
t2 + k2

K(t)dt, (31)

where (x, y) are the Cartesian coordinates of (ρ̃im, θ̃im) and

K(t) = ei
√
t2+k2x

(√
t2 + k2 − t

k

)m−p

+ e−i
√
t2+k2x

(−√
t2 + k2 − t

k

)m−p

for y > 0. This plane wave representation was also used to diagonalize the
M2L translation operator in the new version of the low frequency FMM
for the free-space Green’s function in [25]. We skip the similar formula for

Hm−p(k ˆ̃ρim)e
i(m−p)

ˆ̃
θim , and present the translation matrix explicitly in terms

of propagating and evanescent parts as

Ap,m =
im−p

π

π∫
0

eik(y sin τ−x cos τ)e−i(m−p)θ

(
k sin(τ)− α

k sin(τ) + α

)
dτ

+
(−i)m−p

iπ

∞∫
0

e−ty

√
t2 + k2

⎛
⎝ei√t2+k2x

(√
t2 + k2 − t

k

)m−p

+e−i
√
t2+k2x

(−√
t2 + k2 − t

k

)m−p
⎞
⎠( t+ iα

t− iα

)
dt (32)

after integrating the s variable analytically. In the numerical evaluation, the
integral of the propagating term over a finite interval can be computed with
high order Gauss quadrature and the evanescent term can be evaluated using
the generalized Laguerre quadrature with weight function tne−t.

The translation matrix A in Eq. (32) has several special features. Unlike
in the classical FMM algorithms, it depends on the x and y and is therefore
spatially variant. However, for the fixed x and y, it is not a two variable func-
tion of m and p and only depends on m−p. In the numerical implementation,
the matrix can be either computed on-the-fly, or precomputed and stored. We
can estimate the required storage in the algorithm as follows: the translation
operators Ap,m are needed for all levels of the tree. For a fixed box, translation
matrix consist of 4p complex values (as it is only a function of m − p) and
there are a total of no more than 7 · 7 = 49 surrounding boxes represent-
ing the well-separated “receiving” boxes. For the two-layered media case, the
matrix also depends on the y-coordinate of the center of the box as the trans-
lation operator takes different values as their images change. Thus, we can
conclude that at tree level l, there are 2l different values of y-coordinates, and
for each y-coordinate 49 possible well-separated boxes that requires 4p com-
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plex values. Therefore, the total required storage for a system with L-levels is
approximately (2L+1 · 49 · 4p) · 16 bytes, which is very small compared with
the required storage for different expansions.

Remark 2: It is also possible to derive the translation matrix in Eq. (28)
directly using the Sommerfeld integral representation. This is in fact the key
step to generalize the H-FMM to multi-layered media domain Green’s function
cases where only the Sommerfeld representation is available and the image
representation is too complex to derive. Research results along this direction
will be presented in a subsequent paper for multi-layered media in higher
dimensions.

3.4 Accelerated evaluation of local direct interactions

We consider the submatrix representing the local direct interactions in
this section. For a source box with Nb particles located at {xj}Nb

j=1, its domain
Green’s function contribution to a target point x in a neighboring box is
defined as

ud(x) =
i

4

Nb∑
j=1

qjH
(1)
0 (k|x− xj|)

+
i

4

Nb∑
j=1

qj

(
H

(1)
0 (k|x− xim

j |) +
∫ ∞

0
H

(1)
0 (k|x− (xim

j − sŷ)|)μ(s)ds
)
. (33)

This formula shows the entries in one row of the submatrix. Further compres-
sion of the submatrix is usually impossible as it is not low-rank. However, it
is still possible to take advantage of the compressed scattered field represen-
tations of the domain Green’s function given in Eq. (21), so the entries in the
submatrices can be evaluated more efficiently.

In Fig. 2, we show a source box sitting next to a target box. In this figure,
notice that most of the line-images are well-separated from the target box. We
can therefore choose an appropriate constant C and cut the line-images into
two parts: those that are well-separated from the target box and those that
are not. The evaluation of Eq. (33) can be divided as ud(x) = I + II, where

I =
i

4

Nb∑
j=1

qjH
(1)
0 (k|x− xj|)

+ qj

(
H

(1)
0 (k|x− xim

j |) +
∫ C

0
H

(1)
0 (k|x− (xim

j − sŷ)|)μ(s)ds
)
, (34)

II =
i

4

Nb∑
j=1

qj

∫ ∞

C
H

(1)
0 (k|x− (xim

j − sŷ)|)μ(s)ds. (35)
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Fig. 2. Images are separated to near- and far-field by choosing appropriate C.

The first summation I is computed directly using high order quadrature
for the finite size integral. For the second summation II, because xim

j − sŷ
is well-separated from the target point, the computation can be accelerated
using the available source box multipole expansion as follows.

II =
i

4

Nb∑
j=1

qj

∫ ∞

C
H

(1)
0 (k|x− (xim

j − sŷ)|)μ(s)ds

=
i

4

∫ ∞

C

P∑
m=−P

ᾱmH
(1)
m (k|x− (xim

c − sŷ)|)eimθ̂imμ(s)ds

=
i

4

∫ ∞

C

P∑
m=−P

ᾱm

∞∑
n=−∞

H
(1)
m−n(kρ̃im)e

i(m−n)
ˆ̃
θimJn(k|x− xl

c|)einθμ(s)ds

=
i

4

∞∑
n=−∞

⎛
⎝ P∑

m=−P

ᾱm

∫ ∞

C
H

(1)
m−n(kρ̃im)e

i(m−n)
ˆ̃
θimμ(s)ds

⎞
⎠ Jn(k|x− xl

c|)einθ

≈ i

4

P∑
n=−P

LnJn(k|x− xl
c|)einθ, (36)

where

Ln =
P∑

m=−P

ᾱm

∫ ∞

C
H

(1)
m−n(kρ̃im)e

i(m−n)
ˆ̃
θimμ(s)ds =

k∑
m=−k

ᾱmBm,k

and the translation matrix is given by

Bm,k =
∫ ∞

C
H

(1)
m−n(kρ̃im)e

i(m−n)
ˆ̃
θimμ(s)ds, (37)

which can be evaluated efficiently using the same Sommerfeld integral repre-
sentation based technique in Eq. (32) for deriving the spatially variant M2L
translation operators.
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In the hierarchical tree structure, most boxes are well-separated from the
interface y = 0. This implies that C = 0 for most direct interactions of the
source and target boxes, and the separation can be simplified as

I =
i

4

Nb∑
j=1

qjH
(1)
0 (k|x− xj|), (38)

II =
i

4

Nb∑
j=1

qj

(
H

(1)
0 (k|x− xim

j |) +
∫ ∞

0
H

(1)
0 (k|x− (xim

j − sŷ)|)μ(s)ds
)
, (39)

where both the point- and line-image contributions belong to II. In this case,
the corresponding translation operator becomes the same as in Eq. (32). In
the numerical simulation, all the translation matrices can be either precom-
puted or computed on-the-fly using high order quadrature for the Sommerfeld
integral representation.

The selected compression schemes and translations allow easy adaptation
of existing fast multipole algorithms for computing the domain Green’s func-
tion interactions of the 2-D half-space Helmholtz equation with impedance
boundary condition. We present the pseudo-code of our algorithm in the fol-
lowing.

Heterogeneous 2-D FMM for Two-layered Media with Impedance
Boundary Conditions

Step 1: Initialization

Generate an adaptive hierarchical tree structure and precompute tables.
Comment [L denotes the maximum refinement level in the adaptive tree de-
termined by a prescribed number s representing the maximum allowed number
of particles in a childless box.]

Step 2: Upward Pass

for l = L, . . . , 0
for all boxes j on level l

if j is a leaf node
form the free-space multipole expansion using Eq. (18).

else
form the free-space multipole expansion by merging children’s
expansions using the free-space multipole-to-multipole
translation operator.

endif
end

end
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Cost [All operations in this step are the same as those in the free-space FMM.]

Step 3: Downward Pass

for l = 1, . . . , L
for all boxes j on level l

shift the local expansion of j’s parent to j itself using the free-space
local-to-local translation operator.
collect interaction list contribution using the precomputed table and
the multipole-to-local translation operator in Eq. (29).

end
end

Cost [Using the precomputed table, the cost is expected to be the same as
in the free-space FMM. Overhead operations are required when tables are
computed on-the-fly.]

Step 4: Evaluate Local Expansions

for each leaf node (childless box)
collect part II in Eq. (35) or (39) from neighboring (including self) boxes.
evaluate the local expansion at each particle location.

end

Comment [At this point, for each target point, its far field contribution (in-
cluding those from well-separated images) has been computed.]
Cost [Compared with the free-space FMM, additional translations are re-
quired to translate the multipole expansions of images to local expansions.
The heterogeneous translation operators can be computed on-the-fly or pre-
computed. The amount of work is constant for each leaf node.]

Step 5: Local Direct Interactions

for i = 1, ..., N
compute Part I in Eq. (34) or (38) of target point i with original and image
sources in the neighboring boxes.

end

Cost [When the computational domain is well-separated from the boundary
y = 0, this step only involves the evaluation of the free-space kernel in Eq.
(38) and the cost is the same as the free-space FMM. When the computational
domain is close to the boundary y = 0, a constant number of additional oper-
ations are required for each i in a very small subset of the particles to evaluate
the near-field point- and line-image contributions from Part I in Eq. (35).]

In our current implementation, all the tables are precomputed using Math-
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Fig. 3. Uniform distribution in a unit square on top of half-space.

ematica requesting more than 20 digits accuracy. Compared with the original
free-space FMM algorithm, the domain Green’s function H-FMM only requires
a small portion of additional cost, as demonstrated in the next section.

4 Numerical Results

We present numerical results in this section to demonstrate the perfor-
mance of the H-FMM algorithm for the two-layered media with the interface
placed at y = 0, and set α = 1 in the impedance boundary condition. We
assume the source and target points are the same set of N particles located
in a unit box centered at (0, 1.5) as shown in Fig. 3. All the source strengths
are set to 1. The code is written based on the free-space FMM in Ref. [8,38].
The numerical simulations are performed on a desktop with 3.7 GHz Xeon
E5 processor and 32GB RAM using the gcc compiler version 4.9.3. All the
required translation tables are precomputed using Mathematica.

As the analytical solution is not available for this problem, we first check
the algorithm accuracy by studying how the errors change as a function of the
number of expansion terms p. We consider the example with N = 100 × 100
particles uniformly distributed in the box. The random distribution resulted in
almost the same data as the uniform distribution and they are not presented.
A reference solution is computed using p = 39 (which should provide results
with approximately 12-digit accuracy) and by setting L = 3 in the hierarchical
tree structure. The H-FMM algorithm took about 1.19 seconds to derive the
reference solutions. The accuracy results are presented in Table 1 for p =
5, 10, 20, 30 and wave numbers k = 0.1 and k = 1, respectively, where the
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Table 1
Accuracy results with different expansion terms for k = 0.1 and k = 1. Reference
solution is computed with p = 39.

p Error for k = 0.1 Error for k = 1

E5 1.23× 10−4 1.43× 10−4

E10 2.73× 10−6 3.81× 10−6

E20 2.06× 10−9 2.85× 10−9

E30 1.19× 10−11 1.65× 10−11

Table 2
CPU time (seconds) for different N using p = 39 and k = 0.1

N 100 6400 10000 90000 360000 640000 810000 1000000

CPU time 0.01 0.67 1.19 10.92 46.58 100.85 116.03 135.05

error Ep using p terms in the expansion is defined as

Ep =

(∑M
j=1 |u39(xj)− up(xj)|2∑M

j=1 |u39(xj)|2
) 1

2

, M = 10, 000. (40)

In Fig. 4(a), we plot how the error Ep decays as a function of p for k = 0.1.
We see that the error dependency on the number of terms p to compress the
domain Green’s function is similar to that in existing FMM analysis for the
free-space kernels.

We demonstrate the algorithm efficiency by presenting the CPU times in
Table 2 for different numbers of source/target points N from 100 to 1, 000, 000
for k = 0.1. Pre-computation of the translation operator table with Mathemat-
ica took about 30 hours. In fact, this process can be completely parallelized.
A log-log plot of the CPU time is also presented in Fig. 4(b), which clearly
shows the linear scaling of the H-FMM algorithm. For comparisons, estimated
results of direct computations (using CPU times for N = 100 and 6, 400) and
the ideal linear scaling curve are also presented. As a comparison, in [15], the
CPU time for computing the interactions of 6,400 particles is about 54.79 sec-
onds, which is much slower as 1,122,960 additional images are introduced in
the calculation. Similar experiments are performed for k = 1 and results are
almost identical to that when k = 0.1 and are therefore omitted in this paper.

22



5 10 15 20 25 30
p

10-12

10-10

10-8

10-6

10-4

10-2

E
p

(a)

104 105 106

N

10-1

100

101

102

103

104

105

C
P

U
 t

im
e 

(s
ec

)

(b) Fast algorithm
Direct evaluation
Ideal linear scale

Fig. 4. (a) Convergence for k = 0.1 and N = 10000. (b) Linear CPU time scaling
with k = 0.1 and N = 6400, 10000, · · · , 1000000.

5 Conclusion and Future Work

We present a heterogeneous FMM for the efficient calculation of the dis-
cretized integral operator for the Helmholtz equation in two layers media with
impedance boundary conditions. The two-layered media setting allows the
use of the complex line image representations to compress the domain Green’s
function and to derive the translation operators analytically. Instead of com-
pressing the interaction matrix directly, the complex line image representa-
tion intuitively reveals how a transformed matrix can be compressed through
a procedure that only involves the free-space Green’s function, and provides
rigorous error bounds by using existing free-space FMM results. Unlike the fast
direct solvers, the compression is performed analytically on a transformed ma-
trix which allows the easy adaptation of existing free-space FMM packages.
Also dissimilar to the classical FMM, the multipole-to-local translation opera-
tors are spatially variant, thus the translation operators in the FMM becomes
heterogeneous. Numerical experiments show that the new hierarchical algo-
rithm provides significant improvement over existing hybrid methods [15] in
two-layered media settings.

This paper focuses on the intuitions through the two-layered media set-
ting. In a subsequent paper, we will present a more general H-FMM for multi-
layered media, based on the Sommerfeld integral representation as given in
(15) when the image representation will be too complicated to use, address-
ing various issues including constructions and error analysis of compressions,
translations for both the scalar Helmholtz equations in acoustic studies and
the multi-layered media dyadic Green’s function for the Maxwell’s equations
[39]. Finally, it is interesting to compare the analysis based compressions with
those using purely numerical linear algebra techniques as in the fast direct
solvers, to understand how the efficiencies of both compressions can be fur-
ther improved. Research along these directions will also be explored in the
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future.
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