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In this paper, we introduce a new interpolation scheme to approximate the density of 
states (DOS) for a class of rank-structured matrices with application to the Tamm–Dancoff 
approximation (TDA) of the Bethe–Salpeter equation (BSE). The presented approach for 
approximating the DOS is based on two main techniques. First, we propose an economical 
method for calculating the traces of parametric matrix resolvents at interpolation points 
by taking advantage of the block-diagonal plus low-rank matrix structure described in [6,
3] for the BSE/TDA problem. This allows us to overcome the computational difficulties 
of the traditional schemes since we avoid the construction of the matrix inverse and 
hence the need of stochastic sampling. Second, we show that a regularized or smoothed 
DOS discretized on a fine grid of size N can be accurately represented in a low rank 
quantized tensor train (QTT) format that can be determined through a least squares fitting 
procedure. The QTT tensor provides good approximation properties for strictly oscillating 
DOS functions with multiple gaps, in contrast to interpolation by problem independent 
functions like polynomials, trigonometric functions, etc. Moreover, the QTT approximant 
requires asymptotically much fewer (e.g., O (log N)) functional calls compared with the full 
grid size N . Numerical tests indicate that the QTT approach yields accurate recovery of DOS 
associated with problems that contain relatively large spectral gaps. The QTT tensor rank 
only weakly depends on the size of a molecular system that paves the way for treatment 
of large-scale spectral problems.

© 2019 Elsevier Inc. All rights reserved.

1. Introduction

Numerical approximation of the density of states (DOS) or spectral density (see §2.2) of large matrices is one of the 
challenging problems arising in the prediction of electronic, vibrational and thermal properties of molecules and crystals and 
many other applications. This topic, first developed in condensed matter physics [13,49,45,12,48], has long since attracted 
interest in the community of numerical linear algebra [46,15,44], see also a survey on commonly used methodology for 
approximation of DOS for large matrices of general structure [28].
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Most of traditional methods are based on a polynomial or fractional–polynomial interpolation of the DOS regularized by 
Gaussians or Lorentzians, and computing traces of certain matrix valued functions, say matrix resolvents or polynomials, 
defined at a large set of interpolation points within the spectral interval of interest. The trace calculations are typically 
accomplished with stochastic sampling over a large number of random vectors [28], leading to Monte Carlo estimates with 
slow convergence rates and low accuracy. Moreover, the algorithms based on polynomial interpolants have poor approxi-
mating properties when the spectrum of a matrix exhibits gaps or highly oscillating non-regular shapes, as is the case in 
electronic structure calculations. Since the size of matrices resulting from real life applications is usually large (in quantum 
mechanics it scales as a polynomial of the molecular size), and the DOS of these matrices often exhibits very complicated 
shape, the above mentioned methods become prohibitively expensive.

In this paper we present a new method for efficient approximation of the DOS function for large rank-structured symmet-
ric n × n matrices by fast evaluation of the traces of the matrix resolvent, which avoids both the solution of the eigenvalue 
problem and the calculation of the matrix inverse. Our main contribution is the development of a fast algorithm for evalua-
tion of the DOS function at low cost that scales linearly in the matrix size. Furthermore, we achieve a reduction of the total 
number of function evaluations in the case of a fine representation grid.

We apply this approximation to the Bethe–Salpeter equation (BSE), which is a widely used model for ab initio estimation 
of the absorption spectra for molecules or surfaces of solids [38,17,43,35,30,34]. In particular, we use the recently developed 
low-rank structured representation of the BSE Hamiltonian, which was introduced and analyzed in [6]. An efficient and 
structured eigenvalue solver for this block-diagonal plus low-rank representation of the BSE Hamiltonian as well as to its 
symmetric surrogate obtained by the Tamm–Dancoff approximation (TDA) is described in [3]. In the numerical tests, we 
confine ourselves to the construction of DOS for the symmetric positive definite matrix specified by the TDA model.

Our approach to approximating the DOS relies on the Lorentzian blurring [16]. In this case, the most computationally 
expensive part of the calculation amounts to the multiple evaluation of traces of shifted matrix inverses which, in general, 
scales cubically as O (n3) in the matrix size. The presented method reduces this cost to O (n), by using the following two 
basic advancements.

First, we propose an economical method for calculating traces of parametric matrix resolvents at any chosen interpolation 
point by taking advantage of the block-diagonal plus low-rank BSE/TDA matrix structure described in [6,3]. This becomes 
possible due to an explicit rank-structured representation of the matrix inverse which is evaluated efficiently by using the 
Sherman–Morrison–Woodbury formula at O (n) complexity. This allows us to overcome the computational difficulties of the 
traditional schemes since we avoid the construction of the full matrix inverse and the need of stochastic sampling. Note that 
the diagonal plus low-rank approximation to the BSE Hamiltonian introduced in [6] employs the low-rank approximation to 
the two-electron integrals tensor in the form of a Cholesky factorization developed previously [22] in the framework of a 
tensor-based Hartree–Fock solver [21].

The second novelty of this paper is the application of the QTT tensor approximation to the DOS sampled on a fine 
grid, which results in a long vector of size N displaying the spectrum of a molecule. The QTT approximation method was 
introduced and analyzed for function related vectors in [25], and later it proved to be useful in many applications. As a 
proof of concept, we first check by numerical experiments that the DOS function exhibits accurate low-rank QTT tensor 
approximation for strictly oscillating DOS functions with multiple gaps. The accuracy of approximation is controlled by 
ε-truncation of the corresponding tensor ranks.

These observations allow us to recover the QTT approximant of the DOS by using the TT/QTT-cross heuristic approxi-
mation that requires asymptotically much fewer (e.g., O (log N)) functional calls compared with the full grid size N , thus 
avoiding the need for interpolation by problem independent functions like polynomials, trigonometric polynomials, etc. In 
this way, the QTT interpolant over O (log N) interpolation points provides a rather accurate representation of the functional 
N-vector of the DOS. Moreover, it resolves the positions of peaks (spikes) in DOS with good precision, which is significant 
from a physical point of view.

Numerical tests for moderate size molecules confirm the closeness of DOS for the TDA model to those computed on 
the exact BSE spectrum. We also justify that the simplified block-diagonal plus low-rank approximation of the TDA matrix 
recovers well the global landscape and location of spikes in the DOS curve on the whole energy interval. We demonstrate 
the almost linear complexity scaling of the trace calculation algorithm applied to TDA matrices of different size. Furthermore, 
we present the numerics on QTT tensor interpolation of DOS via the TT-cross approximation. We also sketch modifications 
necessary to calculate the optical absorption spectrum via a rank-structured BSE model.

The rest of the paper is structured as follows. In Section 2, we recall the main prerequisites for the description of our 
method including the rank-structured approximation of the BSE/TDA matrix, basic notions of the regularization of DOS by 
Lorentzians and a short summary on the existing methods for matrices of general structure. Section 3 discusses the main 
techniques of the presented method and the corresponding analysis in Theorems 3.2 and 3.3, and presents the corresponding 
numerics. Section 4 presents a short summary of the QTT tensor approximation of function related vectors and the analysis 
of the QTT tensor ranks of the DOS, see Theorem 4.1. In Section 4.4 the TT-cross based QTT interpolation is applied to the 
discretized DOS function, where the quality of the interpolation is illustrated numerically. The beneficial features of the 
new computational schemes are verified by extensive numerical experiments on the examples of various molecular systems. 
Section 5 outlines the possible extension of the approach to the case of full BSE system. Conclusions summarize the main 
results and address the application perspectives.
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Fig. 2.1. Diagonal plus low-rank plus reduced-block structure of the matrix Â.

2. Main prerequisites and outline of initial applications

2.1. Rank-structured approximation to BSE matrix

In this paper we describe a method for efficient and accurate approximation of the DOS for large rank-structured 
symmetric matrices. Our basic application is concerned with estimating the DOS and the absorption spectrum for the 
Bethe–Salpeter problem describing the excitation energies of molecules.

The 2 ×2-block matrix representation of the Bethe–Salpeter Hamiltonian (BSH) leads to the following eigenvalue problem.

H

(
xk
yk

)
≡

(
A B

−B∗ −A∗
)(

xk
yk

)
= ωk

(
xk
yk

)
, (2.1)

where the matrix blocks of size n × n, with n = Nov = No(Nb − No), are defined by

A = �ε + V − Ŵ , B = V − W̃ , (2.2)

and eigenvalues ωk correspond to the excitation energies. Here �ε is a diagonal matrix and

V = [via, jb] a,b ∈ Iv := {No + 1, . . . , Nb}, i, j ∈ Io := {1, . . . , No},
is the rank-R B two-electron integrals (TEI) matrix projected onto the Hartree–Fock molecular orbital basis, where Nb is the 
number of Gaussian type orbital (GTO) basis functions and No denotes the number of occupied orbitals [6].

The method for solving the Bethe–Salpeter equation (BSE) using low-rank factorizations of the generating matrices has 
been introduced in [6]. It is based on a tensor-structured grid-based Hartree–Fock (HF) solver which provides not only 
the full set of eigenvalues and HF orbitals, but also the two-electron integrals tensor in the form of a low-rank Cholesky 
factorization, see [21] and references therein.

The matrix V inherits its low rank from the two-electron integrals tensor, and W̃ is also proven to have a small ε-rank 
(see [6]). In particular, there holds

V ≈ LV LT
V , LV ∈Rn×R V , R V ≤ R B , (2.3)

with the rank estimates R V = R V (ε) = O(Nb| logε|), and rank(W̃ ) ≤ rank(V ).
In [3], it was shown that the matrix Ŵ , which does not exhibit an accurate low rank representation, can be well 

approximated by a block diagonal matrix

Ŵ ≈ blockdiag[B̂, D],
where B̂ is a NW × NW dense block with NW = O (nα), α < 1. In our numerical examples below the block-size NW is 
almost of the same order as the rank parameter of LV . As a result, the TDA matrix A can be approximated by a sum of a 
block-diagonal matrix and a low rank matrix shown in Fig. 2.1, i.e.,

A ≈ Â = �ε + Q Q T − blockdiag[B̂, D] ≡ blockdiag[B0, D0] + Q Q T ,

where Q = LV , see also Section 3.
An efficient structured solver designed to calculate a number of minimal eigenvalues of the block-diagonal plus low-

rank representation of the BSE/TDA matrices is described in [3]. It is based on an efficient subspace iteration of the matrix 
inverse, which for rank-structured matrix formats can be evaluated efficiently by using the Sherman–Morrison–Woodbury 
formula, thus reducing the numerical expense of the direct diagonalization down to O(N2

b ) in the size of the atomic orbitals 
basis set, Nb .1 Furthermore, this solver also includes a QTT-based compression scheme, where both eigenvectors and the 
rank-structured BSE matrix blocks are represented by block-QTT tensors. The block-QTT representation of the eigenvector 

1 Notice that a more accurate cost estimate is O(No Nb), where No ∼ Nb/10 for typical basis sets we used so far. In general, the above estimate only 
reduces the constant in the basic complexity bound O(N2

b ).



224 P. Benner et al. / Journal of Computational Physics 382 (2019) 221–239
is determined by an alternating least squares (ALS) iterative algorithm. The overall asymptotic complexity for comput-
ing several smallest in modulo eigenvalues in the BSE spectral problem by using the QTT approximation is estimated by 
O(log(No)N2

o ), where No is the number of occupied orbitals.
Matrices in the form (2.1) are called J -symmetric or Hamiltonian, see [5] for implications on the algebraic properties 

of the BSE matrix. In particular, solutions of equation (2.1) come in pairs: excitation energies ωk with eigenvectors (xk, yk), 
and de-excitation energies −ωk with eigenvectors (y∗

k , x∗
k ).

The simplification in the BSH, H , defined by the n × n symmetric diagonal block A is called the Tamm–Dancoff (TDA) 
approximation. In what follows, we are interested in the TDA spectral problem,

Auk = λkuk, k = 1, . . . ,n,

providing good approximations to ωk, xk .
In general, methods for solving partial eigenvalue problems for matrices with a special structure as in the BSE setting 

are conceptually related to the approaches for Hamiltonian matrices [4,7,14,9], particularly to those based on minimization 
principles [1,2]. A structured Lanczos algorithm for estimation of the optical absorption spectrum was described in [41]. 
Various structured eigensolvers tailored for electronic structure calculations are discussed in [36,37,10,29,28,42].

2.2. Density of states for symmetric matrices

To fix the idea, we first consider the case of symmetric matrices. Following [28], we use the simple definition of the DOS 
for symmetric matrices

φ(t) = 1

n

n∑
j=1

δ(t − λ j), t, λ j ∈ [0,a], (2.4)

where δ is the Dirac distribution and the λ j ’s are the eigenvalues of A = AT ordered as λ1 ≤ λ2 ≤ · · · ≤ λn ≤ a. Here [0, a]
is the energy interval of interest.

Several classes of blurring approximations to φ(t) are used in the literature. One can replace each Dirac-δ by a Gaussian 
function with width η > 0, i.e.,

δ(t) � gη(t) = 1√
2πη

exp

(
− t2

2η2

)
, (2.5)

where the choice of the regularization parameter η depends on the particular problem setting. As a result, (2.4) can be 
approximated by

φ(t) ≈ φη(t) := 1

n

n∑
j=1

gη(t − λ j), (2.6)

on the whole energy interval t ∈ [0, a].
We may also replace each Dirac-δ by a Lorentzian, i.e.,

δ(t) � Lη(t) := 1

π

η

t2 + η2
= 1

π
Im

(
1

t − iη

)
, (2.7)

so that an approximate DOS can be written as

φ(t) ≈ φη(t) := 1

n

n∑
j=1

Lη(t − λ j). (2.8)

When η → 0+ , both Gaussians and Lorentzians converge to the Dirac distribution, i.e.,

lim
η→0+

gη(t) = lim
η→0+

Lη(t) = δ(t).

However, they exhibit different features of the approximant for small η > 0. In the case of Gaussians, one expects a sharp 
resolution of the spectral peaks, while the Lorentzian based representation aims to resolve better the global landscape of 
φ(t).

Both functions φη(t) and Lη(t) are continuous, hence, they can be discretized by sampling on a fine grid �h over [0, a]. 
In the following, we use the uniform cell-centered N-point grid with the mesh size h = a/N .

In what follows, we focus on the case of Lorentzian blurring, which will be motivated later on, and apply it to the TDA 
approximation of the BSE problem (see §2.1). We use the simplified block-diagonal plus low-rank approximation to the 
matrix A, see [6,3], which allows efficient explicit representation of the shifted inverse matrix.



P. Benner et al. / Journal of Computational Physics 382 (2019) 221–239 225
Fig. 2.2. DOS for H2O, η = 0.5: exact BSE vs. TDA on the full spectrum (left), the corresponding error (right). (For interpretation of the colors in the figure(s), 
the reader is referred to the web version of this article.)

Fig. 2.3. DOS for H2O on the energy sub-interval [0,40]: exact BSE vs. TDA (left), and the error (right).

The numerical illustrations in §2.2 represent the DOS for the H2O molecule and H2 chains broadened by Gaussians (2.6). 
The data corresponds to the reduced basis approach via rank-structured approximation applied to the symmetric TDA model 
[6,3] described by the matrix block A of the full BSE system matrix.

It was numerically demonstrated in [6] that the spectrum of the TDA model provides a good approximation to the 
spectrum of the full BSE Hamiltonian. The difference between the two is on the order of 10−2 for molecules of moderate 
size.

Fig. 2.2, left, compares the DOS for the H2O molecule calculated via the eigenvalues of the full BSE Hamiltonian and 
those of the TDA approximation, while on the right we display the corresponding error.

Fig. 2.3, left, compares the same DOS calculations but zoomed on the first compact energy interval [0, 40] eV. The red 
curve corresponds to the full BSE data, and the blue one represents the TDA case. The figure on the right displays the 
corresponding error. We observe that the maximal error amplitude corresponds to the model error between the full BSE 
and TDA systems, see Fig. 2.3, right.

Fig. 2.4, left, represents the DOS for H2O computed by using the exact TDA spectrum (blue) and its approximation based 
on a simplified model obtained via low-rank approximation to A (red), while the right figure shows the zoom in the energy 
interval [3, 25] eV. We observe that the locations of spikes are well recovered. For example, the first two spikes for H2O 
molecule are positioned at 8.7 eV and 10.8 eV, respectively, that are close to quantities known in the literature on the 
optical spectrum of water (cf. [18]).

Figs. 2.5 presents the DOS for H16 (left) and H32 (right) chains of Hydrogen atoms. We observe the essential similarity 
in the shapes (only the amplitude is changing) which is apparently a consequence of quasi-periodicity of the system.

The rank-structured approach to calculation of the molecular absorption spectrum in the case of full BSE is sketched in 
§5. This topic will be addressed elsewhere.

2.3. General description of the existing computational schemes

One of the commonly used approaches to the numerical approximation of both functions gη(t) and Lη(t) is based on the 
construction of certain polynomial or fractional polynomial interpolants whose evaluation at each sampling point tk requires 
the solution of a large linear system with the BSE/TDA matrix, i.e., remains expensive.
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Fig. 2.4. DOS for H2O. Exact TDA vs. simplified TDA (left), zoom of the small spectral interval (right).

Fig. 2.5. DOS for H16 (left) and H32 (right) chains of Hydrogen atoms.

In the case of Lorentzian broadening (2.8) the regularized DOS takes the form

φ(t) ≈ φη(t) := 1

nπ

n∑
j=1

Im

(
1

(t − λ j) − iη

)
= 1

nπ
Im Trace[(t I − A − iηI)−1]. (2.9)

To keep real-valued arithmetics, likewise, we can write the latter in the form

φη(t) := 1

nπ

n∑
j=1

η

(t − λ j)
2 + η2

= 1

nπ
Trace[((t I − A)2 + η2 I)−1]. (2.10)

In both cases the task of computing the approximate DOS φη(t) reduces to approximating the trace of the matrix resolvent

(t I − A − iηI)−1 or ((t I − A)2 + η2 I)−1.

Here, the price to pay for real-valued arithmetics is to address the more complicated low-rank structure in (t I − A)2.
The traditional approach [28] to approximately computing the traces of the matrix-valued analytic function f (A) reduces 

this task to the estimation of the mean of v T
m f (A)vm over a sequence of random vectors vm , m = 1, . . . , mr , satisfying certain 

orthogonality conditions (see [28], Theorem 3.1 for the detailed discussion of stochastic sampling in such a computational 
scheme). That is, Trace[ f (A)] is approximated by

Trace[ f (A)] ≈ 1

mr

mr∑
m=1

v T
m f (A)vm. (2.11)

The calculation of (2.11) for

f1(A) = (t I − A − iηI)−1 or f2(A) = ((t I − A)2 + η2 I)−1 (2.12)

reduces to solving linear systems in the form of

(t I − iηI − A)x = vm for m = 1, . . . ,mr, (2.13)

or
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(η2 I + (t I − A)2)x = vm for m = 1, . . . ,mr . (2.14)

These linear systems need to be solved for many target points t = tk ∈ [a, b] in the course of a chosen interpolation scheme.
In the case of rank-structured matrices A, the solution of equations (2.13) or (2.14) can be implemented with a lower 

cost. However, even in this favorable situation one requires a relatively large number mr of stochastic realizations to obtain 
satisfactory mean value approximation. The convergence rate is expected to be of the order of O (1/

√
mr). On the other 

hand, with the limited number of interpolation points, the polynomial type of interpolation schemes applied to highly 
non-regular shapes as shown, say, in Fig. 2.4 (left), can only provide limited resolution and is unlikely to reveal spectral 
gaps and many local spikes of interest.

In what follows, we propose the new approach for fast calculation of the DOS function in the form of (2.9) and (2.10)
that is based on evaluating the trace terms directly (without stochastic sampling).

3. Fast evaluation of DOS for rank-structured matrices

In this section we describe fast algorithms for evaluation of the DOS for rank-structured matrices at a fixed point in 
the energy interval t ∈ [0, a]. This approach relies on the explicit expression for the trace of a matrix resolvent, which we 
introduce below for the class of block-diagonal plus low-rank matrices arising in the reduced model approach for the BSE 
problem [6,3].

3.1. DOS by the trace of rank-structured matrix inverse

We consider the rank-structured matrices of the form (see §2.1 for more details)

A = E0 + P Q T , with P , Q ∈Rn×R , E0 = blockdiag{B0, D0}, (3.1)

where the rank parameter R is small compared to n, and the full NW × NW matrix block B0 is of small size. Here D0 is a 
diagonal matrix of size n − NW .

Remark 3.1. In our applications to DOS calculation for the BSE/TDA matrix, we normally have the relation NW = O (nα), 
with some 0 < α < 1 and constant depending on R . In particular, for the large molecular systems to be considered in the 
following numerical examples we have the relation NW ≈ C0(n R2)α with α = 1/3 and C0 = 2, which implies the almost 
linear complexity scaling of our algorithm in the matrix size n.

Notice that even in the case of structured matrices in (3.1) the traditional approach by (2.11) leads to a sequence of 
linear systems (2.13) to be solved many times in the course of stochastic sampling, for each of many interpolation points 
t ∈ [0, a].

In our approach, for the class of rank-structured matrices (3.1), we propose to avoid stochastic sampling in (2.11) by 
introducing a direct scheme that allows us to evaluate the trace of matrices f1(A) or f2(A) defined in (2.12), corresponding 
to the matrix resolvent in (2.9) and (2.10), respectively, by one-step straightforward matrix calculation.

To that end, let us first construct the reduced-model approximation to the matrix resolvent S(t)−1 := f1(A) for the 
matrix in (3.1), where S(t) denotes the diagonal shift of A depending on the parameter t ,

S(t) = t I − E0 + P Q T − iηI =: E(t) + P Q T . (3.2)

Here the block-diagonal part E0 is modified by the diagonal shift,

E(t) = E0 + t I − iηI ≡ blockdiag{B(t), D(t)}
corresponding to the case of (2.9), i.e.,

B(t) = t I B − iηI B + B0, D(t) = t I D − iηI D + D0. (3.3)

Here B0 and D0 denote the corresponding matrix blocks in the representation of the diagonal block A in the initial BSE 
matrix, see (3.1), and I B , I D denote the identity matrices corresponding to the respective index subsets. For the ease of 
exposition, we further assume that the matrix size of the block B in (3.3) is bounded by NW = O (nα) with α ≤ 1/3, see 
Remark 3.1. This assumption on the block size ensures the linear complexity scaling of our algorithm in the matrix size n.

In what follows, we use the notion 1m for a length-m vector of all ones, and 
 for the Hadamard product of matrices.
The following result asserts that the cost of trace calculations is estimated to be O (nR).

Theorem 3.2. Let the matrix family S(t), t ∈ [0, a], be given by (3.2), with

E(t) = blockdiag{B(t), D(t)},
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where B(t), D(t) are defined in (3.3). Then the trace of the matrix inverse S(t)−1 can be calculated explicitly by

trace[S(t)−1] = trace[B(t)−1] + trace[D(t)−1] − 1T
n (U (t) 
 V (t))1R , (3.4)

where U (t) = E(t)−1 P K (t)−1 ∈ Rn×R , V (t) = E(t)−1 Q ∈ Rn×R , and

K (t) = I R + Q T E(t)−1(t)P

is a small R × R matrix. For fixed t ∈ [0, a], the numerical cost is estimated by O (N3
W + nR2) provided that NW and R are of the same 

order.

Proof. The analysis relies on the particular structure of the matrix blocks. Indeed, we use the direct trace representation 
for both rank-R and block-diagonal matrices. Our argument is based on the observation that the trace of a rank-R matrix 
U (t)V (t)T , where U (t), V (t) ∈ Rn×R , U (t) = [u1, . . . , uR ], V (t) = [v1, . . . , vR ], uk, vk ∈ Rn , can be calculated in terms of 
skeleton vectors by

trace[U (t)V (t)T ] =
R∑

k=1

〈uk,vk〉 = 1T
n (U (t) 
 V (t))1R ,

at the expense O (Rn). For fixed t , define the rank-R matrices by

U (t) = E(t)−1 P K (t)−1, V (t) = E(t)−1 Q ,

then the Sherman–Morrison–Woodbury scheme leads to the representation, see [3],

S(t)−1 = blockdiag{B(t)−1, D(t)−1} − E(t)−1 P K (t)−1 Q T E(t)−1, (3.5)

where the last term simplifies to

E(t)−1 P K (t)−1 Q T E(t)−1 = U (t)V (t)T .

Now we apply the above formula for the trace of a rank-R matrix to obtain the desired representation.
The complexity estimate follows taking into account the bound on the size of matrix block B . Indeed, forming U (t)

involves solving the linear system P1(t) = U (t)K (t), for U (t), where P1(t) is the pre-computed E(t)−1 P , which can be 
evaluated at the cost O (N3

W + N2
W R + nR). Here P1(t) would be re-used to compute K (t) itself, and thus stored. The 

cost for solving this system of equations is 2/3R3 (LU factorization of K (t)), plus 2nR2 for backward/forward solves. This 
completes the proof. �

The above procedure, see (3.4), has to be applied many times for calculating the trace of E(tm)−1 P K (tm)−1 Q T E(tm)−1

at each fixed interpolation point tm , m = 1, . . . , M , M ≤ N , to represent the DOS function on a fine N-point grid. The 
interpolation points {tm} are predefined by the chosen interpolating scheme.

Here, we notice that the price to pay for the real arithmetics in equation (2.14) is that we compute with squared matrices 
which, however, do not increase the asymptotic complexity since there is no increase of the rank in the rank-structured 
representation of the system matrix, see the following Theorem 3.3. In what follows we denote by [U , V ] the concatenation 
of two matrices of compatible size. We confine ourselves to the symmetric case P = Q , resulting from the TDA model in 
which the matrix A is symmetric. The DOS calculation for non-symmetric matrices like in the case of BSE problem is beyond 
the scope of this paper.

Theorem 3.3. Given matrix S(t) = (t I − A)2 + η2 I , where A is defined by (3.1) with P = Q , then the trace of the real-valued matrix 
resolvent S−1(t) can be calculated explicitly by

trace[S(t)−1] = trace[E(t)−1] − 1T
n (U (t) 
 V (t))12R , (3.6)

with U(t) = E(t)−1 P (t)K (t)−1 ∈ Rn×2R , and V (t) = E(t)−1 Q ∈ Rn×2R , where the real-valued block-diagonal matrix E(t) is given 
by

E(t)(t) = η2 I + t2 I − 2t E0 + E2
0 = (η2 + t2)I + blockdiag[B2 − 2t B, D2 − 2t D],

and the rank-2R matrices P (t), Q are represented via concatenation

P (t) = [−2t Q + E0 Q + Q E0 + Q (Q T Q ), Q ] ∈ Rn×2R , Q = [Q , E0 Q ] ∈ Rn×2R ,

such that the small core matrix K (t) ∈R2R×2R takes the form K (t) = I R + Q
T

E(t)−1 P (t).
For fixed t ∈ [0, a], the numerical cost is estimated by O (N3 + nR2) provided that NW and R are of the same order.
W
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Fig. 3.1. Left: DOS for H2O vs. its recovering by using the trace of matrix resolvents; Right: zoom on the small energy interval.

Fig. 3.2. Left: DOS for Ethanol molecule vs. its recovering by using the trace of matrix resolvents; Right: zoom on the small energy interval.

Table 3.1
Scaled times for the algorithm in Theorem 3.3.

Molecule H2O NH3 H2O2 N2H4 C2H5OH C2H5 NO2 C3H7 NO2

n = Nov 180 215 531 657 1430 3000 4488
Rank R 36 30 68 54 74 129 147
Total time T (s) 6.7 7.7 33 47 219 1084 2223
Scaled time T /R2 (s) 0.005 0.008 0.007 0.017 0.041 0.065 0.103

Proof. Indeed, given the block-diagonal plus low-rank matrix A in the form (3.1), we obtain

S(t) = (t I − A)2 + η2 I = E(t) + P (t) Q
T
,

where the block-diagonal matrix E(t) and the rank-2R matrix P (t) Q T
are defined as above. Applying the Sherman–

Morrison–Woodbury scheme as above to the block-diagonal plus rank-2R matrix structure in S , the representation result 
follows. Now we take into account that

trace[E(t)−1] = trace[(B2 − 2t B)−1] + trace[(D2 − 2t D)−1],
then the restriction on the size of the block B proves the complexity bound by the similar argument as in the proof of 
Theorem 3.2. �

Based on Theorems 3.2 and 3.3, the calculations of traces for the parametric matrix resolvent can be implemented 
efficiently in both complex and real arithmetics. The following numerics demonstrates the efficiency of the DOS calculation 
for the rank-structured TDA matrix implemented in real arithmetics as described by (3.6) in Theorem 3.3.

Figs. 3.1 and 3.2 demonstrate that using only the structure-based trace representation (3.6) in Theorem 3.3, we obtain 
the approximation which resolves well the shape of DOS function and positions of spikes on the examples of H2O and 
C2H2OH (Ethanol) molecules. The exact DOS is shown by the blue line, while the results of structure-based DOS calculation 
is indicated by the red line (we use the acronym “SMW” for the Sherman–Morrison–Woodbury scheme).

Fig. 3.3 shows the rescaled CPU time, i.e. T0 = T /R2, where T denotes the total CPU time for computing the DOS by 
the algorithm implied by Theorem 3.3. This demonstrates almost linear complexity scaling of the algorithm in n, O (R2n). 
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Fig. 3.3. Algorithm based on Theorem 3.3: the rescaled CPU time T0 = T /R2 versus n. The dashed line shows linear scaling T0 = C n with C = 2.3.

The dashed line shows linear scaling T0 = C n with C = 2.3. We applied the algorithm to molecules of different system 
size n (i.e. the size of TDA matrix) varying from n = 180 to n = 4488 (see Table 3.1 for more details). In all cases the 
N-point representation grid with fixed N = 214 was used. We point out that in the particular numerical tests for the BSE 
matrix, the technical condition on the size of the fully populated matrix block, NW = O (nα) with α ≤ 1/3, implies linear 
complexity scaling of the algorithm in the matrix size n, see Remark 3.1. We control the performance by verifying the linear 
computational cost in the matrix size n, see Fig. 3.3.

We conclude that the algorithm based on representation (3.6) demonstrates the good resolution of the DOS function at 
linear complexity in the system size n which allows to treat large molecules.

3.2. Calculating multiple traces of A−1 with lower cost

Any particular interpolation scheme usually requires DOS function evaluation for many different parameters tm ∈ τ =
{t1, . . . , tM} ⊂ [0, a], M ≤ N , in the matrix resolvent. Finer resolution of the spectrum for large molecular systems leads to 
a considerable increase of the number of samples M that might be practically equal to the grid size, M ≈ N . Hence, the 
total cost O (MnR2) may become prohibitively expensive since the trace computation for each fixed value of tm still requires 
complicated matrix operations (see Theorems 3.2 and 3.3).

In this section, we describe a further enhancement scheme for fast multiple calculation of traces on the large set of 
interpolation points. We outline how it is possible to reduce the complexity of these calculations (reduced model) by using 
a certain smoothness in t in the parametric matrix resolvent by introducing the low rank approximation of the large n2 × M
matrices

EM = [vec(E(t1)
−1), . . . , vec(E(tM)−1)] ∈ Rn2×M

and

KM = [vec(K (t1)
−1), . . . , vec(K (tM)−1)] ∈ RR2×M ,

obtained by concatenation of vectorized matrices E(tm)−1 and K (tm)−1, m = 1, . . . , M , respectively. The idea is that

E(t)−1 = blockdiag[P (t)−1, D(t)−1]
defines an analytic matrix family on the spectral interval t ∈ [0, a], and so is the family of core matrices {K −1(t)}. This 
property allows the model reduction via low rank approximation of the matrices EM and KM , tm ∈ τ . Suppose that the 
approximate representations

K (tm)−1 =
R K∑

k=1

ck(tm)Kk, m = 1, . . . , M,

and

E(tm)−1 = blockdiag[P (tm)−1, D(tm)−1] =
R E∑


=1

p
(tm)E
, m = 1, . . . , M

are precomputed with small rank parameters R K and R E , where matrices E
 = blockdiag[P
, D
] ∈ Rn×n and Kk ∈ RR×R

do not depend on tm , and E
 inherits the block-diagonal structure that E(t)−1 obeys. This can be understood as a low-
rank approximation procedure which separates the parameter tm and the matrix index. This may reduce the cost of trace 
calculation in the case of a large number of sampling points M .
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To that end we take into account that Q does not depend on t , and plug the above decompositions in the representation 
of Trace[S(tm)−1] in (3.5) to obtain

Trace[E−1 Q K −1 Q T E−1(tm)] = Trace

[
R E∑


=1

p
(tm)E
 Q (

R K∑
k=1

ck(tm)Kk) Q T
R E∑


′=1

p
′(tm)E
′

]
for all tm ∈ τ . Now it follows that

Trace[E−1 Q K −1 Q T E−1(tm)] =
R E∑


=1

p
(tm)

R K∑
k=1

ck(tm)

R E∑

′=1

p
′(tm)Trace[E
 Q Kk Q T E
′ ],

where Kk ∈ RR×R is a small matrix, Q ∈ Rn×R , E
 = blockdiag[P
, D
] with diagonal D
 and the full nP × nP matrix P
 , 
such that nP is much smaller than n, see Remark 3.1 for further details.

With these prerequisites, we pre-compute a set of “time-independent“ traces

T
k
′ = Trace[E
 Q Kk Q T E
′ ], 
, 
′ = 1, . . . , R E , k = 1, . . . , R K , (3.7)

and store the 1
2 R2

E R K numbers T
k
′ (symmetric tensor) to obtain the cheap representation of the trace in terms of only a 
scalar sum for tm ∈ τ

Trace[E−1 Q K −1 Q T E−1](tm) =
R E∑


=1

R K∑
k=1

R E∑

′=1

p
(tm)ck(tm)p
′(tm)T
k
′ .

The cost of pre-computing each trace-value Tmkm′ is estimated by O (n3
P +n2

P R) as justified in the proof of Theorem 3.2. The 
number of coefficients to be stored is about O (R E R K ) and it is expected to be small or moderate. With these data at hand, 
the evaluation of the required trace for the particular tν ∈ τ takes O (R2

E R K ) scalar operations independent of n.
Notice that the computations in (3.7) are intrinsically parallel, which can be exploited on modern computing hardware 

using multi-threading or distributed computing.

4. QTT tensor approximation of DOS

In the recent decade, the tensor-structured numerical methods are becoming ubiquitous in solving the multidimensional 
problems in scientific computing [26,21]. The success of the tensor approach lies in the ability to reduce the numerical 
solution of the multivariate integral–differential equations to essentially one-dimensional operations. This was motivated by 
the previous nonlinear approximation theory (see [26,24] for the detailed discussion), where for some classes of function 
related tensors the exponentially fast convergence of their rank-structured approximation was proven.

4.1. Tensor decompositions, tensor-train format

A real-valued tensor A of order d is defined as an element of the linear finite dimensional Hilbert space Wn = Rn1×...×nd

such that its entry-wise representation reads

A = [ai1,...,id ] ≡ [a(i1, ..., id)] ≡ [ai], i
 = {1, . . . ,n
} ∈ I
,

with the index set i ∈ I = I1 × ... × Id , and the Euclidean scalar product, defined by

〈A,B〉 :=
∑
i∈I

aibi, A,B ∈Wn.

Storage size for a dth order tensor scales exponentially in d, as nd (for simplicity, let n
 = n), that causes the so-called “curse 
of dimensionality”. The rank-structured parametrization of a tensor provides a mechanism to avoid or reduce the curse of 
dimensionality. The canonical and Tucker (additive) tensor formats developed in multilinear algebra (see the survey paper 
[27]) are constructed by linear combination of the simplest separable representations given by rank-1 tensors,

U = u(1) ⊗ · · · ⊗ u(d) ∈Rn1×···×nd , u(
) ∈Rn,

with entries given by ui1,...id = u(1)
i1

· · · u(d)
id

, which can be stored using dn real numbers.
Important motivation for tensor numerical methods was the renewal of the factorized (multiplicative) representation of 

dth order tensors in a form of a tensor train (TT) format [32], which is a particular case of the matrix product states (MPS) 
decomposition [50,47]. The MPS tensor format was introduced in 1992, see [50], for solving spin system modeling problems. 
It has since been successfully applied in the physics and quantum chemistry community [40].
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For a given rank parameter r = (r1, . . . , rd−1), and the respective index sets J
 = {1, ..., r
} (
 = 1, . . . , d −1), the rank-r TT 
format represents a tensor A = [ai1,...,id ] ∈ Wn as the contracted products of 3-dimensional tensors over the d-fold product 
index set J := ×d−1


=1 J
 , such that

A =
∑

(α1,...,αd−1)∈J
a(1)

1,α1
⊗ a(2)

α1,α2 ⊗ · · · ⊗ a(d)
αd−1,1, with a(
)

α
−1,α

∈Rn


or entry-wise (see [31,32])

ai1,...,id = A(1)(i1)A(2)(i2) · · · A(d)(id),

with r
−1 × r
 matrices A(
)(i
) = [a(
)
α
−1,α


(i
)], (
 = 1, . . . , d) and r0 = rd = 1. The TT representation reduces the storage 
cost to O(dr2n), r = max r
 , n = max n
 .

4.2. Quantized-TT approximation of function related vectors

The quantized-TT (QTT) approximation method was introduced and analyzed for the class of function related vectors in 
[25].

The QTT-type approximation of a vector of size n with n = qL , L ∈N, q = 2, 3, . . . , is defined as the tensor decomposition 
(approximation) in the TT or canonical format applied to a tensor obtained by the folding (reshaping) of the initial vector 
to an L-dimensional q × · · · × q data array. The latter is considered as an element of the L-dimensional quantized tensor 
space Qq,L = ⊗L

j=1 K
q, K ∈ {R, C}, and L is the auxiliary dimension parameter that measures the depth of the quantization 

transform. A vector x = [xi]i∈I ∈Rn , is reshaped to its multi-dimensional quantized image in Qq,L by q-adic folding,

Fq,L : x → Y = [y(j)] ∈Qq,L, j = { j1, . . . , jL},
with jν ∈ {1, . . . , q} for ν = 1, . . . , L. Here, for fixed i, we have y(j) := xi , and jν = jν(i) is defined via q-coding, jν − 1 =
C−1+ν , such that the coefficients C−1+ν are found from the q-adic representation of i − 1 (binary coding for q = 2),

i − 1 = C0 + C1q1 + · · · + CL−1qL−1 ≡
L∑

ν=1

( jν − 1)qν−1.

Assuming that for the rank-r TT approximation of the quantized image Y there holds rk ≤ r, k = 1, . . . , L, the complexity of 
such representation for the tensor Y reduces to logarithmic scaling

qr2 logq n � n.

It was proven in [25] that for a vector of size n = qL (say, for q = 2) obtained by discretization of a certain classical 
function, its QTT image in the L-dimensional tensor space with L = log2 n exhibits an amazingly low separation rank rqtt

independent of the size of the original vector. In particular, rqtt = 1 for exponential functions, rqtt = 2 for trigonometric 
functions, rqtt = p + 1 for polynomials of degree p, etc. Thus the QTT tensor compresses the amount of numbers for a vector 
representation from n to O (log2 n). In cases when the exact low-rank QTT representation is not known, an ε-approximation 
in the QTT format can be computed by using the standard TT multi-linear approximation tools [31].

Similar low rank QTT representations were proven for a wide class of functions [26], including strongly oscillating func-
tions of nontrivial shape, see for example [20,23] and the new results in §4.5 below. We also refer to [11,20,19,26] for 
further results on QTT approximation of functional vectors and various applications of the QTT approximation techniques. A 
more detailed discussion of the QTT approximation for function related vectors can be found in [25,26]. For general classes 
of functional vectors, the small ε-rank QTT approximation also leads to storage size that scales logarithmically in n.

In estimating the numerical complexity we use the average QTT rank further denoted by rqtt and calculated as follows,

rqtt =
√√√√ 1

L − 1

L−1∑
k=1

r2
k , (4.1)

where the QTT rank parameters rk are the TT ranks of the quantized image Y of a vector.
As a first illustration, we consider the QTT approximation of the DOS for the 1D finite difference Laplacian operator 

in [0, π ] with Dirichlet boundary conditions, A = −tridiag{1, −2, 1} ∈ Rn×n , discretized on the uniform grid of size h =
π/(n + 1) with n = 2047. The corresponding eigenvalues are given by

λk = 4 sin2(
πk

), k = 1, . . . ,n.

2n
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Fig. 4.1. DOS for Laplacian (left), and the error (≈ 10−5) of its QTT approximation with rqtt = 5 (right).

Fig. 4.1 represents the Lorentzian-DOS for discrete Laplacian (left) and the corresponding approximation error for its rank-5 
QTT approximation computed on the representation grid of size N = 214 (right).

In what follows, we apply the QTT approximation method to the DOS regularized by Lorentzians and sampled on a fine 
representation grid of size N = 2L . The QTT approximant can be viewed as the rank structured ε-interpolant of the highly 
non-regular function φη regularizing the exact DOS. In this case, the application of traditional polynomial or trigonometric 
type interpolation is inefficient. The QTT approach provides a good approximation to φη on the whole spectral interval and 
requires only a moderate number of representation parameters r2

qtt log N � N , where the average QTT rank rqtt defined in 
(4.1) is a small rank parameter adaptively depending on the truncation error ε > 0.

Based on the existence of the low-rank QTT approximation for DOS functions, we describe a tensor based heuristic QTT 
approximation of the DOS by using only an incomplete set of sampling points, i.e., QTT representation by adaptive cross 
approximation (TT-cross) [33,39]. Furthermore, we derive an upper bound on the QTT ranks of the DOS by the Gaussians 
broadening.

In what follows, we describe the low-rank QTT tensor interpolation of the function Lη(t) sampled on a fine uniform 
grid {t1, . . . , tN} in the whole spectral interval [0, a] or on some subinterval of [0, a]. We show that QTT parametrization 
allows asymptotically fewer interpolation points (functional calls) M ≤ N , than the size N of the fine representation grid. 
This might be beneficial in the limit of a large number of representation points N since each functional evaluation of the 
DOS is highly expensive requiring computation of some matrix valued functions.

4.3. QTT approximation of DOS via Lorentzians: proof of concept

In this section we demonstrate the efficiency of the QTT approximation applied to the DOS via both Gaussian and 
Lorentzian blurring. By various numerical experiments we verify that the low-rank QTT approximant resolves well the exact 
DOS, thereby providing a proof of concept for practical use of the TT/QTT-cross approximation tools.

In the following numerical examples, we use a sampling vector defined on a grid of size N ≈ 214. We set the QTT 
truncation error to εQ T T = 0.04, if not explicitly indicated.2 For ease of interpretation, we set the pre-factor in (2.4) to 1. 
It is worth noting that the QTT-approximation scheme is applied to the full TDA spectrum. Our results demonstrate that it 
renders good resolution in the whole range of energies (in eV) including large “zero gaps“.

Fig. 4.2, left, represents the TDA DOS (blue line) for H2O computed by Gaussian blurring with the parameter η = 0.4, 
and the corresponding rank-9.4 QTT tensor approximation (red line) to the discretized function φη(t). For this example, the 
number of eigenvalues is given by n = NB S E/2 = 180. Fig. 4.2, right, provides a zoom of the corresponding DOS and its QTT 
approximant within the small energy interval [0, 40] eV.

Fig. 4.3 demonstrates the resolution of the QTT approximation to the DOS via the Lorentzian blurring indicating similar 
QTT-ranks as in the case of the Gaussians regularization.

Fig. 4.4 (Lorentzian blurring) represents similar data, but for the large Glycine amino acid with n = NT D A = 3000. It is 
worth noting that the average QTT rank of φη(t) sampled on N = 214 grid points is about rQ T T = 16, (εQ T T = 0.04) though 
the number of eigenvalues n in this case is about 20 times larger than for the water molecule. This means that for a fixed 
η, the QTT-rank remains rather modest relative to the molecular size. This observation confirms Theorem 4.1 in Section 4.5.

A comparison of Figs. 4.2 and 4.3 indicates that the Lorentzian based DOS blurring is slightly smoother than Gaussian 
blurring. The moderate size of the QTT ranks in Figs. 4.3 and 4.4 clearly shows the potentials of the QTT ε-interpolation for 
modeling the DOS of large lattice type clusters.

2 The typical accuracy in calculations of the optical absorption spectra in a physics community is of the order of 0.1 eV (for shifts in the positions of 
spikes), see for example [18]. Our choice εQ T T = 0.04 for the error control is within this accuracy.
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Fig. 4.2. DOS (in eV) for the H2O molecule via Gaussians (left), and zoom on the left most part of the spectrum. Here rQ T T = 9.4, η = 0.4.

Fig. 4.3. DOS for H2O molecule via Lorentzians (blue) and its QTT approximation (red) (left). Zoom on the left most part of the spectrum (right). We have 
ε = 0.04, rQ T T = 10.5.

Fig. 4.4. Left: DOS for Glycine amino acid via Lorentzians (blue) and its QTT approximation (red); Right: zoom of the low energy part of the spectrum. We 
have ε = 0.04, rQ T T = 16.

We observe several gaps in the spectral densities and their highly oscillating form, see Figs. 4.2, 4.3 and 4.4, indicating 
that polynomial, rational or trigonometric interpolation can be applied only to some very small energy sub-intervals, but not 
in the whole interval [a, b]. Remarkably, the QTT approximant resolves well the DOS function in the whole energy interval 
including nearly zero values within the spectral gaps (hardly possible for polynomial/rational based interpolation).

4.4. Numerics for the QTT interpolation of the DOS function

In the previous section we demonstrated that the QTT tensor approximation provides good resolution for the DOS func-
tion calculated for a number of molecules. In what follows, we describe a tensor based heuristic QTT approximation of the 
DOS by using only an incomplete set of sampling points, i.e., QTT representation by the QTT-cross approximation (via the 
TT-cross algorithm) [33,39]. This allows us to recover the spectral density with M functional calls in controllable accuracy, 
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where M asymptotically scales logarithmically in the grid size N . It is worth to note that the positions and heights of picks 
in the DOS function are wheel resolved.

This heuristic approach can be viewed as a kind of “adaptive QTT ε-interpolation”. In particular, we show by numerical 
experiments that the low-rank QTT-cross approximation provides a good resolution of the target DOS function with the 
number of functional calls that asymptotically scales logarithmically, i.e., O (log N), in the size N of the representation grid.

In the case of large N , the QTT interpolant can be computed by the TT-cross tensor approximation procedure (see [33,39]
for the detailed description) that, in general, does not require the full set of functional values over the N-grid. In the case of 
large N this beneficial feature allows to compute the QTT approximation by requiring less than N computationally expensive 
functional evaluations of φη(t).

The QTT interpolation via TT-cross tensor approximation serves to recover the representation parameters of the QTT 
tensor approximant and normally requires about

M = Csr2
qtt log2 N (4.2)

samples of the target N-vector3 with a small pre-factor Cs , usually satisfying Cs ≤ 10, that is independent of the fine 
interpolation grid size N = 2L , see, for example, [23]. This cost estimate seems promising in the perspective of extended 
or lattice type molecular systems, requiring large spectral intervals and, as a result, a large interpolation grid of size N . 
Here the QTT rank parameter rqtt naturally depends on the required truncation threshold ε > 0, characterizing the L2-error 
between the exact DOS and its QTT interpolant. The QTT tensor interpolation reduces the number of functional calls, i.e., 
M < N , if the QTT rank parameters (or threshold ε > 0) are chosen to satisfy the condition

M = Csr2
qtt log2 N ≤ N. (4.3)

The expression on the left-hand side provides a rather accurate estimate on the number of functional evaluations.
To complete this discussion, we present numerical tests for the low-rank QTT tensor interpolation applied to the long 

vector discretizing the Lorentzian-DOS on a fine representation grid of size N = 2L .
Fig. 4.5 represents the results of the QTT based interpolating approximation to the discretized DOS function (H2O 

molecule). We use the QTT-cross approximation algorithm based on [25,33,39] and implemented in MATLAB TT-toolbox.4

Here we set ε = 0.08, η = 0.1 and N = 214, providing rQ T T = 9.8. The top two figures display the results on the whole 
spectral interval, while the bottom figures show the zoom of the same data in the small spectral interval [0, 55] eV.

Fig. 4.6 illustrates the logarithmic increase in the number of samples required for the QTT interpolation of the DOS (for 
the H2O molecule) represented on the grid of size N = 2L , where L = 11, 12, . . . , 16, provided that the rank truncation 
threshold is chosen by ε = 0.05 and the regularization parameter is η = 0.2. In this example, the effective pre-factor in (4.2)
is estimated by Cs ≤ 10. This pre-factor characterizes the average number of samples required for the recovery of each of 
the r2

qtt log N representation parameters involved in the QTT tensor ansatz.
We observe that the QTT tensor interpolant recovers the exact DOS with a good precision. The positions of spikes and 

their heights are well resolved. The logarithmic scaling O (log N) vs. the grid size for the number of functional calls requested 
by the QTT-cross routine can be observed in Fig. 4.6 (blue line).

4.5. Upper bounds on the QTT ranks of DOS

In this section we analyze the upper bounds on the QTT ranks of the discretized DOS obtained by Gaussian broadening. 
Our numerical tests indicate that Lorentzian blurring leads to a similar QTT rank compared with Gaussians blurring when 
both are applied to the same grid and the same truncation threshold ε > 0 is used in the QTT approximation. We consider 
the more general case of a symmetric interval, i.e. t, λ j ∈ [−a, a].

Assume that the function φη(t) = 1
n

n∑
j=1

gη(t − λ j), t ∈ [−a, a], in equation (2.6) is discretized by sampling over the 

uniform N-grid �h with N = 2d , where the generating Gaussian is given by gη(t) = 1√
2πη

exp
(
− t2

2η2

)
, see (2.5). Denote the 

corresponding N-vector by g = gη , and the resulting discretized density vector by

φη(t) �→ p = pη = 1

n

n∑
j=1

gη, j ∈RN ,

where the shifted Gaussian is assigned by the vector gη(t − λ j) �→ g j = gη, j .
Without loss of generality, we suppose that all eigenvalues are situated within the set of grid points, i.e. λ j ∈ �h . Other-

wise, we can slightly relax their positions provided that the mesh size h is small enough. This is not a severe restriction for 
the QTT approximation of functional vectors since storage and complexity requests depend only logarithmically on N .

3 In our application, this is the DOS functional N-vector corresponding to representations via matrix resolvents in (2.9) or (2.10).
4 https://github .com /oseledets /TT-Toolbox.

https://github.com/oseledets/TT-Toolbox
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Fig. 4.5. QTT-cross interpolation of the DOS for H2O (top) and zoom in to a small spectral interval (bottom).

Fig. 4.6. DOS for H2O via Lorentzians: the number of functional calls for QTT-cross approximation (blue) vs. the full grid size N .

Theorem 4.1. Assume that the effective support of the shifted Gaussians gη(t − λ j), j = 1, . . . , n, is included in the computational 
interval [−a, a]. Then the QTT ε-rank of the vector pη is bounded by

rankQ T T (pη) ≤ C log3/2(| logε|),
with a constant C = O (η−1) > 0.

Proof. The main argument of the proof is similar to that in [20,11]: the sum of discretized shifted Gaussians with the same 
exponential η−1, each represented in Fourier basis, can be expanded with merely the same number of Fourier harmonics 
(uniform basis) as each individual Gaussian. Taking into account that the Fourier transform of a Gaussian is a Gaussian with 
reciprocal exponent, we now apply the estimate on the number of essential Fourier coefficients for the Gaussian vectors 
gη, j with a fixed exponent parameter η (see [11] or Lemma 4.12 in [26] for more details)

m0 = O (η−1 log3/2(| logε|)),
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Table 4.1
QTT ranks of Lorentzians-DOS for some molecules; ε = 0.04, η = 0.4, N = 214.

Molecule H2O NH3 H2O2 N2H4 C2H5OH C2H5 NO2 C3H7 NO2

n = Nov 180 215 531 657 1430 3000 4488
QTT ranks 11 11 12 11 15 16 13

up to lower order terms. Here, ε > 0 denotes the rank truncation threshold which is also applied as a threshold for the 
essential Fourier coefficients. Since each Fourier harmonic has exact rank-2 QTT representation (see Section 4.2), we arrive 
at the claimed bound. �

Notice that the Fourier transform of the Lorentzian in (2.7) is given by

e−|k|η,

thus a similar QTT rank bound can be derived for the case of Lorentzian blurred DOS.
Table 4.1 shows that the average QTT tensor rank remains almost independent of the molecular size, which confirms 

Theorem 4.1. A weak dependence of the rank parameter on the molecular geometry can be observed.

5. Towards calculation of the BSE absorption spectrum

In this section we describe the generalization of our approach to the case of the full BSE system. Within the BSE frame-
work, the optical absorption spectrum of a molecule is defined by

ε(ω) ≡ dH
r δ(ωI2n − H)dl =

2n∑
j=1

(dH
r (zr) j)((zl)

H
j dl)

(zl)
H
j (zr) j

δ(ω − λ j), (5.1)

where

dr =
[

d
−d

]
and dl =

[
d
d

]
are the right and left optical transition vectors, respectively, and d is a vector reshaped from a transition matrix T of di-
mension No × (Nb − No). The (i, a)th element of T is given by 〈ψi |�x|ψa〉, where �x is a position operator in the direction 
of x and ψi and ψa are a pair of occupied and unoccupied molecular orbitals [8]. Here zr and zl are the right and the left 
eigenvectors of the BSE Hamiltonian H in (2.1).

Similar to the DOS, the function ε(ω) is a sum of Dirac-δ peaks centered at eigenvalues of the BSH. However, the height 
of each peak, which is often referred to as the oscillator strength, is determined by the projection of the corresponding left 
and right eigenvectors of H onto the optical transition vectors dl and dr .

A smooth approximation of (5.1) can be obtained by replacing the Dirac-δ function with either a Gaussian or a Lorentzian 
with an appropriate broadening width. If we choose to smooth Dirac-δ by a Lorentzian, we then need to compute

ε(ω) ≈ 1

π
Im

[
dH

r (ωI2n − H − iηI2n)
−1 dl

]
, (5.2)

where η is related to the width of broadening.
For a fixed frequency ω, (5.2) can be evaluated by solving a linear system of the form

(ωI2n − H − iηI2n) x = dl.

The block sparse and low-rank structure of H can be used to reduce the cost for solving such a linear system.
The detailed numerical analysis of this scheme for the BSE system is a topic of a forthcoming paper.

6. Conclusions

The new approach to approximating the DOS of the TDA approximation for the BSE Hamiltonian is based on two main 
techniques. First, we developed an economical method for evaluating the trace of the parametric matrix resolvent by taking 
advantage of the block-diagonal plus low rank structure of the TDA matrix. The presented algorithm provides an efficient 
way to calculate the DOS function, regularized by Lorentzians, at each point on the fine representation grid, thus avoiding 
commonly used stochastic sampling. The numerical cost scales linearly with respect to the matrix size. Second, the QTT-
cross tensor ε-interpolation scheme is used to approximate the DOS function discretized on large representation grids. This 
approximation scheme allows us to estimate the DOS (and especially the positions of spikes) with M function evaluations, 
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where M scales logarithmically with respect to the size of the representation grid, N , on which the DOS is evaluated. The 
approach can be applied to a wide class of rank-structured symmetric spectral problems.

In Theorems 3.2 and 3.3, we prove linear scaling of the rank-structured trace calculation algorithm in the matrix size. 
This result is confirmed by numerical experiments performed for the DOS of the TDA matrix associated with some molecular 
systems as shown in Fig. 3.3.

In Theorem 4.1 we justify the low rank QTT approximation of the DOS in the case of Gaussian regularization. The 
efficiency of low-rank QTT approximation to DOS is illustrated numerically on the example of discrete Laplacian as well as 
for the BSE/TDA spectral problem for several moderate size molecules. Numerical tests demonstrate the logarithmic number 
of functional calls of the QTT-cross approximation scheme in the case of large grid size N , applied to the discretized DOS as 
depicted in Fig. 4.6.

It is worth noting that the presented approach serves to recover DOS on the whole spectral interval which is demon-
strated in a number of numerical tests. However, the algorithms are applicable to any fixed subinterval of interest in the 
whole spectrum, which will correspondingly reduce the overall computational time.

The presented methods introduce a new efficient tool for numerical approximation of the DOS function for large rank-
structured matrices arising in various applications in condensed matter physics, computational quantum chemistry as well 
as in large-scale problems of numerical linear algebra and scientific computing.
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