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Highlights

e We develop the image-based multiscale multigrid solver and preconditioner.
e We develop the image-based multiscale reduced order model.

e We derive the inter-grid operators that weakly preserve the flux continuity.

e We show that our multiscale multigrid is robust for extreme coefficient contrast.
e We achieve large data compression using our multiscale reduced order model.
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The Image-based Multiscale Multigrid Solver, Preconditioner, and
Reduced Order Model

Dewen Yushu, Karel Matous*
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Abstract

We present a novel image-based multiscale multigrid solver that can efficiently address the computa-
tional complexity associated with highly heterogeneous systems. This solver is developed based on an
image-based, multiresolution model that enables reliable data flow between corresponding computa-
tional grids and provides large data compression. A set of inter-grid operators is constructed based on
the microstructural data which remedies the issue of missing coarse grid information. Moreover, we
develop an image-based multiscale preconditioner from the multiscale coarse images which does not
traverse through any intermediate grid levels and thus leads to a faster solution process. Finally, an
image-based reduced order model is designed by prolongating the coarse-scale solution to approximate
the fine-scale one with improved accuracy. The numerical robustness and efficiency of this image-based
computational framework is demonstrated on a two-dimensional example with high degrees of data
heterogeneity and geometrical complexity.

Keywords: Multigrid solver and preconditioner, Data-driven modeling, Reduced order model,
Multiscale modeling, Level of detail, Image/Data compression

1. Introduction

During the past decades, the development of high-performance computers [1, 2] has enabled de-
tailed numerical simulations in numerous scientific and engineering fields [3-5] with unprecedented
resolution. However, direct numerical modeling (DNM) still requires large computing resources and
novel mathematical approaches are needed to make a leap to next generation exascale platforms [6].
As one of the growing fields targeting this issue, the multiscale method has steadily gained popularity
among other schemes [7-9]. Mutiscale methods have been utilized in a variety of simulations, such as
fluid dynamics [10, 11], material science [12, 13], biological studies [14, 15], chemical reactions [16, 17],
and others [18, 19].

Multiscale modeling balances between capturing detailed features and reducing the underlying com-
putational complexity caused by the large range of spatial scales [7, 20]. Similar challenges exist in
computer graphics during rendering of complex geometries while maintaining the real-time rendering
rate [21, 22]. A typical example is the image-rendering technique that generates progressively coarser
objects of the fine image, which are called the levels of detail (LODs) [23]. The fundamental concept of
LOD is to create a series of representations (i.e., a hierarchy of image details) with less detailed descrip-
tion for small, distant, or unimportant features. This type of technique successfully accommodates
complex geometries while maintaining the real-time rendering rate [22, 24]. Recently, an image-based
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mutiscale modeling technique was developed, which not only retains the visual effect, but also preserves
microstructural characteristics, such as the first- and second-order probability functions [25].

Computational modeling relies on the conservation laws of mass, momentum, and energy. These
balance laws are described mathematically by partial differential equations (PDE). Numerically solving
a PDE involves numerical discretization [26] which often results in a system of algebraic equations. To
solve the resulting system of equations, one can use either a direct method (e.g., Gaussian elimination
[27], LU factorization [27]) or an iterative method (e.g., Jacobi [28], Gauss-Seidel [28], successive
over-relaxation (SOR) [29], conjugate gradient (CG) [30], generalized minimal residual (GMRES) [31],
multigrid [32, 33]).

Among the iterative solvers, the multigrid has high algorithmic efficiency and offers the possibility
of solving problems with N unknowns using O(NN) number of operations and storage [32-36]. The
multigrid method was initially proposed in the 1960s and developed extensively in the 1970s [37—
39]. Originally devised for elliptic boundary value problems, the multigrid method has become more
versatile during the past few decades for handling problems with increased complexity. These problems
include but are not limited to: solving other types of linear and nonlinear PDEs [40-46], eigenvalue
problems [47-49], optimization problems [50, 51], multilevel graph algorithms [52, 53], optimal control
and design [54, 55]. Robust multigrid algorithms that exhibit outstanding convergence rate have been
developed, which include the black-box method [56-59], the smoothed aggregation method [60-62],
the auxiliary space method [63], etc.

Despite the significant improvements, the performance of multigrid methods remains highly problem-
dependent [32]. For heterogeneous media where material properties, like elastic modulus, thermal
conductivity, or hydraulic conductivity are fluctuating, the multigrid performance becomes fragile. To
resolve this problem, work has been done to design a hierarchical basis [64-67]. With this approach,
the multigrid convergence rate normally does not depend on the coefficient variations. However, the
support of the modified basis function is prohibitively high. Another approach is to develop a matrix
dependent mapping strategy, where the inter-grid operators are computed based on the pattern of the
coefficient matrix. Improved performance for this type of algorithms has been shown in [56, 58, 68-72].
However, the performance is strongly correlated with the magnitude of coefficient contrast. Moreover,
prolongation operators constructed on simple geometries [58, 68] are not often robust enough for com-
plex realistic systems [25, 73]. A detailed review about this topic can be found in [74].

In addition to an iterative solver, the multigrid method is also recognized as an efficient precon-
ditioner [75-78]. The multigrid preconditioner [79] has better scaling property with problem size in
comparison to direct methods (e.g., incomplete LU [80] and incomplete Cholesky [81]). The multi-
grid preconditioned system leads to a more favorably clustered spectrum than other iterative methods
(e.g., Jacobi [28] and SOR [29]), which greatly accelerates the Krylov subspace solvers [75, 79]. Recent
work has shown its outstanding performance for problems such as the visco-plastic Stokes problem
[82], the Helmholtz equation [83], the bidomain equation [84], and others [85, 86]. Meanwhile, the
parallelization of the multigrid preconditioners for various high performance computational platforms
is also gaining popularity [87, 88]. In spite of this, a pure multigrid preconditioner often incurs high
setup and storage costs which inhibits its wide usage [79]. This motivates the development of a variant,
based on the multiscale preconditioning paradigm.

The multigrid method gives rise to auxiliary algebraic equations with reduced number of degrees
of freedom (DOFs), which can be easily linked to the reduced order model (ROM). The overall goal
of ROM is to reduce the computational cost of a high fidelity model and accommodate time-critical
applications [89]. Advances have been made in ROM over the past decades and various approaches,
such as the principal component analysis (PCA) [90, 91], the diffusion maps [92, 93], and the manifold-
based methods [94, 95], have been developed and successfully applied in various engineering and
scientific fields. Using the multigrid method as a ROM is not new. Specifically, the auxiliary algebraic
equations are often utilized for upscaling [96, 97] and data homogenization [98]. However, the opposite
process, i.e., to prolongate a high fidelity solution on the finest level using a smaller system that
includes reduced data, is yet to be investigated.

In this paper, we present a novel multiscale multigrid solver, preconditioner and ROM based on
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a multiresolution image-driven model developed in our previous work [25]. First, we develop an
image-based multiscale multigrid solver for systems of equations associated with highly heterogeneous
coefficients. This solver innovatively makes use of the image-based multiscale scheme (i.e., LODs) [25],
which removes the simplistic assumptions often made when formulating the inter-grid operators [56, 57].
Second, we develop an image-based multiscale preconditioner which utilizes the geometrical coarse
scale problem. This results in a much simpler formulation, saves the computational time, and reduces
data storage on the intermediate levels. Third, we develop an image-based reduced order model
(IROM), where we obtain a fine-scale approximation by upscaling the solution on the coarse level.
This greatly reduces the operation counts and memory requirements. To demonstrate our approach,
we create a multilevel image series of a 2D heterogeneous domain from real material data (i.e., discrete
material micrographs) [25, 73], and solve the corresponding 2D elliptic problem on the finest level. The
performance of our image-based multiscale multigrid solver is close to the theoretical optimum and is
robust at the high coefficient contrast. The image-based multiscale preconditioner greatly reduces the
condition number, thus significantly accelerates the CG convergence. The IROM greatly reduces the
number of DOFs and captures the solution characteristics at the same time.

The rest of this paper is organized as follows. In Section 2, we describe the image-based multiscale
model. In Section 3, we derive the image-based multiscale multigrid solver. In Section 4, we discuss the
image-based multiscale preconditioner. In Section 5, we describe the IROM. In Section 6, we present
numerical results. Finally, we draw conclusions in Section 7.

2. Image-based multiscale model

To develop the efficient multiscale multigrid solver, we use an image-based (i.e., data-driven)
paradigm. In particular, we utilize the sharp volumetric billboard (SVB) model originally proposed
by Yushu et al., [25]. The SVB data compression method is built from experimental microstructures.
It exhibits superior statistical and numerical characteristics, and is well tailored to guide the multigrid
data flow.

VO Vl_ 1 Vl Vl VL

L

1

Figure 1: Schematic of creating SVB-LODs using the approach presented in [25].

In this study, a two-dimensional (2D) problem is considered to establish the theoretical background.
Figure 1 shows a series of SVB-LODs, or just simply LODs, created by sequentially applying two filters:
i) the down-sampling filter F; and ii) the sharpening filter Fs. A series of SVB-LODs is produced
by repeating this procedure until the coarsest LOD, V¥, is obtained. Mathematically, we denote the
Ith LOD image by a two-dimensional container, V!, which stores greyscale values associated with the
digital image. We denote (-)l7 1€{0,1,...,L}, as an identifier for LOD, where L represents the coarsest
LOD. Note L is a user defined parameter and does not necessarily lead to a single element LOD case.
To index the greyscale values, we use spatial indexes i and j which satisfy 7, j € [1, H!], where H' is
the size of the image in terms of the pixel number along one side. In our case, the image sizes along
two directions are chosen to be equal.

The down-sampling filter (Fy) is a linear filter commonly used for image compression [25, 99, 100].
The sharpening filter (Fs) is developed in [25] to reconstruct the original phase contrast. In short, this
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filter creates the {th SVB-LOD microstructures by approximately solving

Minimize: Z |Tl (p) — ?° (,0)| ,
2 (1)

Subject to: Vi =V <d, Vi, j €1, HY,

where P! is the greyscale probability mass function (PMF) of V', V! is the intermediate image after
down-sampling and before sharpening, d > 0 is a prescribed maximum range of the greyscale value
interchange for every pixel (in this work, we use d = 1), and p € [0,255] is the greyscale value that is
related to the material density. A novel numerical algorithm is described in [25] to solve Eq. (1) by
matching the greyscale value PMF through a fast sweeping strategy with local volume preservation.
Using the SVB method, a series of compressed images (SVB-LODs) are created from the original data
(i.e., the experimental micrographs) with a minimal loss of the microstructural information. After
establishing the SVB series, the Otsu’s method [101] is utilized to binarize the greyscale images,
thereby separating the phases. More details on SVB-LOD construction can be found in [25].

In this work, we created the SVB-LODs from experimental data of Ni/Al high energy ball milled
composites [25, 73]. The SVB images employed in this work are the Oth - 3rd LODs. A series of
SVB microstructures is shown in Fig. 2. The associated parameters are listed in Table 1. Note that
these microstructures are from a real physical system, meaning the original irregular and tortuous
morphology is unaltered. This results in an increased amount of phase boundaries with a sharp change
in the coefficient contrast. This also implies significantly increased numerical difficulty for convergence,
compared to geometries employed in [98, 102, 103].

Figure 2: The SVB microstructures of a Ni/Al high energy ball milled composite from different LODs. The Al phase is
shown in black. The Ni phase is shown in white. (a) — (d) show Oth to 3rd LOD microstructures, respectively.

LOD | Physical size | Number of elements | Grid spacing | Compression
l [nm?] H' x H Ah! [nm] ratio
0 7.68 x 7.68 512 x 512 15 -
1 7.68 x 7.68 256 x 256 30 4
2 7.68 x 7.68 128 x 128 60 16
3 7.68 x 7.68 64 x 64 120 64

Table 1: Parameters of the Oth — 3rd SVB-LOD microstructures and the corresponding grids.

2.1. SVB mapping to grids

The SVB hierarchy provides geometrical and physical information in all intermediate levels, which
are usually missed in multigrid methods for random microstructures that have been developed so



far [57, 77]. The correspondence of one image and one grid is shown in Fig. 3. One binarized image
of the Ith SVB-LOD is shown in Fig. 3(a). This binarized Ith SVB-LOD image contains binary values
p € {0,1}. Here, p = 0 indicates the black color and p = 1 indicates the white color. As described
earlier in this section, the image size is H! x H' in terms of pixel number. Each pixel represents a
squared material element, as depicted in Fig. 3(b). It is then natural to differentiate the two material
domains on the [th LOD by

Q= {6Vi; =0, i,je[1,H},

Q= {0V =1, i €L H]}, N

where the black domain is denoted by Q! and the white domain is denoted by 05, respectively.

(4,7)

(ivj - 1)

Figure 3: Mapping of one binary SVB image to a structured grid. (a) The Ith binary SVB-LOD image, V'. (b) The
corresponding Ith level structured H' x H' grid. (c) Part of the grid with a discrete material coefficient, Hi’v It

One pixel inside of the image corresponds to one element in the numerical analysis. Accordingly,
the material coefficients (e.g., thermal conductivity) vary based on which phase the element lies in.
Thus, a discrete coefficient field is obtained for each member of the SVB-LODs. We denote this
discrete material coefficient of the /th SVB-LOD by x!. The coefficient inside the element (i, 5) of the
[th SVB-LOD image is therefore denoted by /@éj (see Fig. 3(c)), where

(3)

o {m, if (i, ) € 2,

Ko, if (i,7) € Qb.
Note that for the sake of making the notation system clean, we simply employ the same index for
the element and the node. Particularly, the element (7,j) and the node that is located at the top
right corner of this element share the same index (see Fig. 3(c)). In this way, the index is dependent
on the type of variable, i.e., a cell variable or a nodal variable. This indexing rule also contains
information about the relative distance among different types of variables. By making the image sizes
as H'=1 = 2H!, the series of images can be mapped to a hierarchy of structured grids, which can then
be easily employed in a multigrid solver.

It is straightforward to map the SVB images to a series of systems of algebraic equations if we
use numerical discretizations implied at each image level independently. In fact, solutions from these
images closely reflect and converge to the solution on the finest level (i.e., the Oth LOD), as shown in
[25]. We denote the equations obtained from the SVB images as

AU = @, le{0,1,...,L}, (4)
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the forcing term. We will utilize this multiscale model to our advantage when developing the image-
based multiscale multigrid solver, preconditioner, and the ROM.

3. Image-based multiscale multigrid solver

In this study, we choose to solve an elliptic problem [57, 58]. For this purpose, we consider the
following boundary value problem

V- (k(x)Vu(z)) =Q(x) in Q,

u(x) =u(x) on 00, 5)

where € is composed of two distinct phases, Q@ = Q3 U Qq, 3 N Q3 = @ (see Fig. 3). The k(x) is a
piecewise scalar field:
K1, ifx e Qq,
K@) = { (6)

Ko, if.’BGQQ.

Using the standard Galerkin finite element formulation [26], the above boundary value problem can
be expressed as a system of linear equations

Au=Q, AecRMM 4 cRM Qe RM, (7)

where A is a symmetric positive definite sparse matrix, u is the solution vector, and @ is the forcing
term. In this case, M denotes the number of DOFs or, equivalently, the number of nodes.

In order to solve this problem, we link the multigrid method with our image-based multiscale
model. Specifically, we utilize the multiscale images to provide reliable microstructural information on
the coarser levels during the restriction and prolongation processes. As a result, the multigrid method
takes advantage of the coarse level information from LODs. Meanwhile, the multiscale images get
connected through multigrid components. A schematic of this strategy is shown in Fig. 4.

Level (/) LOD

L-1

(a) (b)

Figure 4: A schematic of the image-based multiscale multigrid solver. (a) Grid levels and a corresponding multigrid
cycle. (b) Image levels from the SVB model (see Section 2 and Fig. 2).

To demonstrate this point and motivate our image-based multiscale multigrid algorithm, we first
highlight the key components of a multigrid algorithm in Section 3.1 and then discuss the novel image-
based inter-grid operator in Section 3.2.
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3.1. Multigrid principles

The multigrid method is generally referred to as the type of numerical algorithm that solves a
system of algebraic equations utilizing a hierarchy of grids [32, 34, 104]. In the multigrid setting,
Eq. (7) becomes

Al = @, (8)

on the Ith grid, where Al € RM XM 4l ¢ RM' Ql ¢ RM and [ € {0,1,..., L}. Here, the algebraic
coarsening of a typical algebraic multigrid method is utilized to compute the system of equations
on coarser levels (i.e., 1 <1 < L). Thus, the coarse coefficient matrices are computed algebraically
following the Galerkin condition [98, 104]

A= RIFIAP ©)

where Rf“ e RM™'xM' 4nq PllJrl € RM'*M"™ 416 the inter-grid operators. The operators relate
individual grids as:

Rf"’l = Restriction operator, grid [ — grid [ + 1,
Pll 1 = Prolongation operator, grid [ + 1+ grid [.

As is often the case, A = (AT, VI € {0,1,..., L}, which requires
Pl = (R (10)

Note that in this work, we focus on the algebraic multigrid. The geometric multigrid is traditionally
avoided while solving Eq. (5) with fluctuating coefficients due to the complexity in approximating
the smooth component of the solution using subsequent coarser grids [57, 71]. In our case, even
with the coarse level SVB approximations (i.e., sequence of LODs) [25], the geometrical multigrid is
still not preferable. This is because the construction of the geometric multigrid solver for problems
with complex microstructures (see Fig. 2) is computationally more intensive than solving the original
problem. Specifically, the admissible Ré“ and Pll 1 need to satisfy

A - RFA'PL =0, Vi e{0,..,L -1}, (11)

which results in Zlel M! (M by 1) /2 non-linear equations to be iteratively solved, considering the
symmetry of A (see Eq. (4)) and Eq. (10). This implies increased complexity compared to solving
M'=% unknowns from the original linear problem (i.e., Eq. (7)).

In this work, we employ the V-cycle multigrid (see Fig. 4(a)). The key steps of a multigrid V-cycle
are described in Algorithm 1. The user defined parameters are the number of smoothing iterations
(v), the multigrid depth (L), and the smoothing algorithm (S! and F').

Algorithm 1 V-cycle Multigrid: u! «+ MG (u!, A", Q', L,v)

1. if the coarsest grid is reached, (I = L) then
2 Direct solve, u! « (Al)_1 Q'

3: else

4 Apply smoothing v times, u! < S'u! + F'Q!
5: Apply restriction, Q*! + RITH(Q' — Alul)
6: Initialize, e!t! < 0

7 Update, et «+ MG(e!t!, AL QL L, v)
8 Apply prolongation, e’ « P/, e!!

9: Apply correction, u! < u! + €

10: Apply smoothing v times, u! +— S'u! + F!'Q!
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3.2. Image-based inter-grid operator

To prevent the multigrid solver from severe stagnation caused by the oscillatory coefficients in
Eq. (6), we have designed a novel image-based inter-grid operator. This operator employs the multiscale
information flow from SVB (see Figs. 2 and 4), resulting in a more accurate mapping of variables among
grids. This inter-grid operator is built through a two-stage approach: i) the approximation stage and
ii) the refinement stage. Accordingly, prolongation of the error between two grids (see Algorithm 1
Line 8) is decomposed into:

Approximation &' <+ P el (12a)
Refinement e« P.é. (12b)
Here, e!*! is the known coarse grid error, e is the fine grid error to be obtained through prolongation,

and é is an approximate error that is close to e'. In order to compute €', a linear operator containing
weights from SVB multiscale images (P, € RM XM l+1) is constructed. Next, the refinement operator
P, e RM'XM' ig created to refine é!. Thus, the prolongation operator satisfies:

Pl =P, P.. (13)

Since the explicit expressions for P, and P,. are not intuitive, we describe both operators by showing
the calculation of each component.

During the approximation stage (see Eq. (12a)), &' is computed through the multiscale image (see
Figs. 2 and 3). To compute the weights in P,, four computational strategies are considered depending
on the location of the fine node relative to the coarse grid. The location types are (a) coarse grid
nodes, (b) center of the horizontal coarse grid lines, (¢) center of the vertical coarse grid lines, and
(d) center of the coarse element. Each type corresponds to a subplot in Fig. 5 and is represented by a
2 x 2 fine grid window centered by the nodal value to be obtained (node (4, 7)).

When the fine grid node coincides with the coarse grid node (see Fig. 5(a)), we get

él,] ei—/gl,j/z' (14)
Note that indexes above follow Fig. 3(b) and denote an identical spacial location in both the Ith grid
and the (I + 1)th grid. When the fine node is located at the center of the horizontal coarse grid line
(see Fig. 5(b)), we write

SRR 0 B I+
€5 = Wiseilny i + Eigeiiin g (15)
where W/ ; and Ef] are weights calculated from
L Rt Ry Rig R
Wi, = . , Eij= — (16)
0. 0.
Here we define dﬁ,j = mé_ljj + fiﬁd + né_l_j_l + /{évj_l, Wl and El represent the weight from the west

and the east (i.e., compass based nomenclature) of the node (4, j) respectively. Note that material
coefficients Héj are obtained directly from the /th SVB-LOD microstructure (see Eq. (3)). Similarly,
for the case shown in Fig. 5(c), we have

_ l l+1 l l 1
=N; i€ 112 T 505€i2,-1) /20 (17)
where l l l
li'l +'L€ Iii_ - + K;i -
Nij ==t s = e (18)

1, 1,7
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=151 K451 i—1,j—1 Kyj—1

[i/2,(7 —1)/2] ((i-1)/2,G—-1)/2] [(i+1)/2,G—1)/2]
(c) (d)

Figure 5: The image-based inter-grid operator scheme. The solid lines (——) denote the coarse grid. The dotted lines
(oo ) denote the fine grid. The circle (®) marks the nodal value to be prolongated, whose indexes are denoted using
(+,+). The square (M) marks the nodal value known from the coarse grid, whose indexes are denoted using [-,]. The né?j

is the element-wise material property acquired from the {th SVB-LOD microstructure (see Eq. (3)).

When the fine grid node is located at the center of the coarse grid element (see Fig. 5(d)), we get

ig = NWo e o Ganye + NE e .41 2 19)
+SWi g€ ) 2. onyr2 + SEiLG€( ) 2, Gon) 20
and the weights are
NW,; = ;(Nl Wl +WLNL, ), NE. = ;(El N+ NLEL L), o0

SWﬁ,jzi(W,{jsg + S W), SE =3 (Sl JBLj1+ EBLjSha )

Note again that in the approximation stage, the material coefficients ! i.; (e.g., thermal conductivities)
are obtained directly from the SVB-LOD images (see Fig. 2 and Eq. ( )). Thus, the approximation
stage has the geometric character of the error transfer. This is different from the black-box prolongation
and restriction operators [56-59, 98] which do not have access to the individual microstructural levels
(see Figs. 2 and 3).

With known é' from the first stage (i.e., approximation), we can express el with respect to its
neighboring approximate error components by utilizing the residual equation (see Eq. (12b)). We
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name this process as the refinement stage, which is mathematically expressed as

1 -
el = i > Al el Vae[l,MY, (21)
Y Be1,a)U(a,M!]

where Alaﬁ is computed recursively from Eq. (9) starting form A%, o and 8 € [1, M!] are the row and
column indexes, respectively. Note that the subscript o +— (4,7) depends on the numbering of the
nodes. The above equation couples each nodal error component with their neighboring approximate
error components, as a result of the finite element discretization. Thus, the refinement stage has the
algebraic character of the error transfer. Moreover, Eq. (21) weakly preserves the flux continuity as
shown in [98]. We call this a refinement stage because it is a close approximation of

M!
> Algel, =0, Vaell, M (22)
B=1

Equation (22) would yield an ideal prolongation and the residual would approach zero. Substituting
Egs. (14), (15), (17) and (19) into Eq. (21) results in the formulation of the novel image-based prolon-
gation operator, Pll 1 = P+P,. Knowing the prolongation operator, the restriction operator can be
acquired by simply taking the transpose (see Eq. (10)). With this new image-based inter-grid operator,
we obtain the image-based multiscale multigrid solver.

Our formulation remedies the matrix-dependent approaches [56-58, 98] by eliminating the sim-
plistic assumption that error components are equal along the coarse grid lines. At the same time,
the geometrical (i.e., image-based) information is utilized to provide a more realistic and physically
meaningful approximation for the system of equations between grids as will be shown in Section 6.1. In
addition, this formulation preserves the continuity of the flux (e.g., the heat flux) and satisfies Eq. (5)
on the fine grid. In order to keep the discussion concise, the proof of the flux continuity is included in
Appendix A.

3.8. Convergence rate estimates

The asymptotic convergence rate of the V-cycle multigrid (Algorithm 1) can be estimated as follows

W = ~1ogyo (Amax (M')) . (23)

where U represents the lower estimate of the convergence rate in terms of digits per iteration, M’ €

RM'*M" {enotes the iteration operator of the multigrid algorithm (see Appendix B), the Apax(+)
denotes the spectral radius [105, 106], and

Amax (Ml) = max{|A| : A is the eigenvalue of M'}. (24)

It can be shown that Eq. (23) is a lower bound of the actual convergence rate, i.e.,

U< ] ||€£z+1\|
=~ Ogl() ||€l H ) (25)

where || - || denotes the L2-norm and €., denotes the error vector after the nth iteration. The proof of
Eq. (25) is included in Appendix B.

4. Image-based multiscale preconditioner

The general idea of a preconditioning procedure for iterative solvers is to modify the system of
algebraic equations (Eq. (7)) such that it is well conditioned. Different from other classical multigrid
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preconditioners, in our work, we prolongate the coarse problem directly from SVB images (see Fig. 2)
to formulate a precoditioner for the fine grid problem. This image-based multiscale preconditioner has
the following definition

L—-1 L—-1
M;'(1) = (H P@) (a7)" (H R£:§_1> + (diag(4%) (26)
=0 =0

where L > 1, MSTl(L) € RM" XM ig the preconditioner on the finest (0th) level, PllJrl and Rﬁ“ are

the image-based inter-grid operators (see Section 3.2). The matrix A” (see Eq. (4)) is the traditional
positive definite matrix obtained from the finite element method

Al = / BB dQ, (27)
Q

where k! is from the Lth SVB-LOD microstructure (Section 2 and Eq. (3)) and B is the spatial
gradient matrix (i.e., the derivatives of shape functions). Here, we compute (AL> ! using a direct

LDLT solver [107]. Different iterative techniques are also possible.

Level (/)
0 ® Vzoj _>40:A0 VzO] _’ZAOZAO
i 1
1 ® Al Vij — Al
) v
L-1 ® ALt Vi |l— A1
L ® Al Vi? — AL
(a) (b)

Figure 6: A schematic of the multiscale preconditioners. (a) A typical multigrid preconditioner and associated algebraic
coefficient matrices. (b) The image-based multiscale preconditioner and associated geometric coefficient matrices. The
solid arrow (—) denotes the process of using finite element method on a certain SVB-LOD microstructure to obtain a
geometric system (i.e., Egs. (4) and (27)). The dashed arrow (--») denotes the process of algebraic coarsening following
Eq. (9).

There are several remarks about this formulation. First, this preconditioner is written as a sum-
mation of the coarse and the fine level parts. The former is the approximate inverse obtained from
the prolongation of the coarsest level. The latter is the inverse of the finest diagonal matrix, which
is utilized as a regularization term in order to retain the positive-definiteness of the preconditioner.
Second, it should be noted that A (# AL) arises from the numerical discretization and integration
utilizing the Lth level image (Eqgs. (4) and (27)), not from the algebraic computations following Eq. (9).
These characteristics imply that instead of traversing through all coefficient matrices on all interme-
diate levels, only the diagonal of the finest coefficient matrix and the coarsest coefficient matrix will
be utilized to compute the preconditioner. This feature is demonstrated in Fig. 6, where intermedi-
ate levels are bypassed for the novel image-based multiscale preconditioner (Fig. 6(b)), while classical
multigrid preconditioners need to iterate through every intermediate levels (Fig. 6(a)). This direct
LOD access leads to the computational speedup as shown in Section 6.3.

11
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5. Image-based reduced order model

Early work using Eq. (4) has shown that SVB microstructures preserve statistical and physical
solution characteristics with high data compression [25]. Moreover, with the new image-based inter-
grid operators (Section 3.2), we are able to guide the mapping of variables between grids with increased
accuracy. As a result, we can develop the IROM that utilizes the coarse grid solution to extrapolate
the solution on the fine grid. A schematic of this IROM is shown in Fig. 7.

Level (/)
0 Vi |— U0 =’
! Vi |— U
L-:I Vi l— Ut
L Vi |— Ut

Figure 7: A schematic of the IROM. The solid arrow (—) denotes the process of using the finite element method on a
certain SVB-LOD microstructure to obtain a geometric system (i.e., Eq. (4)).

This process can be mathematically described as

L-1
us(L) = <H Pll+1> UL, (28)

=0

where L > 1, ug(L) € RM ’ represents the approximate solution on the finest (0th) level, P} 41 is the

image-based prolongation operator (see Section 3.2), and UZ is the coarse level solution from Eq. (4).
In this work, we compute U* from Eq. (4) by

-1
Uk = (AL) Q~. (29)
Here, Q" is the forcing vector obtained from the finite element method,
QL — / NQ dq, (30)
Q

where A/ is the matrix of shape functions and @Q is the source term from Eq. (5). Again, we utilize a
direct LDLT solver [107] to invert A” in Eq. (29), but different (i.c., iterative) solution methods can
be utilized.

Using Eq. (28), the original fine problem is transferred to a coarse one that has reduced number of
elements (see Table 1). In this way, the computation cost is significantly reduced. Moreover, with the
new image-based inter-grid operator, microstructural information is conveyed through the mapping
of variables between grids. Therefore, missing information during data compression provided by the
reduced system, Eq. (29), is largely recovered through the prolongation of the coarse solution field.
A solution field obtained on a coarser level can therefore gain improved accuracy through our novel
prolongation based IROM.
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6. Numerical example

In this section, we present numerical results of the image-based multiscale multigrid solver, pre-
conditioner, and TROM described in Sections 3 to 5, respectively. As an illustration, we solve Eq. (5)
in a heterogeneous domain Q2 (see Fig. 2). We choose Q(x) = 1.0 in Q and @(x) = 0 on 09Q. All fields
are unitless for simplicity. The coefficient k1 = 1.0, and k5 ranges between 1 and 10000 to examine
sufficient variability in the coefficient contrast. The goal is to solve Eq. (7) using the finest finite
element discretization, i.e., A%u’ = Q° (Eq. (8)) or equivalently A°TU° = Q" (Eq. (4)). Traditional
bi-linear quadrilateral finite elements are utilized [26]. All of our implementations have been done
utilizing the C++ package Eigen [107]. The 1st-3rd SVB-LOD images (see Fig. 2) are employed as
auxiliary LODs. We consider the solution to be converged if

|7 ]|
[[roll

<1076, (31)

where r( is the initial residual vector, 7, is the residual vector after the nth iteration, and the || - ||
denotes the Euclidean norm.

In order to evaluate the efficiency of our algorithms, we show the speedup for the image-based mul-
tiscale multigrid solver (Section 6.2) as well as the image-based multiscale preconditioner (Section 6.3).
The speedup is computed as

tre
Speedup = Y f, (32)

where t,ef denotes the computer time spent by the reference algorithm and the ¢ denotes the computer
time spent by novel algorithms. The reference algorithm is chosen among the most fundamental
algorithms for easy comparison. We use speedup instead of the actual computer time in order to limit
effects of the software implementation and the hardware architecture. In this paper, we show the
average speedup of 10 runs. The maximum coefficient of variation is 3.46%.

6.1. Numerical characteristics of the image-based inter-grid operator

In this section, we show the numerical properties of the image-based inter-grid operator (see Sec-
tion 3.2) and compare them to the properties of the inter-grid operator employed in the black-box
multigrid method [56-59, 98]. The black-box multigrid employs matrix-dependent inter-grid operators
that are computed from the finest coefficient matrix. This method has been considered the state-of-
art for the targeted problem. We denote our image-based multiscale multigrid method by MGg(L).
Similarly, the black-box multigrid is denoted by MG g, (L). We show the matrix properties of the Oth
— 3rd grid (i.e., 0 <1 < 3) for both methods. The properties are shown with xs/x; = 10000.

MGs(L) MG poz(L)
ISP 15l (A2 dCor(A', A% |IB""|l2 |4l dCor(A', A%)
0 3.944x 10 — 3.944 x 10* 1.0 - 3.944 % 10* 1.0
1 3.853x10* 3.870  3.937 x 10* 0.992 2.999  3.856 x 107 0.989
2 3.761 x 10* 4.366  3.826 x 10* 0.967 2.878  3.940 x 10° 0.960
3 3.397x10* 6.970  3.693 x 10* 0.860 18.754  3.349 x 10° 0.823

Table 2: The numerical properties of Pll_1 and A!. The results are shown for both MGg(L) and MG g, (L) methods.
The ||-||2 denotes the spectral norm of a matrix [108]. The dCor(-, -) denotes the distance correlation coefficient between
two matrices [109, 110]. Here, the ||Al||2 and [|A°||2 are shown for comparison.

In Table 2, we list the numerical properties of Pll_1 and A' with 0 < [ < 3 for both MGg(L)
and MG gy, (L) methods. To assess the quality of the coarse coefficient matrices, we utilize both
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the spectral norm, || - ||2, and the distance correlation coefficient, dCor(-,-), which is a measure of
dependence between two random objects/matrices of arbitrary, not necessarily equal, dimension. Tt
can be seen that the || P} ||y values from MGs(L) and MG g, (L) are significantly different from each
other for all [ values. This is because of the difference in our image-based approach (see Section 3.2)
compared to the matrix-dependent approach (see [56-59, 98]). Table 2 shows that ||A!||2 values for
MGs(L) are closer to || A°||2 compared to MG go, (L). Similarly, the dCor(A!, A°) values for MGg(L)
are closer to 1.0 compared to MG g, (L) for all grid levels. This indicates that the coarse systems from
MGs(L) (ie., Al 1 € {1,2,3}) are statistically/numerically similar or closer to the original system
(i.e., A) than those produced by MG g, (L). Thus, MGs(L) preserves the original property of the
original system better than MG e (L) (see Table 2). Moreover, one can see that ||A'||s from MGg (L)
converges to || A°||, monotonically as do the matrices of the level-wise problems (i.e., A' from Eq. (4)).
However, MG p,. (L) results in nonmonotonic characteristics in terms of the spectral norm, which are
less physical due to its heuristic construction.

MGs(L) MGpor(L)
I nmnz(P™')  nnz(AY) nnz(P/7')  nnz(AY)
0 - 2.346 x 106 - 2.346 x 106
1 1.104 x 105 1.611 x 108 5.914 x 10° 5.914 x 10°
2 6.538 x 105 1.258 x 106 1.482 x 10°  1.482 x 10°
3 3.034 x 105 7.084 x 10° 3.725 x 10 3.725 x 10*

Table 3: The memory use in terms of number of nonzeros (i.e., nnz(+)) in matrices Pfi1 and A!. The results are shown
for both MGg(L) and MG g,y (L) methods. Here, the nnz(A°) is shown as a reference.

In Table 3, we compare the memory usage for MGg(L) and MG p,. (L) methods. Specifically, the
nonzeros of the matrices PZF1 and A!, 0 <[ < 3 are listed. The nnz(AO) is shown as a reference.
Table 3 shows that the image-based inter-grid operator of MGg(L) is generally more dense than the
inter-grid operator of MGp,,(L). This is because the image-based approach does not assume the
correlation of the error components nor lumps the coefficient matrix (see Eq. (21)). As a result, the
Al of MGg(L) is more dense than that of MG p,,(L) for all I values (see Eq. (9)).

6.2. Image-based multiscale multigrid solver

In this section, we show the performance of the image-based multiscale multigrid solver described
in Section 3. As a comparison, we also show the performance of the black-box multigrid method [56—
59, 98]. For all the schemes, we employ the Gauss Seidel method as a smoother. We choose v = 5
to ensure sufficient smoothing while preventing the smoothing procedure from dominating the com-
putation. For simplicity, we start multigrid iterations with the zero initial solution vector. Here,
we denote the bilinear multigrid by MGg(L). As a demonstration, we show the performance of
all multigrid methods for L € {1,2,3}, respectively. For each case, we show the performance with
ke/k1 € {10,100, 1000, 10000}.
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Figure 8: The lower bound of the convergence rate, ¥, as a function of the coefficient contrast. The result is shown for
the MGg(1), MGpoz(1), and MGp(1), respectively.

Figure 8 shows the lower bound of the convergence rate, W, with the varying coefficient contrast
for MGs(1), MGpo:(1), and MGp(1), respectively. We show that MGg(1) has the largest U (i.e.,
the best estimated convergence rate) for all coefficient contrasts among all solvers. Moreover, the
convergence rate estimate of MGg(1) does not significantly decrease with the coefficient contrast,
especially when ko/k; > 100. As a comparison, MG g, (1) exhibits smaller convergence rate than
MGg(1) for all heterogeneous coefficients (k2/k1 # 1). As expected, the MGg(1) has the lowest
convergence rate estimate, which significantly decreases with the increased coefficient contrast and
leads to a high degree of stagnation. Therefore, in what follows we will compare only MGg(L) and
MG Bor(L) and omit the performance of MGg(L).

Figure 9 shows the relative residual of the one auxiliary grid solvers MGg(1) and MG g, (1) with
varying coefficient contrast as a function of the iteration number. The result with constant coefficients
(ka/k1 = 1) is shown in gray color to demonstrate the optimal convergence rate [32, 111] for this
case. It is indicated in Fig. 9(a) that MGg(1) converges to the solution within 5 iterations despite
drastic change of ka/k1. The convergence rate of MGg(1) decreases slightly with the increase of
ko/k1. However, this phenomenon is not significant, especially in the case when ko/k1 > 100 (see
Fig. 8 also). This indicates the robustness of MGg(1) to resolve problems with highly fluctuating
coefficients. Moreover, the convergence rate is close to the constant coefficient case (i.e., ko/k1 = 1).
Therefore, MGg(1) is very close to the theoretical optimum. The performance of MG g, (1) is shown
in Fig. 9(b). It can be seen that MG p,. (1) converges to the solution within 9 iterations for all ko /k;.
However, comparing MGg(1) and MGpg,, (1), one can see the slower convergence rate of MG gy, (1)
for all ko /K1 values (see Fig. 8 also). Moreover, MG p,.(1) is more sensitive to the increased coefficient
contrast, i.e., the convergence rate decreases with the increase of the coefficient contrast.
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Figure 9: The relative residual as a function of the iteration number with varying x2/k1. (a) The one auxiliary grid
MGs(1) solver. (b) The one auxiliary grid MG p,, (1) solver.
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Figure 10: The performance of MGg(L), L € {1,2,3} with the varying coefficient contrast. (a) Iteration number

required to solve the problem. (b) Speedup of the MGg(L) and MGpy,(L).

The number of iterations required to converge to the solution utilizing MGgs(L), L € {1,2,3},
is shown in Fig. 10(a) in terms of the coefficient contrast. The performance of MGpg,,(L) is shown
in gray color as a reference. It can be concluded that the image-based multiscale multigrid solver
generally performs better than the black-box multigrid solver regardless of the multigrid depth. It is
shown that MGg(1) has the optimal performance among all the depths (i.e., L = 1,2, and 3). The
iteration number is nearly constant with increased k2/k1. The MGg(2) and MGg(3) require increased
number of iterations, and the iteration number increases sublinearly with the coefficient contrast (i.e.,
the slopes are 0.76 and 0.75, respectively). However, MGg(3) requires similar number of iterations to
MGs(2), in spite of the increased number of auxiliary grids. The number of iterations for both methods
is also listed in Table 4. One can see that MGg(L) needs significantly fewer number of iterations
than MG g, (L) at high coefficient contrasts. Moreover, this advantage becomes more pronounced
with increased number auxiliary grids (L). For instance, MGg(3) needs 963 fewer iterations than
MG Bo:(3) in the case of ko/k1 = 10000. This is the result of the image-based properties of the
inter-grid operators as demonstrated in Section 6.1 (see Table 2).
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The speedup of image-based multiscale multigrid solver is shown in Fig. 10(b) and Table 4. The
performance of MGp,.(L), L € {1,2}, is shown in gray color as a reference. Here, we measure the
speedup using Eq. (32), where the computer time of MGp,,(3) is taken as the reference. As noted
earlier, we use the speedup instead of the actual computer time to limit the software and hardware
ambiguities. It can be concluded that MGg(L) generally gains larger speedup than MGpg,.(L) at
each L. Specifically, MGg(1) gains the most speedup, which grows rapidly with the ko/k; increase.
The speedup of MGg(2) and MGg(3) is smaller and reaches 1.61, which is still significant numerical
acceleration. It can also be observed that at the low coefficient contrast, e.g., kao/k1 = 10, MGg(L),
L € {1,2,3} consume longer computer time than MGpg,.(3) (i.e., Speedup < 1). This is because
formulating the inter-grid operators for the image-based multiscale multigrid solver (see Section 3.2)
has increased complexity than that of MG p,,(3), which becomes an important factor at low ko /k1.

MGg MG Box
L ko/r1 Iteration Speedup Iteration  Speedup
0t 4 0.765 5 0.822
) 102 5 2.404 8 2.014
10 5 20.802 9 15.994
10t 5 204.477 9 158.844
0t 5 0.768 6 0.895
) 102 13 1.413 20 1.052
10> 103 1.584 184 1.060
10* 871 1.606 1817 1.080
10 6 0.851 6 —
5 102 15 1.390 22 -
103 112 1.583 193 —~
10* 952 1.607 1915 —

Table 4: The performance of MGg(L) and MGpo. (L), L € {1,2,3}, with the varying coefficient contrast. The iteration
number required to solve the problem and the speedup are shown for both methods.
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6.3. Image-based multiscale preconditioner

To examine the performance of the image-based multiscale preconditioner, we present the number
of iterations needed for preconditioned conjugate gradient method. Specifically, we show the iter-
ation number using preconditioners with the coarse component from different levels, i.e., Mg 1(L),
L € {1,2,3} (see Fig. 6(b)). As an illustration, the results are also shown for varying coefficient con-
trasts, i.e., ko/k1 € {10,100, 1000,10000}. The same set of problems are solved using the incomplete
Cholesky preconditioner (IC), the Jacobi preconditioner (JA), and the black-box multigrid precondi-
tioner (MGpo.(L), see Fig. 6(a)) as a comparison. The performance of conjugate gradient method
with no preconditioning (CG) is shown as a reference. The performance is evaluated by the number
of iterations, as well as the speedup (see Eq. (32)). Here, the computer time of CG is chosen as the
reference (tof = tcg). Again, the speedup is chosen over the actual computer time to limit the bias
from the software implementation and the hardware architecture.

The eigenvalue distributions are shown in Fig. 11. The horizontal axis shows the eigenvalue indexes
and the vertical axis shows the eigenvalues. The corresponding maximum and minimum eigenvalues
are also included in Fig. 11. The eigenvalue distribution of A° is shown in Fig. 11(a). The eigenvalues
range between 8.8 x 1073 and 3.9 x 10* (see Fig. 11(a)), which is caused by the significant variance
of material coefficients. The eigenvalues with JA are plotted in Fig. 11(b). The large eigenvalues
are efficiently removed, however, all eigenvalues still scatter in a large range (8.7 x 1076 — 1.5). The
eigenvalues with IC are plotted in Fig. 11(c), which are better distributed than JA and range between
1.2 x 10~* and 1.6 (see Fig. 11).

The eigenvalues of the system with Mg ' (1) preconditioning are shown in Fig. 11(d). It is observed
that almost all eigenvalues are clustered around 1 and a few eigenvalues are scattered between 0.84 and
1.0, which indicates a well-conditioned system. The eigenvalue distributions with Mg '(2) and Mg (3)
preconditioning are shown in Figs. 11(e) and 11(f). The eigenvalues range between 0.19 and 1.0 for
L =2,3. The matrix eigenvalues with MG g, (L) preconditioning are similar to those of Mg ' (L) and
are not displayed. The eigenvalues range between 0.98 and 1.0 with L = 1 and between 2.3 x 1072 and
1.0 for L = 2,3. It can be concluded that both Mg'(L) and MGp,.(L) preconditioners have close
performance in reducing the range of eigenvalues at a certain L, while MG p,, (L) is slightly better in
redistributing the eigenvalues. However, both Mg Y(L) and MG, (L) preconditioners have greatly
reduced the range of eigenvalues compared to IC and JA.
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Figure 11: The eigenvalue distribution of the coefficient matrices. The coefficient contrast is k2/k1 = 10000. All eigen-
values are displayed in a descending order. (a) No preconditioning. (b) Jacobi preconditioning. (c) IC preconditioning.
(d) Mg'(1) preconditioning. (e) Mg "'(2) preconditioning. (f) Mg'(3) preconditioning.

The condition number of the coefficient matrix is shown in Fig. 12 as a function of varying coef-
ficient contrast. It can be seen from Fig. 12(a) that the condition number remains almost constant
with Mg'(1) preconditioning despite the increase of x2/k1. The Mg'(2) and Mg'(3) have close
performance, while both experience an increase of the condition number with the ko/k1 increase.
Similar phenomenon can be observed for the MG g, (L) preconditioners. The IC results in a better-
conditioned system than JA in general (see Fig. 12(b)). However, both IC and JA only slightly decrease
the condition number of the original system, while both Mg (L) and MG g, (L) preconditioners have
reduced the original condition number by orders of magnitude (see Fig. 12(a)). The actual condition
numbers of all cases are listed in Table 5.
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Figure 12: The condition number of the coefficient matrix before and after preconditioning with varying coefficient
contrasts. (a) The Ms_.l(L) and MG g,z (L) preconditioners with L € {1,2,3}. (b) The IC, JA preconditioners and CG.
The condition numbers are also listed in Table 5.
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Figure 13: The number of iterations required to converge to the solution using different preconditioners. The results are
shown for a varying coefficient contrast. (a) The Mgl(L) and MG g, (L) preconditioners with L € {1,2,3}. (b) The
IC, JA preconditioners and CG. The number of iterations are also listed in Table 5.
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Figure 14: The speedup of different preconditioners with respect to a varying coefficient contrast. (a) The Mgl(L)
and MG g, (L) preconditioners with L € {1,2,3}. (b) The IC, and JA preconditioners. The speedup is also listed in
Table 5.

The performance of preconditioned conjugate gradient method for varying coefficient contrast using
Mg (L), MGpor(L) preconditioner (L € {1,2,3}), IC, and JA preconditioners is shown in Fig. 13.
Specifically, Figure 13(a) displays that Mg (1) converges to the solution within 6 iterations despite
large 2/ value. The Mg'(2) and Mg *(3) are more fragile than Mg ' (1) and need increased number
of iterations with increased ko/k;. However, both preconditioners can readily reduce the number of
CG iterations by more than 2 orders of magnitude. The MG pg,, (L) preconditioner requires slightly
fewer number of iterations than Mg ' (L) for all L values (see Fig. 13(a) and Table 5). Both IC and
JA require significantly more iterations than Mg ' (L) at all coefficient contrasts (see Fig. 13(b)). This
observation is also consistent with the result of the condition number shown in Fig. 12(b) and Table 5.

The speedup of the preconditioned CG methods is shown in Fig. 14. It can be concluded that the
Ms_l(L), with L € {1,2,3} generally gains larger speedup than IC and JA. The speedup of Ms_l(l)
is the most prominent and increases from 26.40 to 395.19 with the increase of the coefficient contrast
(see also Table 5). The Mg'(2) and Mg'(3) have the most speedup when ra/k1 < 100, while this
advantage is taken over by Mg 1 (1) when ko /K1 > 100. This is because at moderate contrast computing
(l/\1)71 for Mg'(1) dominates the computation, while computing (/A2)71 for Mg*(2) and (_/A3)71
for Mg 1(3) are less demanding. However, at the high contrast, the iteration process dominates for
Mg'(2) and Mg'(3) while it remains constant for Mg'(1). The MG g, (L) preconditioners gain less
speedup than Mg (L) for all L. This is because the MG g,y (L) preconditioners include smoothing
steps on all the intermediate levels (see Fig. 6(a)), which make them more expensive than Mg ' (L).
In addition, the IC exhibits less speedup than Mg Y(L) and MG s (L) preconditioners, which ranges
between 10.16 and 14.56. The JA is the slowest and its speedup ranges between 1.52 and 2.50. Again,
all the speedup data are listed in Table 5 for easy reference.
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Mg (L) MG por(L)

Condition Condition

L ka/k1 Number Iteration  Speedup Number Iteration Speedup
10! 1.034 5 26.401 1.016 4 26.907
1 102 1.106 6 54.856 1.041 5 54.564
103 1.174 6 149.518 1.051 5 125.963
104 1.193 6 395.193 1.053 5 329.764
10* 1.073 5 38.108 1.051 4 31.781
) 102 1.332 9 60.519 1.270 7 51.548
10> 4.586 19 78.369 2.943 15 62.061
104 39.554 44 92.958 23.347 35 80.141
10! 1.125 5 40.297 1.098 4 31.077
5 102 1.618 10 50.908 1.500 8 44.407
103 7.379 26 52.645 5.953 21 49.482
104 52.638 76 52.305 43.382 60 48.406

Table 5: The performance of M§1 (L) and MG poy (L) preconditioner, L € {1,2,3}, with the varying coefficient contrasts.
The condition number of the coefficient matrix after preconditioning, the iteration number required to solve the problem
using preconditioned conjugate gradient method, and the speedup are listed for both methods.

6.4. Image-based reduced order model

To examine the performance of the IROM, we show the upscaled solution us(L), where L € {1, 2, 3}.
The coefficient contrast is kept constant, ko/k; = 10000. The solution fields from the IROM are
computed following the descriptions in Section 5. As a comparison, we also display the solution on the
finest grid (u® = W), which is computed by solving Eq. (4) using a direct LDLT solver [107].
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Figure 15: The extrapolated solution ug(L) with the coefficient contrast x2/k1 = 10000. (a) The solution on the Oth
SVB-LOD image. The solution field from IROM, (b) ug(1), (¢) us(2), (d) us(3).

The solution field on the finest grid (u® = W) is shown in Fig. 15(a). The solution fields from the
TROM (ug(L)) are shown in Figs. 15(b) to 15(d), respectively. It can be seen that all of the ug(L),
with L € {1,2,3} are very close to u’. Figure 16 shows a detailed comparison among the solution
fields from IROM (ug(L)) and the fine grid solution (u°). In particular, Figs. 16(a) and 16(b) display
the ug(L), L € {1,2,3} along the centered horizontal line (y = 3.84 pm) and the centered vertical
line (x = 3.84 pm), respectively. The u® is shown in both Figs. 16(a) and 16(b) as a reference. It can
be seen that all of the ug(L), with L € {1,2,3} are generally in good agreement with u®. There is
increased error in regions where the solution becomes highly oscillatory.
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Figure 16: The comparison between the fine grid solution and solutions from the TROM.

k2/k1 = 10000. (a) z = 3.84 pm. (b) y = 3.84 pm.
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Figure 17: The L2-norm error of the coarse image solutions and the TROM.

To quantitatively compare the solution fields, we compute the L?-norm of the error

where u°(z) is the scalar solution field interpolated from u

llelle =

Jo (WO (z

Jo (u

?(” x 100%,

Q

(33)

O using the finite element shape functions,

u(x) denotes the scalar solution field interpolated either from the IROM (i.e., ug(L) in Eq. (28)) or

the SVB images (i.e., UY in Eq. (4)). Figure 17 shows the L?-norm error as a function of the reduced
level (i.e., L). As can be seen from Fig. 17, the U¥ generally preserves the solution characteristics
well despite the large data compression. Typically, U? introduces only 9.01% error after reducing
the number of DOFs 64 times (see Table 1). However the IROM, ug(L) (from Eq. (28)) yields less
error than U* (from Eq. (4)) with the same compression ratio. As shown in Fig. 17, the ug(1) only
introduces 0.16% error and wg(3) controls the error within 6.72%. This implies that the IROM restore
detailed solution characteristics that are filtered during direct data compression. For example, in the
case of L = 2, the solution ug(2) improves the solution W? by 5.26%. Note that ug(L) can serve as
an initial guess to accelerate the multigrid or any other iterative solvers.
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7. Conclusion

In this work, we propose a novel image-based multiscale multigrid solver, preconditioner, and
the reduced order model. An image-based inter-grid operator is developed via incorporating the
microstructural information from the multiresolution scheme (i.e., data driven SVB model). A two-
stage approach is established for computing the inter-grid operator, which preserves the flux along the
grid lines. This multigrid solver is robust for extreme coefficient contrasts and exhibits near-optimal
convergence rate.

A new image-based multiscale preconditioner is developed utilizing the coarse SVB image and the
image-based inter-grid operator. Thus, relaxations on the intermediate grids are omitted, resulting in
a simpler formulation and a lighter computational demand per iteration. This preconditioner shows
high efficiency for ill-conditioned systems, and exhibits greatly improved performance compared to
traditional preconditioners such as the Jacobi and/or the Incomplete Cholesky.

The TROM reduces the number of DOF's by converting the fine level problem to a coarse grid one.
It is demonstrated that the IROM reduces the error from the geometrical coarse solutions and restores
detailed solution characteristics that are filtered due to the direct data compression.

This work opens a new possibility for solving a system of linear equations associated with data
heterogeneity, which is a fundamental problem in a large array of engineering and science disciplines.
Moreover, the multiscale image-based approach is applicable to other fields such as uncertainty quan-
tification, data compression, and adaptive multiscale modeling. The development of the 3D image-
based multiscale approach with a larger system size and its parallelization are both important future
directions.
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Appendix A The flux conservation by the prolongation operator

In Section 3.2, an approximate error, é', on the fine grid is obtained from the microstructural

information from the SVB multiscale image (see Eq. (12a)). In this section, we prove that Eqs. (14)
to (20) preserves the continuity of the flux in a weak (integral) form.

[i/2,(j +1)/2] ((i=1)/2,(G+1)/2] [(i+1)/2,(G+1)/2]
N :
Ri—1,j Ki,j : ’i'li—lj Kij
((i=1)/2,5/2] 2 (i,4) [(i+1)/2,5/2]
-——o——m e —
(i—1/2,5) B (+1/2,)) : (i,7)
! .
K5717j71 Hé’jil an 552—1,]'—1 Hé,j—l
y J A B, . :
INY. [i/2,(j —1)/2] [(i-1)/2,G-1)/2] (i+1)/2,G-1)/2]

€T

(a) (b) (c)

Figure 18: The schematic of computing &' for the image-based inter-grid operator. (a) The flux is continuous across
the vertical interface shown in gray color. The A marks the virtual nodes at the center of fine grid lines (see Egs. (35)
and (36)). (b) The flux is continuous across the horizontal interface shown in gray color. (c) The flux is preserved inside
of the coarse cell.
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The continuity of normal (x-direction) flux along the central vertical interface (see Fig. 18(a)) yields

Yj+1 3*l Yj+1 a*l
lim —rl(x) ea(a:) dy = lim —rl(x) ea(a:)
T—=x, Jy; a1 x m_””:r Yji—1 €T

dy, (34)

where the left and right integrals are approximated by

, Yi+1 oél(x oél(x
lim —nl(m) 3(x ) dy ~ _(“2—173’—1 + Iié_l’j) ai ) AR,
=Ty Sy Ti—1/2:Y5
(35)
Yj+1 a~l a~l
lim —kl(x) é () dy ~ —(néj;l + méj) ¢ () AR,
z—x; Yi—1 ox ’ i ox Tit1/2oUs

Here, Ah! is the grid spacing along both 2 and y directions and the half indexes (i.e., Tip1/2 and T;_q/9)
identify the virtual points located at the center of the fine grid lines (see Fig. 18). The derivative in
Eq. (35) is evaluated using the forward Euler approximation,

5l

0é(x) _Civi25 ééfl/Z,j 36
Ox - Ah! ' (36)
Zi,Yj
Substituting Eqgs. (35) and (36) into Eq. (34) yields
K;l.7 . +/1l.7 . él7 .+ /ﬁ:l. . —|—;§;l . él .
éé_’j _ ( i—1,7—1 7 1,]) 1—1,7 ( 7,0—1 z,]) 1+1,]7 (37)

l l l l
Ki—1j-1 T Ric1; TR j1 TR

I+ I+1

~l _ 1 ~l _ . .
where €;_, j = €y ;o and €1y ; = €5 /o, Which are computed from the coarse grid value

(see Eq. (14)), and the coefficients of €}, ; and €&}, ; are identical to that in Eq. (15). To this end,
Eq. (37) is equivalent to Eq. (15), which preserves continuity of the flux across the vertical interface
in Fig. 18(a). Similarly, we can prove that Eq. (17) satisfies

Tit1 6~l Tit1 a~l

lim —k!(x) ¢ () dz = lim —k!(x) ¢ (@)
- + 0

Y=y, Jria ) Y=y Jaioa Y

dz, (38)

which is the continuity condition for y-directional normal flux (see Fig. 18(b)).

For the fine grid nodes located at the center of the coarse cell, we require the preservation of the
flux inside of a coarse cell (see Fig. 18(c)). This condition can be mathematically described in a weak
form

V- (kl(x)Veél(x)) dQ =0, (39)
oLt
where the integral is evaluated locally in a coarse cell, Q.F! centered by a node (4,5). After applying
the Divergence theorem, we have

f{m“rl /il(:c)Vél(a:) -n doQ2 =0, (40)

where n is the normal vector. Equation (40) is equivalent to

Yj4+1 8~l Yj41 8~l
lim ! € @) dy — lim K () € (@) dy+
r=w g Jyja Ox w=al | Jy; ox )
Tit1 3~l Tit1 3~l
lim w (@)= () dr — lim Kl () <5 (@) dy =0
Y=Y J i ay y%y;r_l Ti1 3y
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Here, we approximate the line integral and the derivatives are from Eqs. (35) and (36), respectively.
After substituting and rearranging, we get

l l l l
sl i TRy i1 T Rij g
i = o G+l T T o Cijtl
2d. 2 )
/il + Iil I{l + Iil
i—1,7 i—1,7—1 ~] i—1,7—1 i,7—1 ~1
] €15 T I €ij—1
2di,j Qdi’j
where
~| o 1 +1 1 1+1
€iv1y = Nit1i€ar1 2,172 T Sit15€0r1)/2,6-1)/2
~ l l+1 l 1
€i—1,; = Ni—1,5€0 1)/2,(+1) /2+Sz 1,5€(i—1)/2,(j=1)/2° (43)

&l 1
€1 = Wige1(ln o ganye + Bign1 €y e /2
5l _ ! I+1 1 I+1
€ij—1=Wij1ei 1 ,G-1/2 T Eiji1€6iye,G-1/2
The error terms in Eq. (43) are obtained from Eqs. (15) and (17), respectively. After substituting

Eq. (43) into Eq. (42) and rearranging, Eq. (42) is identical to Eq. (19), which implies conservation of
the flux in a coarse element.

Appendix B Convergence rate estimates

In this section, we show that Eq. (23) is the lower bound of the actual convergence rate [32, 104].
To do this, we summarize one iteration of the V-cycle multigrid (see Algorithm 1) as

ul =Ml +3'Q, (44)
where the subscript denotes the iteration number, M' and G' € RM 'xM' are iteration operators

according to the multigrid algorithm (see Algorithm 1). Typically, in a two-grid setting, the definitions
of M! and G' are

M =g (Il - P, (Al“)fl R§+1Al> st )
Gl — s (Il - P, (Al+1)—1 Ré“Al) F'+ 8P, (Al+1)_1 R 4 F

where I' € RM'*M" ig the identity matrix, S' and F! € RM'XM" are the smoothers from the smoothing
algorithm (see Algorithm 1). Typically, the Gauss-Seidel method yields

§' = ( (diag (A") + il (4)) " briu (41))",

Fl— <I§ (— (diag (Al) + tril (Al))_l triu (Al))n> (diag (Al) + tril (Al))_1 )

n=0

(46)

where diag(-), tril(-), and triu(-) denote the diagonal, upper triangular, and lower triangular part of
the matrix, respectively.
As a stationary iterative method, the exact solution is unchanged by the iteration

u' = Ml +6'Q, (47)
where ! is the exact solution (see Eq. (8)). Subtracting Eq. (44) from Eq. (47) yields

n+1 Ml l (48)
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where € and €, 41 are the error vectors after the nth and the (n+1)th iterations, respectively. Taking
the L?-norm on both sides of Eq. (48) gives

€ rl| = MLl < Amax (M) lleh I (49)

where Apax(+) denotes the spectrum radius [105, 106]. Equation (49) is equivalent to

A (Ml) > ||€£z+1” (50)
: ~ el
Therefore, we have
U = —log,, <)\max (Ml)) < —logy <||ﬁ£;l+1||> ; (51)

which sets the lower bound of the convergence rate in terms of digits per iteration.
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