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In this paper, we consider a pressure-velocity formulation of the heterogeneous wave 
equation and employ the constraint energy minimizing generalized multiscale finite 
element method (CEM-GMsFEM) to solve this problem. The proposed method provides 
a flexible framework to construct crucial multiscale basis functions for approximating the 
pressure and velocity. These basis functions are constructed by solving a class of local 
auxiliary optimization problems over the eigenspaces that contain local information on 
the heterogeneity. Techniques of oversampling are adapted to enhance the computational 
performance. The first-order convergence of the proposed method is proved and illustrated 
by several numerical tests.

© 2020 Elsevier Inc. All rights reserved.

1. Introduction

Wave propagation and its numerical simulations have been widely studied for years due to its fundamental importance in 
engineering applications. For example, these problems arise in the study of seismic wave propagation from geoscience [26]. 
In such applications, the background materials in the domain are often highly heterogeneous, and their elastic properties 
may vary with the depth rapidly. In those cases with non-smooth heterogeneous coefficients, direct simulation using stan-
dard numerical methods (e.g. finite element method [20]) may lead to prohibitively expensive computational cost to resolve 
the heterogeneous structure of the media. However, traditional methods capture fine-scale features with moderately high 
computational resources [12]. Therefore, it is necessary to apply model reduction techniques to alleviate the computational 
burden in the accurate simulations of wave propagation.

Many model reduction techniques have been well developed in the existing literature. For example, in numerical upscal-
ing methods [18,25,27,28], one typically derives some upscaling media and solves the resulting upscaled problem globally on 
a coarse grid. The dimensions of the corresponding linear systems are much smaller, giving a guaranteed saving of computa-
tional cost. In addition, various multiscale methods [5,15,16] for simulating wave propagation are presented in the literature. 
For instance, multiscale finite element methods (MsFEM) [21,22] and the heterogeneous multiscale methods (HMM) [1–3]
are proposed to discretize the wave equation in a coarse grid. Recently, a class of generalized finite element methods for 
the wave equation [4,23] has been proposed. This type of methods is based on the idea of localized orthogonal decompo-
sition (LOD) [24] and generalize the traditional finite element method to accurately resolve the multiscale problems with a 
cheaper cost.
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In this research, we focus on the recently developed generalized multiscale finite element method (GMsFEM) [7,13]. The 
GMsFEM is a generalization of the classical MsFEM [14] in the sense that multiple basis functions can be systematically 
constructed for each coarse block. The GMsFEM consists of two stages: the offline and online stages. In the offline stage, a 
set of (local supported) snapshot functions are constructed, which can be used to essentially capture all fine-scale features 
of the solution. Then, a model reduction is performed by the use of a well-designed local spectral decomposition, and 
the dominant modes are chosen to be the multiscale basis functions. All these computations are done before the actual 
simulations of the model. In the online stage, with a given source term and boundary conditions, the multiscale basis 
functions obtained in the offline stage are used to approximate the solution. There are some previous works using GMsFEM 
for the wave equation based on the second-order formulation of wave equation [8,17] and the wave equation in mixed 
formulation [11].

The objective of this work is to develop for the first-order wave equation [19] a new computational multiscale method 
based on the idea of constraint energy minimization (CEM) proposed in [10]. In order to derive an energy-conserving 
numerical scheme for the wave equation, we consider a pressure-velocity formulation. For spatial discretization, we adopt 
the idea of CEM-GMsFEM presented in [9,10] and propose a multiscale method for heterogeneous wave propagation and 
construct multiscale spaces for both, the velocity and the pressure variables. In this research, we show the first-order 
convergence of the method using CEM-GMsFEM combined with the leapfrog scheme. Numerical results are provided to 
demonstrate the efficiency of the proposed method. The present CEM-GMsFEM setting allows flexibly adding additional 
basis functions based on spectral properties of the differential operators. This enhances the accuracy of the method in the 
presence of high contrast in the media. It is shown that if enough basis functions are selected, the convergence of the 
method can be shown independently of the contrast. Unfortunately, a high number of basis functions directly influences 
the computational complexity of the method. The direct influence of the contrast on the needed number of basis functions 
is not known, but numerical results indicate that a moderate number of basis functions, depending logarithmically on the 
contrast, seems sufficient.

The remainder of the paper is organized as follows. We provide in Section 2 the background knowledge of the problem. 
Next, we introduce the multiscale method and the discretization in Section 3. In Section 4, we provide the stability estimate 
of the method and prove the convergence of the proposed method. We present the numerical results in Section 5. Finally, 
we give some concluding remarks in Section 6.

2. Preliminaries

Consider the wave equation in mixed formulation over the (bounded) computational domain � ⊂ R2

κ−1 v̇ + ∇p =0 in � × (0, T ],
ρ ṗ + ∇ · v = f in � × (0, T ],

v · n =0 on ∂� × [0, T ],
v|t=0 =hv in �,

p|t=0 =hp in �.

(1)

Here, v̇ and ṗ represent the time derivatives of v and p respectively, T > 0 is a given terminal time, ρ ∈ L∞(�) is the 
(positive) density of the fluid satisfying 0 < ρmin ≤ ρ , and n is the unit outward normal vector to the boundary ∂�. We 
assume that the permeability field κ : � →R is highly oscillatory, satisfying 0 < κmin ≤ κ(x) ≤ κmax for almost every x ∈ �

with κmax
κmin

	 1. The source function satisfies f ∈ L2(�). Here, hv and hp are some given initial conditions. In general, we 
refer to the solution v as velocity and p as pressure. We denote

V 0 := {v ∈ H(div,�) : v · n = 0 on ∂�} and Q := L2(�).

Instead of the original PDE formulation, we consider the variational formulation corresponding to (1): find v ∈ V 0 and 
p ∈ Q such that

a(v̇, w) − b(w, p) = 0 ∀w ∈ V 0, (2)

(ṗ,q)ρ + b(v,q) = ( f ,q) ∀q ∈ Q , (3)

where (·, ·) denotes the inner product in L2(�) and (·, ·)ρ denotes the inner product in L2(�) with weighted function ρ . 
The bilinear forms a : V 0 × V 0 →R and b : V 0 × Q →R are defined as follows:

a(v, w) :=
∫
�

κ−1 v · w dx, b(v, p) :=
∫
�

p ∇ · v dx,

for all v, w ∈ V 0, and p ∈ Q . We remark that the following inf-sup condition should satisfy: for all q ∈ Q with 
∫
�

q dx = 0, 
there exists a constant C0 > 0 independent to κ such that
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‖q‖L2(�) ≤ C0 sup
v∈V 0

b(v,q)

‖v‖H(div,�)

.

In this research, we will apply the constraint energy minimizing generalized multiscale finite element method (CEM-
GMsFEM) for mixed formulation, which is originally proposed in [10], to approximate the solution of the above mixed 
problem. First, we introduce fine and coarse grids for the computational domain. Let T H = {Ki}N

i=1 be a conforming partition 
of the domain � with mesh size H > 0 defined by

H := max
K∈T H

(
max
x,y∈K

|x − y|
)
.

We refer to this partition as the coarse grid. We denote the total number of coarse elements as N ∈N+ . Subordinate to the 
coarse grid, we define the fine grid partition T h (with mesh size h � H) by refining each coarse element K ∈ T H into a 
connected union of finer elements. We assume that the refinement above is performed such that T h is also a conforming 
partition of the domain �. Denote Nc as the number of interior coarse grid nodes of T H and we write {xi}Nc

i=1 as the interior 
coarse nodes in the coarse grid T H .

The mixed wave problem (1) can be numerically solved on the fine grid T h by the lowest order Raviart-Thomas (RT 0) 
finite element method. Let (Vh, Q h) be the RT 0 finite element spaces with respect to T h . The approximated variational 
formulation reads: find (vh, ph) ∈ Vh × Q h such that

a(v̇h, w) − b(w, ph) = 0 ∀w ∈ Vh, (4)

(ṗh,q)ρ + b(vh,q) = ( f ,q) ∀q ∈ Q h. (5)

We remark that the solution pair (vh, ph) ∈ Vh × Q h is served as a reference solution. In the following sections, we will 
construct multiscale solution (vms, pms) that gives a good approximation of (vh, ph) and derive the corresponding error 
estimation. For an error bound of the reference solution (vh, ph), one can apply the technique in [6] to show that

‖v − vh‖H(div,�) + ‖p − ph‖L2(�) ≤ Ch,

where C > 0 is a constant depending on the regularity of the exact solution (v, p).

3. Methodology

In this section, we outline the framework of CEM-GMsFEM and introduce the construction of the multiscale spaces for 
approximating the fine-scale solution (vh, ph). We emphasize that the multiscale basis functions and the corresponding 
spaces are defined with respect to the coarse grid T H . The multiscale method consists of two steps. First, we construct a 
multiscale space Q ms for approximating the pressure. Based on the space Q ms, we construct another multiscale space V ms
for the velocity. We remark that these basis functions are locally supported in some coarse patches formed by some coarse 
elements. Once the multiscale spaces are ready, one can discretize time derivatives in the problem by finite differences and 
solve the resulting fully discretized problem.

3.1. The multiscale method

First, we introduce some notations that will be used later. Given a subset S ⊂ �, we define Vh,0(S) := {v ∈ Vh ∩ H(div; S) :
v · nS = 0 on ∂ S} and Q h(S) := Q h ∩ L2(S), where nS is the unit outward normal vector with respect to the boundary ∂ S .

The multiscale solution (vms, pms) ∈ V ms × Q ms is obtained by solving the variational formulation

a(v̇ms, w) − b(w, pms) = 0 ∀w ∈ V ms, (6)

(ṗms,q)ρ + b(vms,q) = ( f ,q) ∀q ∈ Q ms. (7)

We will detail the constructions for the multiscale spaces in the next sections.

3.1.1. Construction of pressure basis functions
We present the construction of the multiscale space Q ms for pressure. For each coarse element Ki ∈ T H , consider the 

following local spectral problem over Ki : find (φi
j, p

i
j) ∈ Vh,0(Ki) × Q h(Ki) and λi

j ∈R such that

a(φi
j, v) − b(v, pi

j) = 0 ∀v ∈ Vh,0(Ki), (8)

b(φi
j,q) = λi

j si(pi
j,q) ∀q ∈ Q h(Ki), (9)

for j = 1, · · · , Li , where Li ∈ N+ is a local parameter depending on the grids T H and T h . Here, the bilinear form si :
Q h(Ki) × Q h(Ki) →R is defined as follows:
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si(p,q) :=
∫
Ki

κ̃ pq dx, where κ̃ := κ

Nc∑
j=1

|∇χ j|2,

and {χ j}Nc
j=1 is a set of standard multiscale partition of unity. In particular, given an interior coarse grid node x j , the function 

χ j is defined as the solution to the following system over the coarse neighborhood ω j := ⋃{K ∈ T H : x j ∈ ∂ K }
−∇ · (κ∇χ j) = 0 in all K ⊂ ω j,

χ j = g j on ∂ K \ ∂ω j (for all K ⊂ ω j),

χ j = 0 on ∂ω j,

where g j is a linear continuous function on all edges of ∂ K . Assume that si(pi
j, p

i
j) = 1 and we arrange the eigenvalues in 

ascending order such that 0 ≤ λi
1 ≤ · · · ≤ λi

Li
. For each i ∈ {1, 2, · · · , N}, choose the first J i ∈N+ (1 ≤ J i ≤ Li ) eigenfunctions 

{pi
j} J i

j=1 corresponding the first J i smallest eigenvalues. Then, we define the multiscale space Q ms for pressure as follows:

Q ms := span{pi
j : i = 1, · · · , N, j = 1, · · · , J i}.

3.1.2. Construction of velocity basis functions
In this section, we present the construction of the multiscale space V ms for velocity. To define the velocity basis, we 

introduce the operator π : Q h → Q ms as follows:

πq := π(q) =
N∑

i=1

J i∑
j=1

si(pi
j,q)pi

j for all q ∈ Q h.

Next, we define the bilinear form s : Q h × Q h → R as s(p, q) := ∑N
i=1 si(p, q) for all p, q ∈ Q h . Note that the operator 

π : Q h → Q ms is the projection of Q h onto the multiscale space Q ms with respect to the inner product s(·, ·). We denote 
the norm induced by this inner product s(·, ·) as ‖ · ‖s .

For a given coarse element Ki ∈ T H and a parameter � ∈N+ , we define Ki,� to be the oversampled region obtained by 
enlarging � layers from Ki . Specifically, we have

Ki,0 := Ki, Ki,� :=
⋃{

K ∈ T H : K ∩ Ki,�−1 �= ∅}
, � = 1,2, · · · .

For simplicity, we denote K +
i the oversampled region. For each eigenfunction pi

j ∈ Q ms obtained from (8)-(9), we define the 
multiscale basis for velocity ψ i

j,ms ∈ Vh,0(K +
i ) to be the solution of the following system:

a(ψ i
j,ms, v) − b(v,qi

j,ms) = 0 ∀v ∈ Vh,0(K +
i ), (10)

s(πqi
j,ms,πq) + b(ψ i

j,ms,q) = s(pi
j,q) ∀q ∈ Q h(K +

i ). (11)

Then, the multiscale space for velocity is defined as

V ms := span{ψ i
j,ms : i = 1, · · · , N, j = 1, · · · , J i}.

3.2. Discretizations

In this section, we discuss the fully discretization of the problem. The multiscale spaces V ms and Q ms obtained in 
Section 3.1 are constructed in the spirit of CEM-GMsFEM. To simplify the notation, we assume that

V ms = span{ψi}M
i=1 and Q ms = span{pi}M

i=1,

where M := ∑N
i=1 J i . Then, we obtain the following matrix representation from the variational formulation

Mv v̇ −Rp = 0, (12)

Mp ṗ +RT v = f, (13)

where 0 ∈RM is the zero vector in RM . Moreover, we have the following definitions of the matrices:

Mv := (
a(ψi,ψ j)

) ∈RM×M , Mp := (
(pi, p j)

) ∈RM×M ,

R := (
b(ψi, p j)

) ∈RM×M , and f := (
( f , pi)

) ∈RM .
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Note that v := v(t) = (
vi(t)

)M
i=1 ∈RM and p := p(t) = (

pi(t)
)M

i=1 ∈RM are the vectors of coefficients for the approximations 
vms and pms. More precisely, we have

vms =
M∑

i=1

vi(t)ψi and pms =
M∑

i=1

pi(t)pi .

For the time discretization, we simply replace the continuous time derivatives by the forward difference in time with 
a given time step τ > 0. In particular, the velocity term will be approximated at tn = nτ and the pressure term will be 
approximated at tn+ 1

2
= (

n + 1
2

)
τ for n ∈ {0, 1, · · · , NT } with T = NT τ . We remark that the time step τ will be chosen such 

that NT ∈N+ . It leads to the following fully discretized system: given (vn, pn+ 1
2 ) and for n ≥ 0, find (vn+1, pn+ 3

2 ) such that

Mv
vn+1 − vn

τ
−Rpn+ 1

2 = 0, (14)

Mp
pn+ 3

2 − pn+ 1
2

τ
+RT vn+1 = fn+1, (15)

where vn := v(tn), pn+ 1
2 := p 

(
tn+ 1

2

)
, and fn := (

f (tn), pi
)M

i=1. We remark that v0 (resp. p
1
2 ) is the vector of coefficient of the 

projection of the initial condition hv (resp. hp) with respect to the bilinear form a(·, ·) (resp. (·, ·)ρ ). We remark that the 
stability estimate for τ can be obtained by standard techniques and the inverse estimate, see for example [18].

4. Stability and convergence analysis

In this section, we present the results of stability and convergence analysis for the mixed CEM-GMsFEM established in 
Section 3. To this aim, we first introduce some notations that will be used in this section:

(u, v)V :=
∫
�

u · v dx, ‖v‖V := √
(v, v)V , ‖v‖a := √

a(v, v), and ‖p‖ρ :=
√

(p, p)ρ,

for all u, v ∈ Vh , and p ∈ Q h . We remark that the norms ‖ · ‖ρ and ‖ · ‖s are equivalent to the standard L2-norm ‖ · ‖L2(�) . 
For p ∈ Q h , we have

ρmin‖p‖2
L2(�)

≤ ‖p‖2
ρ ≤ ‖ρ‖L∞(�)‖p‖2

L2(�)
.

One may show the equivalence between ‖ · ‖s and ‖ · ‖L2(�) provided κ ∈ [κmin, κmax]. Further, we denote a � b if there is a 
generic constant C > 0 such that a ≤ Cb.

4.1. Energy conservation and stability

In this section, we prove the property of energy conservation and the stability of the proposed scheme (6)-(7). In partic-
ular, we show the following proposition.

Proposition 4.1. Let (vms, pms) ∈ V ms × Q ms be the solution of (6)-(7). Then, the following property of energy conservation holds

d

dt

(‖vms‖2
a + ‖pms‖2

ρ

) = 0 if f ≡ 0.

Moreover, the following estimate holds:

max
0≤t≤T

(
‖vms(t, ·)‖2

a + ‖pms(t, ·)‖2
ρ

)
�

(
‖hv‖2

a + ‖hp‖2
ρ +

T∫
0

‖ρ−1 f ‖2
ρdt

)
.

Proof. Take v = vms in (6) and q = pms in (7). Adding two equations, we obtain

a( ˙vms, vms) + ( ˙pms, pms)ρ = 1

2

d

dt

(‖vms‖2
a + ‖pms‖2

ρ

) = (ρ−1 f , pms)ρ = 0. (16)

Using the Cauchy-Schwarz inequality, we have

d

dt

(‖vms‖2
a + ‖pms‖2

ρ

) ≤ 2‖ρ−1 f ‖ρ‖pms‖ρ.

It implies that
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‖vms(t, ·)‖2
a + ‖pms(t, ·)‖2

ρ ≤ 2 max
0≤t≤T

‖pms(t, ·)‖ρ

( T∫
0

‖ρ−1 f ‖ρdt

)
+ ‖hv‖2

a + ‖hp‖2
ρ. (17)

Using Young’s and Jensen’s inequalities, we obtain

‖vms(t, ·)‖2
a + ‖pms(t, ·)‖2

ρ ≤ 1

2
max

0≤t≤T
‖pms(t, ·)‖2

ρ + 2

( T∫
0

‖ρ−1 f ‖ρdt

)2

+ ‖hv‖2
a + ‖hp‖2

ρ,

=⇒ max
0≤t≤T

(
‖vms(t, ·)‖2

a + ‖pms(t, ·)‖2
ρ

)
≤ 4

(
‖hv‖2

a + ‖hp‖2
ρ +

T∫
0

‖ρ−1 f ‖2
ρdt

)
. (18)

This completes the proof. �
Remark. The technique showing (18) from (17) in the proof above will be employed in the convergence analysis below.

4.2. Convergence analysis

In this section, we show the convergence result of the semi-discretized scheme. We define (σ v, σ p) ∈ V ms × Q ms to be 
the multiscale projection of a given pair (v, p) ∈ Vh × Q h (with 

∫
�

p dx = 0) such that

a(σ v, w) = a(v, w),

b(w,σ p) = b(w, p),
(19)

for all w ∈ V ms. We have the following auxiliary result for the multiscale projection.

Lemma 4.1. For any v ∈ Vh, the following estimate holds:

‖v − σ v‖a � H�−1/2, (20)

where � := min
1≤i≤N

λi
J i+1 and {λi

j} are the eigenvalues obtained from (8)-(9).

Proof. For any v ∈ Vh , we define β ∈ Q h (with 
∫
�

β dx = 0) such that

b(w, β) = a(v − σ v, w) ∀w ∈ Vh.

Denote z = v − σ v . Then, (z, β) ∈ Vh × Q h satisfies the following system:

a(z, w) − b(w, β) =0 ∀w ∈ Vh,

b(z,q) = (∇ · (v − σ v),q) ∀q ∈ Q h.

Hence, the following estimate holds:

‖z − σ z‖a � H‖∇ · (v − σ v)‖L2(�),

using the result of [10, Theorem 1]. Therefore, we have

‖v − σ v‖2
a = a(z, v − σ v) = a(z − σ z, v − σ v)

≤ ‖z − σ z‖a‖v − σ v‖a

� H‖∇ · (v − σ v)‖L2(�)‖v − σ v‖a.

On the other hand, since b(v − σ v, q) = s(κ̃−1∇ · (v − σ v), q) = 0 for all q ∈ Q ms, there exists a set of real numbers {ci
j}

such that

κ̃−1∇ · (v − σ v) =
N∑

i=1

∑
j> J i

ci
j pi

j .

Then, by the orthogonality of the eigenfunctions {pi } and (8)-(9), we have
j
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‖∇ · (v − σ v)‖2
L2(�)

= ‖κ̃−1/2∇ · (v − σ v)‖2
s

�
N∑

i=1

∑
j> J i

(ci
j)

2‖pi
j‖2

s ≤ �−1
N∑

i=1

∑
j> J i

(ci
j)

2‖φi
j‖2

a .

This completes the proof. �
The main result in this research reads as follows.

Theorem 4.2. Suppose that (vh, ph) is the solution to the system (4)-(5) and (vms, pms) is the solution to (6)-(7). Then, the following 
estimate holds

max
0≤t≤T

(
‖σ vh − vms‖2

a + ‖σ ph − pms‖2
ρ

)
� H2

T∫
0

(
‖Ḟ‖2

L2(�)
+ ‖F̈‖2

L2(�)

)
dt, (21)

where (σ vh, σ ph) ∈ V ms × Q ms is the multiscale projection of (vh, ph) and F := f − ρ ṗh .

Proof. Subtracting (6) from (4) and (7) from (5), one obtains

a(v̇h − ˙vms, w) − b(w, ph − pms) = 0 ∀w ∈ V ms,

(ṗh − ˙pms,q)ρ + b(vh − vms,q) = 0 ∀q ∈ Q ms.

Rewriting the system above, it implies that

a( ˙σ vh − ˙vms, w) − b(w,σ ph − pms) = a( ˙σ vh − v̇h, w) − b(w,σ ph − ph) ∀w ∈ V ms,

( ˙σ ph − ˙pms,q)ρ + b(σ vh − vms,q) = ( ˙σ ph − ṗh,q)ρ + b(σ vh − vh,q) ∀q ∈ Q ms.

Take w = σ vh − vms ∈ V ms and q = σ ph − pms ∈ Q ms in the system above. Then, adding two equations together, we obtain 
the following equality

LHS := a( ˙σ vh − ˙vms,σ vh − vms) + ( ˙σ ph − ˙pms,σ ph − pms)ρ = RHS,

where

RHS := a( ˙σ vh − v̇h,σ vh − vms) − b(σ vh − vms,σ ph − ph) + ( ˙σ ph − ṗh,σ ph − pms)ρ

+b(σ vh − vh,σ ph − pms)

= a( ˙σ vh − v̇h,σ vh − vms) + ( ˙σ ph − ṗh,σ ph − pms)ρ.

Here, the properties of multiscale projection (19) are used to simplify the expression above. Hence, we obtain by Cauchy-
Schwarz inequality

LHS = 1

2

d

dt

(
‖σ vh − vms‖2

a + ‖σ ph − pms‖2
ρ

)
= RHS

≤ ‖ ˙σ vh − v̇h‖a‖σ vh − vms‖a + ‖ ˙σ ph − ṗh‖ρ‖σ ph − pms‖ρ.

It implies that

‖σ vh − vms‖2
a + ‖σ ph − pms‖2

ρ ≤ 2

(
max

0≤t≤T
‖σ vh − vms‖a

) T∫
0

‖ ˙σ vh − v̇h‖a dt

+2

(
max

0≤t≤T
‖σ ph − pms‖ρ

) T∫
0

‖ ˙σ ph − ṗh‖ρ dt.

Using the same technique as that of proving Proposition 4.1, we obtain

max
0≤t≤T

(
‖σ vh − vms‖2

a + ‖σ ph − pms‖2
ρ

)
�

T∫ (
‖ ˙σ vh − v̇h‖2

a + ‖ ˙σ ph − ṗh‖2
ρ

)
dt. (22)
0
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Fig. 1. Permeability fields used in the simulation. (For interpretation of the colors in the figure(s), the reader is referred to the web version of this article.)

Next, we analyze the terms ‖ ˙σ vh − v̇h‖2
a and ‖ ˙σ ph − ṗh‖2

ρ . Note that the fine-scale solution (vh, ph) satisfies the following 
system

a(v̇h, w) − b(w, ph) = 0 ∀w ∈ Vh,

b(v̇h,q) = (Ḟ,q) ∀q ∈ Q h,

where F = f − ρ ṗh . Using the properties of the multiscale projection (19), we obtain

a( ˙σ vh, w) − b(w,σ ph) = 0 ∀w ∈ V ms,

b( ˙σ vh,q) = (Ḟ,q) ∀q ∈ Q ms.

Then, by the error estimate in [10, Theorem 1], one may obtain the following estimate

‖ ˙σ vh − v̇h‖2
a + ‖ ˙σ ph − ṗh‖2

ρ � H2
(
‖Ḟ‖2

L2(�)
+ ‖F̈‖2

L2(�)

)
. (23)

Combining (22) and (23) yields the desired estimate. This completes the proof. �
Remark. From the result (20) and the inequality (21), one may easily conclude that ‖vh − vms‖a = O (H). Moreover, using 
the technique in [11, Theorem 5.4] one may show that ph satisfies

‖ph − σ ph‖ρ � �−1‖v̇h‖a =⇒ ‖ph − pms‖ρ � �−1‖v̇h‖a + O (H).

5. Numerical experiments

In this section, we perform some numerical experiments using the proposed multiscale method to solve the wave 
equation in mixed formulation. Let the computational domain and the density be � = (0, 1)2, T = 0.4, and ρ ≡ 1. In 
the simulation, we use (uniform) rectangular mesh to perform the spatial discretization and set the fine mesh size to be 
h = √

2/400. We will specify the coarse mesh size in the examples below. For the time discretization, we set the time 
step to be τ = 10−4. In both examples, let the initial conditions be hv = 0 and hp = 0. Recall that � ∈ N is the number of 
oversampling layers used to perform the constraint energy minimization. We set J i = J (uniformly) to form the auxiliary 
multiscale space Q ms.

We will use the following quantities to measure the performance of the proposed method:

evel := ‖vh − vms‖a

‖vh‖a
and epre := ‖ph − pms‖ρ

‖ph‖ρ
,

where (vh, ph) is the fine-scale solution computed on T h and (vms, pms) is the multiscale solution obtained by solving 
(6)-(7).

Example 5.1 (Heterogeneous model). In this example, we consider the case with high-contrast permeability field over the 
computational domain. See Fig. 1(a) for an illustration of this permeability field. The source function f : R2 → R is set to 
be
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Fig. 2. Reference solution at t = T in Example 5.1.

Fig. 3. Multiscale approximation at t = T in Example 5.1. H = √
2/20; J = 5; � = 3.

Table 1
epre in Example 5.1 with varying coarse mesh size H .

J � H t = 0.1 t = 0.2 t = 0.3 t = 0.4

5 3
√

2/10 5.2681% 5.5469% 6.3184% 6.7059%
5 3

√
2/20 2.2552% 2.6246% 2.8948% 2.9263%

5 3
√

2/40 1.0362% 1.0371% 1.1690% 1.2529%

Table 2
evel in Example 5.1 with varying coarse mesh size H .

J � H t = 0.1 t = 0.2 t = 0.3 t = 0.4

5 3
√

2/10 3.8047% 4.0189% 4.3737% 4.6163%
5 3

√
2/20 2.4546% 1.6313% 1.4103% 1.4720%

5 3
√

2/40 1.1189% 0.6886% 0.6234% 0.6390%

f (x) =
⎧⎨
⎩

1 x ∈ [0,1/8]2,

−1 x ∈ [7/8,1]2,

0 otherwise.

Clearly, it holds that f ∈ L2(�) and it satisfies 
∫
�

f dx = 0. The solution profiles of the reference solution (vh, ph) and the 
multiscale solution (vms, pms) with J = 5 and � = 4 at the terminal time t = T are reported in Figs. 2 and 3, respectively.

We explore the efficiency of the proposed method by showing the errors in velocity and pressure. Tables 1 and 2 show 
the quantities evel and epre in different time levels with different H while fixing J = 5 and � = 3. One can see that the error 
(either in pressure or velocity) decreases as the coarse mesh size decreases.
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Table 3
epre in Example 5.1 with varying number of basis functions J .

J � H t = 0.1 t = 0.2 t = 0.3 t = 0.4

1 4
√

2/20 9.6344% 9.8757% 10.5834% 10.6780%
2 4

√
2/20 7.9885% 6.2347% 6.3412% 6.4201%

3 4
√

2/20 3.6292% 3.0248% 2.8402% 2.5880%
4 4

√
2/20 3.3369% 2.6432% 2.4863% 2.2249%

Table 4
evel in Example 5.1 with varying number of basis functions J .

J � H t = 0.1 t = 0.2 t = 0.3 t = 0.4

1 4
√

2/20 11.7671% 5.1808% 4.3885% 4.6301%
2 4

√
2/20 7.5439% 2.7621% 2.0997% 2.0953%

3 4
√

2/20 2.8664% 1.2072% 0.9478% 0.9089%
4 4

√
2/20 2.0116% 0.8898% 0.7309% 0.7107%

Table 5
epre in Example 5.1 with varying oversampling layers �.

J � H t = 0.1 t = 0.2 t = 0.3 t = 0.4

6 1
√

2/20 2.9318% 2.1629% 2.1566% 1.8118%
6 2

√
2/20 2.6116% 2.2110% 2.0092% 1.7443%

6 3
√

2/20 2.6751% 2.0821% 2.0062% 1.8385%
6 4

√
2/20 2.5124% 2.0712% 2.0029% 1.8621%

Table 6
evel in Example 5.1 with varying oversampling layers �.

J � H t = 0.1 t = 0.2 t = 0.3 t = 0.4

6 1
√

2/20 4.3907% 5.0154% 6.2635% 7.7753%
6 2

√
2/20 1.9753% 0.9736% 0.8820% 0.9278%

6 3
√

2/20 1.9382% 0.8356% 0.6610% 0.6385%
6 4

√
2/20 1.9387% 0.8224% 0.6532% 0.6311%

Next, we fix the coarse mesh size H = √
2/20 and the number of oversampling layers � = 4. We adjust the number of 

basis functions J to see how this factor affects the errors in velocity and pressure. Tables 3 and 4 show the errors evel
and epre. Under this setting, one may observe that the errors epre and evel are reduced as the number of basis functions J
increases. We remark that once the number of basis functions reaches a certain level, the decay of error becomes slower 
due to the fact that the decay of eigenvalues obtained in (8)-(9) slow down.

Further, we change the number of oversampling layers � with fixed coarse mesh size H = √
2/20 and J = 6 to see the 

relation between the error and the number of oversampling layers. Tables 5 and 6 show the corresponding results. One may 
observe that the accuracy of the solution is improved if more layers are included in the simulation. Once the number of 
layers � exceeds a certain level, the decay of error stagnates. We remark that based on the theoretical findings in [10], the 
number of layers should depend on the logarithm of the maximum value of the contrast.

Example 5.2 (Marmousi model). In this example, we test the proposed method on the Marmousi benchmark model. The 
permeability field used in this example is sketched in Fig. 1(b). The source function f is chosen as the first derivative of the 
Gaussian wavelet with central frequency f0 > 0

f (x, t) := g(x)(t − 2 f −1
0 )exp

( − π2 f 2
0 (t − 2 f −1

0 )2),
g(x) := 10δ−2 exp

(|x − c|2δ−2),
for x ∈ �, t ∈ (0, T ], and c = (0.5, 0.5)T . Note that δ > 0 measures the size of the support of the source. Here, we denote 
the two-dimensional Euclidean distance as |x − y| for any x, y ∈R2.

The profiles of solutions at the terminal time t = T are sketched in Figs. 4 and 5. One may see that the proposed 
multiscale method can capture most of the details of the reference solution with less computational cost.

We report the results of errors in both velocity and pressure using the proposed multiscale method with varying coarse 
mesh size. Tables 7 and 8 record the errors with fixed J = 5, � = 3, f0 = 20, and δ = 0.02. We remark that δ = 4

√
2h in this 

case. One can observe that the errors in pressure and velocity reduce as the coarse mesh size decreases.
Furthermore, we calculate the multiscale solution by the proposed method with different f0 and δ when H = √

2/20, 
J = 5, and � = 3. Tables 9 and 10 present the corresponding numerical results. We remark that the for high frequency cases 
with larger f0, one may use a finer coarse mesh to enhance the accuracy of the multiscale approximation.



E. Chung, S.-M. Pun / Journal of Computational Physics 409 (2020) 109359 11
Fig. 4. Reference solution at t = T in Example 5.2. f0 = 20; δ = 0.02.

Fig. 5. Multiscale approximation at t = T in Example 5.2. f0 = 20; δ = 0.02; H = √
2/20; J = 5; � = 3.

Table 7
epre in Example 5.2 with varying coarse mesh size H .

J � ( f0, δ) H t = 0.1 t = 0.2 t = 0.3 t = 0.4

5 3 (20,0.02)
√

2/10 12.6666% 49.7508% 66.1003% 73.1510%
5 3 (20,0.02)

√
2/20 7.3507% 13.3181% 24.2448% 33.1721%

5 3 (20,0.02)
√

2/40 2.6322% 3.3151% 4.7303% 6.3163%
5 3 (20,0.02)

√
2/80 0.9754% 1.0834% 1.2581% 1.3355%

Table 8
evel in Example 5.2 with varying coarse mesh size H .

J � ( f0, δ) H t = 0.1 t = 0.2 t = 0.3 t = 0.4

5 3 (20,0.02)
√

2/10 42.6513% 46.1319% 71.7437% 88.0726%
5 3 (20,0.02)

√
2/20 8.8847% 10.3469% 25.1502% 33.1973%

5 3 (20,0.02)
√

2/40 1.8760% 2.4122% 3.5537% 5.5809%
5 3 (20,0.02)

√
2/80 0.5822% 1.1813% 1.1804% 1.2015%

Table 9
epre in Example 5.2 with varying f0 and δ.

J � ( f0, δ) H t = 0.1 t = 0.2 t = 0.3 t = 0.4

5 3 (20,0.02)
√

2/20 7.3507% 13.3181% 24.2448% 33.1721%
5 3 (20,0.005)

√
2/20 8.9192% 16.8415% 29.8360% 39.8137%

5 3 (50,0.02)
√

2/20 69.5498% 92.0786% 101.8084% 107.6769%
5 3 (50,0.005)

√
2/20 43.1308% 68.3501% 83.9901% 89.6999%
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Table 10
evel in Example 5.2 with varying f0 and δ.

J � ( f0, δ) H t = 0.1 t = 0.2 t = 0.3 t = 0.4

5 3 (20,0.02)
√

2/20 8.8847% 10.3469% 25.1502% 33.1973%
5 3 (20,0.005)

√
2/20 49.8404% 13.8201% 30.8732% 40.2296%

5 3 (50,0.02)
√

2/20 66.3617% 92.1064% 99.8070% 109.3254%
5 3 (50,0.005)

√
2/20 38.7407% 68.9757% 79.5035% 92.6214%

6. Conclusion

In this work, we have proposed and analyzed the constraint energy minimizing generalized multiscale finite element 
method for solving the wave equation in mixed formulation. The multiscale basis functions for pressure are obtained by 
solving a class of well-designed local spectral problems. Based on the concept of constraint energy minimization, we con-
struct the multiscale basis functions for velocity satisfying the property of least energy. The method is shown to have 
first-order convergence with respect to the coarse mesh size. Numerical results are provided to illustrate the efficiency of 
the proposed method.
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