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wave scattering. The earlier preconditioners for the Helmholtz equation are generalized
for elastic materials and three-dimensional domains. An algebraic multigrid method is
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1. Introduction

Developing efficient methods to solve acoustic and elastic scattering problems has proved to be challenging by mathe-
matical and computational means. These problems have a wide range of applications in different disciplines, and therefore
there is a big interest to find efficient methods to solve these problems numerically. Modeling is done by acoustic or elastic
wave equation, depending on the material, and it is often sufficient to consider only time-harmonic solutions. For incom-
pressible fluids, the reduced wave equation is the Helmholtz equation. For linearly elastic material, the Navier equation
can be applied. An approximate solution can be obtained by discretizing these equations using, for example, a finite differ-
ence or finite element method.

Finite element methods have become a popular technique to discretize partial differential equations in complex geom-
etries. It has successfully been used for interior scattering problems like acoustic scattering in a car cabin [1] as well as
for exterior problems. A review [2] gives an overview of recent research on finite element methods for acoustic problems.
Since the paper [3] the research on the construction of absorbing boundary conditions and absorbing layers at the truncation
boundary of the exterior domain has been active; see [2] and references therein. The size of the scattering problems is often
limited in high-frequency problems because the methods become ineffective as the frequency grows. Particularly the finite
element phase shift (pollution) error necessitates finer discretizations for high-frequency problems [4] and thus an increas-
ing memory and computational requirements.
. All rights reserved.
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The resulting systems of linear equations from the discretization of the Helmholtz equation and the Navier equation are
non-Hermitian and indefinite, and for mid-frequency and high-frequency problems, they can be extremely large. These
properties make them a challenge for the current solvers. For two-dimensional problems, it is often feasible to use direct
methods for solving these systems, but three-dimensional problems lead to systems that can not be solved by these methods
with an affordable computing effort. Hence, it is necessary to use iterative methods such as the GMRES method [5] or the Bi-
CGSTAB method [6]. However, these methods require a good preconditioner for the discretized equations in order to have
reasonably fast convergence.

Several preconditioners and iterative solution techniques have been proposed for the discrete Helmholtz and Navier
equations. Domain decomposition methods have been proposed for Helmholtz problems in [7–12], and for elastic problems
in [13–16]. Controllability methods have been proposed for both Helmholtz and Navier problems in [17,18]. Multigrid meth-
ods have been considered for acoustic and elastic problems in [19–22]. With multigrid methods, it is difficult to define a sta-
ble and sufficiently accurate coarse grid problem and smoother for it. For acoustic and elastic problems in homogenous
medium, domain imbedding/fictitious domain methods in [23–26] have been fairly effective, but these methods are pretty
restrictive and not well-suited in general, complicated domains. An incomplete factorization preconditioner has been con-
sidered in [27], for example, and in [28] a tensor product preconditioner is used.

So called natural preconditioning techniques are applicable for many problems including time-harmonic wave equa-
tions [29]. The class of preconditioners based on damped operators that are considered here, is an example of this ap-
proach. A shifted-Laplacian preconditioner with a complex shift, which is called here a damped Helmholtz
preconditioner, was first considered in [30] for the Helmholtz equation. This was a development over the shifted-Laplacian
preconditioner with a real shift previously described in [31]. Already in [32,33] a complex shift was employed, but for a
completely different way and purpose: it was used to transform a singular problem into a non singular one. Here the pur-
pose to introduce a complex shift into a preconditioner for a non singular problem is to enable the effecient use of mul-
tigrid methods.

A damped Helmholtz preconditioner with geometric multigrid was considered in [21]. There, the scattering problems
were posed in a rectangular domain and they were discretized using low-order finite differences. Our earlier study [34]
extended this approach to general shaped two-dimensional domains using linear, quadratic, and cubic finite element dis-
cretizations by applying an algebraic multigrid (AMG) instead of the geometric multigrid to approximate the inversion of
the damped Helmholtz operator. In [35], this method was compared with the previously mentioned controllability
method.

In this paper, a generalization will be proposed to the preconditioner described in [34], an AMG-based damped precon-
ditioner for time-harmonic wave propagation problems in elastic media, i.e. the Navier equation. This preconditioner will be
called a damped Navier preconditioner. Results considering the eigenvalue spectrum of the shifted-Laplacian preconditioned
discretized Helmholtz equation were given in [36] and some of these will be generalized to the Navier equation. Simulations
are carried out in two-dimensional and three-dimensional computational domains including complicated geometries for
both Helmholtz and Navier problems.

This paper is organized as follows. In Section 2 acoustic and elastic wave scattering models and their discretizations are
described. The iterative solution and preconditioning are discussed in Section 3 and mathematical results on the eigenvalue
spectrum are given in Section 4. The algebraic multigrid method employed in the preconditioning is described in Section 5.
Then numerical results are presented in Section 6 and finally, conclusions are given in Section 7.
2. Mathematical formulation

2.1. Wave scattering in fluids

For a time-harmonic pressure of the form pðx; tÞ ¼ p̂ðxÞe�ixt with an angular frequency x and imaginary unit i ¼
ffiffiffiffiffiffiffi
�1
p

, the
wave scattering in a fluid domain Xf can be described by a Helmholtz equation
�$ � 1
q

$p̂� k2

q
p̂ ¼ ff ; ð1Þ
where kðxÞ ¼ x=cðxÞ is the wave number, ff ðxÞ is a time-harmonic sound source and qðxÞ is fluid density. In inhomogeneous
medium, the wave number k varies depending on location as the sound speed c varies. The boundary of the fluid domain Xf

is decomposed into a Dirichlet boundary Cf
d and an impedance boundary Cf

i . The associated boundary conditions are given by
p̂ ¼ gf on Cf
d ð2Þ
and
op̂
on
¼ ickp̂ on Cf

i ; ð3Þ
where gf ðxÞ describes a sound source and nðxÞ is the outer normal vector. Choosing the absorbency coefficient c to be zero
leads to the Neumann boundary condition and c ¼ 1 gives a low-order absorbing boundary condition.
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2.2. Wave scattering in elastic materials

For time-harmonic displacements uðx; tÞ ¼ e�ixtûðxÞ in a domain Xs consisting of elastic materials, the scattering of time-
harmonic waves can be described by a Navier equation
�x2qsû� $ � rðûÞ ¼ fs; ð4Þ
where r is the stress tensor, fs is a force term, and qsðxÞ is the density of the material. Hooke’s law gives a relation between
displacements, and stress and strain forces, thus describing strain tensor e and stress tensor r:
eðuÞ ¼ 1
2
ð$uþ ð$uÞTÞ; rðuÞ ¼ kð$ � uÞ þ 2leðuÞ: ð5Þ
Here Lamè parameters k and l are defined as follows:
kðxÞ ¼ E
2ð1þ mÞ ; lðxÞ ¼ Em

ð1þ mÞð1� 2mÞ : ð6Þ
These depend on Young modulus EðxÞ and the Poisson ratio mðxÞ that characterize the elastic behavior of the material. The
speed of pressure wave, cp, and shear wave, cs, can be expressed as functions of Lamé parameters:
cp ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kþ 2l

qs

s
; cs ¼

ffiffiffiffiffi
l
qs

r
: ð7Þ
Wavelengths and wave numbers for pressure and shear waves are
kp;s ¼ cp;s
2p
x
; kp;s ¼

x
cp;s

: ð8Þ
For elastic material in the domain Xs, the following boundary conditions are applied: a Dirichlet boundary condition on Cs
d

and an impedance boundary condition on Cs
i . As with the fluid domain, the boundary of elastic material Cs ¼ oXs is decom-

posed into two non-overlapping parts Cs ¼ Cs
d [ Cs

i such that either boundary set can be empty. The Dirichlet boundary con-
dition on Cs

d is described by
û ¼ gs on Cs
d; ð9Þ
where gsðxÞ describes the vibration source. The impedance boundary condition on Cs
i is approximated by the equation
icxqsBûþ rðûÞn ¼ 0 on Cs
i ; ð10Þ
where c is the absorbency coefficient, i ¼
ffiffiffiffiffiffiffi
�1
p

;B is a 2� 2 matrix for two-dimensional problems ðD ¼ 2Þ and a 3� 3 matrix
for three-dimensional problems ðD ¼ 3Þ. Choosing the absorbency coefficient c ¼ 0 leads to natural boundary condition and
c ¼ 1 gives an absorbing boundary condition. In component form B has expressions
Bij ¼ cpninj þ cstitj; for D ¼ 2 and
Bij ¼ cpninj þ cstitj þ cssisj for D ¼ 3;

ð11Þ
where cp and cs are the speeds of pressure and shear waves given by (7) and n ¼ ðn1; . . . ; nDÞT is the normal vector pointing
out of elastic domain, and t ¼ ðt1; . . . ; tDÞT and s ¼ ðs1; . . . ; sDÞT are tangential vectors on the boundary.

2.3. Weak formulation and finite element discretization

For the weak formulation of the Helmholtz equation, we define a test function space Vf
0 and a solution space Vf

g as
Vf
g ¼ fq̂ 2 H1ðXf Þ : q̂ ¼ gf ðxÞ on Cf

dg: ð12Þ
The weak form of (1) reads: Find p̂ 2 Vf
g such that
Z

Xf

1
q
ðrp̂ � r�̂q� k2p̂�̂qÞdx�

Z
Cf

i

1
q
ðickp̂�̂qÞds ¼

Z
Xf

ff
�̂qdx ð13Þ
for all q̂ 2 Vf
0. Similarly, for the Navier equation, we define a test function space Vs

0 and a solution space Vs
g as
Vs
g ¼ fv̂ 2 ½H

1ðXsÞ�D : v̂ ¼ gsðxÞ on Cs
dg: ð14Þ
Now, the weak form of (4) reads: Find û 2 Vs
g such that
Z

Xs
ð�qsx

2û � �̂v þ rðûÞ : eð �̂vÞÞdx�
Z

Cs
i

icxqsBû � �̂vds ¼
Z

Xs
fs � �̂vdx ð15Þ
for all v̂ 2 Vs
0.
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For a finite element discretization, a mesh Kh is defined such that Xh ¼
S

s2Kh
s. The mesh consists of triangles s in two-

dimensional and of tetrahedra in three-dimensional problems. Here h denotes the diameter of the largest triangle or tetra-
hedron and Xf ;s

h is an approximation of Xf ;s. For the finite elements of order m discrete test function spaces are
Vf
h ¼ fq̂ 2 H1ðXf

hÞ : q̂hjs 2 Pm8s 2 Kh : q̂ ¼ 0 on Cf
d;hg and ð16Þ

Vs
h ¼ fv̂ 2 ½H

1ðXs
hÞ�

D : v̂hjs 2 ½P
m�D8s 2 Kh : v̂ ¼ 0 on Cs

d;hg; ð17Þ
where Pm denotes polynomials of order m. Discrete solution spaces Vf ;s
g;h are the same except the zero boundary value on Cf ;s

d;h

is replaced by approximations of gf and gs. In this paper, linear, quadratic, and cubic finite elements are employed, i.e.
m ¼ 1;2, or 3. For the spaces Vh and Vg;h, Lagrangian polynomials are used as basis functions.

For the analytical study of eigenvalue spectra in Section 4, it is practical to define the following matrices based on the
integrals in (13) and (15):
Mf ¼
R

Xf
h

k2

q p̂h
�̂qhdx; Ms ¼

R
Xs

h
qsx2ûh � �̂vhdx;

Lf ¼
R

Xf
h

1
qrp̂h � r�̂qhdx; Ls ¼

R
Xs

h
rðûhÞ : eð�̂vhÞdx;

Cf ¼ �
R

Cf
i;h

1
q ðckp̂h

�̂qhÞds; Cs ¼ �
R

Cs
i;h

cxqsBsûh � �̂vhds;

ð18Þ
where p̂h 2 Vf
g;h; ûh 2 Vs

g;h; q̂h 2 Vf
h, and v̂h 2 Vs

h. Furthermore, let z1 ¼ a1 þ b1i. Similarly to [36], the discretized Helmholtz and
Navier operators have matrix forms
F ¼ Lf þ iCf � z1Mf and S ¼ z1Ls þ
ffiffiffiffiffi
z1
p

iCs �Ms; ð19Þ
respectively.
Now, let the vector w contain the nodal values of p̂ or û, so that for the Helmholtz problem it has form w ¼ ½p̂1; . . . ; p̂n�T ;

and for the two-dimensional Navier problem it has form w ¼ ½ûx
1; û

y
1; . . . ; ûx

m; û
y
m�T .

By replacing the spaces, domains, and boundaries in (13) or (15) by their discrete counterparts, the system of linear
equations
Aw ¼ f ð20Þ
is obtained. The complex-value sparse matrix A is given by F or S in (18) and f is a vector resulting from an inhomogeneous
Dirichlet boundary value and/or a non-zero ff in (13) or fs in (15).

The approximation properties of such finite element discretizations for the Helmholtz equation have been studied in [4].
Due to the pollution (phase shift) error, a non-optimal L2 error estimate
eh ¼ kuh � uk 6 C1kðkhÞ2m þ C2ðkhÞm ð21Þ
is obtained, where C1 and C2 are constants. Based on this estimate, larger mesh step sizes can be used when higher order
finite elements are being used, in order to reach the same accuracy level.
3. Iterative solution and damped preconditioner

The matrix A in (20) is indefinite and symmetric, but not Hermitian. For example, the generalized minimal residual
(GMRES) method [5] and the Bi-CGSTAB method [6] are suitable iterative methods for these equations. These and other
applicable iterative methods are described in [37]. The GMRES method minimizes the 2-norm of the residual on Krylov sub-
spaces. This is a desirable property leading to a monotonic reduction of the norm of the residual over iterations, but a dis-
advantage is that all basis vectors for the Krylov subspace needs to be stored. This makes the computational cost of the
GMRES methods grow quadratically with iterations and also causes linear growth in memory requirement. The computa-
tional cost of the Bi-CGSTAB method grows linearly with the iterations and the memory requirement is constant, but the
convergence can be erratic and slower than with the GMRES method. In the numerical experiments, the full GMRES method
is used without restarts.

The convergence of Krylov subspace methods for the system (20) is very slow for medium- and large-scale scattering
problems due to the ill conditioning of A. To improve the conditioning and the speed of convergence, a right preconditioner
denoted by B is introduced. This leads to a preconditioned system
AB�1 ~u ¼ f: ð22Þ
Once ~u is solved from this system, the solution u is obtained as u ¼ B�1 ~u. The goal is to find such a preconditioner B that the
matrix AB�1 is well conditioned and that vectors can be multiplied by B�1, i.e. solve systems with B with a small computa-
tional effort. These properties would lead to a fast convergence of the iterative method and to a small overall computational
cost.
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A shifted-Laplacian
Fd ¼ �$ � 1
q

$� z2
k2

q
; ð23Þ
with a complex shift z2 ¼ a2 þ b2i was suggested in [30] as a preconditioner for the Helmholtz equation. By choosing a2 ¼ 1
and b2 to be negative, Fd is the Helmholtz operator in (1) with some additional damping. Using the matrices defined in (18),
the discretization of Fd leads to a matrix
Fd ¼ Lf þ iCf � z2Mf : ð24Þ
With sufficient damping, systems with Fd can be solved much more easily than with F and the conditioning of FF�1
d can

still be good. The use of different approximations for F�1
d have been studied in [30,21,38,34]. Here an algebraic multigrid

approximation described in Section 5 is considered.
Our hypothesis is that a similar physical damping can be employed to construct an efficient preconditioner for the Navier

equations. Damping in elastic materials can be modelled by using a complex Young modulus. Multiplying the original Young
modulus EðxÞ by a complex z2 leads to a preconditioning operator
Sd ¼ �x2qsû� z2$ � rðûÞ: ð25Þ
The coefficient z2 appears also in the impedance boundary condition (10) as follows
icxqs

ffiffiffiffiffi
z2
p

Bûþ z2rðûÞns ¼ 0 on Cs
i : ð26Þ
Using the matrices in (18), the discretization of Sd leads to the damped Navier preconditioner
Sd ¼ z2Ls þ
ffiffiffiffiffi
z2
p

iCs �Ms: ð27Þ
4. Spectral analysis for the preconditioned Navier equation

Studying the eigenvalue spectrum of the preconditioned matrix AB�1 is an usual way to estimate the convergence of an
iterative method like GMRES. In [36], Theorems 3.1–3.6 give useful information of the eigenvalue spectrum of the precon-
ditioned Helmholtz operator. Some of these results can be generalized to the Navier equation, as will be shown in the
following.

As defined in (19), the matrix of the discretized Navier equation is
S ¼ z1Ls þ
ffiffiffiffiffi
z1
p

iCs �Ms: ð28Þ
Here matrices Ls and Cs are symmetric positive semi-definite and Ms is symmetric positive definite, and z1 is a complex num-
ber. The case that there are only natural and/or Dirichlet boundary conditions, i.e. Cs ¼ 0, and the material is not absorbing, is
analyzed first. Thus, the matrix S simplifies to
S ¼ z1Ls �Ms: ð29Þ
The eigenvalue problem AB�1~y ¼ s~y is equivalent to
Ay ¼ ðz1Ls �MsÞy ¼ sðz2Ls �MsÞy ¼ sBy; ð30Þ
where y ¼ B�1~y. From this, the eigenvalue problem
Lsy ¼ kMsy; k ¼ 1� s
z1 � sz2

ð31Þ
can be derived.
As the matrix Ls is positive semi-definite and Ms is symmetric positive definite, the eigenvalues k are real. The eigenvalue

s is a function of k given by
s ¼ z1

z2

k� z�1
1

k� z�1
2

: ð32Þ
By the change of variable k0 ¼ k�1, the form
s ¼ z1 � k0

z2 � k0
ð33Þ
is obtained. This is the same equation of a circle in the complex plane that was found in [36] for the eigenvalue spectrum of
the preconditioned Helmholtz equation. Due to this, the following corollary of Theorems 3.1–3.3 in [36] can be formulated.



Corollary 1. For the eigenvalues s ¼ sr þ isi of the generalized eigenvalue problem Sy ¼ sSdy, the following statements hold:
� If b2 ¼ 0, the eigenvalues are located on straight line in the complex plane given by the equation
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�b1sr þ ða1 � a2Þsi þ b1 ¼ 0: ð34Þ
� If b2–0, the eigenvalues are located in complex plane on the circle given by
sr � b2 þ b1

2b2

� �2

þ si � a2 � a1

2b2

� �2

¼ ðb2 � b1Þ
2 þ ða2 � a1Þ2

ð2b2Þ
2 : ð35Þ
The center of the circle is at c ¼ z1�z2
z2�z2

and the radius is R ¼ j z2�z1
z2�z2
j, where z1;2 ¼ a1;2 þ b1;2i.

� If b1b2 > 0, the origin is not enclosed by the circle defined by (35).

The case of impedance boundary conditions with c–0 in (10), i.e. Cs–0, is considered next. It is not evident that the results
presented in [36] for the Helmholtz equation with Cf –0 are applicable for the Navier equation. However, numerical exper-
iments in Section 6 suggest that similar behavior to the one described by Theorems 3.4–3.6 in [36] holds also here. The fol-
lowing states this as a conjecture.

Conjecture 2. For the eigenvalues s ¼ sr þ isi of the generalized eigenvalue problem Sy ¼ sSdy, the following statements hold:
� If b2 ¼ 0, the eigenvalues are located in the half-plane

r i
�b1s þ ða1 � a2Þs þ b1 P 0: ð36Þ
� If b2 > 0 the eigenvalues are inside or on the circle with the center at c ¼ z1�z2
z2�z2

and the radius R ¼ z2�z1
z2�z2

��� ���. If b2 < 0, the
eigenvalues are outside or on the same circle.
5. Algebraic multigrid based damped preconditioners

The approximation of the inverse of the damped operator B�1 given by a multigrid method is denoted by B�1
MG. In [21],

Erlangga, Oosterlee, and Vuik used one cycle of a geometric multigrid method for this. For low-frequency problems the con-
ditioning of AB�1

MG is good. For high-frequency problems the conditioning deteriorates so that the number of Bi-CGSTAB iter-
ations appeares to grow linearly with frequency in [21]. They also showed that this preconditioner is well-suited for
problems with a varying speed of sound. In [34], the geometric multigrid method was replaced by a more generic and more
flexible algebraic multigrid method (AMG). In this paper, an AMG-based on [39] is utilized, using the implementation that is
described in [34], with modifications that make it suitable for vector valued problems, like the Navier equation.

The employed AMG method uses a graph to construct coarse spaces. Here the graph is based on the discretization mesh.
Alternative approach would be to build the graph based on the matrix B. When using linear elements in a scalar problem,
both approaches result in the same graph. For an elastic solid modelled by the Navier equation, the graph is formed without
connections (edges) between displacement components. This choice is made for two reasons: Adding these connections
would cause too rapid coarsening process. Secondly, the error behaves smoothly for each component separately and the
AMG method is especially efficient at reducing smooth error components. The graph therefore consists of separate discon-
nected graphs, one for each displacement component.

For linear finite elements, the initial graph G0 is the graph defined by the triangulation. For quadratic and cubic elements,
the graph is defined by a refined mesh. In two-dimensional domains, quadratic triangle elements are divided into four tri-
angles by connecting the midpoints of the edges, and cubic triangle elements are divided into nine triangles. In three-dimen-
sional domains, quadratic tetrahedron elements are divided into eight and cubic tetrahedra into 26 tetrahedra. If the graph
defined by B was used directly with high-order elements, the coarsening procedure would coarsen the graph too rapidly,
leading to an impaired conditioning of AB�1

MG and a slower convergence of the GMRES method.
The nodes onto a coarser graph Gkþ1 are chosen from the nodes of Gk as follows. Find the node in Gk which has the smallest

degree, i.e. the smallest number of edges associated to it. If there are several such nodes, choose the first one according to the
node numbering. This node is included onto the graph Gkþ1. Eliminate this node and all its neighbors from the graph Gk. Re-
peat this procedure until there are no nodes left in Gk. After choosing the nodes on Gkþ1, they are numbered following their
order in the numbering of the nodes on Gk.

On coarse levels, different displacement components are chosen to be disconnected. Thus, the restriction matrix is de-
fined blockwise as
Rk ¼
R1

k 0

. .
.

0 RD
k

2
664

3
775: ð37Þ
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The elements of the diagonal blocks of the restriction matrix are defined by the rule
Fig. 1.
absorbi
circle is
ðRl
kÞij ¼

1 for a fine node j which is a coarse node i;
1
n for a fine node j which is a neighbor of coarse node i and has n neighboring coarse nodes;
0 otherwise;

8><
>:
where fine and coarse refers to the graphs Gk and Gkþ1, respectively. The edges of the coarse graph Gkþ1 are formed using the
restriction matrix Rk. Each coarse graph node corresponds to a row in the restriction matrix. There is an edge between two
nodes if and only if the corresponding rows of the restriction matrix have a non-zero element in the same column.

The coarse level matrices are now defined as follows
Bkþ1 ¼ RkBkðRkÞT ; where Bk ¼
B11

k � � � B1D
k

..

. . .
. ..

.

BD1
k � � � BDD

k

2
664

3
775: ð38Þ
The usual multigrid W-cycle is used with the AMG method. For preconditioning, the initial approximate solution is zero in
the multigrid algorithm.

At each level, presmoothing and postsmoothing is performed by one underrelaxed Jacobi iteration. At the coarsest level, a
direct solver is used instead of an iterative method.

6. Numerical results

Numerical simulations were carried out on selected example problems. In Subsection 6.1, the eigenvalues of two-dimen-
sional Navier problems are studied and compared with the results presented in Section 4. In Subsection 6.2, the performance
of the method is considered for two-dimensional and three-dimensional Helmholtz and Navier problems by measuring iter-
ation counts required to satisfy a convergence criterion.

The following material parameters are used in tests unless specified otherwise. The Helmholtz problems have domain Xf

consisting of air, with the density qf ¼ 1:2 kg=m3 and the speed of sound c ¼ 344 m=s. The Navier problems are posed in a
domain Xs consisting of aluminum with the density qs ¼ 2700 kg=m3, Young modulus E ¼ 7:00 � 1010 Pa, and Poisson ratio
m ¼ 0:33. Meshes were generated using Comsol Multiphysics 3.3 in such a way that the maximum element size is h ¼ k=10,
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Eigenvalue plots for the Navier problem in the unit square. The upper plots are for Dirichlet boundary value problems and on the lower plots, the
ng boundary conditions are posed. On the left plots, the eigenvalues of AB�1 are shown. On the right plots, the eigenvalues of AB�1

MG are shown. The
defined by (35). The damping parameters are z1 ¼ 1:0 and z2 ¼ 1:3þ 0:7i.
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where k is the wavelength of slowest wave mode. In the Helmholtz problems, k is the length of acoustic waves, and in the
Navier problems, it is the length of shear waves.

6.1. Eigenvalues

In [34], the eigenvalue spectra of the preconditioned system matrices were examined for several two-dimensional
Helmholtz example problems. Here the eigenvalue spectra will be studied, when the system is preconditioned by a damped
preconditioner for two-dimensional and three-dimensional Helmholtz and Navier problems. Two-dimensional problems are
studied in the unit square domain like in [21,34] for the Helmholtz problem. A three-dimensional cube domain will also be
considered for both Helmholtz and Navier problems. Estimates for the eigenvalue spectra of the preconditioned Navier equa-
tion, when Dirichlet or absorbing boundary conditions are posed on boundaries were presented in Section 4. These estimates
will be compared to the numerically obtained eigenvalues.

First, the unit square problem will be considered for the Navier equation. The frequency 2.2 kHz is used in the eigenvalue
study. The eigenvalues of AB�1 for the unit square problem with the Dirichlet and absorbing boundary conditions are pre-
sented in Fig. 1. Also the eigenvalues of AB�1

MG are plotted for the same problem, where B�1
MG is the algebraic multigrid approx-

imation of B�1. The eigenvalue spectrum for the Navier problem with Dirichlet boundary conditions is distributed exactly on
the circle as (35) describes. It is also seen that the algebraic multigrid does not spread the spectrum much. Most of eigen-
values seem to move slightly closer to the center of the circle.

For the eigenvalue spectra of the problems with the absorbing boundary conditions, it will be shown that the inequality
(36) holds in numerical examples. Similar inequality was proven in [36] to hold for Helmholtz problems. According to the
inequality (36), the eigenvalues should lie inside or outside of the circle depending on the sign of b2. For better conditioning,
b2 is always chosen positive. Thus, according to (36), the eigenvalues should lie inside the circle. For the unit square problem
with the absorbing boundary conditions, the conjecture seems to be valid, as can be seen in Fig. 1. The algebraic multigrid
approximation changes the spectrum, but the eigenvalues seem to still lie inside the circle.

For three-dimensional experiments, the cube ð0:3 mÞ3 is discretized by using linear finite elements for both Helmholtz
and Navier problems. For the Navier problem, the frequency f is 5 kHz and for the Helmholtz problem, the frequency f is
500 Hz. In Fig. 2, the eigenvalues of AB�1 are plotted and in Fig. 3, the eigenvalues of the system with the AMG approximation
of the inverse of the damped operator, AB�1

MG, are plotted. Also the circle (35) is drawn in these figures. It is clearly seen in
Fig. 2, that both Corollary 1 and Conjecture 2 holds for this problem.
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Fig. 2. The eigenvalues of AB�1. The upper plots are for the Helmholtz problems and the lower ones are for the Navier problems. The left plots are for the
Dirichlet boundary value problems and the right ones are for problems with absorbing boundary conditions. The damping parameters are z1 ¼ 1:0 and
z2 ¼ 1:0þ 0:5i for the Helmholtz problems, and they are z1 ¼ 1:0 and z2 ¼ 1:0þ 0:8i for the Navier problems.
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Fig. 3. The eigenvalues of AB�1
MG . The upper plots are for the Helmholtz problems and the lower ones are for the Navier problems. The left plots are for the

Dirichlet boundary value problems and the right ones are for problems with absorbing boundary conditions. The damping parameters are z1 ¼ 1:0 and
z2 ¼ 1:0þ 0:5i for the Helmholtz problems, and they are z1 ¼ 1:0 and z2 ¼ 1:0þ 0:8i for the Navier problems.
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6.2. Performance of the preconditioner

The performance of the damped preconditioner with the algebraic multigrid will be reported for several different test
problems. First, a two-dimensional Navier problem is studied in the unit square and three-dimensional Helmholtz and Na-
vier problems are studied in a cube domain. Then, the method is tested on complicated three-dimensional problems: For the
Helmholtz equation, a three-dimensional car cabin domain and a layered wedge domain with a varying speed of sound are
considered. For the Navier equation, a crankshaft geometry defined by a Comsol Multiphysics 3.3 example problem is con-
sidered. The iteration counts give the number of iterations needed to reduce the relative residual to 10�6.

In all performance studies with the unit square problems, the absorbing boundary condition given by (10) with c ¼ 1 was
posed on the boundaries. For the Navier equation, the best value for b2 was determined as follows. With several different
frequencies and test problems, solutions were computed using the values 0:1;0:2; . . . ;1:0. The value b2 ¼ 0:8 was selected
as it gave the best convergence among the values which lead to a reliable preconditioner. The value appeared to be rather
problem independent within the selected test problems and frequencies. The Jacobi relaxation parameter x ¼ 0:5 was deter-
mined similarly. For the Helmholtz equation, the parameter values b2 ¼ 0:5 and x ¼ 0:5 given in [34] were used, unless
specified otherwise. The same parameter values were used for all element types.

6.2.1. Unit square
The first benchmark for the Navier equation is performed in the unit square domain with a point source in the middle. The

solution was obtained at five different frequencies given in Table 1. The Navier equation was solved with linear and quadratic
finite element discretizations. In Fig. 4, the solution is shown for the four lowest frequencies.

6.2.2. Cube problem
The Helmholtz and Navier problems were solved in the cube ð0:3 mÞ3 with a point source in the middle. The performance

of the damped preconditioner was compared to a modified incomplete Cholesky factorization (MIC) preconditioner [27]. The
algorithm presented in [40] is used for the MIC(l) approximation of A�1, where the parameter l describes the level of fill-in in
the factorization. The values l ¼ 0 and 1 have been used as bigger ls were uncompetitive as forming incomplete factorization
required much more computation. The performance was measured by the number of GMRES iterations and the total number
of floating point operations (FLOPs) required by the preconditioning. The number of FLOPs is a good measure, as it includes
the initialization process in addition to GMRES iteration. The results are presented in Tables 2 and 3.



Table 1
The results for the unit square elasticity problem. Iteration counts are given for linear and quadratic finite elements.

f (kHz) Element order

1 2

4.9 26 21
9.8 40 30
19.6 92 60
39.2 213 141
78.4 417 415

Fig. 4. The solution of the unit square elasticity problem at frequencies 4.9 kHz, 9.8 kHz, 19.6 kHz, and 39.2 kHz. The absorbing boundary conditions are
posed on the boundaries.

Table 2
The iteration counts for the cube problem for the Helmholtz and Navier equations. Some counts are missing as the computations were too demanding.

Helmholtz

f (kHz); AMG MIC(0) MIC(1)

Order? 1 2 3 1 2 1 2

0.5 10 13 16 13 17 8 11
1.0 12 15 18 18 41 11 17
2.0 19 21 24 31 126 16 28
4.0 35 42 55 50 29
Navier

f (kHz); AMG MIC(0) MIC(1)

Order? 1 2 1 2 1 2

5 20 5 24 70 11 16
10 22 10 38 196 15 25
20 33 20 67 24 48
40 66 107 40
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MIC(1) seems to require fewer iterations than AMG, whereas MIC(0) requires more iterations. Especially with linear finite
elements, the convergence with MIC(1) is faster than with AMG and MIC(0), as can be seen in Table 2. However, Table 3
shows that the number of FLOPs with the MIC(1) preconditioner is about twice the number with AMG. This is mainly due



Table 3
The number of millions of floating point operations (MFLOPs) for the Helmholtz and Navier equations. Some numbers are missing as the computations were too
demanding.

Helmholtz

f (kHz); AMG MIC(0) MIC(1)

Order? 1 2 3 1 2 1 2

0.5 0.5 7.4 43 0.4 13 0.5 35
1.0 2.1 31 170 2.2 110 2.9 270
2.0 17 210 1100 24 1800 32 3600
4.0 170 2000 12,000 260 390
Navier

f (kHz); AMG MIC(0) MIC(1)

Order? 1 2 1 2 1 2

5 6.8 130 7.1 390 8.9 870
10 29 490 47 3700 63 7000
20 230 3500 530 88,000 760 93,000
40 2400 5900 9400

Fig. 5. The solution of the Helmholtz equation at the frequency f ¼ 880 Hz in the three-dimensional car cabin.

Table 4
The number of iterations for the three-dimensional car cabin problem for the Helmholtz equation.

f (Hz) Element order

1 2 3

110 14 17 22
220 17 23 29
440 26 34 46
880 51 72 97
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to expensive factorization process before the iteration. With quadratic elements the MIC preconditioner seems to perform
much worse than AMG, both in iteration counts as well as FLOPs. This is true for both Navier and Helmholtz problems.
MIC(1) is also using more memory than AMG, although the difference is not substantial.

6.2.3. Three-dimensional car cabin problem
The car cabin problem is a three-dimensional generalization of the two-dimensional car cabin problem in [34]. The sound

source is modelled as the Dirichlet boundary condition p ¼ 1 posed on the wall behind pedals. The impedance boundary con-
dition (3) with c ¼ 0:2 is posed on the other boundaries. The height of the car cabin is 1.5 m, the width is 1.5 m, and the
length is 3 m. An example solution is plotted in Fig. 5. Iteration counts are reported in Table 4. For this problem also, the
number of iterations grow roughly linearly with respect to the frequency.

6.2.4. Three-dimensional wedge problem for the Helmholtz equation
The three-dimensional wedge problem [41] in the unit cube ½0;1�3 is a generalization of a two-dimensional problem stud-

ied in [28,21,34]. In this acoustic scattering problem, the material is inhomogeneous leading to a piece-wise constant speed



Fig. 6. The solution of the Helmholtz equation at f ¼ 2:5 Hz for the three-dimensional wedge problem.

Table 5
The iteration counts for the three-dimensional wedge acoustic scattering problem.

f (kHz) Element order

1 2 3

1.25 23 26 30
2.5 40 53 88

Table 6
The GMRES iteration counts for the crank shaft vibration problem.

f (kHz) 3 6 9 12 15

Iterations 231 263 223 187 347

Fig. 7. The propagation of elastic waves in a crankshaft at f ¼ 3 kHz. The color scale indicates the amplitude of the displacement, with blue corresponding
to small displacement and red corresponding to large displacement.
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of sound. The domain has three layers separated by two planes defined by the equations z ¼ 0:1xþ 0:2yþ 0:6 and
z ¼ �0:2x� 0:15yþ 0:4. The speeds of sound from the top layer to the bottom layer are c1 ¼ 1; c2 ¼ 1

2, and c3 ¼ 5
6. A point

source is placed at (0.5,0,0.5) and the absorbing boundary conditions are posed on the boundaries. In the AMG method,
the Jacobi relaxation parameter is x ¼ 0:3.

The solution of the Helmholtz equation at f ¼ 2:5 Hz is shown in Fig. 6. The iteration counts are reported in Table 5. The
same linear growth can be observed as in the previous problems.

6.2.5. Crankshaft vibration problem
The Navier equation is solved in a complicated three-dimensional domain defined by the crank shaft model from Comsol

Multiphysics 3.3. The length of the crankshaft is 1.0 m and it is made of structural steel defined by: the density
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q ¼ 7850 kg=m3, Young modulus E ¼ 2 � 1011 Pa, and Poisson ratio m ¼ 0:33. A tangential vibration source on the left end is
given by the Dirichlet boundary condition u ¼ ð1;0;1Þ. The right end is rigid, i.e. the Dirichlet boundary condition u ¼ ð0;0;0Þ
is posed on there. Other boundaries have natural boundary conditions, i.e. the impedance boundary condition (10) with
c ¼ 0. The mesh is made of quadratic finite elements and 300,000 nodes.

The GMRES iteration counts on a range of frequencies are given in Table 6. As there is no absorption, the problem is sin-
gular at some frequencies. Due to this the iteration counts do not behave linearly with respect to the frequency. The solution
at f ¼ 3 kHz is illustrated in Fig. 7.

7. Conclusions

A damped Navier preconditioner based on an algebraic multigrid method was introduced for time-harmonic elasticity
problems. This is a generalization of a shifted-Laplacian preconditioner for the Helmholtz equation. These preconditioners
are efficient for Helmholtz and Navier problems in complicated two-dimensional and three-dimensional domains. High-
er-order finite elements can be used for the discretization and Helmholtz problems can have variable coefficients. The pro-
posed approach is especially well-suited for low-frequency and mid-frequency problems. For high frequencies, iteration
counts grow roughly linearly with respect to the frequency. The same behavior was also observed in [34,21].

The performance was compared to a modified incomplete Cholesky (MIC) preconditioner. The AMG-based damped pre-
conditioner was more efficient as its initialization requires much less computations than the expensive incomplete factor-
ization procedure. Especially with quadratic finite elements, the AMG preconditioner was clearly faster.

The eigenvalues of the preconditioned system were also studied. The earlier results for the Helmholtz equation in [36]
were generalized for the Navier equation. It was shown that the eigenvalues of the preconditioned system with the damped
Navier preconditioner are on a circle in the complex plane for Dirichlet and Neumann boundary value problems. When one
algebraic multigrid cycle is used instead of the exact inverse of the damped Navier operator, the eigenvalues are spread to
some extent, but the conditioning is still fairly good.
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