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a b s t r a c t

We propose an algorithm to compute an approximate singular value decomposition (SVD)
of least-squares operators related to linearized inverse medium problems with multiple
events. Such factorizations can be used to accelerate matrix-vector multiplications and
to precondition iterative solvers.

We describe the algorithm in the context of an inverse scattering problem for the low-
frequency time-harmonic wave equation with broadband and multi-point illumination.
This model finds many applications in science and engineering (e.g., seismic imaging, sub-
surface imaging, impedance tomography, non-destructive evaluation, and diffuse optical
tomography).

We consider small perturbations of the background medium and, by invoking the Born
approximation, we obtain a linear least-squares problem. The scheme we describe in this
paper constructs an approximate SVD of the Born operator (the operator in the linearized
least-squares problem). The main feature of the method is that it can accelerate the appli-
cation of the Born operator to a vector.

If Nx is the number of illumination frequencies, Ns the number of illumination locations, Nd the
number of detectors, and N the discretization size of the medium perturbation, a dense singular
value decomposition of the Born operator requires OðminðNsNxNd;NÞ�2 �maxðNsNxNd;NÞÞ
operations. The application of the Born operator to a vector requires OðNxNslðNÞÞ work, where
l(N) is the cost of solving a forward scattering problem. We propose an approximate SVD method
that, under certain conditions, reduces these work estimates significantly. For example, the
asymptotic cost of factorizing and applying the Born operator becomesOðlðNÞNxÞ. We provide
numerical results that demonstrate the scalability of the method.

� 2012 Elsevier Inc. All rights reserved.
1. Introduction

Let Bðu;gÞ be a bilinear operator in which g is an the medium perturbation and u is the state (total scattered field). Given
g; B is a well-posed boundary value problem for u. We consider the following problem: given data /i ¼ Dui we want to recon-
struct g. Here ui is the solution of Bðui;gÞ ¼ fi; i ¼ 1; . . . ;Ne; D is a linear observation operator, fi is a known illumination
. All rights reserved.
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Fig. 1. We propose an algorithm for the Born approximation of the inverse medium problem. For simplicity, we assume that the medium perturbation is
represented by a set of point scatterers in a 3-D domain H. The data consists of measurements of the scattered field generated by separate incident fields. In
our experiments, the incident fields are generated by point sources that illuminate the region of interest—possibly at multiple frequencies. Both sources and
detectors can be located in arbitrary positions as opposed to analytic techniques which require regular geometries.
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source, and Ne is the number of illumination events. In this paper, we introduce an approximate factorization algorithm for the
linearization of the operator that maps g to /i. Such a factorization can be used with an iterative inversion scheme [9] or with
Bayesian estimation algorithms to estimate covariances [14,32].

Inverse medium problems find applications in elasticity (full waveform inversion seismology), electromagnetics (ground
penetrating radar), acoustics (non-destructive evaluation), diffusive transport (optical tomography), electrostatics (imped-
ance tomography), and other applications. To make ideas concrete, we consider the free-space frequency-domain acoustic
scattering. We describe a numerical algorithm for the Born approximation formulation of the inverse medium problem in
scalar scattering [10]. Given Ne = NsNx incident (‘‘illumination’’) fields fuðr; s;xÞgNs ;Nx

s¼1;x¼1 (where s indexes the spacial location
of the source of the incident field and x indexes its frequency), we record the scattered field /(rd;s,x) at Nd detector locations
frdgNd

d¼1 and we seek to recover the medium perturbation g(r) by solving
1 For
machin
/ðrd; s;xÞ ¼
Z

H
Gðrd; r;xÞgðrÞuðr; s;xÞdr ð1Þ
for g. This is a Lippmann–Schwinger scattering equation, where G(�, �;x) is the Green’s function for the given scattering prob-
lem (in general not known analytically but computable by solving a boundary value problem) at frequency x, H is the sup-
port of g (assumed to be known), and r is a point in H. Upon discretization using N quadrature points, we have
/ðrd; s;xÞ ¼
XN

j¼1

Gðrd; rj; xÞgðrjÞuðrj; s;xÞ; ð2Þ
where the quadrature weights have been absorbed in g(rj) and by using ‘‘=’’ we ignore the quadrature discretization error.
Indeed, in the rest of the paper (2) will be considered exact, that is, / will be generated by point scatterers located at the
quadrature points frjgN

j¼1 with scattering strengths fgðrjÞgN
j¼1. The problem is summarized in Fig. 1.

Eq. (2) is linear on g. We introduce M to denote the mapping from g to /, so that
Mg ¼ /:
Note that if we write the normal equations for this system, we obtain M⁄Mg = M⁄/; the operator M⁄M in the normal equa-
tions is also known as the Hessian (or reduced Hessian depending on the formulation.)

Depending on the maximum illumination frequency, and the distance between H the detectors and the sources, M may
have a numerically low rank. We will like to compute an approximation to M so that the cost of applying M or its pseudo-
inverse to a vector are as small as possible. For example, when reconstructing g one approach is to use a Krylov iterative
method like the LSQR and Conjugate Gradient (CG) method for the normal equations [9,29]. To analyze the cost of such
an iterative solver, let us define the cost of the forward scattering solver as l(N,Nd), or simply l(N) (assuming Nd 6 N). Then,
the cost of an iterative method would be NsNx l(N) per matvec, which can be quite high if NsNx is large or if we have an
expensive forward scattering solver. Also using a Krylov method requires preconditioning typically based on limited-mem-
ory BFGS or Lanczos preconditioners [2,16,20]. Constructing BFGS preconditioners has similar complexity with inverting M
[27]. Lanczos methods can be used and offer a viable alternative to our approach but are more difficult to implement cor-
rectly [18]. Another approach is to use spectral preconditioning methods [1] or multigrid [6,3]. Our method can be combined
with spectral preconditioning methods, for example construct coarse and fine spaces.

Finally one could form M and use a dense factorization algorithm, say, use an classical SVD factorization [15]. A dense SVD
is prohibitively expensive1 because its work complexity is OðminðNsNxNd;NÞ�2 �maxðNsNxNd;NÞÞ.
example, if Nx = 10, Ns = 100, Nd = 102, and N = 1003, we will need over one month of computation to compute the SVD on a single core 2 gigaflops/s
e.



Fig. 2. We report the isosurfaces g = 0.25gmax for the scatterer model of a biplane with size one wavelength. The incident field for results on the left column
is generated with one point sources excited at a single frequency. For the results of the right columns, we generate the incident field by using 12 sources and
8 frequencies. The mesh size is N = [51]3 and the scattered field is measured at 162 detectors located on a sphere enclosing the biplane. The results of the
inversion with a single source and single frequency already enables to find the object location but the addition of more sources and frequencies permits to
obtain better accuracy.
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Contributions. To summarize, our goal is to design an algorithm that approximates M and scales ‘‘well’’ with N, Nx, Ns

and Nd, for the low frequency regime.2 Our main contribution is the construction of Me, an approximate singular value decom-
position for M based on the following algorithmic components:

� a rank-revealing randomized factorization. We have used the Algorithm 4.4 proposed in [18] that combines randomiza-
tion with the power iteration;
� preprocessing of the incident field u using an SVD to transform the incoming field and data and reduce the dimension of

Ns
3;

� and a recursive SVD that can be used to approximately compute the SVD of M = [M1 M2]t given the approximate SVDs of
M1 and M2.

Using these components, we construct Me an approximate SVD factorization for M whose, given the incident field, the
total work complexity is OðNxlðN;NdÞRsÞ, where Rs depends on the problem geometry and the maximum frequency but
is independent of Ns, asymptotically. In our implementation, we use a direct evaluation for the scattered field l(N,Nd) =
NNd. Using a fast multipole acceleration the complexity can be reduced to l(N,Nd) = N + Nd for the low frequency. We test
our algorithm on problems in which the scatterer size varies from 1/10 to five wavelengths. Our algorithm supports arbitrary
distributions of sources, detectors and frequencies. For the purposes of demonstrating the quality of the approximation, we
use one of the simplest methods of solving inverse problems, the truncated SVD.4
2 We mean that given a minimum and a maximum frequency, the algorithm scales well as we increase the number of sample frequencies within the given
frequency range.

3 This preprocessing step, as we describe it in this paper is valid only in the case in which the detectors are the same for all of the sources.
4 To clarify, we do not advocate using the truncated SVD as an inversion method and do not we use it to demonstrate a new inversion scheme since we do not

consider noise and regularization issues.



Table 1
List of the main symbols used in this article.

k(r) Wavenumber
k0 Background medium wavenumber
k Wavelength k = 2p/k
g(r) Perturbation of the background medium; k2ðrÞ ¼ k2

0 þ gðrÞ
G Green’s function of the homogeneous infinite medium characterized by k0

H Support of the anomaly g (a cube of L3)
L Edge size of H
x Indexes the frequency of the incident field
s Indexes the location of the source of the incident field
N Number of point scatterers in H
Nd Number of detectors
Nx Number of incident wave frequencies ðx1; . . . ;xNx Þ
Ns Number of spherical wave source locations (point sources)
M Overall input–output operator (2 CNs NxNd�N)
r Position in space z
rd Detector locations
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Outline of FaIMS: First, we reduce the number of incident fields from Ns to Rs using the randomized SVD. Then, we
decompose M into Nx smaller submatrices Mx of size RsNd � N (1 6x 6 Nx). We compute the approximate SVD of each
small matrix by using the randomized SVD. We apply a low rank approximation whenever possible, leading to a compression
of the matrix and a speed-up of the computations. We combine the approximate SVDs of the Mx to approximate the SVD of
M, Me, using the recursive SVD. This recursive SVD provides a precise characterization of the inverse problem and allows us
to easily apply the pseudo-inverse of Me to the data. We have termed the overall algorithm ‘‘FaIMS’’. This algorithm can han-
dle efficiently a large number of sources and frequencies which lead to better resolution (Fig. 2). The storage complexity of
FaIMS is OðNRÞ, where R is the overall rank of the approximation to M. FaIMS achieves this complexity estimate since it does
not require the assembly of M. It only requires matrix-vector multiplications with submatrices of M.

Limitations. FaIMS, works well when (1) the detectors, the sources, and the support of g are well separated and (2) the
maximum excitation frequency is small enough. If these two conditions are met, the mapping / = Mg will be sufficiently low
rank to result in computational savings. If the first condition (well-separateness) is not met, a more elaborate block decom-
position of M is required (resembling tree decompositions for fast-multipole methods and hierarchical matrices) to construct
approximations to M. The second condition (maximum frequency) is much harder to circumvent.

Our analysis in this paper is not related to a specific inversion scheme but on approximating M in order to accelerate its
application to a vector. To demonstrate the approximation, we use truncated SVD for synthetic examples in which the data
has no noise. In a realistic inverse problem one needs to account for noise, model errors, approximation errors, and incor-
porate more sophisticated regularization techniques.

Also, we are considering neither sparse reconstruction ideas for g [7,19] nor adaptive reconstruction schemes [4,17]. We
assume that the location of the detectors is independent of the source location and frequency.

In our computations, we know the Green’s function in analytic form so that the scattered field due to N scatterers can be
evaluated at Nd detectors in OðN þ NdÞ work and storage using a fast multipole scheme [8,33]. However, this is not a funda-
mental limitation of the algorithm. Any forward-scattering method with good complexity and accuracy features can be used
in FaIMS without changing the behavior of the algorithm. In higher frequencies, such solvers are harder to construct. In the
general case one needs to solve a forward problem in order to evaluate the scattered field given a background medium.

Finally, we have not pursued randomization in the frequency domain. The input–output operator depends nonlinearly on
the frequency and randomization techniques for linear operators are not directly applicable. However, the block decompo-
sition of FaIMS allows a heuristic greedy algorithm for the different frequencies. We will present results on this approach in a
future paper.

Related work for problems with multiple sources. Our work has been inspired by the work in [25], in which a fast ana-
lytic SVD based on Fourier analysis was used for the case in which the sources and detectors are uniformly distributed on the
boundary of a regular geometry (plane, cylinder, or sphere) and the scatterer is uniformly discretized in the domain of the
corresponding regular geometry. The problems considered in [25] were reconstructions of absorption and diffusion coeffi-
cients for optical tomography problems formulated in the frequency domain. With FaIMS, we can consider detectors on arbi-
trary geometries and point sources at arbitrary locations, as FaIMS only requires a fast forward scattering solver.

Let us mention that there is work for forward and inverse problems with multiple sources in the geophysics community
for reducing the number of sources using linear combinations [22,28,19]. However, we could not find work that extends of
these ideas to the inverse medium problem.

Our method can be viewed as an operator approximation. In general, there exist several methods to approximate and
compress matrices based on randomization. The method we are using here was developed in a series of papers in
[23,26]. Other approximation schemes (for example the CUR matrix decomposition developed in [24]) could be used,
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however the algorithm described in [18] requires only matrix-vector multiplications, it is easy to implement and has nearly
optimal accuracy and stability properties when combined with the power method.

Our recursive factorization scheme essentially uses the randomized SVD on blocks of M and combines them again using
the randomized SVD. Alternative block recursive QR factorizations [11,12] can be used instead. The latter approach is more
accurate than our scheme (see Section 4.2). The main advantage of our method is that it is much simpler to implement.

Finally, let us comment on randomized SVD-like decompositions for high-order tensors [21]. Such decompositions are
relevant because the forward operator M can be viewed as a third-order tensor that maps the incident field and the medium
perturbation to data. One could explore a randomized tensor decomposition, but we have not pursued this approach in this
paper.

Outline. In Section 2, we state the problem formulation. In Section 3, we give a summary of the algorithm FaIMS. In Sec-
tion 4 we present the SVD algorithms that are required in the overall method (presented in Section 5). Finally, in Section 6,
we present numerical results for the reconstruction of various point scatterer locations.

Notation. In Table 1, we summarize all the symbols used throughout this article. We use Roman letters to denote con-
tinuous scalar fields and operators, bold lower case letters to denote finite dimensional vectors, and bold upper case letters to
denote finite dimensional linear operators.

2. Definition of the inversion formula

The time-harmonic scalar wave equation is given by
r2vðrÞ þ k2ðrÞvðrÞ ¼ �sðrÞ; ð3Þ
where s is the source term and k is the wavenumber. We consider the case k2ðrÞ ¼ k2
0 þ gðrÞ, where k2

0 is the wavenumber of
the background medium and g is the unknown perturbation. If we denote the total scattered field as the sum of the incident
field u and the scattered field /, v = / + u, Eq. (3) becomes
r2/ðrÞ þ k2
0/ðrÞ ¼ �gðrÞð/ðrÞ þ uðrÞÞ: ð4Þ
Using the Born approximation, we neglect �g(r)/(r) and we obtain
r2/ðrÞ þ k2
0/ðrÞ ¼ �gðrÞuðrÞ: ð5Þ
We introduce the free-space Green’s function G given by
Gðr; r0Þ ¼ expðik0jr� r0jÞ
4pjr� r0j : ð6Þ
The solution of Eq. (5) can be obtained as a convolution with G and is given by
/ðrd; s;xÞ ¼
Z

H
Gðrd; r; xÞgðrÞuðr; s;xÞdr: ð7Þ
Eq. (7) is the forward problem, in which, given g, we can compute /. In the inverse problem, we seek to recover the anomaly
g given /(rd;s,x), a set of measurements generated by NsNx known incident fields and measured at Nd detector locations.

After discretization of g(r) (which we will denote it by g 2 CN), for a given source s, frequency x and detector d (the quad-
rature weights are absorbed in g and we ignore the discretization error) Eq. (7) becomes
/x
ds ¼

XN

j

Gx
dju

x
js gj;
which we write in a matrix form / = Mg. To demonstrate the quality of our approximation to M, we invert for g by first com-
puting Me, the approximate SVD of M, which we then use to apply the pseudo-inverse of Me on /. In our experiments the
incident field is u(r;s,x) = G(r;s,x), a spherical wave corresponding to a point source.

3. Summary of FaIMS

Before presenting the details of FaIMS (Section 5) let us outline the basic steps in the algorithm. Recall that our main goal
is to avoid the NsNxNdN complexity of applying M to a vector.

We introduce a preprocessing step in which use singular value decomposition to reduce the number of incident fields.
This step is analogous to source recombination techniques that have appeared in the literature. In the next two steps, we
compute the inputs for the recursive SVD (Section 4.2): the approximate SVD of Mx for a fixed frequency x. Then we use
the recursive SVD to combine the individual approximate SVDs for each frequency. Overall, FaIMS has four main steps:

1. Incident field SVD. For each frequency, we preprocess the incident field ux using the randomized SVD [18] (Section 4.1)
to compress the number of incoming fields ux and data /x and reduce the number of sources from Ns to Rx

s .



Table 2
Notation for the approximate ranks of operators that appear in the four steps of FaIMS.

Step A B C D

Approximate rank Rx
s Rx

g Rx R

Size initial matrix Ns � N Nd � N Rx
s Rx

g � N NxRx � N
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2. Forward problem SVD. For every frequency, we compute the approximate SVD of the Green’s function Gx by applying
the randomized SVD. Each matrix Gx 2 CNd�N is approximated by a matrix of rank by lower or equal to a constant which
we denote Rx

g .5

3. Single frequency-multiple sources SVD. Once we have computed the approximate SVDs of the Green’s functions, we can
combine them for a fixed frequency using the algorithm presented in Section 5. Each matrix Mx 2 CRx

s Rx
g �N is approxi-

mated by a matrix of rank Rx.
4. Overall SVD. Using the results of step C, we apply the recursive SVD (Section 4.2) to obtain the approximate SVD of the

complete system matrix M.

As mentioned before, once Me, the approximate SVD of M is computed, we can combine it with a regularization operator
and solve the linearized medium problem using an iterative method.

In the following section, we present the randomized and recursive algorithms that we use to construct Me. The random-
ized SVD allows fast approximation of low-rank matrices, using a matrix-vector multiplication. Then the recursive SVD en-
ables to obtain the approximate SVD of the matrix M = [M1 M2]t given the approximate SVDs of M1 and M2. This algorithm is
faster than a standard SVD when low rank approximations of M1 and M2 are available. It also provides better memory local-
ity than applying the randomized SVD directly to M. In Table 2, we summarize the notation for the approximate ranks of the
operators that appear in FaIMS.

4. Randomized and recursive SVDs

4.1. Randomized SVD

There has been a significant amount of work on randomized algorithms for low rank approximations of matrices. In our
work, we use an algorithm proposed in [18] (Algorithm 4.4). We briefly summarize its main steps here for completeness but
we omit the power iteration, which is required in order to obtain the error estimates we give below. Let M be a matrix of size
m � n. Then the randomized SVD method computes r, U, K and W, with singular values r1 6 r2 6 � � � 6 rmin(m,n) such that
kUKW⁄ �Mk 6 err+1. Here rr+1 is the r + 1 singular value of M and ⁄ denotes the conjugate transpose. Here U and W are
matrices of size respectively m � r and n � r, where r are the number of singular values greater than a prescribed accuracy
e. K is the diagonal matrix of size r � r containing the corresponding singular values.

Computing the approximate SVD requires finding Q such that
5 The
solver c
kQQ �M�Mk 6 errþ1; ð8Þ
end the constant e is nearly independent of the size and rank of the matrix when the power iteration is used. So for notational
simplicity in the following e �= 1. The main component of the algorithm is the application of M to a random matrix G. In [18],
G is chosen to be a Gaussian random matrix. The algorithm is summarized below in Algorithm 1 (we use MATLAB notation).
To avoid the need to precompute the matrix rank, we use an error estimate (Algorithm 1). If the complexity of the matvec is
l(m,n), then the complexity of the algorithm is Oðlðm;nÞ‘þ lðn;mÞr þm‘2 þ nr2Þ. Assuming m < n, the complexity is
Oðlðm;nÞ‘þ nr2Þ. If we have a dense matrix, the complexity is Oðmn‘Þ.

Algorithm 1. Randomized SVD

1: Inputs: M 2 Cm�n; e.
2: Outputs: approximate rank r, U, K, W such that M �UKW⁄.
3: r = 1
4: ‘ = r + 20
5: Create G (Gaussian random matrix G 2 Cn�‘)
6: R = MG
7: [Ur,Sr,Vr] = SVD(R)
8: Q(:,1:r) = Ur(:,1:r)
compression of the Green’s function seems specific to our forward problem formulation; it is not. A finite element or finite-difference-based forward
an be used in place of G.
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9: error estimate = kMG � QQwMGk
10: if error estimate > e � Sr(1,1) then
11: Increase r (e.g., r = r + 0.05m)
12: Goto 4
13: end if
14: T = MwQ
15: [U,K,W] = SVD(Tw)
16: W = QU

It follows that the overall complexity of this approximate factorization is Oð‘nmÞ for work and Oðrmþ rnÞ for storage.

4.2. Recursive SVD

Let M1 and M2 be two matrices of size m � n. We wish to construct the approximate SVD of
M ¼
M1

M2

� �
ð9Þ
assuming we know the approximate SVDs of M1 and M2. Let M1 ¼ U1K1W
�
1 and M2 ¼ U2K2W

�
2. For notational simplicity let r

be the rank of the approximations for both M1 and M2 so that Ui 2 Cr�r ; i ¼ 1;2. We seek to compute U, V and R so that
Me = URV⁄ and kM �Mek is smaller than a prescribed tolerance.

First, observe that M can be written as
M ¼ UT; where U ¼
U1 0
0 U2

� �
2 C2m�2r and T ¼

K1W
�
1

K2W
�
2

� �
2 C2r�n: ð10Þ
We can apply the randomized SVD algorithm to T to compute T ¼ UTRT V�T . Then, the SVD factors of M are U = UUT, R = RT,
and V = VT.

Remark 1. The SVDs of Mi are not necessary. All we need are U1 and U2, so that
T ¼
U�1M1

U�2M2

� �
and the algorithm proceeds by computing the approximate SVD of T.
Complexity. The complexity of computing the SVD of T is 2Rrn, where R 6 2r the numerical rank of T. The cost of applying

M on a vector is OðmrÞ þ OðRnÞ. The overall storage requirements are also OðmrÞ þ OðRnÞ.
Accuracy. We will assume that Ui are known approximately, that is kUiU

�
i Mi �Mik 6 rrþ1 and Mi = Me,i + Ei. Let

M = Me + E indicate the approximation of M due to approximation errors in the Mi blocks. Let U be the approximate
range-space basis for Me computed by the recursive SVD algorithm. Then,
kUU�M�Mk ¼ kUU�ðMe þ EÞ � ðMe þ EÞk 6 kUU�Me �Mek þ kUU�E� Ek 6 rðMeÞRþ1 þ 2rrþ1 6 rðMÞRþ1 þ 2rrþ1
where the last line follows by r(Me)R+1 � r(M)R+1, due to the stability of singular values due to small perturbations. Indeed,
from Theorem 8.6.2 in [15] (also see [30,31]) the error between the singular values of A + E and the ones of A is bounded, i.e.
jrk(A + E) � rk(A)j 6 kEk2, "k. Therefore, assuming that r(M)R+1 � rr+1, we get
kUU�M�Mk 6 3rrþ1: ð11Þ
Hence if we have L levels of recursion, we observe a factor of L + 1 larger error. In our experiments, we did not observe this
dependency and the recursive SVD is as accurate as applying the randomized SVD directly to M. As mentioned in the intro-
duction, classical dense linear recursive QR factorizations can be used instead [12]. Using those methods the approximation
of the range space of M error does not depend on the recursion depth, but they are harder to implement and parallelize
(something that we do not discuss here).

5. FaIMS

Using the randomized and recursive SVD we can now describe the complete algorithm for the reconstruction of g. We
recall that, for a fixed frequency x, the forward problem is given by
/x
ds ¼

XN

j¼1

Gx
djgju

x
js ; d ¼ 1; . . . ;Nd; s ¼ 1; . . . ;Ns; ð12Þ



Fig. 3. Instead of applying directly the recursive SVD (Section 4.2) on Nx frequencies, we apply the algorithm recursively to combine two frequencies at
each level of the recursion tree (this example is given for the case Nx = 8).
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where /x
ds is the set of measurement at the detector locations. We write (12) using a matrix notation as /x

s ¼Mx
s g where

Mx
s ¼ Gx diag ux

s

� �
. The overall algorithm can be stated as follows:

� Step A: For each frequency, reduce the number of incident fields.
� Step B: For each frequency, compute an approximate range-space basis for Gx using Algorithm 1.
� Step C: Combine the approximations of Mx

s to build an approximation for Mx.
� Step D: Combine Mx to build an overall approximation of M using the recursive SVD.

Inputs. We specify the domain (unit cube) size L defined in wavelengths k units (H is the domain [0;L]3), the source loca-
tions, the detector locations, the number of points N that will be used to discretize H, and the incident wave frequencies
x1;...;Nx .

Step A: Reducing the number of incident fields. This is a preprocessing stage that requires the evaluation of ux(r) at the
scatterer positions. The reduction is done separately for each frequency x. Let us introduce the approximate SVD of
ux = UxKxWx⁄ (where ux ¼ ux

1 � � �ux
Ns

� �t 2 CNs�N) with rank Rx
s 6 Ns. Then (12) becomes
6 A s
/x
ds ¼

XN

j¼1

Gx
djgju

x
js ; d ¼ 1; . . . ;Nd; s ¼ 1 . . . Ns

¼
XN

j¼1

Gx
djgj

XRx
s

l0¼1

Kx
l0 U

x
l0 jW

x
l0s

XNs

s¼1

Wx�
ls /x

ds ¼
XN

j¼1

Gx
djgj

XRx
s

l0¼1

Kx
l0 U

x
l0 j

XNs

s¼1

Wx�
ls Wx

l0s

/̂x
dl ¼

XN

j¼1

Gx
djgjK

x
l Ux

lj ;

/̂x
dl ¼

XN

j¼1

Gx
djgjû

x
jl ; d ¼ 1; . . . ;Nd; l ¼ 1; . . . Rx

s :

In other words, we use the orthonormality of the Wx and transform the incident fields and the data to obtain

/̂x
dl � Gx diag ûx

jl

� 	
g ; 1 6 l 6 Rx

s ; 1 6 x 6 Nx; ð13Þ

where /̂x
dl ¼ Wx�

l /x and ûx
l ¼ Kx

l Ux
l . Here Ux

l denotes the lth column of the matrix Ux 2 CN�Rx
s and Wx

l denotes the lth
column of the matrix Wx 2 CNs�Rx

s . As we increase the number of sources, for fixed noise we expect that the rank Rx
s

will be much smaller than Ns.6
Step B: Computation of the randomized SVD of Gx. For each frequency x, we compute the approximate SVD of the matrix
Gx; Gx

e ¼ Ux
g Kx

g Wx�
g 2 CNd�N using the randomized SVD (Section 4.1). We use Rx

g to denote the rank of Gx
e ; Rx

g

depends on the approximation tolerance for the SVD and satisfies Rx
g 6 Nd;N.

Step C: Combine the SVDs of all sources for a fixed frequency. To combine the approximate SVDs of the Rs sources for a
fixed frequency, we compute the approximate SVD of
GxDx
1

..

.

GxDx
Rs

2
664

3
775 2 CRsNd�N ; ð14Þ
imilar approach could be followed for /ds to guide numerical rank selection in the building of the approximate SVD of M.



Fig. 4. Definition of the three test problems we have used to test FaIMS. We use two geometries of point scatterers : a cross (A and B) and a biplane. For the
cross A, we generate the incident field by sources and detectors regularly spaced on the planes z = 0 and z = 12k respectively. For the Cross B test problem,
the detectors and point sources are located on two arbitrary geometries. For the biplane-like geometry, the sources and detectors are located on a sphere.
The triangulation of the biplane geometry is used for visualization only. To generate the data, we compute the scattered field due to point scatterers located
at the vertices of the mesh.

Table 3
Cross-like geometry: summary of the parameters used to verify the scalability of FaIMS. In the following, we will refer to one of those four tests by the mesh
size, i.e., N = 112, N = 212, N = 412 or N = 812.

N xmin xmax Nx Ns Nd scatterer size (k)

112 50 100 8 16 102 0.01 and 1
212 50 100 16 64 202 0.01 and 1
412 50 100 32 256 402 0.01 and 1
812 50 100 64 1024 802 0.01 and 1

Table 4
We report the relative error on the approximation normalized by the value of the maximum singular value. We also compute the relative error between FaIMS
and the SVD MATLAB function on the singular values (normalized by the value of the maximum singular value). Finally, we report the relative error between
FaIMS and the SVD MATLAB function on the approximation of the inverse. The scatterer model is the Cross A with size k. We use four sources with multiple
excitation frequencies to generate the incident fields and measure the scattered fields at [21]2 detectors. The computational domain is discretized using a
Cartesian grid of size [21]2.

Nx = 4 Nx = 8 Nx = 16 Nx = 32

kM � URV⁄k/rmax 3.07 � 10�6 2.34 � 10�6 2.10 � 10�6 2.01 � 10�6

kR � Rmatlabk/rmax 1.00 � 10�7 3.12 � 10�7 1.73 � 10�7 1.90 � 10�7

kg � gmatlabk/gmatlab 1.72 � 10�2 2.29 � 10�2 1.19 � 10�2 2.95 � 10�2
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where Gx 2 CNd�N and Dx
‘ ¼ diagðûx

‘ Þ 2 CN�N . Instead of computing directly the approximate SVD of this large matrix, we use
the approximate SVD of Gx computed during step B; Gx

e ¼ Ux
g Kx

g Wx�
g . More precisely, we compute the approximate SVD of
Bx ¼

Kx
g Wx�

g Dx
1

..

.

Kx
g Wx�

g Dx
Rs

2
664

3
775 2 CRsRx

g �N



Fig. 5. Cross A: We report g, the result of the inversion, at the z = 6k plane for the scatterer model cross A with size k. The left column represents the results
using FaIMS (A,C,E) and the right column the results using the LSQR MATLAB function with tolerance set to 10�5 (B) and (D). The red points represent the
true point scatterer locations. The two methods produce very similar results. (For interpretation of the references to colour in this figure legend, the reader
is referred to the web version of this article.)
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We compute Bx
e , the approximate SVD of Bx with the randomized SVD. Rx denotes its approximate rank. Finally, we trans-

form the data accordingly, i.e. we replace



Fig. 6. We report the normalized (by the time to ‘‘solve’’ (evaluate in our case) the forward problem) CPU time for each of the main steps of FaIMS against
the mesh size. The scatterer model is the Cross A with size 0.01k (plain lines) and k (dashed lines). The smaller is the cross size, the smaller is the normalized
CPU time for each step. This is due to the low rank approximation at the low frequency regime. For the scatterer model with size k, the major CPU
consuming step is the combining of the SVDs for all sources whereas, as expected, this step consumes only a small portion of time for the scatterer model
with size 0.01k.

Table 5
We report the normalized (by the time to solve the forward problem) CPU time against the mesh size using FaIMS and using the LSQR MATLAB function. For the
LSQR we also report the number of iterations (number in parentheses).

N = [11]2 N = [21]2 N = [41]2 N = [81]2

0.01k FaIMS 1.03 0.23 0.14 0.13
LSQR 11.6 (1) 413.6 (1) X X

k FaIMS 15.0 24.7 9.3 10.2
LSQR 13.1 (14) 407.7 (11) X X
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dx
1

..

.

dx
Rs

2
664

3
775 2 CRsNd by

Ux�
g dx

1

..

.

Ux�
g dx

Rs

2
664

3
775 2 CRsRx

g : ð15Þ
This transformation is beneficial when applying Gx to a vector has a work complexity that is larger than applying the
approximate factorization of Gx.

Step D:Recursion over frequencies. In the last step, we combine the Nx approximate SVDs of Mx (corresponding to Nx

frequencies) computed in step C. We apply the recursive SVD (Section 4.2). Let R denote the number of selected singular
values (smaller than a prescribed tolerance). We define T, W and S such that Me = TSWw. T and W are two matrices of size



Fig. 7. Cross A: For each major step of the algorithm, we report the compression rates against the frequency or the level in the tree. The ranks are
normalized by the full rank. The scatterer model is the Cross A with size 0.01k (plain lines) and k (dashed lines). We report the results for the four mesh sizes
(red: N = 812, black: N = 412, blue: N = 212 and green: N = 112). Because the useful information is limited, the rank is not dependent of the mesh size. As a
result, the larger the mesh is, the larger the compression. Moreover, the larger the scatterer model is, the smaller the compression. Finally, we remark that at
each step, the algorithm keeps compressing the information. (For interpretation of the references to colour in this figure legend, the reader is referred to the
web version of this article.)
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NxRsR
x
g � R and N � R respectively. S is a diagonal matrix of size R. Instead of applying directly the recursive SVD to com-

bine Nx frequencies, we apply recursively this algorithm to combine two frequencies at each level of the recursion tree
(see Fig. 3). One possible optimization would be to omit visiting all the leaves of the frequency tree (guided by changes in
the approximate rank) to reduce the number of frequencies for which we need to solve the problem.

This completes the calculation of the approximation of M. Note that the transformation of the data is not necessary and
desired if we want to apply the approximate M to a vector. The modification of the algorithm so that the matvec is applied
quickly without transforming the data is straightforward. Finally, the construction of the pseudoinverse is immediate.

Overall complexity estimate for work and storage. Let l(N) be the cost of solving a forward or adjoint Helmholtz prob-
lem assuming Ns 6 N and Nd 6 N. Also let Rs ¼maxxRx

s .

� Step A: The cost of reducing the number of incident fields is the cost for the construction of the low rank SVDs for matrices
of size Ns � N for each frequency x. The cost of a single frequency isOðRslðNÞÞ and the overall cost isOðRsNxlðNÞÞ (where
Rs 6 Ns).
� Step B: The cost of the computation of the randomized SVD of Gx 2 CNd�N for a fixed frequency is O Rx

g lðNÞ
� 	

so that the
total cost of this step is O Rx

g NxlðNÞ
� 	

(where Rx
g 6 Nd).



Fig. 8. We report g at the z = 6 k plane. The scatterer model is the Cross B with size 0.01k (left) and k (right). The 6561 detectors are located on the geometry
presented in Fig. 4B. We generate the data using incident fields generated by 1024 sources on the geometry presented in Fig. 4B and 64 frequencies.

Fig. 9. We report the normalized (by the time to solve the given forward problem) CPU time for each main step of our inversion algorithm against the mesh
size. The scatterer model is the Cross B with size 0.01k (plain lines) and k (dashed lines).
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� Step C: The cost of combining the sources is reduced to the cost of the computation of the randomized SVD of
Bx 2 CRsRx

g �N: O RxRsR
x
g N

� 	
for each frequency (with Rx 6 min RsR

x
g ;N

� 	
). So that the total cost of this step is

O RxRsNxRx
g N

� 	
.



Table 6
We report the normalized (by the time to solve the forward problem) CPU time against the mesh size using FaIMS and using the LSQR MATLAB function. For the
LSQR MATLAB function we also report the number of iterations (number in parentheses).

N = [11]2 N = [21]2 N = [41]2 N = [81]2

0.01k FaIMS 4.14 0.35 0.21 0.25
LSQR 6.4 (1) 295.6 (2) X X

k FaIMS 18.2 44.5 12.4 14.5
LSQR 9.5 (49) 309.8 (71) X X

Fig. 10. Cross B: For each major step of the algorithm, we report the compression rates against the frequency. The ranks are normalized by the full rank. The
scatterer model is the Cross B with size 0.01k (plain lines) and k (dashed lines). We report the results for the four mesh sizes (red: N = 812, black: N = 412,
blue: N = 212 and green: N = 112). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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� Step D: Let R be the approximate rank of M. Let Rg ¼ maxxRx
g . Let L = logNx and let R‘ be the rank of the operator at a node

at level ‘ (assuming for simplicity that all such nodes have the same rank) and RL = Rx. For the leaves of frequency tree, the
cost per leaf is RLRsl(N) or RLRsRgN. The total cost for the leaves is NxRLRsRgN. For an internal node, the cost to combine the
SVDs of its children is R‘(2R‘+1N) and the total cost at level ‘is 2‘R‘(2R‘+1N). The worst case is there is not compression as
we traverse the tree or equivalently R‘ � (R/2‘). Then the overall cost of traversing the tree (omitting constants) isPL�1

‘¼1 2‘R‘ð2R‘þ1NÞ 6 OðR2N log NxÞ.



Fig. 11. Results of the inversion for the scatterer model of the biplane with size k. Each row corresponds to a particular plane Oxy, Oxz or Oyz. The left
column corresponds to a 3-D view of the isosurfaces (g = 0.25gmax) and the right column corresponds to a 2-D slice, respectively from top to bottom at the
planes z = 0, y = 0 and x = 0.
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Therefore the overall complexity of FaIMS is
OððRs þ RgÞNxlðNÞÞ þ OðRxRsNxRgNÞ þ OðR2N log NxÞ:
Note that applying the randomized SVD algorithm directly to M has cost OðRNsNxlðNÞÞ þ OðR2NÞ. Since Rx 6 R, Rs 6 Ns

and assuming RgN 6 l(N), the overall complexity of FaIMS same as applying a randomized SVD directly to M up to the log Nx

factor. (If R logNx 6 NsNxl(N)/N, then the complexity is similar.)
However, FaIMS provides better locality in the calculations (and thus, better potential for parallel scalability). Most

important if we do not have an optimal solver (i.e., l(N)	 RgN) FaIMS will be faster than direct SVD since it requires
Nx(Rs + Rg) solutions of a scattering problem as opposed to NsNxR.



Fig. 12. Results of the inversion for the scatterer model of the biplane with size 5k. Each row corresponds to a particular point of view (plane Oxy, Oxz or
Oyz). The left column corresponds to a 3-D view of the isosurfaces (g = 0.25 ⁄ gmax) and the right column corresponds to a 2-D slice, respectively from top to
bottom at the planes z = 0, y = 0 and x = 0.
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In each of the four steps of FaIMS, we perform a low rank approximation of the system matrix. Because this matrix is de-
fined by the values of a function on a given discretization, its rank is constant even though we use a coarser discretization. As
a result for large enough numbers of sources, detectors, excitation frequencies and/or discretization of H, the values of Rs, Rg,
Rx and R are constant. As a result the final complexity estimate becomes
OðlðNÞNx þ NxlðNÞÞ:
As we remarked before, one can also reduce the Nx factor by avoiding vising all the leaves of the tree. One can use a greedy
method in which new frequencies are added only if there is sufficient change in the rank. We have not explored this ap-
proach in this paper.
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Storage. For the step A, the storage of the Nx singular vectors is order NxRsN. For the step B, the storage of the Nx singular
vectors is order Nx RgN. For the step C, the cost is NxRxN. Finally, the storage cost of the combined matrices in step D is
OðRNÞ. The storage of the singular vector of the approximate SVD of M is also OðRNÞ.
6. Numerical experiments

We present several source-receiver-scatterer configurations to illustrate the performance of FaIMS. We demonstrate the
capability of placing detectors and sources on arbitrary geometries and the overall scalability of the proposed algorithm. We
verify the accuracy of the algorithm using two scatterer geometries: a cross-like planar geometry of point scatterers and a
biplane-like 3D geometry of point scatterers. We generate the scattered field using single-scattering forward problem
approximations (Born approximation). In each example, the wave velocity of the background medium is set to one. We
are focused on demonstrating the scalability aspects of our algorithm, so we do not consider noise or regularization. The
algorithm has been implemented in MATLAB and our experiments took place on a AMD Opteron workstation. The tolerance
e in the randomized SVD algorithm has been set to 10�9 in all of our experiments. The truncation parameter (regularization)
we used to invert the approximate factorization of M, was 10�8r1, where r1 is the maximum singular value of M.

6.1. Description of the test problems

Definition of the main parameters used in our tests.

� The Nx incoming field frequencies are equispaced in the [xmin,xmax] interval.
� Length scales are measured in terms of the smallest wavelength k :¼ 2p/xmax. (The higher the frequency, the lower the

compression of the operators and thus, the higher the computational cost of the inversion.) We also use the parameter
L = 12k.

Specification of the target medium perturbations and parameters for the different numerical experiments.

� Cross-like geometry. We consider two test problems based on a simple cross-like geometry located at the z = 6k plane.
– For the Cross A (Fig. 4(A)), the detectors are regularly spaced on the plane z = L and the sources on the plane z = 0.
– For the Cross B, the detectors and sources are located on arbitrary geometries (Fig. 4(B)).

We verify the accuracy of our approximate SVD reconstruction on the Cross A scatterer model with size k. We use four
sources with multiple excitation frequencies to generate the incident fields and measure the scattered fields at [21]2 detec-
tors. The computational domain is discretized with a linear grid with size [21]2. Also on these two test problems, we verify
the scalability of the algorithm with increasing N, Nd, Ns and Nx

7 and demonstrate the effectiveness of a low rank approxima-
tion. See Table 3 for a summary of the problem and scatterer model sizes used in this set of experiments.
� Biplane geometry. We consider a test problem with a more complex geometry. The sources and detectors are located on

a sphere (Fig. 4(D)). We consider two scatterer model sizes: k and 5k. We use 162 detectors, 12 sources, 8 frequencies and
we set N = 513.

6.2. Results

Cross A. We first verify the accuracy of our approximate SVD reconstruction. In Table 4, we report the relative error on the
approximation normalized by the value of the maximum singular value. We also compute the relative error between FaIMS
and the SVD MATLAB function on the singular values (normalized by the value of the maximum singular value). Finally, we
report the relative error between FaIMS and the SVD MATLAB function on the approximation of the inverse.

To verify the efficiency and accuracy of our algorithm, we solve the inverse problem both using our FaIMS algorithm and
the LSQR MATLAB function. The termination tolerance in the LSQR algorithm is set to 10�5. In Fig. 5, we report g, the results
of the inversion, for various mesh sizes and for the scatterer model of the cross geometry with size k. The left column plots
represent the results of FaIMS and the right column plots the results with the LSQR. The mesh sizes handled using the LSQR
function are limited due to memory constraints.8 Both methods lead to a good accuracy of the reconstruction. In both cases, the
larger the problem is, the better the reconstruction. The accuracy of FaIMS is slightly better. The reason is that we terminated
LSQR early.

In Fig. 6, we report the CPU time for the four main steps of FaIMS: the reduction of the number of incident fields, the com-
putation of the approximate SVDs of the Green’s functions, the combining of the approximate SVDs for all sources for a fixed
frequency and the combining of the approximate SVDs for all frequencies, for the two scatterer model sizes (0.01k and k). We
normalize the CPU time by the total CPU time required to generate the incident field (which is linear in Nd, Nx, Ns and N). We
note that the smaller the cross size is, the smaller the CPU time. This is due to the effectiveness of the low-rank approxima-
7 Given a minimum and a maximum frequency, we verify that the algorithm scales well as we increase the number of sample frequencies in this range.
8 We could also use a simple matrix free approximation. In that case, the limitation is the maximum number of iterations allowed.
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tion. For the scatterer model with size k, the major CPU cost is the combining of the approximate SVDs for all sources
whereas, as expected, this step takes a small portion of time for the scatterer model with size 0.01k. Again, as we increase
N the normalized CPU time of each step is reduced. This result is in agreement with our complexity estimate.

In Table 5, we report the normalized total CPU time of the inversion both with FaIMS and with the LSQR MATLAB func-
tion. Again the scatterer model is the Cross A with size 0.01k and k. For the LSQR solver, the total inversion time is indepen-
dent of the scatterer model size whereas FaIMS benefits from low rank approximations at the low frequency regime. FaIMS is
clearly faster than the LSQR MATLAB function. In Fig. 7, we illustrate the level of compression according to the scatterer mod-
el and problem sizes. For each major step of the algorithm, we report the compression rates against the frequency or the level
in the tree for the combining of the approximate SVDs for all frequencies. The ranks are normalized by the full rank. Because
the inverse problem is ill-posed, the singular values decay very fast. We use a truncated SVD to regularize the formulation.

Cross B. For this second example, the sources and detectors are located on arbitrary geometries. We report the results of
the inversion g for the case of N = 812 in Fig. 8 (left: scatterer model with size 0.01k; right: scatterer model with size k). This
example illustrates the ill-posedness of the problem. For the lowest frequency, only a small number of singular values are
selected and the algorithm is very fast. In Fig. 9, we report the CPU time for the four main steps of FaIMS: the reduction
of the number of incident fields, the computation of the approximate SVDs of the Green’s functions, the combining of the
approximate SVDs for all sources for a fixed frequency and the combining of the approximate SVDs for all frequencies, for
the two scatterer model sizes (0.01k and k). We normalize the CPU time by the total CPU time to generate the incident field
(which is linear in Nd, Nx, Ns and N). The smaller the cross size is, the smaller the CPU time since low-rank approximations
are effective. For the scatterer model with size k, the major CPU consuming step is the combining of the approximate SVDs
for all sources whereas, as expected, this step consumes only a small portion of time for the scatterer model with size 0.01k.
In Table 6, we report the normalized total CPU time of the inversion both with FaIMS and with the LSQR function. Again the
scatterer model is the Cross B with size 0.01k and k. For the LSQR solver, the total inversion time is independent of the scat-
terer model size whereas FaIMS benefits from low rank approximations at the low frequency regime. FaIMS is clearly faster
than the LSQR MATLAB function and than the forward solver at low frequencies.

In Fig. 10, we report the level of compression according to the scatterer model and problem sizes.
Biplane. This last example demonstrates the ability of the algorithm to recover complex geometries. The scatterer model

is a biplane-like geometry with size k or 5k. On Fig. 11 (size k) and Fig. 12 (size 5k), we report the results of the inversion g
under a tabular form. Each row corresponds to a particular plane Oxy, Oxz or Oyz. The left column corresponds to a 3-D view
of the isosurfaces (g = 0.25 ⁄ gmax) and the right column corresponds to a 2-D slice at the median plane. For the scatterer
model with size k, the inversion is as accurate. We can already distinguish the main components of the biplane. For example,
on the Oxz view, we can separate the two floats of the plane. However, we cannot see the two wings or say that the shape is a
biplane. Again, this is due to the ill-posedness of the problem at low frequencies. On the other hand, for the scatterer model
with size 5k, the system matrix is nearly full rank. As a result, the inversion is more accurate. We can clearly see the two
wings, the two floats and the fin of the biplane.

7. Conclusions

In this paper, we have presented FaIMS, a method for the inverse medium problem for the time-harmonic scalar wave
equation. FaIMS uses a randomized SVD algorithm to compute SVDs of small submatrices and then applies a recursive
SVD algorithm to reconstruct the overall factorization. Its complexity estimate is orders-of-magnitude smaller than the stan-
dard SVD factorization. The method is matrix-free, it only requires matrix-vector multiplication for the forward and adjoint
problems. We showed that the factorization error in the singular values is bounded by the smallest largest singular value
that we truncate in the rank approximation. The numerical efficiency and accuracy of the method is demonstrated in several
numerical experiments in the low frequency (0–10 wavelengths) regime for the case of point scatterers. FaIMS can handle
detectors and sources located on arbitrary geometries.

In future work, we intend using our approximate SVD factorization as a preconditioner with a Newton–Krylov-multigrid
iterative method for full nonlinear inversion method (for example, for problems in which G is not analytically available [5]).
Another interesting question is how do tune the accuracy of the approximation to M given a noise level and a regularization
operator. Also, our ongoing work includes adaptive algorithms and parallelization of the method. For higher frequencies,
ideas discussed in [13] can be explored to construct directional low-rank approximations.
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