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We present an Asymptotic-Preserving ‘all-speed’ scheme for the simulation of compress-
ible flows valid at all Mach-numbers ranging from very small to order unity. The scheme
is based on a semi-implicit discretization which treats the acoustic part implicitly and
the convective and diffusive parts explicitly. This discretization, which is the key to the
Asymptotic-Preserving property, provides a consistent approximation of both the hyper-
bolic compressible regime and the elliptic incompressible regime. The divergence-free con-
dition on the velocity in the incompressible regime is respected, and an the pressure is
computed via an elliptic equation resulting from a suitable combination of the momentum
and energy equations. The implicit treatment of the acoustic part allows the time-step to
be independent of the Mach number. The scheme is conservative and applies to steady
or unsteady flows and to general equations of state. One and two-dimensional numerical
results provide a validation of the Asymptotic-Preserving ‘all-speed’ properties.

� 2012 Elsevier Inc. All rights reserved.
1. Introduction

The numerical simulation of fluid flows at all Mach numbers is an active field of research. The occurrence of low Mach
number regions in a globally compressible flow may be caused by the boundary or initial conditions (e.g. in a fluid at rest
subject to a supersonic jet), by the geometry of the problem (e.g. in a nozzle with a large variation of the section), or by
the underlying Physics (e.g. in the case of phase changes). This occurrence gives rise to specific numerical issues which
are discussed below.

When the Mach number tends to zero, compressible flow equations converge to incompressible equations: the compress-
ible Euler equations in the inviscid case (respectively the compressible Navier–Stokes equations in the viscous case) con-
verge to the incompressible Euler equations (respectively incompressible Navier–Stokes equations). This convergence has
been studied mathematically by Klainerman and Majda [32,33] (see also [12,21,45,56] for reviews and references). However,
in numerical simulations, it is very difficult to shift from compressible flow equations to incompressible ones in the regions
where the Mach-number becomes very small. Therefore, it is necessary to design numerical methods for compressible flows
that can handle both the compressible regime (i.e. local Mach-number of order unity) and the incompressible one (i.e. very
small local Mach-number). This is the purpose of ‘all-speed schemes’.

In this work, we derive an All-Speed scheme using the Asymptotic-Preserving methodology. The Asymptotic-Preserving
(AP) property is defined as follows. Consider a continuous physical model Me which involves a perturbation parameter e
. All rights reserved.
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(here, e is the scaled Mach-number and Me represents the compressible Euler or Navier–Stokes model) which can range
from e ¼ Oð1Þ to e� 1 values. Let M0 the limit of Me when e ? 0 (here M0 is the incompressible Euler or Navier–Stokes
model). Let nowMe

D be a numerical scheme which provides a consistent discretization ofMe with discrete time and space
steps (Dt,Dx) = D. The schemeMe

D is said to be Asymptotic-Preserving (AP) if its stability condition is independent of e and if
its limitM0

D as e ? 0 provides a consistent discretization of the continuous limit modelM0. The AP property is illustrated by
the commutative diagram of Fig. 1.

The present scheme is derived following the AP methodology and targets the situation of mixed flows where part of the
flow has local Mach-number of order unity and is in a compressible regime and part of the flow has very small local Mach-
number and is in the incompressible regime. More precisely, our scheme meets the following requirements. It is AP, i.e. it is
consistent with both the compressible and incompressible regimes. The divergence-free condition on the velocity in the
incompressible regime is explicitly satisfied up to the order of the approximation. The CFL condition is independent of
the Mach-number. Therefore, the time-step is not constrained to be inversely proportional to the sound speed like. We re-
mind that classical explicit schemes require such a time-step constraint which is very detrimental to the scheme efficiency in
the small Mach-number regime. The scheme is conservative and preserves the correct shock speeds in the compressible re-
gime. At last, the scheme applies to a general equation of state and to steady as well as unsteady flows.

The present work is the continuation of earlier work on the construction of Asymptotic-Preserving schemes for fluid
equations in the small Mach-number limit. In [18], a first-order AP scheme is derived for the isentropic Euler equations.
A second order version of this scheme based on the Kurganov–Tadmor central scheme methodology is proposed in [58].
Here, we extend the work of [18] to the full Euler and Navier–Stokes equations, i.e. including an energy equations instead
of the isentropic assumption. This addition involves more than a simple technical adaptation. Indeed, the scheme has to
be strongly modified in the choice of the terms that require an implicit treatment. Some of these terms have to be shifted
from the mass to the energy conservation equation. With the use of a real gas equation of state, the resulting pressure equa-
tion becomes nonlinear and requires a specific treatment. We also provide a second-order extension of the method based on
the classical MUSCL methodology which can apply to a larger software framework than the central scheme methodology.
The numerical results will show that the passage to second order is qualitatively necessary to achieve a good accuracy.
We also mention [27] which relates to [18] but provides an alternate way of reaching the AP-property.

Understanding why compressible flow solvers perform so poorly in the low Mach-number regime has triggered a vast
literature since the seminal work of Chorin [9]. Volpe [63] observed that the numerical error increases when the Mach-num-
ber is decreased, at a constant mesh and that the convergence rate deteriorates noticeably. Guillard and Viozat [26] observe
that an upwind space discretization leads to pressure fluctuations of the order of the Mach number e while in the continuous
case the pressure fluctuations are of order e2. This difference originates from the upwinding terms, and more precisely from
the eigenvalues of the Jacobian matrix whose order of magnitude is the sound velocity. The argument has been developed
further in [19].

Compressible codes also require an increasingly large computational time as the incompressible regime gets closer. In-
deed, the CFL stability condition for an explicit scheme reads Dt 6 Dx

jkmax j, where Dt is the time-step, Dx the space step, and
kmax is the fastest characteristic wave and can be written kmax = u ± c, u being the fluid velocity and c the sound velocity.
In scaled variables (see below for details on the scaling), the Mach number e appears explicitly in the stability condition
as follows:
Fig. 1.
M0 wh
horizon
that the
D~t 6
D~x

j~kmaxj
¼ D~x

max j~u� ~c
e j
¼ e

D~x
max je~u� ~cj ; ð1:1Þ
where the tildes denote scaled quantities and the sound speed is now written ~c=e where ~c ¼ Oð1Þ. The time-step is therefore
roughly proportional to the Mach number e and is dramatically reduced when e is small.
Asymptotic-Preserving (AP) property: the upper horizontal arrow translates the assumption that the continuous modelMe tends to the limit model
en e ? 0. The left vertical arrow expresses that Me

D is a consistent discretization of Me when the discretization parameter D ? 0. The lower
tal arrow indicates that the schemeMe

D has a limitM0
D when e ? 0 for fixed D. Finally, the right vertical arrow expresses the AP-property: it says

limit scheme M0
D is a consistent discretization of the limit model M0 when D ? 0.
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The design of specific schemes for the small Mach-number regime has consequently triggered an abundant literature, fol-
lowing various tracks. A first track consists in applying preconditioning methodologies. These methods have been initiated
by the ’artificial compressibility’ technique of Chorin [8] and consist in multiplying the time-derivatives by a suitable matrix.
They aim at modifying the eigenvalues of the compressible system in order to reduce the disparity between the acoustic and
fluid wave speeds [8,41,42,60,61]. However, problems due to Computational instabilities related to the structure of the
eigenvectors [13] and to the fact that the divergence-free constraint on the velocity is not always respected need to be dealt
with. In most cases, these methods only apply to steady-state computations, since the time derivatives are modified. For
non-stationary flows, dual time-stepping techniques can be introduced [1] to recover time-accuracy. Working with the ori-
ginal compressible equations, [22] construct a semi-implicit Roe-type solver by decomposing the Jacobian matrix into the
fast and slow eigenvalues, the former being treated implicitly. In [49], the proposed scheme includes an implicit predictor
convective step, followed by a semi-implicit corrector step.

A second track consist in focusing on the pressure equation. To this aim, a natural idea is to adapt classical incompressible
schemes to the compressible case. The pressure-correction method SIMPLE [31,52] solves an elliptic pressure correction
equation obtained via the mass conservation equation and the equation of state. In [48], the elliptic pressure correction
equation is obtained by introducing the pressure equation (derived from the energy equation) in the momentum equation.
These methods respect the divergence constraint on the velocity but the formulation is not always conservative. In the ICE
(Implicit Continuous Eulerian) method introduced by Harlow and Amsden and followers [5,28], a splitting method is intro-
duced between the explicit convective part and implicit acoustic part. However, the ICE method is not conservative and inac-
curate shock speeds are observed. Klein [34] proposes a semi-implicit scheme which solves explicitly the leading order
contribution of the pressure and the lower orders, implicitly. Other ways generating elliptic equations on the pressure
can be found in [37,47,50,53,62,65].

A third track consists in using gauge (or Hodge) decomposition of the flow variables [10]. Indeed, the incompressible
velocity between divergence free, it is tempting to decompose the compressible velocity into a divergence-free and a
curl-free part. Semi-implicit time discretizations are used for the divergence-free part. The gauge decomposition was used
in an earlier attempt to derive and AP-scheme [16]. However, the method was too complex and never used.

To some extent, our work belongs to the second class and relies on the introduction of a suitable elliptic equation on the
pressure. This equation is derived from a semi-implicit methodology where the pressure terms are treated implicitly while
the other terms are given an explicit treatment. Our work departs from previous ones in several aspects. First, the problem is
discretized in a single step, which reduces the computational cost compared to predictor–corrector procedures. Second, the
scheme is in conservative form and produces correct shock speeds. Third, the only equation solved implicitly is the elliptic
equation, whose construction from the semi-implicit part of the scheme is extremely simple. While a semi-implicit method
is less efficient than a fully explicit one when the Mach number is of order 1, it takes care of the very fast sound speeds which
appear in the limit of small Mach numbers. Alternately a coupling strategy where the method is changed adaptively from
explicit to implicit when needed could be envisioned. However, such a coupling strategy, in addition to being quite complex
to implement and to tune, lacks robustness. Indeed it requires the definition of a threshold to decide when to shift methods.
The simulation outcomes are very sensitive to how this threshold is defined and implemented. The whole point of the
Asymptotic-Preserving methodology is to avoid such coupling strategies, at the price of a possible slight accuracy reduction
in the O(1) Mach number regions, due to the semi-implicit nature of the scheme.

With the Asymptotic-Preserving method, the time-step is independent of the Mach-number. The time-step still depends
on the wave-speeds of the explicit system, which coincide with the fluid velocity juj. The resulting CFL condition is jujDt/
Dx 6 O(1). Consequently, the method is well suited to cases where the maximal value of the velocity is far less than that
of the sound speed. This of course includes small Mach-number regimes, but also situations where, due to forcing or bound-
ary terms, very large sound speeds are generated in some regions while moderate sound speeds prevail in the rest of the
domain. Thanks to the AP property, the scheme has the property to be consistent with both the O(1) and small Mach number
regimes. Therefore, it is consistent in the whole range of Mach numbers and can be used when the local Mach number varies
in the whole range of values between very small to O(1). This consistency property is one of the landmarks of the AP property
(see discussion in [29]).

More generally, AP-schemes have previously been proposed for neutron transport problems [38], multiscale kinetic equa-
tions [30], hyperbolic heat equations [25], relaxation limit of hyperbolic models [44], plasmas in the quasi-neutral limit
[11,17] or in the large magnetic field limit [15].

The outline of this paper is as follows. We first provide a semi-implicit AP time discretization of the compressible flow
equations in Section 2. Then, we derive the fully discrete (in time and space) AP-scheme at first order in Section 3. The con-
struction of an elliptic equation on the pressure as well as the resolution of the scheme is detailed, and the outline of the
extension to a second order scheme is given. Then, we perform the asymptotic analysis of the proposed scheme in Section 4,
in order to show the AP property. Numerical results presented in Section 5 provide a validation of the scheme in both the
compressible and close-to-incompressible regimes. Finally, a conclusion is drawn at Section 6.

2. Time semi-discrete scheme

We start with the Navier–Stokes equations (2.1)–(2.3):
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@tqþr � qu ¼ 0; ð2:1Þ

@tquþr � ðqu� uÞ þ rp ¼ r � qm ðruþruTÞ � 2
3
ðr � uÞI

� �� �
þ qfext; ð2:2Þ

@tqEþr � ðqHuÞ ¼ r � k
Cp
rh

� �
þ qfext � u; ð2:3Þ

W ¼ qE ¼ 1
2
qu2 þ qh� p; ð2:4Þ
where q is the density, u is the velocity, p is the pressure, h is the enthalpy, E is the total energy, H ¼ Eþ p
q is the total en-

thalpy, m is the kinematic viscosity, ruT is the transpose of the gradient of the velocity, I is the identity matrix, k is the con-
ductivity, Cp is the specific heat capacity, and fext represent external forces like gravity. The contribution of the term
r � qm ðruþruTÞ � 2

3 ðr � uÞI
� �� 	

� u in the energy equation has been neglected, according to the models used in the CEA
codes FLICA4 [3,59] and CATHARE [46], but could easily be added. We consider a general equation of state linking the den-
sity, the pressure and the enthalpy:
q ¼ qðp; hÞ: ð2:5Þ
In this paper we deal with scaled equations. The scaling parameters q0, p0, u0, x0 are introduced along with the scaled
variables, denoted by a tilde.
~q ¼ q
q0
; ~u ¼ u

u0
; ~p ¼ p

p0
; ~x ¼ x

x0
; eE ¼ q0

p0
E; ~h ¼ q0

p0
h: ð2:6Þ
The scaled equation are the following (we will omit the tildes in the remainder of the paper):
@tqþr � qu ¼ 0; ð2:7Þ

@tquþr � ðqu� uÞ þ 1
e2rp ¼ 1

Re
r � q ðruþruTÞ � 2

3
ðr � uÞI

� �� �
þ qfext; ð2:8Þ

@tqEþr � ðqHuÞ ¼ 1
Re � Pr

4 hþ e2qfext � u; ð2:9Þ

W ¼ qE ¼ 1
2
e2qu2 þ qh� p; ð2:10Þ
where the parameters resulting from the scaling are:
e2 ¼ q0u2
0

p0
; Re ¼ u0x0

m
; Pr ¼ q0mCp

k
: ð2:11Þ
The parameter e represents a global Mach number characterizing the flow and the nondimensionalisation. It is different from
the local Mach number. The parameter Re is the Reynolds number and Pr is the Prandtl number.

For the sake of simplicity, the scheme is presented on the full Euler equations, which represent the convective part of the
Navier–Stokes equations. The right-hand terms in the Navier–Stokes equations (2.1)–(2.3) will be included later in explicit
source terms, and the time semi-discretization will not be modified.

The AP time semi-discrete scheme is written as follows:
qnþ1 � qn

Dt
þr � qn ¼ 0; ð2:12Þ

qnþ1 � qn

Dt
þr � qn � qn

qn
þ apn

� �
þ 1� ae2

e2 5 pnþ1 ¼ 0; ð2:13Þ

Wnþ1 �Wn

Dt
þr � Hnqnþ1 ¼ 0; ð2:14Þ

Wnþ1 ¼ qnþ1enþ1 þ 1
2
e2qnðunÞ2 ¼ qnþ1hnþ1 � pnþ1 þ 1

2
e2qnðunÞ2; ð2:15Þ
where Dt is the time-step, tn = nDt and the superscript ‘n’ denotes the approximation of the variables at tn, q = qu, W = qE.
The time discretization of the total energy W = qE splits into an implicit evaluation of the internal energy qe = qh � p, and in an
explicit evaluation of the kinetic energy. The discretization of the space derivatives is detailed in the next section (Section 3).

The parameter a is a tuning parameter which satisfies a 2 0; 1
e2

� 	
. The choice a = 0 corresponds to full pressure upwinding.

Then, the explicit system formed by the equations for q and q correspond to a discretization of the pressureless gas dynamics
equations [6]. This system is unstable and the resulting discretization may develop spurious oscillations in the presence of
strong shocks [4,7]. Therefore, when there is a substantial part of the flow in the O(1) Mach number regime, it is preferable to
take a – 0 [18,58]. On the other hand, the choice a ¼ 1

e2 corresponds to no pressure upwinding at all, and then, the scheme is
close to a classical explicit shock capturing scheme, which reproduces shock waves in a very satisfactory way. However, if
a ¼ Oð 1

e2Þ, the CFL number (see expression (3.8) below) is that of an explicit scheme and the AP property is lost. Therefore,
turning the parameter a on, but keeping it much smaller than 1

e2 (e.g. by maintaining it O(1)), allows us to prevent possible
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spurious oscillations at strong shocks which may occur in the O(1) Mach number regimes. It is documented in [18,58] that
taking a = O(1) allows us to recover good shock capturing properties in these regimes. In small Mach number situations the
value of a can be taken equal to zero, as no more upwinding of the pressure term is needed.

Let us make a few more comments on the proposed scheme. First, the scheme being conservative, we expect good shock
properties in the compressible regime. Then, we will see that the implicit treatment of the pressure in the momentum Eq.
(2.13) is a key to the asymptotic preserving property (Section 4.2). An other noticeable feature is the implicit treatment of the
momentum q in the energy equation, allowing us to construct an elliptic equation on the pressure. We now detail the res-
olution of the scheme and the construction of this elliptic equation.

The scheme can be solved through the following steps:
First, the density qn+1 is obtained via the resolution of the explicit continuity Eq. (2.12).
An elliptic equation on the pressure is then solved. To construct this equation, the momentum equation (2.13) is rewritten as:
qnþ1 ¼ qn � Dt5 � qn � qn

qn
þ apn

� �
� Dt

1� ae2

e2 5 pnþ1: ð2:16Þ
This expression is inserted into the energy Eq. (2.14) and leads to:
Wnþ1 � Dt2 1� ae2

e2 5 � Hn 5 pnþ1
� �

¼ /ðqn;qn;WnÞ; ð2:17Þ
where the right hand side / is explicit and is equal to:
/ðqn;qn;WnÞ ¼Wn � Dtr � Hnqn þ Dt2r � Hn 5 � qn � qn

qn
þ apn

� �� �
: ð2:18Þ
Two cases can be considered: the specific case of a perfect gas equation of state, and the case of a general equation of state
(EOS).

Perfect gas EOS For a perfect gas of polytropic constant c, the internal energy reads qe ¼ 1
c�1 p. We can rewrite (2.17) as

follows:
pnþ1 � ðc� 1ÞDt2 1� ae2

e2 5 � Hn 5 pnþ1� �
¼ ~/ðqn;qn;WnÞ; ð2:19Þ
with
~/ðqn;qn;WnÞ ¼ ðc� 1Þ/ðqn;qn;WnÞ � 1
2
ðc� 1Þe2qnðunÞ2: ð2:20Þ
Eq. (2.19) is an elliptic equation on the pressure. It allows us to find the pressure pn+1, and then Wn+1.
General EOS For a general equation of state, the internal energy reads qe = qh � p. In this case, the following system has

to be solved:
qnþ1hnþ1 � pnþ1 � Dt2 1�ae2

e2 5 �ðHn 5 pnþ1Þ ¼ ~/0ðqn;qn;WnÞ;
qðpnþ1;hnþ1Þ ¼ qnþ1;

(
ð2:21Þ
where
~/0ðqn;qn;WnÞ ¼Wn � 1
2
e2qnðunÞ2 � Dtr � Hnqn þ Dt2r � Hn 5 � qn � qn

qn
þ apn

� �� �
: ð2:22Þ
This still leads to an elliptic equation for the pressure, and the enthalpy is constrained by the value qn+1 of the density found
by the resolution of the explicit continuity equation. Solving this system allows us to find pn+1, hn+1 and Wn+1.

The momentum qn+1 is finally obtained via the momentum equation (2.16), as pn+1 is now known. Let us note that in
(2.16) all terms are O(1). Indeed, we have 1�ae2

e2 5 pnþ1 ¼ Oð1Þ due to the elliptic equation (2.21) which implies that
pn+1 = O(e2) in the Sobolev space H2 given the elliptic regularity theorem, and using appropriate boundary conditions. We
thus get that rpn+1 = O(e2).

The proposed scheme presents two notable differences with the scheme for the isentropic equations presented in [18].
First, the density is taken explicitly in the continuity equation. Then, the elliptic equation is obtained by the insertion of
the momentum equation into the energy equation instead of into the continuity equation in the isentropic case. This differ-
ence is a consequence of the asymptotic analysis of the continuous full Euler equations (Section 4.1) where the divergence
constraint on the velocity in the low Mach number regime is obtained from the energy equation.
3. Full time and space discretization

We present the full time and space discretization of the scheme for a first order scheme in a first part. Then we will extend
the discretization to a second order scheme. We also insist on the centered space discretization of the implicit pressure.
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3.1. First order scheme

In the finite volume framework, the first order space discretization of the scheme for a general multidimensional system
on a structured or unstructured mesh is given by:
qnþ1
i � qn

i

Dt
þ
X

v2tðiÞ
miv �

qn
i þ qn

v
2

þ Dn
ivq

� �
¼ Sn

iq ; ð3:1Þ

qnþ1
i � qn

i

Dt
þ
X

v2tðiÞ
miv � bn

iv þ
1� ae2

2e2 pnþ1
i þ pnþ1

v
� �� �

¼ Sn
iq ; ð3:2Þ

qnþ1
i hnþ1

i � pnþ1
i �Wn

i

Dt
þ
X

v2tðiÞ
miv �

Hn
i qn

i þ Hn
vqn

v
2

þ Dn
ivw
þ Dt

Hn
i Sn

iq þ Hn
vSn

vq

2

"

�Dt
Hn

i

2

X
r2tðiÞ

mir � bn
ir þ

1� ae2

2e2 pnþ1
i þ pnþ1

r

� �� �
� Dt

Hn
v

2

X
u2tðvÞ

mvu � bn
vu þ

1� ae2

2e2 pnþ1
v þ pnþ1

u

� �� �#
¼ Sn

iw ; ð3:3Þ
where, to simplify, we have introduced the notations:
miv ¼
siv

Vi
civ

i niv ; ð3:4Þ

bn
iv ¼

1
2

qn
i � qn

i

qn
i

þ qn
v � qn

v
qn

v

� �
þ a

pn
i þ pn

v
2

þ Dn
ivq
; ð3:5Þ
t(i) is the set of neighbors of the cell i, niv is the unitary normal of the face between the i and v cells, siv is the surface of this
face, Vi is the volume of the cell i, and civ

i is + 1 for an incoming normal of the face iv into the cell i and �1 for an outgoing
normal, Dn

iv ¼ Dn
ivq
;Dn

ivq
;Dn

ivw


 �
is the upwinding between the i and v cells, taken at the time n, and detailed below.

Note that the energy equation (2.14) has been replaced by a discretization of the elliptic equation (2.21) on the pressure,
the system so constituted being equivalent to the system (2.12)–(2.14).

General source terms Sn have been added and can include external forces such as gravity and the diffusive terms of the
Navier–Stokes equations.

Upwinding Centering the pressure term 1�ae2

e2 rpnþ1 in the spatial discretization is a crucial feature of the low Mach num-
ber scheme. It does not affect the stability as it is an implicit term. Then, the upwinding only concerns the explicit part of the
flux in the Eqs. (3.1)–(3.3) and the eigenvalues of the Jacobian matrix of the corresponding system are:
un �
ffiffiffiffiffiffiffiffiffi
aa2

m

q
; junj; un þ

ffiffiffiffiffiffiffiffiffi
aa2

m

q
; ð3:6Þ
where un = u � n and am is the sound speed defined by:
am ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
@q
@p
þ 1

q
@q
@h

s !�1
2

: ð3:7Þ
The CFL condition for the stability of the scheme is:
Dt 6
Dx

max un �
ffiffiffiffiffiffiffiffiffi
aa2

m

p� � :

Therefore the time-step Dt does not depend on the Mach number e contrary to a standard explicit method, as explained in
the introduction. The time-step is based on the fluid velocity only: it does not take into account the acoustic velocity, which
tends to infinity when the Mach number tends to zero and is responsible for the dramatic decrease of the time-step in the
low Mach number regime. Also, the inaccuracy of explicit upwinding schemes is caused by the upwinding being based on the
acoustic velocity, as recalled in the introduction and detailed in [26]. To avoid introducing wrong pressure fluctuations, we
must keep the parameter a small compared to 1

e2. In the following, CFL numbers will refer to
CFL ¼
max un �

ffiffiffiffiffiffiffiffiffi
aa2

m

p� �
Dt

Dx
; ð3:8Þ
i.e. CFL numbers are computed with respect to the modified sound speed involving the parameter a. In particular, when a = 0
(which will be the case in most simulations in the small Mach number regime), the sound speed am disappears from (3.8) and
the CFL number only involves the fluid velocity juj. This leads to the possibility of using time steps independent of the Mach
number. For instance, a CFL number of 1 in a small Mach number case with e = 10�4 would correspond to a classical CFL
number of 104 if the fluid velocity is O(1).

In our method, a Rusanov scheme is used [55]. The term Div in the discretization (3.1)–(3.3) gives the upwinding between
the cells i and v and its expression is:
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Div � niv ¼
Divq

Divq

Divw

0B@
1CA � niv ¼ �

1
2

kmax
n

� �
ivðVv � ViÞ; ð3:9Þ
where V = (q,q,W) is the vector of conservative variables and
kmax
n

� �
iv ¼ max junji þ

ffiffiffiffiffiffiffiffiffi
aa2

m

q
i
; junjv þ

ffiffiffiffiffiffiffiffiffi
aa2

m

q
v

� �
: ð3:10Þ
Resolution of the discrete system Let us detail the steps in the resolution of the scheme.
First, the mass equation (3.1) can be solved explicitly, and qn+1 is obtained.
Then we solve the elliptic Eq. (3.3). For a perfect gas EOS, this elliptic equation is a linear system on the pressure and can

be solved by inverting the system. In the case of a general EOS, the system constituted by the elliptic equation (3.3) and the
equation of state is solved by means of a Newton method where the unknowns are the pressure and the enthalpy.

We will note (p(q), h(q)) the pressure and enthalpy found by the qth iteration in the Newton method in order to find (pn+1,
hn+1) at the time tn+1. Two iterations q and q + 1 of the Newton method are linked by the following relation:
pðqþ1Þ

hðqþ1Þ

 !
¼

pðqÞ

hðqÞ

 !
� f 0ðpðqÞ;hðqÞÞ�1f ðpðqÞ;hðqÞÞ; ð3:11Þ
where the algorithm is initialized with (p(0),h(0)) = (pn,hn). The function f is a vector defined as:
f ðpðqÞ; hðqÞÞ ¼ e2f1ðpðqÞ;hðqÞÞ; f2ðpðqÞ;hðqÞÞ

 �

: ð3:12Þ
The first component f1 comes from the elliptic equation (3.3) and the second component f2 expresses the condition over the
pressure and the enthalpy given by qn+1:
f2ðpðqÞ;hðqÞÞ ¼ qnþ1 � q pðqÞ; hðqÞ

 �

: ð3:13Þ
In practice, the first component of f is e2f1 in order to avoid the division by the small parameter e2 in the term 1�ae2

2e2 .
The matrix f0(pq,hq) in (3.11) is the following:
f 0ðpq;hqÞ ¼
e2 @f1

@p e2 @f1
@h

@q
@p

@q
@h

 !
: ð3:14Þ
Solving the elliptic equation allows us to find pn+1, hn+1 and Wn+1. Finally, the momentum equation (3.2) is solved to obtain
qn+1 and un+1.

3.2. Second order scheme

The first order scheme being too diffusive,we propose a second-order space discretization of the scheme.
In the first order system, the full time and space discretization (3.1)–(3.3) could be written as:
Vnþ1
i � Vn

i

Dt
þ
X

v2tðiÞ
U Vn;nþ1

i ;Vn;nþ1
v


 �
¼ 0; ð3:15Þ
where U is the numerical flux and Vi is the vector of conservative variables in the center of the cell i. The second order space
discretization consists in evaluating the numerical flux U in the reconstructed and limited states eVL

iv and eVR
iv , which corre-

spond to the vectors of conservative variables Vi and Vv on the face between the cells i and v. We thus replace U Vn
i ;V

n
v

� �
by

U eVL
iv


 �n
; eVR

iv


 �n
 �
. The minmod limiter is used to avoid spurious oscillations.

On a two-dimensional Cartesian mesh, the reconstructed and limited states eVL
iþ1

2;j
and eVR

iþ1
2;j

are given by the following
expressions [43,24]:
eVL
iþ1

2;j
¼ Vi;j þ

1
2

minmodðVi;j � Vi�1;j;Viþ1;j � Vi;jÞ; ð3:16Þ

eVR
iþ1

2;j
¼ Viþ1;j �

1
2

minmodðViþ2;j � Viþ1;j;Viþ1;j � Vi; jÞ; ð3:17Þ
where the minmod function is:
minmodðx; yÞ ¼ 1
2
½signðxÞ þ signðyÞ�minðjxj; jyjÞ: ð3:18Þ
The upwinding of the scheme is now given by:
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Div � niv ¼
Divq

Divq

Divw

0B@
1CA � niv ¼ �

1
2

kmax
n

� �
iv
eVR

iv � eVL
iv


 �
; ð3:19Þ
where kmax
n

� �
iv is still given by Eq. (3.10).

To solve this scheme, the reconstructed and limited states eVL
iv


 �n
and eVR

iv


 �n
are first calculated from the conservative

vector Vn. In addition, we also obtain the corresponding pressure. These values are used to evaluate the numerical fluxes,
the upwinding and the source terms. The mass equation is first solved explicitly and qn+1 is found. Then, the elliptic equation
is solved by means of a Newton method, as explained for the first-order scheme. The momentum equation is then solved and
Vn+1 is obtained.

Moreover, a second-order-in-time discretization has been realized using a Runge–Kutta method combined with a Crank–
Nicolson method, leading to the so-called RK2CN method as presented in [58]. Other types of second-order time discretiza-
tions of all-speed schemes can be found e.g. in [51]. Our scheme proceeds as follows: if the first-order Euler method can be
written as:
Vnþ1 � Vn

Dt
¼ gðVnÞ þ hðVnþ1Þ; ð3:20Þ
then the RK2CN method splits the resolution in two steps:
Vnþ1
2 ¼ Vn þ Dt

2
gðVnÞ þ h Vnþ1

2


 �h i
; ð3:21Þ

Vnþ1 ¼ Vn þ Dtg Vnþ1
2


 �
þ Dt

hðVnÞ þ hðVnþ1Þ
2

: ð3:22Þ
A first step of timestep Dt/2 is performed with a semi-implicit system, giving an intermediary value Vnþ1
2 of the conservative

vector. A second step of timestep Dt combines Vn, Vnþ1
2 and Vn+1. The time discretisation of the first step is as follows:

First step:
qnþ1
2 � qn

Dt=2
þr � qn ¼ Sn

q; ð3:23Þ

qnþ1
2 � qn

Dt=2
þr � qn � qn

qn
þ apn

� �
þ 1� ae2

e2 rpnþ1
2 ¼ Sn

q ; ð3:24Þ

qnþ1
2hnþ1

2 � pnþ1
2 � Dt2

4
1� ae2

e2 r � Hnrpnþ1
2


 �
¼Wn � 1

2
e2qnðunÞ2 � Dt

2
r � Hnqn

þ Dt2

4
r � Hnr � qn � qn

qn
þ apn

� �� �
� Dt2

4
r � HnSn

q þ
Dt
2

Sn
w: ð3:25Þ
For the second step, the energy equation must be written first with the RK2CN discretisation:
Wnþ1 �Wn

Dt
þr � Hn qn þ qnþ1

2

� �
¼ 0; ð3:26Þ
then the elliptic equation is constructed by inserting the momentum equation via the qn+1 term. Therefore, the second step
reads as follows:

Second step:
qnþ1 � qn

Dt
þr � qnþ1

2 ¼ S
nþ1

2
q ; ð3:27Þ

qnþ1 � qn

Dt
þr � qnþ1

2 � qnþ1
2

qnþ1
2

þ apnþ1
2

 !
þ 1� ae2

2e2 r½pn þ pnþ1� ¼ S
nþ1

2
q ; ð3:28Þ

qnþ1hnþ1 � pnþ1 � Dt2

2
1� ae2

e2 r � Hnrpn þ pnþ1

2

� �
¼Wn � e2

2
qnðunÞ2 � Dtr � Hnqn

þ Dt2

2
r � Hnr � qnþ1

2 � qnþ1
2

qnþ1
2

þ apnþ1
2

 ! !
� Dt2

2
r � HnSnþ1

2
q þ DtS

nþ1
2

w : ð3:29Þ
The second-order method consists in performing these two steps sequentially.
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4. Asymptotic preserving property

Let us now show that the proposed scheme is asymptotic preserving. The asymptotic preserving property has been de-
fined in the introduction. We first recall the asymptotic study of the full Euler equations as the methodology is used in the
study of the asymptotic preserving property of the scheme.

4.1. Asymptotic analysis of the continuous Euler equations

Let us now investigate the limit of the full Euler equations when e ? 0. The method differs from the isentropic case [18] as
the condition on the divergence of the velocity in the low Mach number regime is obtained via the energy equation instead of
the continuity equation. This is a consequence of the density depending both on pressure and enthalpy (2.5). The analysis
below extends the asymptotic analysis led by Klein in [34,35] for the full Euler equations to a general equation of state.

If we write the expansions of the variables q, p, u, H and W in powers of the Mach number e, e.g. q = q0 + eq(1) + e2q(2) + � � �,
and insert them in the full Euler equations, the leading order equations are:
@tqð0Þ þ r � ðqð0Þuð0ÞÞ ¼ 0; ð4:1Þ
rpð0Þ ¼ 0; ð4:2Þ
@tW ð0Þ þ r � ðqð0ÞHð0Þuð0ÞÞ ¼ 0; ð4:3Þ
and the second order equation for the momentum is:
@tðquÞð0Þ þ rðqð0Þuð0Þ � uð0ÞÞ þ rpð2Þ ¼ 0: ð4:4Þ
The variable p(2) is a dynamic pressure as it is directly linked to the speed of the fluid, while p(0) is a thermodynamic pressure
as it appears in the energy equation. Eq. (4.2) yields that p(0) is independent of space. We assume that the boundary condi-
tions are chosen such that the constant p(0) is independent of time. As the parameter e2 appears in the expression (2.10) of W,
at leading order we have:
W ð0Þ ¼ qð0Þeð0Þ and qð0ÞHð0Þ ¼ qð0Þeð0Þ þ pð0Þ; i:e: Hð0Þ ¼ hð0Þ: ð4:5Þ
We first recall the simpler case of a perfect gas, then extend the analysis to a general equation of state.
Perfect gas case For a perfect gas with a constant c, we have qe ¼ 1

c�1 p. Therefore W ð0Þ ¼ 1
c�1 pð0Þ and qð0ÞHð0Þ ¼

c
c�1 pð0Þare

independent of space due to (4.2), and independent of time. The leading order of the energy equation (4.3) gives the diver-
gence condition on the velocity in the zero Mach number limit:
r � uð0Þ ¼ 0: ð4:6Þ
General EOS case We drop the subscript (0) for simplicity. With W = qh � p, H = h and (4.2), we get:
@tW þr � ðqhuÞ ¼ ð@t þ u � rÞðqhÞ þ qhðr � uÞ ¼ 0: ð4:7Þ
Now, qh = qh(q,p) for a general EOS, and we get
ð@t þ u � rÞðqhÞ ¼ @qh
@q
ð@t þ u � rÞqþ @qh

@p
ð@t þ u � rÞp ð4:8Þ

¼ �q
@qh
@q
r � u; ð4:9Þ
thanks to (4.2) and the assumption that @tp = 0. We collect the above equations and get
qh� q
@qh
@q

� �
r � u ¼ 0; ð4:10Þ
or, since qh� q @qh
@q ¼ �q2 @h

@q,
@h
@q
r � u ¼ 0: ð4:11Þ
With the assumption that @h
@q – 0, we get the incompressibility condition:
r � u ¼ 0: ð4:12Þ
The divergence of the velocity being zero, the mass equation (4.1) becomes
@tqþ u � 5q ¼ 0; ð4:13Þ
which expresses that the density is constant along a trajectory of any fluid element. By contrast, in the isentropic case, the
low Mach number limit leads to a constant density in space.
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Eqs. (4.2), (4.4), (4.12) and (4.13) form the incompressible limit of the Euler equations. Klainerman and Majda in [32,33],
then Metivier and Schochet in [45] have shown that the solution of the compressible Euler equations converges towards the
solution of the incompressible Euler equations when e tends to zero.

4.2. Study of the asymptotic preserving property of the scheme

Let us now show that the proposed scheme is asymptotic preserving. We expose the reasoning on the time semi-discrete
scheme (2.12)–(2.14) for the sake of simplicity and readability. The extension to the full time and space discretization is
straightforward.

To show the asymptotic preserving property, we have to write the limit discrete schemeM0
D when e ? 0 and show that it

is consistent with the continuous limit model M0 at e = 0.
The continuous limit model M0 is the following:
@tqð0Þ þ r � ðqð0Þuð0ÞÞ ¼ 0;
rpð0Þ ¼ 0;
@tðquÞð0Þ þ r � ðqð0Þuð0Þ � uð0ÞÞ þ rp ¼ 0;
@tW ð0Þ þ r � ðqð0ÞHð0Þuð0ÞÞ ¼ 0;

Hð0Þ ¼ hð0Þ; W ð0Þ ¼ qð0Þeð0Þ ¼ qð0Þhð0Þ � pð0Þ;

8>>>>>><>>>>>>:
ð4:14Þ
where p is a dynamic pressure and p(0) a thermodynamic pressure, and under the assumption that p(0) is independent of
time.

We introduce the expansions in powers of e in the semi-discrete scheme (2.12)–(2.14) in the same way as in the asymp-
totic analysis of the continuous case (Section 4.1). Considering the leading order equations and the equation of order two for
the momentum equation, we obtain the discrete limit system M0

D:
qnþ1
ð0Þ �qn

ð0Þ
Dt þr � qn

ð0Þu
n
ð0Þ


 �
¼ 0;

rpnþ1
ð0Þ ¼ 0;

ðquÞnþ1
ð0Þ � quð Þnð0Þ

Dt þr � qn
ð0Þu

n
ð0Þ � un

ð0Þ


 �
þrpnþ1

ð2Þ ¼ 0;

ðqeÞnþ1
ð0Þ �ðqeÞnð0Þ

Dt þr � hn
ð0Þq

nþ1
ð0Þ unþ1

ð0Þ


 �
¼ 0;

Wnþ1
ð0Þ ¼ ðqð0Þeð0ÞÞ

nþ1 ¼ ðqð0Þhð0ÞÞ
nþ1 � pnþ1

ð0Þ :

8>>>>>>>>>>>><>>>>>>>>>>>>:
ð4:15Þ
System (4.15) is clearly consistent with system (4.14). Therefore, the scheme is asymptotic preserving.
Nonetheless, we show directly that (4.15) is also consistent with the incompressibility constraint, namely that.

Proposition. r � unþ1
ð0Þ ¼ OðDtÞ, where O(Dt) is independent of e.
Remark 1. From now on, we drop the subscript (0) and O(Dt) will denote terms estimated by CDt with C independent of e.
Remark 2. From (4.15), we deduce in particular that
qnþ1 ¼ qn þ OðDtÞ; ð4:16Þ
unþ1 ¼ un þ OðDtÞ; ð4:17Þ
ðqhÞnþ1 ¼ ðqhÞn þ pnþ1 � pn þ OðDtÞ; ð4:18Þ
with O(Dt) independent of e. From (4.17), we deduce that
r � unþ1 ¼ r � un þ OðDtÞ: ð4:19Þ
However, even if r � u0 = 0, this does not prove that r � un+1 = O(Dt), since summing over all time steps will lead to
r � un+1 = O(1). Therefore, we need to show directly that r � un+1 = O(Dt). The proof is similar as in the continuous case.
Remark 3. From the second equation of (4.15), we deduce that pn+1 is independent of x. We assume that the boundary con-
ditions are such that pn+1 is also independent of n, i.e. pn+1 = pn = � � � = p1 = p0.
Proof. We write the fourth equation of (4.15) as
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ðqhÞnþ1 � ðqhÞn

Dt
� pnþ1 � pn

Dt
þ unþ1 � rðhnqnþ1Þ þ hnqnþ1r � unþ1 ¼ 0: ð4:20Þ
Since
pnþ1 � pn ¼ 0; ðqhÞnþ1 ¼ ðqhÞðqnþ1; pnþ1Þ; ðqhÞn ¼ ðqhÞðqn;pnÞ; ð4:21Þ
we have, using (4.17) and the first equation of (4.15):
ðqhÞnþ1 � ðqhÞn

Dt
� pnþ1 � pn

Dt
¼ 1

Dt
@ðqhÞ
@q

ðqn;pnÞðqnþ1 � qnÞ þ @ðqhÞ
@p

ðqn;pnÞðpnþ1 � pnÞ þ Oððqnþ1 � qnÞ2Þ
�

þOððpnþ1 � pnÞ2Þ
�
¼ @ðqhÞ

@q
ðqn;pnÞq

nþ1 � qn

Dt
þ OðDtÞ

¼ � @ðqhÞ
@q

ðqn; pnÞ½un � rqn þ qnr � un� þ OðDtÞ

¼ � @ðqhÞ
@q

ðqn; pnÞ½unþ1 � rqn þ qnr � unþ1� þ OðDtÞ: ð4:22Þ
Similarly, using (4.16) we have
unþ1 � rðqnþ1hnÞ ¼ unþ1 � rðqnhnÞ þ OðDtÞ ¼ unþ1 � @ðqhÞ
@q

ðqn; pnÞrqn þ @ðqhÞ
@p

ðqn;pnÞrpn

� �
þ OðDtÞ

¼ @ðqhÞ
@q

ðqn;pnÞunþ1 � rqn þ OðDtÞ: ð4:23Þ
Adding (4.22) and (4.23) in view of (4.20) leads to
q h� @ðqhÞ
@q

� �� �n

r � unþ1 ¼ OðDtÞ; ð4:24Þ
or
@h
@q

� �n

r � unþ1 ¼ OðDtÞ: ð4:25Þ
With @h
@q


 �n
– 0, we deduce that r � un+1 = O(Dt) which ends the proof. h

The proof of the asymptotic preserving property for the fully discrete scheme follows the same methodology and is left to
the reader.

5. Numerical results

Here, we assess the solver on a series of standard well-known benchmarks in the field of computational fluid dynamics
that have been carefully studied with a variety of numerical methods. Even if most of them use perfect gas EOS, the system
resolved in this paper corresponds to a general equation of state, which leads to solving Eq. (2.21). We provide numerical
results for the second-order asymptotic preserving scheme, the first-order scheme being too diffusive. We first test the accu-
racy and the convergence order of the scheme on the colliding acoustic pulses test-case. Then we study the behavior of the
scheme in the compressible regime with shock tubes test-cases, using the Euler equations. At last, we test the behavior of the
scheme at low Mach number with the well-known test-cases of the backward facing step and the lid driven cavity, modeled
by the full Navier–Stokes equations, and the non-isothermal test-case of the heat-driven cavity. The results are compared to
the results of the Low Mach Roe scheme described in [19,20], using the OVAP code to run all the simulations [36]. The Low
Mach Roe scheme is an incompressible solver and has been the object of previous validation.

5.1. Colliding acoustic pulses

This test-case proposed in [34] consists of two acoustic pulses, a right-running pulse and a left-running pulse. The pulses
first collide and superpose, with a maximum pressure at t = 0.815 s. Then, they separate to return to their initial configura-
tion at t = 1.63 s. The boundary conditions are periodic. The test-case considers a perfect gas of constant c = 1.4 and so the
equation of state qðp;hÞ ¼ c

c�1
p
h is used. The Mach number is e ¼ 1

11. A one-dimensional domain [�L,L] is considered, with
L ¼ 2

e, and is discretized into 220 cells. The test is performed at CFL number (given by (3.8)) equal to 0.25. The parameter
a in the numerical scheme is taken as a = 0. The initial data for this case are:
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qðx;0Þ ¼ q0 þ
1
2
eq1 1� cos 2p x

L


 �
 �
; q0 ¼ 0:995; q1 ¼ 2:0; ð5:1Þ

pðx;0Þ ¼ p0 þ
1
2
ep1 1� cos 2p x

L


 �
 �
; p0 ¼ 1:0; p1 ¼ 2c; ð5:2Þ

uðx;0Þ ¼ 1
2

signðxÞu0 1� cos 2p x
L


 �
 �
; u0 ¼ 2

ffiffiffi
c
p

: ð5:3Þ
The pressure profile computed by the second-order scheme is compared to the initial condition on Fig. 2. At t = 0.815 s, the
pressure reaches a maximum value as the two pulses are superposed. At t = 1.63 s, the pulses are separated from each other
again. As explained in [34], weakly nonlinear acoustic effects distort the final profile as shocks are beginning to form in the
vicinities of the locations x = ±18.5.

Fig. 3 represents the results of computations obtained on the colliding pulses test-case with 100 cells using both the first
and second order-in-time schemes, compared to a reference solution computed with 3200 cells. It shows that the second
order-in-time scheme is more accurate than the first order one and provides quite satisfactory results even on a coarse grid.

Convergence tests We check that the scheme shows indeed second order convergence in space and time. We calculate
the error between the solution p obtained for the pressure with N = 100, 200 and 400 cells with a reference solution pref cal-
culated with Nref = 3200 cells. In order to check both the space and time convergence, the timestep is taken as Dt = 0.05 � Dx.
The error kEkL1 is the discrete L1 norm of the difference between the solution p and the reference solution pref:
kEkL1 ¼
PNref

j¼1 jpðxjÞ � pref ðxjÞjPNref

j¼1 jpref ðxjÞj
; ð5:4Þ
where p(xj) is calculated by linear interpolation when xj is not a discretization point for the discrete solution, as p has been
computed with less cells than pref.

The L1 norms of the relative errors between the reference solution and the results for 100, 200 and 400 cells as functions
of the space step Dx are given in Table 1 and plotted in log–log scales on Fig. 4. We indeed observe second order convergence
in space and time.
5.2. Shock tube problems

Sod shock tube This shock tube test-case for a perfect gas with a constant c = 1.4 has been proposed in [57]. The initial
state is divided in a left part 0 6 x 6 0.5 and a right part 0.5 < x 6 1, the initial values being given in Table 2. We use Neumann
boundary conditions, a mesh of 100 cells, with Dx = 0.01 and a Courant number coefficient CFL = 0.5. The Mach number is
e = 1 and the parameter a is zero.

The numerical results are represented at t = 0.2 s on the left column of Fig. 5 for the density, pressure and velocity com-
puted by the second order scheme and compared with the exact solution. The second-order scheme shows a small overall
deviation from the reference solution and satisfactory shock velocities are obtained, as expected from a conservative scheme.

We give the error of the solution of the second-order scheme, compared with the exact solution, in Table 3. The calculus of
the error is given in Eq. (5.4). In order to check the spatial convergence only, the time-step is taken as Dt = 0.1Dx. We can see
that the presence of discontinuities reduces the space convergence order from 2 to 1 as in [58].
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Fig. 3. Colliding pulses test-case: pressure profiles as a function of space at a given time. Comparison of first and second order in time schemes with a
reference solution. The solution obtained with the second order-in-time scheme is very close to the reference solution.

Table 1
Colliding pulses test-case. L1 norm of the relative error between the reference solution computed with 3200 cells and
the numerical results for 100, 200 and 400 cells.

Cells Dx Dt = 0.05 � Dx kEkL1

100 0.44 2.2 � 10�2 3.23 � 10�3

200 0.22 1.1 � 10�2 8.89 � 10�4

400 0.11 5.5 � 10�3 2.49 � 10�4
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Fig. 4. Convergence test for the second order in time and space scheme, with a ¼ 1
e2 . The solid line gives the L1 error as a function of Dx in log–log scale. The

dashed line displays a straight line of slope equal to 2 for the sake of comparison.

Table 2
Sod shock tube. Initial conditions for the pressure, the enthalpy and the velocity.

p h u

Left 1 3.5 0
Right 0.1 2.8 0
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Fig. 5. Density, pressure and velocity profiles for the Sod shock tube (left column) and Lax shock tube (right column). The exact solution is displayed in
dashed line and the result of the second-order scheme (100 cells) is in solid line.
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Lax shock tube This one dimensional shock tube proposed in [39] for a perfect gas with a constant c = 1.4 presents stron-
ger shocks than in the Sod shock tube problem. The initial state is divided in a left part (l subscript) for � 1 6 x 6 0 and a
right part (r subscript) for 0 < x 6 1, the initial values being given in Table 4. We use Neumann boundary conditions, a mesh
of 100 cells, with Dx = 0.01 and a Courant number coefficient CFL = 1. The Mach number is e = 1 and the parameter a is zero.

The results are shown at t = 0.25 s on the right column of Fig. 5 for the density, pressure and velocity computed by the
second order scheme. The exact solution is also displayed. As in the Sod shock tube, the accuracy is satisfactory and shock
velocities are accurately restored.



Table 3
Sod shock tube. L1 norm of the relative error between the exact solution and the numerical results for 100, 200 and
400 cells.

Cells Dx Dt = 0.1Dx kEkL1

100 0.01 1 � 10�3 1.06 � 10�2

200 0.005 5 � 10�4 5.28 � 10�3

400 0.0025 2.5 � 10�4 2.75 � 10�3

Table 4
Lax shock tube. Initial conditions for the pressure, the enthalpy and the velocity.

p h u

Left 3.528 27.748 0.698
Right 0.571 3.3997 0

Table 5
Lax shock tube. L1 norm of the relative error between the exact solution and the numerical results for 100,
200 and 400 cells.

Cells Dx Dt = Dx2 kEkL1

100 0.02 2 � 10�3 1.288 � 10�2

200 0.01 1 � 10�3 6.434 � 10�3

400 0.005 5 � 10�4 3.187 � 10�3
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We give the error of our solution of the second-order scheme, compared with the exact solution, in Table 5. The calculus
of the error is given in Eq. (5.4). We can see that the presence of discontinuities reduces the scheme convergence order from
2 to 1 as in [58].

These test-cases demonstrate the satisfactory behavior of the scheme in the compressible regime.
Tho-phase flow shock tube This test case has been designed to assess the ability of the scheme to treat complex equa-

tions of state, such as tabulated equations of state for a two-phase liquid–vapor mixture. The initial state is divided into a left
part 0 6 x 6 0.5 and a right part 0.5 < x 6 1, the initial values being given in Table 6. We use Neumann boundary conditions, a
mesh of 200 cells, with Dx = 0.005 and a CFL number CFL = 0.1 (note that the CFL number for the AP scheme is computed
using (3.8)). This test problem is more demanding than the previous ones as, in addition to a real gas equation of state, it
involves a small Mach number (e = 10�4).

The numerical results are represented at t = 3.5 � 10�3 s on Fig. 6 for the density, pressure, velocity, and volume fraction
computed by the second order AP-scheme. Two runs have been realized using a = 0 and a ¼ 0:5� 1

e2, respectively. For a = 0
some overshoot has been observed across the contact discontinuity. This can be corrected by using a non-zero a, e.g. a = 0.5.
This non-zero a introduces a small pressure upwinding which fixes this overshoot problem. A comparison has been realized
with an implicit Roe scheme using the same grid and a CFL number equal to 3 (here the CFL number is given by the standard
formula instead of (3.8) and involves the sound speed). This CFL number leads to about the same time step as the one used
for the AP-scheme with (modified) CFL number equal to 0.1. The second order AP-scheme provides a significant improve-
ment compared to the Roe scheme, as can be observed on Fig. 6.
5.3. Backward-facing step test-case

The backward-facing step test-case is a two-dimensional test-case which checks the accuracy of the scheme in the low
Mach regime. The geometry of the step creates a region of low velocity where a recirculation of the fluid takes place. The size
of the circulation region depends on the Reynolds number of the flow. This test-case has already been treated experimentally
and numerically, for example in [2,64].

This case is modeled by the full Navier–Stokes equations (2.1)–(2.3). The contribution of the diffusive part (right-hand
side terms in the equations) is added in explicit source terms as mentioned in part Section 3.1.
Table 6
Two-phase flow shock tube problem. Initial conditions for the pressure, the enthalpy and the velocity.

p h u

Left 1.5 � 105 5.9 � 105 0
Right 1.6 � 105 5.6 � 105 0



Fig. 6. Two-phase flow shock tube problem. Pressure, velocity, density, and vapor volume fraction profiles as functions of space at time t = 3.5 � 10�3 s.

Fig. 7. Backward-facing step – geometrical features.
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The geometry of the step is such that L1 = 4 m, L2 = 18 m, h = 2 m, where the notations refer to Fig. 7. The Computational
domain is discretized with a uniform Cartesian grid of step Dx = 0.2 m. The numerical results, computed at the Courant num-
ber coefficient CFL = 0.08, are displayed at T = 20 s.

The global Mach number is e = 0.01. We take a = 0. A perfect gas of equation of state qðp;hÞ ¼ c
c�1

p
h and constant c = 1.4 is

used, as proposed in [2,64]. The initial conditions are p = 1 � 105 Pa, h = 4 � 105 J/kg, u = (1,0) m/s.
The coefficients in the diffusive terms of the Navier–Stokes equations are l = 1.166 � 10�2 kg/m/s, k = 2.7 � 10�2 W/m/K,

Cp ¼ c
c�1

R
M J/K/kg, with R = 8.315 J/mol/K and M = 0.02897 kg/mol. The corresponding Reynolds number is Re 	 75. The exter-

nal forces are neglected (fext = 0).
A wall slip boundary condition (u � n = 0) is applied on the step and on the top and bottom walls. At the inlet, the velocity

and enthalpy are imposed, while a Neumann condition is applied on the pressure. The value of the inlet velocity is
u = (1,0) m/s and the imposed enthalpy is h = 4 � 105 J/kg. At the outlet, only the pressure is imposed with a value of
poutlet = 1 � 105 Pa.

The modulus of the velocity and the streamlines computed by the second-order Asymptotic Preserving scheme at t = 20 s
are displayed on Fig. 8 for the first 10 m of the channel, whose total length is 22 m. The results are compared to the results
obtained with a classical Roe scheme and with the Low Mach Roe scheme mentioned in the introduction of this section.

The second-order Asymptotic Preserving scheme gives a very satisfactory result as the recirculation is computed and
matches the dimensions of the recirculation computed by the Low Mach Roe scheme. On the other hand, we can see that



Fig. 8. Backward facing step test-case for a Reynolds number Re = 75 – streamlines.
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the Roe scheme, without a low Mach number treatment, is not able to capture the recirculation of the fluid. This test-case
thus confirms that the Asymptotic Preserving scheme has a satisfactory behavior in the incompressible regime.

5.4. Lid-driven cavity test-case

The two-dimensional lid-driven cavity test-case is also a well-known problem to assess the adequacy of a code to the low
Mach number regime (see for example [54,23]). The case concerns a cubic cavity full of fluid where all the walls are immobile
but one: this moving wall drags the neighboring fluid, which initiates a global circulation of the fluid. We expect a central
primary recirculation and a smaller lower right eddy.

This case is also modeled by the full Navier–Stokes equations (2.1)–(2.3), and the contribution of the diffusive part (right-
hand side terms in the equations) is added in explicit source terms as mentioned in part Section 3.1.

The global Mach number is e = 0.01. We take a = 0. A perfect gas of equation of state qðp;hÞ ¼ c
c�1

p
h and constant c = 1.4 is

used. The initial conditions are p = 1 � 105 Pa, h = 3.5 � 104 J/kg, and u = (0,0) m/s.
The coefficients in the diffusive terms of the Navier–Stokes equations are l = 2.5 � 10�2 kg/m/s, k = 2.7 � 10�2 W/m/K,

Cp ¼ c
c�1

R
M J/K/kg, with R = 8.315 J/mol/K and M = 0.02897 kg/mol. The external forces are neglected (fext = 0).

The cavity is formed by the domain x = [0,1] � [0,1], discretized with a uniform Cartesian grid of step Dx = 1/50. A wall
slip boundary condition (u � n = 0) is applied on all the walls except the top wall. The top wall is moving at a speed of u = 1 m/s.
The computation has been run with a Courant number coefficient CFL = 0.14, until a final time of t = 20 s.

The modulus of the velocity and the streamlines computed by the second-order Asymptotic Preserving scheme at t = 20 s
are displayed Fig. 9. The results are compared to the results obtained with a classical Roe scheme and with the Low Mach Roe
scheme.

While the classical Roe scheme displays no recirculation whatsoever, the second-order Asymptotic Preserving scheme
shows a good behavior as the circulation region is computed and is similar to the circulation region computed by the
Low Mach Roe scheme. The primary vortex is clearly visible for the second-order Asymptotic Preserving scheme and the
Low Mach Roe scheme on the figures displaying the streamlines, while it is not correctly computed by the classical Roe
scheme. We can also see the lower right eddy expected along with the primary vortex.

5.5. Heat-driven cavity

The heat-driven cavity test-case consists in a two-dimensional steady-state single-phase laminar flow resulting from a
natural convection created by the difference of temperatures between the two vertical walls of a cubic cavity and the gravity
field. The horizontal walls are adiabatic walls.



Fig. 9. Lid-driven cavity test-case – modulus of the velocity and streamlines.
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This test-case is well suited to evaluate the behavior of a numerical scheme in the low Mach number regime and in the
presence of thermal conductivity terms and gravity terms. It has been studied for example in [14,40,19]. This case is very
interesting in our situation because it requires the energy equation, contrary to the two previous cases that could have been
run with the isentropic Navier–Stokes equations. At last, the global Mach number resulting from the scaling of the equations
is e = 10�4, which is much smaller than in the two previous cases.

This case is modeled by the full Navier–Stokes equations (2.1)–(2.3) and considers a perfect gas of equation of state
qðp;hÞ ¼ c

c�1
p
h and constant c = 1.4. The dimension of the cubic cavity, L = 1.528 � 10�3 m, is chosen so that the flow is a

low Mach number flow (e = 10�4); viscosity and conductivity are chosen so that the flow is laminar (low Reynolds number:
Re 	 37) and results from natural convection.

The coefficients in the diffusive terms of the Navier–Stokes equations are: l = 1.619 � 10�6 kg/m/s, k = 2.29 � 10�3 W/m/
K, Cp ¼ c

c�1
R
M J/K/kg, with R = 8.315 J/mol/K and M = 0.02897 kg/mol, the external force is gravity: fext = (0,�9.81) m/s2.

The initial conditions are p = 1 � 105 Pa, h = 2.9167 � 105 J/kg, u = (0,0) m/s. A wall slip boundary condition (u � n = 0) is
applied on all walls. The velocity of the walls is zero. The top and bottom horizontal walls are adiabatic walls: the thermal
Fig. 10. Heat-driven cavity test-case – isocontours of the Mach number.
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flux is imposed to be zero. The temperature is imposed on the right and left vertical walls: Tl = 283.15 K on the left wall and
Tr = 263.15 K on the right wall.

The domain is discretized with a uniform Cartesian grid of step D x = L/40. The computation has been run with a CFL of
0.04 until a time t = 2 s and then the computation has been continued with a CFL of 0.01 until a final time of t = 3 s. The
parameter a is equal to zero. A higher Courant number is possible to be used, but then the accuracy would be degraded.
We compare our results with the results of computation obtained by two other methods, the Roe scheme and Low Mach
Roe scheme. We expect to find specific patterns in the visualization of the isocontours of the local Mach number and the
temperature.

The isocontours of the local Mach number (which is different from the Mach number e resulting from the scaling of the
equations) is given on Fig. 10. We can see that the solution computed by the second-order Asymptotic Preserving scheme
matches the solution of the low Mach Roe scheme. On the other hand, the Roe scheme is not able to provide the correct solu-
tion and the pattern is very different from the pattern obtained with the scheme adapted to low Mach numbers. Let us also
notice that the local Mach number ranges from 10�5 to 10�9, which is very small and confirms that the case lies in the incom-
pressible regime.

6. Conclusion

The aim of this paper was to provide an all-speed scheme for the numerical simulation of mixed compressible and incom-
pressible fluid flows. The second-order discretization of the proposed Asymptotic Preserving scheme shows a very good
behavior in both flow regimes. In compressible situations, we obtain good shocks properties as the scheme is conservative.
In the low Mach number regime, the Asymptotic Preserving property provides a consistent discretization of the incompress-
ible model, the divergence-free condition on the velocity is respected and the pressure is solved via an elliptic equation. The
centered spatial discretization of the implicit pressure term allows the time-step to be based on the fluid velocity and not on
the acoustic velocity. The time-step can be much larger than with an explicit upwind method and does not depend on the
Mach number. The proposed scheme therefore shows a very good behavior on the weakly compressible numerical test-cases
such as the backward-facing step and the lid-driven cavity as it provides the expected recirculations of the fluid, and also
provides the correct solution on the heat-driven cavity which uses the energy equation.

Low Mach number regimes are often encountered in multiphase mixtures. The Navier–Stokes equations have been used
in this paper as they are very similar to the simplest two-phase flow model, the homogeneous equilibrium model. In future
works, we intend to extend the scheme to more elaborate two-phase flow models as the four-equation mixture model and
the six-equation two-fluid model.

First tests have been realized so far with the four-equation mixture model and a test-case of a water flow in a heated
channel has been computed. It has confirmed the ability of the scheme to compute a two-phase mixture, to use a general
equation of state (Water and Steam EOS), and to work with heat transfer terms and phase change phenomena.
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