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ENO (Essentially Non-Oscillatory) and WENO (Weighted Essentially Non-Oscillatory) 
schemes are widely used high-order schemes for solving partial differential equations 
(PDEs), especially hyperbolic conservation laws with piecewise smooth solutions. For 
structured meshes, these techniques can achieve high order accuracy for smooth functions 
while being non-oscillatory near discontinuities. For unstructured meshes, which are 
needed for complex geometries, similar schemes are required but they are much more 
challenging. We propose a new family of non-oscillatory schemes, called WLS-ENO, in 
the context of solving hyperbolic conservation laws using finite-volume methods over 
unstructured meshes. WLS-ENO is derived based on Taylor series expansion and solved 
using a weighted least squares formulation. Unlike other non-oscillatory schemes, the 
WLS-ENO does not require constructing sub-stencils, and hence it provides a more flexible 
framework and is less sensitive to mesh quality. We present rigorous analysis of the 
accuracy and stability of WLS-ENO, and present numerical results in 1-D, 2-D, and 3-D 
for a number of benchmark problems, and also report some comparisons against WENO.

© 2016 Elsevier Inc. All rights reserved.

1. Introduction

Many physical phenomena, such as waves, heat conduction, electrodynamics, elasticity, etc., can be modeled by partial 
differential equations. With the development of computer technology, many numerical methods have been designed to solve 
these kinds of problems over the past decades. Among these there are finite difference methods and their generalizations, 
finite volume methods, and finite element methods.

In this paper, we consider the problem of reconstructing a piecewise smooth function, in the context of finite volume 
methods for hyperbolic conservation laws. Given a geometric domain � ⊆ R

d , suppose u is a time-dependent piecewise 
smooth function over �, such as a density function. For any connected region τ , the d-dimensional conservation law can be 
written in the formˆ

τ

∂u(x, t)

∂t
dx = −

ˆ

∂τ

F (u) · da, (1)

where ∂τ is the boundary of τ , and F is a function of u, corresponding to the flux.
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A finite volume method solves the problem by decomposing the domain � into cells {τi | i = 1, . . . , N}. Let |τi| denote 
the volume of τi and ui(t) = 1

|τi |
´
τi

u(x, t) dx, the average of u over τi . We obtain an equation

dui(t)

∂t
= −|τi|

ˆ

∂τi

F (u) · da, (2)

for each τi . The boundary integral requires using numerical quadrature for the flux. The integration of the flux requires 
reconstructing u from the cell averages u(t) in an accurate and stable fashion, and then evaluating the reconstruction at 
the quadrature points along the cell boundaries. For stability, F · n is typically replaced by a numerical flux, such as the 
Lax–Friedrichs flux,

F · n = 1

2

[(
F
(
u−)+ F

(
u+)) · n − α

(
u+ − u−)] , (3)

where u− and u+ are the values of u inside and outside the cell τi . The parameter α is a constant, and it should be an 
upper bound of the eigenvalues of the Jacobian of u in the normal direction.

In this context, we formulate the mathematical problem addressed in this paper as follows: Given the cell averages ui
of a piecewise smooth function u(x) for cell τ1, τ2, . . . , τN , let hi be some length measure of cell τi . Find a polynomial 
approximation ̃ui(x) of degree at most p − 1 over τi , such that

‖̃ui(x) − ui(x)‖ = O(hp
i ), x ∈ τi . (4)

In other words, ̃ui(x) is a pth order accurate approximation to u(x) inside τi . In the context of hyperbolic conservation laws, 
u(x) in (4) is equal to u(x, t) in (1) at a given t . For the facet between two cells, these reconstructions give us two values 
u− and u+ , which can then be substituted into (3) to calculate the numerical flux. These reconstructions must be accurate, 
and also must lead to stable discretizations of the hyperbolic conservation laws when coupled with some appropriate time 
integration schemes, such as TVD Runge–Kutta schemes [1].

This reconstruction problem is decidedly challenging, because hyperbolic conservation laws can produce non-smooth so-
lutions. An approximation scheme for smooth functions may lead to oscillations that do not diminish as the mesh is refined, 
analogous to the Gibbs phenomena. Such oscillations would undermine the convergence of the solutions. The ENO (Essen-
tially Non-Oscillatory) and WENO (Weighted Essentially Non-Oscillatory) schemes [2–4] have been successful in solving this 
problem. In a nutshell, the WENO schemes use a convex combination of polynomials constructed over some neighboring 
cells, with higher weights for cells with smoother solutions and lower weights for cells near discontinuities. As a result, 
these methods can achieve high-order accuracy at smooth regions while being non-oscillatory near discontinuities. These 
reconstructions can be integrated into both finite volume and finite difference methods. With years of development, finite 
volume WENO schemes have been applied to both structured and unstructured meshes and higher dimensions [5–10]. Var-
ious attempts have been applied to improve the weights for WENO reconstruction [11–14]. Also, they have used WENO 
schemes in many applications, such as shock vortex interaction [15], incompressible flow problems [16], Hamilton–Jacobi 
equations [17], shallow water equations [18], etc.

Along the path of applying WENO schemes on unstructured meshes, tremendous effort has been made to improve the 
robustness of the schemes. Early attempts [5] work well for most unstructured meshes, but some point distributions may 
lead to negative weights and in turn make the schemes unstable. An extension was proposed in [7] to mitigate the issue, 
but it still had limited success over complicated geometries due to inevitably large condition numbers of their local linear 
systems. More recently, several different partition techniques were proposed to improve stability, such as [19], which uses a 
hybrid of two different reconstruction strategies to achieve better results. The technique was adopted in [20–22] for further 
development.

In this paper, we propose a new family of reconstruction methods over unstructured meshes. We refer to the schemes 
as WLS-ENO, or Weighted-Least-Squares based Essentially Non-Oscillatory schemes. Unlike the WENO scheme, our approach 
uses a generalized finite difference (GFD) formulation based on weighted least squares, rather than a weighted averaging 
of traditional finite differences. The GFD method is derived rigorously from Taylor series, and hence can deliver the same 
order of accuracy as traditional finite differences. In WLS-ENO, the convexity requirement is satisfied automatically, since 
the weights are specified a priori. These properties enable a more systematic way to construct non-oscillatory schemes. We 
will present the detailed derivation of the schemes and their robust numerical solution techniques. We also show that the 
schemes are often more accurate than WENO schemes near discontinuities and enable more stable PDE solvers when used 
in conjunction with total variation-diminishing time-integration schemes such as TVD Runge–Kutta. We report theoretical 
analysis in 1-D as well as experimental results in 1-D, 2-D, and 3-D.

The remainder of this paper is organized as follows. Section 2 reviews the ENO and WENO schemes, as well as some re-
lated background knowledge. Section 3 presents the derivation and numerical methods of the WLS-ENO schemes. Section 4
analyzes the accuracy and stability of the WLS-ENO schemes, and compares them against WENO and its previous general-
ization to unstructured meshes. Section 5 presents some numerical results and comparisons against some other methods. 
Finally, Section 6 concludes the paper with some discussions on future research directions.
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2. Background and related work

In this section, we present some background information, including WENO schemes and some related numerical methods 
for hyperbolic conservation laws. These will motivate the derivation of WLS-ENO.

Traditionally, two approaches have been used to reduce oscillations near discontinuities. One approach was to add artifi-
cial viscosity [23,24]. Specifically, one could design the viscosity to be larger near discontinuity to suppress oscillations and 
to be smaller elsewhere to maintain accuracy. However, the parameter controlling the artificial viscosity is very problem 
dependent. Another approach was to apply limiters [23,24], but such schemes degenerate to first order near discontinuities. 
Other successful methods include ENO scheme [25] and its closely related WENO schemes [2]. In a nutshell, the ENO is a 
WENO scheme with only zeros and ones as the weights. In the following, we review some of the ENO and WENO schemes 
that are most closely related to our proposed approach.

2.1. WENO reconstructions in 1-D

In the context of finite volume methods, the basic idea of WENO is to first construct several stencils for each cell and 
local polynomials over these stencils, so that the cell averages of these polynomials are the same as the given values. Then, 
a WENO scheme uses a convex combination of these polynomials to obtain a reconstruction of the function, where the 
weights for each stencil are controlled by a smoothness indicator. We briefly describe the WENO scheme on a uniform 1-D 
grid below, and refer the readers to [2] for more details.

Given a 1-D domain [a, b], suppose we have a uniform grid with nodes

a = x 1
2

< x 3
2

< x 5
2

< · · · < xN− 1
2

< xN+ 1
2

= b. (5)

We denote ith cell 
[

xi− 1
2
, xi+ 1

2

]
as τi for i = 1, 2, . . . , N . Its cell center is xi = 1

2

(
xi− 1

2
+ xi+ 1

2

)
, and its cell size is hi =

xi+ 1
2

− xi− 1
2

. The cell average of a function u(x) over τi is then

ui = 1

�xi

x
i+ 1

2ˆ

x
i− 1

2

u(x)dx, i = 1,2, . . . , N. (6)

For each cell τi , our goal is to reconstruct a piecewise polynomial approximation ̃ui(x) of degree at most p − 1, such that it 
approximates u(x) to pth order accuracy within τi , i.e.,

ũi(x) = u(x) +O(hp), x ∈ τi, i = 1, . . . , N, (7)

where h = min{hi | 1 ≤ i ≤ N}.
To find such a polynomial, a WENO scheme first selects p sub-stencils about τi , each containing p cells. Consider a 

particular sub-stencil

S j(i) = {τi− j, . . . , τi− j+p−1
}
, (8)

and let φi, j(x) be a polynomial approximation of u over S j(i), obtained by requiring the integral of φi, j(x) over each cell 
in the sub-stencil to be equal to that of ui(x). If the pth derivative of u is bounded over the sub-stencil S j(i), then φi, j(x)
satisfies (7). However, if u(x) has discontinuities within the sub-stencil, then φi, j(x) may be oscillatory. The WENO scheme 
then constructs a non-oscillatory approximation by taking a convex combination of φi, j(x)

ũi(x) =
∑

j

ω jφi, j(x), (9)

where ω j = α j/ 
∑p−1

k=0 αk and is chosen such that ω j approaches zero for sub-stencils with discontinuities. A typical choice 
of α j is

α j = d j/
(
ε + β j

)2
, (10)

where d j is a nonnegative coefficient such that

ũi(x) =
p−1∑
j=0

d jφi, j(x) = u
(

xi+ 1
2

)
+O(h2p−1). (11)

The parameter ε is a small parameter, such as ε = 10−6, introduced to avoid instability due to division by zero or too small 
a number. The non-negativity of di is important for stability purposes. The β j is the smoothness indicator. If u(x) is smooth 
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over the sub-stencil S j(i), then β j =O(h2); otherwise, β j =O(1). A typical choice of β j , as introduced in [2], is

β j =
p−1∑
k=1

x
i+ 1

2ˆ

x
i− 1

2

h2k−1

(
∂kφ j(x)

∂xk

)2

dx, (12)

where the h2k−1 term is introduced to make β j independent of the grid resolution. For example, in the simplest case where 
p = 2,

β0 = (ui+1 − ui
)2

,

β1 = (ui − ui−1
)2

. (13)

Alternative smoothness indicators have been proposed in [11,12,26–28].

2.2. WENO schemes on 2-D and 3-D structured meshes

Originally developed in 1-D, the WENO schemes can be generalized to structured meshes in 2-D and 3-D. Here, we give 
a brief overview of the reconstructions in 2-D, which generalize to 3-D in a relatively straightforward manner.

Consider an Nx-by-N y structured grid, and let τi j denote the cell (i, j) in the grid, where i = 1, 2, . . . , Nx and j =
1, 2, . . . , N y . Suppose the cell averages of a function u(x, y),

uij = 1

�xi�y j

y
j+ 1

2ˆ

y
j− 1

2

x
i+ 1

2ˆ

x
i− 1

2

u (x, y) dxdy, (14)

are given. We would like to find

ũi j(x, y) =
p−1∑
r=0

p−1∑
s=0

arsxr ys, (15)

where ars are the coefficients to be determined so that ̃uij approximates u to pth order accuracy over τi j .
Similar to the 1-D case, a WENO scheme first constructs polynomial approximations over a selection of sub-stencils and 

then computes a convex combination of these approximations. Consider a particular sub-stencil

Slm (i, j) = {τI J : i − l ≤ I ≤ i − l + p − 1, j − m ≤ J ≤ j − m + p − 1
}
. (16)

Let φi jlm(x, y) denote a polynomial reconstruction of u over Slm (i, j), whose integration over each cell in Slm (i, j) is equal 
to the given cell average. The function φi jlm(x, y) approximates u(x, y) over τi j to pth order accuracy for smooth functions. 
To obtain a non-oscillatory reconstruction for non-smooth functions, the WENO scheme computes ̃uij as

ũi j(x, y) =
∑

l

∑
m

ωlmφi jlm(x, y). (17)

The weights ωlm are chosen so that the order of accuracy of ũi j is maximized for smooth functions, and then further 
augmented based on similar smoothness indicators as in 1-D, so that the weights would approach zero for the sub-stencils 
with discontinuities. For stability, it is important that the weights are nonnegative, which imposes some constraints to the 
selection of stencils. For more details, see [2,29,6].

2.3. ENO and WENO schemes on unstructured meshes

Besides structured meshes, WENO can also be generalized to unstructured meshes. Typically, these schemes are also con-
structed from some convex combination of lower-order schemes on sub-stencils. However, compared to structured meshes, 
it is much more challenging to construct stable WENO schemes on unstructured meshes, because it is difficult to satisfy 
the convexity requirement. Some WENO schemes have been proposed for 2-D [5,7,29,6] and 3-D [16,8,30,9,10]. Below, we 
briefly review these generalizations, focusing on three different types.

The first type of WENO reconstruction, as proposed in [5], uses a combination of high-order polynomials computed 
from low-order polynomials over sub-stencils. For example, to obtain a third-order reconstruction, the scheme would first 
construct linear approximations over several sub-stencils by requiring the cell averages of the polynomials to be equal to 
the given cell averages, and then compute a quadratic polynomial from a weighted average of these linear polynomials. 
This technique works for unstructured meshes, even for meshes with mixed types of elements. However, depending on the 
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mesh, the weighted average may not form a convex combination, and the linear system for calculating the weights may be 
ill-conditioned.

The second type of WENO reconstruction is similar to the first type, except that it compromises the order of accuracy of 
the convex combination, by allowing convex combination to be the same degree polynomials as those for the sub-stencils. 
Compared to the first type, this construction is less sensitive to mesh quality than the first type at the cost of lower accuracy. 
Therefore, it is often used as a fallback of the first type for robustness [19].

The third type of WENO reconstruction builds the reconstructions in a hierarchical fashion. An example is the approach in 
[29], which first finds the smoothest linear reconstructions over the first-layer three-cell stencils, and then use these linear 
reconstructions to build quadratic reconstructions over the second-layer stencils. This approach can be applied iteratively to 
construct higher-order reconstructions. However, as shown in [29], the accuracy of the reconstruction may not improve as 
the degree of the polynomial increases, especially near boundaries.

Besides the above WENO schemes, we also note some recent development of the Central ENO (CENO) schemes [31,21], 
based on least squares approximations. CENO schemes require limiters for linear reconstructions to preserve monotonicity. 
Our proposed WLS-ENO schemes differ from the WENO and CENO reconstructions, in that the WLS-ENO schemes utilize a 
weighed least squares formulation, do not require limiters, and are insensitive to mesh quality due to adaptive stencils.

3. Weighted-least-squares based ENO schemes

In this section, we propose a new class of essentially non-oscillatory schemes, referred to as WLS-ENO. In the context 
of finite volume methods, these schemes reconstruct a function u(x) over each cell, given the cell averages of u, denoted 
by u, for all the cells. For each point along cell boundaries, the reconstructions then provide two values, u− and u+ , which 
can then be used in (3) to calculate fluxes. Unlike WENO schemes, the WLS-ENO does not use weighted averaging of 
functional approximations over sub-stencils. Instead, it computes the reconstruction over each cell based on weighted least 
squares with an adaptive stencil. It can achieve optimal accuracy for smooth functions, stability around discontinuities, and 
insensitivity to mesh quality. We will present the derivations of WLS-ENO schemes based on Taylor series expansion, as 
well as their implementations in 1-D, 2-D and 3-D over structured and unstructured meshes.

3.1. WLS-ENO schemes in 1-D

We first derive the WLS-ENO schemes in 1-D. Suppose we are given a grid

a = x 1
2

< x 3
2

< x 5
2

< · · · < xN− 1
2

< xN+ 1
2

= b, (18)

and the cell averages ui of a function u(x) over each cell τi , i = 1, 2, . . . , N . For generality, we assume the grid is non-
uniform, with varying cell sizes. Below, we first describe how to reconstruct u from ui for smooth functions, and then 
augment the method to handle discontinuities.

3.1.1. WLS-based reconstruction for smooth functions
Without a loss of generality, let us consider the reconstruction of u over τi at its boundary point xi+ 1

2
. To achieve pth

order accuracy, we need to construct a polynomial approximation of degree at least p − 1. We choose a stencil with n cells 
to perform the reconstruction, where n ≥ p.

Suppose there are l cells to the left of τi in the stencil. The full stencil is given by the set

S(i) = {τi−l, . . . , τi−l+n−1
}
. (19)

From Taylor series expansion, we can approximate function u(x) at point xi+ 1
2

to pth order accuracy by

u(x) =
p−1∑
k=0

u(k)(xi+ 1
2
)

k!
(

x − xi+ 1
2

)k +O(hp), (20)

where h denotes the average edge lengths. The cell average over τ j in the stencil can be approximated by

u j =
p−1∑
k=0

u(k)(xi+ 1
2
)

k!
(

x j+ 1
2

− x j− 1
2

)
x

j+ 1
2ˆ

x
j− 1

2

(
x − xi+ 1

2

)k
dx +O(hp)

=
p−1∑
k=0

u(k)(xi+ 1
2
)

(k + 1)!
[(

x j+ 1
2

− xi+ 1
2

)k+1 −
(

x j− 1
2

− xi+ 1
2

)k+1
]

+O(hp).
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Given u j at the jth cells in S(i), we then construct an n × p linear system

Av ≈ u, (21)

where

a J K = 1

K !
[(

xi−l+ J− 1
2

− xi+ 1
2

)K −
(

xi−l+ J− 3
2

− xi+ 1
2

)K
]

(22)

for J ≡ j + l +1 − i ∈ [1, n] and K ≡ k +1 ∈ [1, p], u is composed of the cell averages u j , and v is composed of the derivative 
of function u at xi+ 1

2
, i.e., v K = u(k)(xi+ 1

2
).

Eq. (21) in general is a rectangular linear system, and we can solve it using a weighted least squares formulation. In 
particular, we assign a different weight to each cell. Let W denote a diagonal matrix containing these weights. The problem 
can be written in matrix form as

min‖W Av − W u‖2. (23)

The weights allow us to assign different priorities to different cells. For example, we may give higher weights to the cells 
closer to Ii . We solve this weighted least squares problem using QR factorization with column pivoting, as we will de-
scribe in more detail in Section 3.3. Since the method is derived based on Taylor series expansions directly, this WLS-based 
reconstruction can deliver the same order of accuracy as interpolation-based schemes for smooth functions, as we demon-
strate in Section 4.1. For discontinuous functions, these weights can also allow us to suppress the influence of cells close to 
discontinuities, as we discuss next.

3.1.2. WLS-ENO for discontinuous functions
To apply WLS-ENO schemes to discontinuous functions, we modify the weighting matrix W in (23). The main idea is to 

assess the smoothness of the function within each cell of the stencil, and then define the weights correspondingly. By letting 
the weights be far smaller for the cells near discontinuities than those away from discontinuities, we can then effectively 
suppress oscillations.

We first construct a non-smoothness indicator of the function, analogous to those used in WENO schemes. Specifically, for 
the jth cell in the stencil for Ii , with j = i − l + J , we can define the indicator for cell I j as

β j =
{(

u j − ui
)2 + εh2 j 
= i

min
{
β j−1, β j+1

}
j = i

, (24)

where ε is a small constant, such as ε = 10−2, introduced to avoid the indicator being too close to zero, and h is some 
measure of average edge length. Note that β j = O(h2) if u is smooth at τ j and β j = O(1) near discontinuities. There-
fore, it captures the non-smoothness of the function. We therefore refer to β as a non-smoothness indicator, although its 
counterpart in WENO is called the “smoothness indicator.”

We then define the weights based on β j . To suppress oscillations, it is desirable to use smaller weights for cells at 
discontinuities. Therefore, we make the weights in W to be inversely proportional to β j when j 
= i, and make the value 
larger for βi . Specifically, we choose

ω j =
{

1/β j j 
= i

α/β j j = i
, (25)

where α > 1, such as α = 1.5. It is easy to see that ω j is O(1/h2) if the function is smooth around cell i and ωq = O(1)

if the function is discontinuous in the cell. After computing the weights, we substitute them into (23) to compute the 
reconstruction. Note that unlike the weights in WENO, we do not need to normalize the weights by dividing them by 
the sum of the weights. As we will demonstrate in Section 4.1, this approach effectively suppresses the oscillations near 
discontinuities, similar to WENO schemes.

3.2. Generalization of WLS-ENO schemes to 2-D and 3-D

The WLS-ENO reconstruction can be generalized to 2-D and 3-D, for evaluating the values at quadrature points along the 
cell boundaries. Similar to 1-D, we derive the higher-dimensional version of the linear system (21) over each cell based on 
Taylor series expansion, and then solve it based on weighted least squares.

Let us first consider the scheme in 2-D. First, we choose n cells with index i1, i2, . . . , in as the stencil for cell τi . Let 
(xi, yi) denote its centroid. From the 2-D Taylor series expansion, we can approximate u(x, y) about (xi, yi) to pth order 
accuracy by

u(x, y) =
p−1∑ k+l=q∑ ∂qu (xi, yi)

∂xk∂ yl

(x − xi)
k (y − yi)

l

k!l! +O
(‖δ‖p) , (26)
q=0 k,l≥0



H. Liu, X. Jiao / Journal of Computational Physics 314 (2016) 749–773 755
Fig. 1. Examples of 1-ring, 1.5-ring and 2-ring neighborhood of a triangle.

where δ = max {|x − xi | , |y − yi |}. Thus, the cell averages over the jth cell τ j can be approximated by

u j = 1

k!l! ∣∣τ j
∣∣ p−1∑

q=0

k+l=q∑
k,l≥0

∂qu (xi, yi)

∂xk∂ yl

¨

τ j

(x − xi)
k (y − yi)

l dxdy +O
(‖δ‖p) (27)

for j = i1, . . . , in , where 
∣∣τ j
∣∣ denotes the area of τ j . Therefore, we obtain n equations from the n cells in the stencil about 

τi , which can then be solved using the weighted least squares formulation (23).
The construction in 3-D is based on the 3-D Taylor series expansion about a centroid (xi , yi, zi) of the ith cell τi ,

u(x, y, z) =
p−1∑
q=0

k+l+m=q∑
k,l,m≥0

∂qu (xi, yi, zi)

∂xk∂ yl∂zm

(x − xi)
k (y − yi)

l (z − zi)
m

k!l!m! +O
(‖δ‖p) , (28)

where δ = max {|x − xi | , |y − yi | , |z − zi |}. Then the cell averages over the jth cell τ j in the stencil for τi can be approxi-
mated by

u j = 1

k!l!m! ∣∣τ j
∣∣ p−1∑

q=0

k+l+m=q∑
k,l,m≥0

∂qu (xi, yi, zi)

∂xk∂ yl∂zm

˚

τ j

(x − xi)
k (y − yi)

l (z − zi)
m dxdydz +O

(‖δ‖p) (29)

for j = i1, . . . , in , where 
∣∣τ j
∣∣ denotes the volume of τi . We can then solve the resulting least squares problem using weighted 

least squares.
To determine the weights in (23), we define the non-smoothness indicator β j similar to (24), and then define the weights 

ω j as in (25). As in 1-D, it is easy to show that β j = O(h2) if u is smooth at τ j and β j = O(1) near discontinuities, and 
therefore the weights can effectively suppress the effect of cells near discontinuities. After solving the linear system and 
obtaining the polynomial approximation, we can then evaluate u(x, y) at the quadrature points along the boundary for 
computing the numerical fluxes.

One remaining question is the selection of the stencils. For the reconstruction over triangular meshes in 2-D, we adopt 
the strategy in [32] to define k-ring neighbor cells, with 1/2-ring increments:

• The 1/2-ring neighbor cells are the cells that share an edge with a cell.
• The 1-ring neighbor cells of a cell are those that share at least one vertex with the center cell.
• For any positive integer k, the (k + 1)-ring neighborhood of a cell is the union of k-ring neighborhood and 1-ring 

neighbors of its k-ring neighbor cells. The (k +1/2)-ring neighborhood is the union of k-ring neighborhood and 1/2-ring 
neighbors of the k-ring neighbor cells.

Fig. 1 illustrates the neighborhood definitions up to 2 rings. The 1/2-ring increment allows finer granularity in the increment 
of the stencil sizes.

For the reconstruction over tetrahedral meshes in 3-D, the standard k-ring neighbors grow very rapidly. To allow finer 
granularity, we define k-ring neighbor cells with 1/3-ring increments, similar to those defined in [33]:

• The 1/3-ring neighbor cells of a cell are the cells that share at least one face with the center cell.
• The 2/3-ring neighbor cells of a cell are the cells that share at least one edge with the center cell.
• The 1-ring neighbor cells of a cell are the cells that share at least one vertex with the center cell.
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• For any positive integer k, the (k + 1/3)-ring neighborhood of a cell is the union of the k-ring neighborhood and the 
1/3-ring neighbors of its k-ring neighbor cells. The (k + 2/3)-ring neighborhood is the union of the k-ring neighborhood 
and the 2/3-ring neighbors of the k-ring neighbor cells.

With the above definitions, we adaptively choose the k-ring neighborhood, so that the number of cells in a stencil is 
approximately equal to 1.5 to 2 times the number of coefficients in the Taylor polynomial. This adaptive strategy allows the 
WLS-ENO scheme to be less dependent on mesh quality than WENO schemes.

The above strategy works well in practice for most cases. However, on poor-quality meshes, some k-ring neighborhoods 
may be nearly one-sided, which may cause the least-squares approximation to be closer to extrapolation along some di-
rections. This may cause the reconstructed value to fall beyond the maximum and minimum values of the cell averages in 
the neighborhood, and in turn lead to oscillations. This rarely happens in 1-D or 2-D, but we do observe it in practice for 
some 3-D meshes. This issue could be mitigated by using limiters, analogous to the approach in [34] for multidimensional 
reconstructions on unstructured meshes. However, we resolve the issue by adapting the stencil as follows. First, after the 
reconstruction, we check whether the reconstructed values are between the maximum and minimum values in the neigh-
borhood. If not, we compute the plane that passes through the centroid xi of τi and is orthogonal to ∇u at xi . Next, we 
select a subset of the cells from an enlarged stencil to ensure the new stencil is well balanced on the two sides of the plane. 
Because of the smoothing nature of least squares, we find that the new polynomial approximation typically falls within the 
range on balanced stencils.

3.3. Implementation details

The WLS-ENO is different from the WENO schemes in terms of the stencil selection and the local linear systems, and 
therefore it requires different data structures and linear algebra techniques. Below, we address some of these implementa-
tion details.

3.3.1. Data structure for neighborhood search
To support the construction of stencils in 2-D and 3-D, we use an Array-based Half-Facet (AHF) data structure [35] to 

store the mesh information. In a d-dimensional mesh, the term facet refers to the (d − 1)-dimensional mesh entities; that 
is, for 2-D meshes the facets are the edges, and for 3-D meshes the facets are the faces. The basis for the half-facet data 
structure is the idea that every facet in a manifold mesh is made of two half-facets oriented in opposite directions. We refer 
to these two half-facets as sibling half-facets. Half-facets on the boundary of the domain have no siblings. The half-facets 
are half-edges and half-faces in 2-D and 3-D, respectively. We identify each half-facet by a two tuple: the element ID and a 
local facet ID within the element. In 2-D, we store the element connectivity, sibling half-edges, and a mapping from each 
node to an incident half-edge. In 3-D, we store the element connectivity, sibling half-faces, and a mapping from each node 
to an incident half-face. This data structure allows us to do neighborhood queries for a node in constant time (provided the 
valance is bounded). For additional information about the data structure, see [35].

3.3.2. Solution of weighted least squares problems
The technique for solving the least squares problem (21) is QR factorization with column pivoting. Suppose the size of 

A is m × n. To further improve the condition number of A, we scale the columns of the matrix W A and then solve the 
following problem instead:

min
d

∥∥W A Sd − W u
∥∥

2 . (30)

Here, W ∈ R
m×m is the weighting matrix in (23), d ≡ S−1 V , and S = diag

(
1/
∥∥ã1
∥∥

2 ,1/
∥∥ã2
∥∥

2 , . . . ,1/
∥∥ãn
∥∥

2

)
, where ãi is 

the ith column vector of W A. We perform QR factorization with column pivoting to the matrix W A S ,

W A S E = Q R, (31)

where Q ∈ R
m×n is composed of orthonormal columns, R ∈ R

n×n is upper triangular, and E is chosen so that the diagonal 
entries in R are in descending order. If W A S has full rank, then its pseudoinverse is

(W A S)+ = E R−1 Q T . (32)

Otherwise, we compute the pseudoinverse as

(W A S)+ = E1:k,1:r R−1
1:r,1:r( Q 1:m,1:r)T , (33)

where r is the numerical rank of R . In this way, we can truncate the higher order terms in W A S for best-possible accuracy 
whenever possible.

4. Accuracy and stability of WLS-ENO

In this section, we analyze the accuracy of WLS-ENO, as well as its stability in the context of solving hyperbolic conser-
vation laws.
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4.1. Accuracy

First, we analyze the WLS-ENO schemes and show that they can achieve the expected order of accuracy for smooth 
functions.

Theorem 1. Given a mesh with a smooth function f . Let W be a diagonal matrix containing all the weights for the cells. A and S are 
the matrices in (30). Suppose the cell average of f is approximated with an error O(hp) and the matrix W A S has a bounded condition 
number. The degree-(p − 1) cell average weighed least squares fitting approximates qth order derivatives of function f to O(hp−q).

For simplicity, we only prove the theorem in 2-D. The analysis also applies to 1-D and 3-D.

Proof. The 2-D Taylor series expansion about the point (xi, yi) reads

f (x, y) =
p−1∑
q=0

j+k=q∑
j,k≥0

f jk

j!k! (x − xi)
j(y − yi)

k +O
(‖δx‖p) , (34)

where δx = [x − xi, y − yi]
T . The cell average of f (x, y) over some cell τi can be written as

1

|τi |
¨

τi

f (x, y)dxdy = 1

|τi |
p−1∑
q=0

j+k=q∑
j,k≥0

f jk

j!k!
¨

τi

(x − xi)
j(y − yi)

k dxdy +O
(‖δx‖p) . (35)

Let v denote the exact derivatives of function f , ṽ the numerical solution from the WLS fitting. Let r = u − Av . By assump-
tion, each component of r is O

(‖δx‖p
)
. The error of coefficients has the relationship W A

(
ṽ − v

)≈ W r. The error of d can 
then be written as

W A Sδd ≈ W r. (36)

By solving this least squares problem, we have δd = (W A S)+ W r. Since the function f is smooth, all the diagonal entries 
in W are O(1/ ‖δx‖2). Under the assumption that W A S has a bounded condition number κ , all the component of δd are 
O(κ ‖δx‖p−2). For a qth order partial derivative of function f , the corresponding column in W A is O(‖δx‖q−2), so is the 
2-norm of the column. Therefore, the qth order derivatives of function f are approximated to O(hp−q). �

From this theorem, we can conclude that the degree-(p − 1) WLS-ENO reconstruction delivers a pth order accurate 
reconstruction for smooth functions.

4.2. Stability of WLS-ENO for hyperbolic conservation laws

For the WLS-ENO to be practically useful, it is important that it enables a stable discretization for hyperbolic conservation 
laws, when coupled with a proper time-integration scheme. In the following, we analyze two fifth-order WLS-ENO schemes 
for a model problem in 1-D, based on a modified von Neumann stability analysis. We show that the WLS-ENO scheme has 
a larger stability region than the WENO scheme on structured meshes. We will further demonstrate its stability for 2-D and 
3-D problems in Section 5.

4.2.1. Model problem in 1-D
We consider one dimensional wave equation

ut + ux = 0, x ∈ [0,1], t > 0 (37)

with the periodic boundary condition

u(x,0) = u0(x), x ∈ [0,1]. (38)

Suppose we have a structured grid 0 = x 1
2

< x 3
2

< · · · < xN+ 1
2

= 1 with xi = i�x and �x = 1/N . For the finite volume 
method, we integrate the above wave equation and divide it by the length of the cell, and obtain

du(xi, t)

dt
= − 1

�xi

(
f
(

u
(

xi+ 1
2
, t
))

− f
(

u
(

xi− 1
2
, t
)))

, (39)

where

u (xi, t) = 1

�xi

x
i+ 1

2ˆ

x
i− 1

u(x, t)dx. (40)
2
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We approximate (39) by the following conservative scheme

du(xi, t)

dt
= − 1

�xi

(
f̂ i+ 1

2
− f̂ i− 1

2

)
, (41)

where the numerical flux f̂ i+ 1
2

is replaced by the Lax–Friedrichs flux (3), with α = maxu
∣∣ f ′(u)

∣∣. For this particular problem, 

f̂ i+ 1
2

− f̂ i− 1
2

= u−
i+ 1

2
− u−

i− 1
2

.

For time integration, we use a TVD Runge–Kutta method [1]. An n-stage Runge–Kutta method for the ODE ut = L(u) has 
the general form of

k0 = u(t), (42)

ki =
i−1∑
j=0

(
αi jk j + βi j�tL(k j)

)
, i = 1, . . . ,n, (43)

where ki denotes the intermediate solution after the ith stage, and u(t + �t) = kn . A Runge–Kutta method is total variation 
diminishing (TVD) if all the coefficients αi j and βi j are nonnegative. The CFL coefficient of such a scheme is given by

c = min
i,k

{αik/βik}. (44)

Specifically, we use the third-order TVD Runge–Kutta scheme, given by

k1 = u + �tL (u) , (45)

k2 = 3

4
u + 1

4
k1 + 1

4
�tL (k1) , (46)

k3 = 1

3
u + 2

3
k2 + 2

3
�tL(k2), (47)

for which the CFL coefficient is c = 1.

4.2.2. von Neumann stability analysis
Based on the von Neumann stability analysis, the semi-discrete solution can be expressed by a discrete Fourier series

u j(t) =
N/2∑

k=−N/2

ûk(t)eiωk j�x, ωk ∈ R. (48)

By the superposition principle, we can only use one term in the series for analysis

u j(t) = ûk(t)eijθk , θk = ωk�x, (49)

where k = −N/2, . . . , N/2. We assume that the numerical flux can be written in the following form

f̂ i+ 1
2

− f̂ i− 1
2

= u−
i+ 1

2
− u−

i− 1
2

= z (θk) ui, (50)

where the complex function z (θk) is the Fourier symbol.
Let un

i = ui(tn) be the numerical solution at time level tn = n�t . We define the amplification factor g by inserting (49)
into the fully-discrete system and obtain

un+1
i = g(ẑk)un

i , ẑk = −σ z (θk) , k = −N/2, . . . , N/2, (51)

where σ = �t/�x. Therefore, the linear stability domain of an explicit time-stepping scheme is St = {ẑ : ∣∣g (ẑ)∣∣≤ 1
}

. Also, 
we define the discrete spectrum S of a spatial discretization scheme

S = {−z (θk) : θk ∈ 0,�θ,2�θ, . . . ,2π} , �θ = 2π�x. (52)

The stability limit is thus the largest CFL number σ̃ such that the rescaled spectrum σ̃ S lies inside the stability domain

σ̃ S ∈ St . (53)

For the third-order Runge–Kutta scheme, the amplification factor is given by

g (̃z) = 1 + z̃ + 1

2
z̃2 + 1

6
z̃3. (54)

To determine the boundary of the stability domain ∂ St = {̃z : |g(̃z)| = 1}, we set g(̃z) = eiφ and solve the following equation

z̃3 + 3̃z2 + 6̃z + 6 − 6eiφ = 0. (55)

The stability region is bounded by the solid blue curves in Fig. 2.
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Fig. 2. Rescaled spectra and stability domains of fifth-order WLS-ENO with five (left) and seven (right) cells.

4.2.3. Fifth-order WLS-ENO scheme with five cells
Let us first consider a fifth-order scheme for a cell τi , with five cells

Si = {τi−2, τi−1, τi, τi+1, τi+2} , (56)

where τi is the interval 
[

xi− 1
2
, xi+ 1

2

]
. For this stencil, the coefficient matrix in (21) is given by

A =

⎛⎜⎜⎜⎜⎜⎜⎝
1 − 5�x

2
19�x2

6 − 65�x3

24
211�x4

120

1 − 3�x
2

7
x2

6 − 15�x3

24
31�x4

120

1 −�x
2

�x2

6 −�x3

24
�x4

120

1 �x
2

�x2

6
�x3

24
�x4

120

1 3�x
2

7�x2

6
15�x3

24
31�x4

120

⎞⎟⎟⎟⎟⎟⎟⎠ . (57)

Since A is nonsingular, the weights do not affect the solution. The solution is given by

u−
i+ 1

2
= 2

60
ui−2 − 13

60
ui−1 + 47

60
ui + 27

60
ui+1 − 3

60
ui+2. (58)

This is mathematically equivalent to the fifth-order WENO scheme without the nonlinear weights. Also, the flux reads

u−
i+ 1

2
− u−

i− 1
2

= − 2

60
ui−3 + 15

60
ui−2 − 60

60
ui−1 + 20

60
ui + 30

60
ui+1 − 3

60
ui+2. (59)

Substituting it into (49), we get

z (θk) = 16

15
sin6

(
θk

2

)
+ i

(
−1

6
sin (2θk) + 4

3
sin (θk) + 16

15
sin5

(
θk

2

)
cos

(
θk

2

))
. (60)

The discrete spectrum is shown in Fig. 2(left).
Given the spectrum and the stability domain, the CFL number of this scheme can be computed by finding the largest 

rescaling parameter σ , so that the rescaled spectrum still lies in the stability domain. Using interval bisection, we find that 
the CFL number is σ = 1.44 for the fifth-order five-cell scheme.

4.2.4. Fifth-order WLS-ENO scheme with seven cells
Next, let us consider a least-squares fitting for τi using seven cells

Si = {τi−3, τi−2, τi−1, τi, τi+1, τi+2, τi+3} . (61)
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The coefficient matrix in (21) is given by

A =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 − 7�x
2

37�x2

6 − 175�x3

24
781�x4

120

1 − 5�x
2

19�x2

6 − 65�x3

24
211�x4

120

1 − 3�x
2

7
x2

6 − 15�x3

24
31�x4

120

1 −�x
2

�x2

6 −�x3

24
�x4

120

1 �x
2

�x2

6
�x3

24
�x4

120

1 3�x
2

7�x2

6
15�x3

24
31�x4

120

1 5�x
2

19�x2

6
65�x3

24
211�x4

120

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (62)

If ε = 0, from (24) and (25), we obtain the weights

w1 ≈ 1

9�x2
, w2 ≈ 1

4�x2
, w3 ≈ 1

�x2
, w4 ≈ 1.5

�x2
, w5 ≈ 1

�x2
, w6 ≈ 1

4�x2
, w7 ≈ 1

9�x2
. (63)

Solving the weighted least squares system, we obtain the following scheme

u−
i+ 1

2
= 1 226 983

9 489 680
ui−3 − 963 431

47 447 340
ui−4 − 13 515 169

94 894 680
ui−1 + 66 771

87 380
ui

+ 38 388 551

94 894 680
ui+1 − 93 404

11 861 835
ui+2 − 348 299

31 631 560
ui+3.

Therefore, the flux reads

u−
i+ 1

2
− u−

i− 1
2

= − 1 226 983

94 894 680
ui−4 + 630 769

18 978 936
ui−3 + 3 862 769

31 631 560
ui−2 − 17 205 695

18 978 936
ui−1

+ 6 824 951

18 978 936
ui + 13 045 261

31 631 560
ui+1 + 59 533

18 978 936
ui+2 − 348 299

31 631 560
ui+3.

Substituting it into (49), we get

z (θk) = p (θk) + iq (θk) , (64)

where

p (θk) = −0.0129 cos (4θk) + 0.0222 cos (3θk) + 0.1253 cos (2θk) − 0.4942 cos (θk) + 0.3596, (65)

and

q (θk) = 0.0129 sin (4θk) − 0.0442 sin (3θk) − 0.1190 sin (2θk) + 1.3190 sin (θk) . (66)

The discrete spectrum is shown in Fig. 2(right). The CFL number is computed in the same way as the above scheme. For this 
scheme with seven cells, we obtain σ = 1.67. Therefore, the seven-cell fifth-order WLS-ENO scheme has a larger stability 
region than the five-cell counterpart, which is mathematically equivalent to the fifth-order WENO scheme without nonlinear 
weights.

5. Numerical results

In this section, we present some numerical experiments of WLS-ENO over both structured and unstructured meshes in 
1-D, 2-D, and 3-D, and compare it against WENO schemes when applicable. For all the PDEs, we will use third-order TVD 
Runge–Kutta for time integration.

5.1. 1-D results

We first show some results in 1-D, for the reconstruction of a piecewise smooth function as well as the solutions of 
PDEs, including a linear wave equation, Burgers’ equation, and the Euler equations.

5.1.1. Reconstruction of discontinuous functions
We first test WLS-ENO for the reconstruction of a 1-D discontinuous function, given by

v(x) =
{

sin(πx)

cos(πx)

0 ≤ x ≤ 0.6

0.6 < x ≤ 1
. (67)

This function is discontinuous at x = 0.6 but smooth everywhere else within the interval [0, 1]. We performed grid con-
vergence study under grid refinement, starting from an equidistant grid with 32 grid cells. For the WLS-ENO, we used 
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Fig. 3. Convergence of fifth-order WENO and WLS-ENO away from discontinuity.

Fig. 4. Convergence of fifth-order WENO and WLS-ENO near discontinuity.

degree-four polynomials over seven-cell stencil, which according to our theory should deliver fifth-order accuracy in smooth 
regions and fourth-order accuracy near discontinuities. As a point of reference, we also perform the reconstruction using 
the fifth-order WENO scheme, which is fifth-order accurate in smooth regions and third-order accurate near discontinuities. 
Fig. 3 shows the L∞-norm error for the reconstructed values at the grid points that are one cell away from the discontinuity. 
It can be seen that both WLS-ENO and WENO delivered fifth-order accuracy, but WLS-ENO is more accurate. When includ-
ing the grid points near discontinuities, as can be seen in Fig. 4, WLS-ENO achieved fourth-order convergence, whereas the 
fifth-order WENO reduced to third order, as predicted by their respective theoretical analyses.

5.1.2. 1-D wave equation
To test the effectiveness of WLS-ENO for solving hyperbolic PDEs, we first solve a simple linear wave equation

ut + ux = 0, −1 ≤ x ≤ 1, (68)

with periodic boundary conditions. Similar to the reconstruction problem, we use WLS-ENO with degree-four polynomials 
over seven cells. To assess the accuracy for smooth solutions, consider the smooth initial condition

u(x,0) = sin(πx), (69)

for which the solution remains smooth over time. We assess the order of accuracy of the solutions at t = 1 under grid 
refinement, and compare the errors against the fifth-order WENO. Fig. 5 shows the results for uniform and non-uniform 
grids. For uniform grids, similar to the results of reconstruction, both WLS-ENO and WENO delivered fifth-order conver-
gence under grid refinement, and the solution of WLS-ENO is more accurate. For non-uniform grids, we used the WENO 
reconstruction in [2], which converged at a slower rates, and was about an order of magnitude less accurate than WLS-ENO 
on the finest grid.
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Fig. 5. Convergence of fifth-order WENO and WLS-ENO for wave equation at t = 1 on 1-D grids.

Fig. 6. Discontinuous initial condition (left) and numerical solution with fifth-order WLS-ENO (right) at t = 0.5 for the linear wave equation.

To demonstrate the accuracy and stability of WLS-ENO for discontinuous solutions, we change the initial condition to be 
a piecewise smooth function

u(x,0) =
{

sin(πx) −1 ≤ x < −0.2 ∪ 0.3 < x ≤ 1

0.5 −0.2 ≤ x ≤ 0.3
, (70)

as shown in Fig. 6(a). Fig. 6(b) shows the solution at t = 0.5 using WLS-ENO. The results show that the WLS-ENO scheme 
well preserved the sharp feature and maintained the non-oscillatory property.

5.1.3. 1-D Burgers’ equation
Next, we test WLS-ENO with the 1-D Burgers’ equation,

∂u

∂t
+ u

∂u

∂x
= 0, 0 ≤ x ≤ 2π, (71)

with periodic boundary conditions and the initial condition

u(x,0) = 0.3 + 0.7 sin(x), 0 ≤ x ≤ 2π. (72)
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Fig. 7. Comparison of WENO and WLS-ENO schemes for 1-D Burgers’ equation at t = 1 (left) and numerical solution with WLS-ENO (right) at t = 1.4.

Although the initial condition is smooth, a discontinuity develops at time t = 1.4. To assess the order of accuracy, Fig. 7(a) 
shows the solutions from the fifth-order WLS-ENO, compared with the fifth-order WENO under grid refinement at time 
t = 1, starting from a grid with 64 grid points. The results show that both WLS-ENO and WENO delivered fifth-order 
accuracy, while WLS-ENO is more accurate. Fig. 7(b) shows the numerical solution from WLS-ENO overlaid on top of the 
exact solution at t = 1.4. We can see that the WLS-ENO scheme approximated the solution very well.

5.1.4. 1-D Euler equations
The above tests demonstrate the accuracy and stability of WLS-ENO for 1-D benchmark problems. For a more realistic 

problem, we consider the 1-D Euler equations⎛⎝ ρ
ρv
E

⎞⎠
t

+
⎛⎝ ρv

ρv2 + p
v (E + p)

⎞⎠
x

= 0, (73)

with the equation of state for ideal polytropic gas

E = p

γ − 1
+ 1

2
ρv2, (74)

where ρ denotes the gas density, v the velocity, p the pressure, E the energy, and γ = 1.4 a constant specific to air. We 
perform characteristic decomposition [36] and solve the conservation law characteristic-wise using the fifth-order WLS-ENO 
scheme on an unstructured (i.e., non-uniform) grid. In more detail, if we introduce the speed of sound c by

c =
√

γ p

ρ
, (75)

and enthalpy H by

H = E + p

ρ
, (76)

we have the eigenvalue decomposition for the Jacobian as

R−1(u) f ′(u)R(u) = Λ(u), (77)

where

f ′(u) =

⎛⎜⎜⎝
0 1 0(

γ −3
2

)
v2 (3 − γ )v γ − 1(

γ −1
2

)
v3 − v H H − (γ − 1)v2 γ v

⎞⎟⎟⎠ , (78)

Λ(u) =
⎛⎝ v − c

v
v + c

⎞⎠ , (79)
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Fig. 8. Solutions of 1-D Euler equations at t = 1 with fifth-order WLS-ENO on non-uniform grid.

and

R(u) =
⎛⎝ 1 1 1

v − c v v + c
H − cv 1

2 v2 H + cv

⎞⎠ . (80)

Sod’s problem We first compute the density, velocity and pressure with the initial condition given by Sod’s problem [2]

(ρL, v L, pL) = (1,0,1) , (ρR , v R , pR) = (0.125,0,0.1) . (81)

Fig. 8 shows the numerical solutions at t = 1 compared against the exact solution. The results matched the exact solution 
very well and were non-oscillatory near discontinuities.

Interacting blast waves Next, we consider the 1-D blast wave problem [37], which has the initial condition

(ρ, u, P ) =

⎧⎪⎨⎪⎩
(1,0,1000) 0 ≤ x < 0.1

(1,0,0.01) 0.1 ≤ x < 0.9

(1,0,100) 0.9 ≤ x < 1

, (82)
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Fig. 9. Solutions of 1-D interacting blast waves at t = 0.038 with fifth-order WLS-ENO.

and reflective boundary conditions at both sides. For this test, sharp resolution of discontinuities is critical for the accuracy 
of the overall flow solution. Fig. 9 shows the result using fifth-order WLS-ENO scheme at t = 0.038, which agreed with the 
exact solution very well.

5.2. 2-D results

We now present results of WLS-ENO with 2-D unstructured meshes for problems with smooth or piecewise smooth 
solutions, including the wave equation, Burgers’ equation, and the Euler equations with two different initial conditions.

5.2.1. 2-D wave equation
As in 1-D, we first consider the wave equation,

ut + ux + u y = 0, (83)

with periodic boundary conditions and the initial condition

u0(x, y) = sin
(π

2
(x + y)

)
, −2 ≤ x ≤ 2, −2 ≤ y ≤ 2. (84)

For this problem, the solution remains smooth over time. We solve the problem using third-order WLS-ENO scheme and 
third-order WENO scheme. We first solve the problem on unstructured meshes, similar to that in Fig. 10. Fig. 11 shows 
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Fig. 10. Sample unstructured triangular mesh for solving 2-D wave equation.

Fig. 11. Errors in numerical solutions of 2-D wave equation with WENO and WLS-ENO on unstructured meshes at t = 1.

Fig. 12. Sample uniform triangular mesh for solving 2-D wave equation.

the errors at t = 1, and it can be seen that both methods achieved only second order convergence. This convergence rate 
is expected, because the derivatives can only be approximated to second-order accurate by polynomial approximations over 
nonuniform unstructured meshes without symmetry. When applying WLS-ENO on a uniform mesh, such as that shown in 
Fig. 12, it would deliver the convergence rate one order higher due to error cancellation, similar to WENO and other finite 
difference methods, as illustrated with the fourth-order WLS-ENO scheme and fourth-order WENO scheme in Fig. 13. Note 
that on uniform meshes, WLS-ENO may be slightly less accurate than WENO because it uses a larger stencil.
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Fig. 13. Errors in numerical solutions of 2-D wave equation with WENO and WLS-ENO on uniform meshes at t = 1.

Fig. 14. Exact (left) and numerical solutions (right) with fourth-order WLS-ENO for 2-D Burgers’ equation at t = 0.5.

5.2.2. 2-D Burgers’ equation
For piecewise smooth solutions, we solve the 2-D Burgers’ equation

ut +
(

u2

2

)
x
+
(

u2

2

)
y
= 0 (85)

over [−2, 2]2, with periodic boundary conditions and the initial condition

u0(x, y) = 0.3 + 0.7 sin
(π

2
(x + y)

)
. (86)

Although the initial condition is smooth, discontinuities develop over time. Fig. 14(left) shows the exact solution at t = 0.5, 
when the solution becomes discontinuous, and Fig. 14(right) shows the result of fourth-order WLS-ENO scheme under 
non-uniform grid refinement. It can be seen that the overall solution remained accurate as discontinuities developed.

5.2.3. 2-D Euler equations
The 2-D Euler equations have the following form⎛⎜⎜⎝

ρ
ρu
ρv
E

⎞⎟⎟⎠
t

+

⎛⎜⎜⎝
ρu

ρu2 + p
ρuv

u (E + p)

⎞⎟⎟⎠
x

+

⎛⎜⎜⎝
ρv
ρuv

ρv2 + p
v (E + p)

⎞⎟⎟⎠
y

= 0, (87)

where

E = p

γ − 1
+ 1

2
ρ
(

u2 + v2
)

. (88)

In our tests, we use γ = 1.4 as in 1-D, and use characteristic decomposition to split variables as described in [5]. WLS-ENO 
is then applied to each of the characteristic field.
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Fig. 15. Convergence result of ρ for 2-D vortex evolution problem with fifth order WLS-ENO on triangular meshes.

Vortex evolution problem This is one of the few problems that has exact solutions for the compressible Euler equations. The 
test case involves the convection of an isentropic vortex in inviscid flow, and it tests the ability of numerical schemes to 
capture vortical flows. We consider an idealized setting over [0,10]2 with periodic boundary conditions. The mean flow is 
ρ∞ = 1, p∞ = 1, and (u∞, v∞) = (1, 1). For the initial condition, we place an isentropic vortex to the mean flow field. The 
perturbation values are given by

(δu, δv) = β

2π
e

1−r2
2
(−y, x

)
, (89)

δT = − (γ − 1)β2

8γπ2
e1−r2

(90)

where 
(
x, y
)= (x − 5, y − 5), r2 = x2 + y2, and the vortex strength β = 5. The exact solution of this problem convecting the 

vortex along the diagonal direction. We used fifth-order WLS-ENO scheme and computed the results up to t = 1. Fig. 15
shows the result, which achieved the expected convergence rate.

Explosion test problem In this test, we solve the 2-D explosion test [38,9], which solves the Euler equations over a unit disk 
centered at the origin. The initial condition is given by

(ρ, u, v, p)T =
{

(1,0,0,1)T
√

x2 + y2 ≤ 0.2

(0.125,0,0.1)T
√

x2 + y2 > 0.2
. (91)

We triangulated the unit disk with meshes similar to that in Fig. 10, and ran the test up to t = 0.1 to ensure that the explo-
sion waves do not reach the boundary. To obtain a reference solution, note that this problem is mathematically equivalent 
to the axisymmetric Euler equations [39]

∂

∂t

⎛⎝ ρ
ρu
E

⎞⎠+ ∂

∂r

⎛⎝ ρu
ρu2 + p
u (E + p)

⎞⎠= −d − 1

r

⎛⎝ ρu
ρu2

u (E + p)

⎞⎠ , (92)

where r is the radial coordinate. We solved this 1-D problem on a very fine mesh composed of 4000 grid points and use 
its solution as the reference. Figs. 16 and 17 show the numerical solution for the density at t = 0.1 with the third-order 
WLS-ENO scheme. The results agreed very well with the 1-D solutions.

5.3. 3-D results

One advantage of WLS-ENO is that it generalizes to 3-D in a straightforward fashion. We present some numerical results 
over unstructured meshes in 3-D, including the wave equation, Burgers’ equation, and the Euler equations.

5.3.1. 3-D wave equation
We first solve the 3-D linear wave equation

ut + ux + u y + uz = 0 (93)
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Fig. 16. Numerical solution of ρ for 2-D explosion test with third-order WLS-ENO at t = 0.1.

Fig. 17. Numerical solution of ρ along x axis of 2-D explosion test with third-order WLS-ENO vs. 1-D solution at t = 0.1.

over [−2, 2]3, with periodic boundary conditions and the initial condition

u(x, y, z,0) = sin
(π

2
(x + y + z)

)
. (94)

We solve the problem using WLS-ENO over a series of unstructured meshes, where the coarsest mesh is depicted in 
Fig. 18. Fig. 19 shows the errors with third-order and fourth-order WLS-ENO schemes under mesh refinement. It is clear 
that both schemes achieved the convergence rate close to three, and the error of fourth-order WLS-ENO scheme was about 
half of that of the third-order scheme.

5.3.2. 3-D Burgers’ equation
In this test, we solve the 3-D nonlinear Burgers’ equation

ut +
(

u2

2

)
x
+
(

u2

2

)
y
+
(

u2

2

)
z
= 0 (95)

over [−2, 2]3, also with periodic boundary conditions and the initial condition

u (x, y, z,0) = 0.3 + 0.7 sin
(π

2
(x + y + z)

)
. (96)

Similar to the 2-D case, discontinuities develop at t = 0.5. Fig. 20 shows a 1-D cross section of the numerical solutions along 
x = y and z = 0 with third-order and fourth-order WLS-ENO schemes at t = 0.5, overlaid with the exact solution. Both solu-
tions are non-oscillatory, and the error of fourth-order WLS-ENO scheme was about half of that of the third-order scheme, 
as shown in Fig. 21. In contrast, the third-order WENO scheme in [30] was unstable over a non-uniform unstructured mesh. 
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Fig. 18. Sample unstructured mesh for solving 3-D wave equations.

Fig. 19. Convergence of third- and fourth-order WLS-ENO schemes for wave equation on tetrahedral meshes.

Fig. 20. 1-D cross-sections of 3-D Burgers’ equation using third- and fourth-order WLS-ENO schemes at t = 0.5.
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Fig. 21. Convergence of third- and fourth-order WLS-ENO for Burgers’ equation at t = 0.5 away from singularities.

On a tetrahedral mesh obtained by decomposing a structured mesh, WLS-ENO and WENO achieved comparable accuracy for 
the problem.

5.3.3. 3-D Euler equations
As our final test, we solve the 3-D version of the explosion test [38,9]. The 3-D Euler equations have the form

Ut + ∂ F

∂x
+ ∂G

∂ y
+ ∂ H

∂z
= 0, (97)

where

U =

⎛⎜⎜⎜⎝
ρ
ρu
ρv
ρw

E

⎞⎟⎟⎟⎠ , F =

⎛⎜⎜⎜⎜⎝
ρu

ρu2 + p
ρuv
ρuw

u (E + p)

⎞⎟⎟⎟⎟⎠ , G =

⎛⎜⎜⎜⎜⎝
ρv
ρuv

ρv2 + p
ρv w

v (E + p)

⎞⎟⎟⎟⎟⎠ , H =

⎛⎜⎜⎜⎜⎝
ρw
ρuw
ρv w

ρw2 + p
w (E + p)

⎞⎟⎟⎟⎟⎠ , (98)

and

E = p

γ − 1
+ 1

2
ρ
(

u2 + v2 + w2
)

. (99)

As in 1-D and 2-D, we chose γ = 1.4. The computational domain is a unit ball centered at the origin, which we tessellate 
with a tetrahedral mesh. The initial condition of this problem is given by

(ρ, u, v, w, p)T =
{

(1,0,0,0,1)T
√

x2 + y2 + z2 ≤ 0.2

(0.125,0,0,0,0.1)T
√

x2 + y2 + z2 > 0.2
. (100)

We solved the problem in a component-by-component fashion up to t = 0.1, and obtained a reference solution by solving 
the 1-D problem (92). Figs. 22 and 23 show the numerical solutions of the density at t = 0.1, which agreed with the 1-D 
solutions very well.

6. Conclusions and future work

In this paper, we introduced a new family of essentially non-oscillatory schemes, called WLS-ENO, in the context of finite 
volume methods for solving hyperbolic conservation laws. The schemes are derived based on Taylor series expansions and 
solved with a weighted least squares formulation. They can be applied to both structured and unstructured meshes. Over 
structured meshes, we showed that WLS-ENO delivers similar and even better accuracy compared to WENO, while enabling 
a larger stability region. For unstructured meshes, we showed that WLS-ENO enables accurate and stable solutions. Its 
accuracy and stability are rooted in the facts that the convexity requirement is satisfied automatically in WLS-ENO, and the 
stencil can be adapted more easily to ensure the stability of the approximations. We presented detailed analysis of WLS-ENO 
in terms of accuracy in 2-D, and its stability for hyperbolic conservation laws in 1-D. We also assessed the WLS-ENO with a 
large collection of test problems in 1-D, 2-D, and 3-D, including wave equations, Burgers’ equation, and the Euler equations 
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Fig. 22. Cross section of numerical solution of ρ in xy plane of 3-D explosion test with third-order WLS-ENO at t = 0.1.

Fig. 23. Numerical solution of ρ along x axis of 3-D explosion test with third-order WLS-ENO vs. 1-D solution at t = 0.1.

with fairly complicated initial conditions. Our numerical results demonstrated that WLS-ENO is accurate and stable over 
unstructured meshes for very complex problems.

In its current form, WLS-ENO still has some limitations. Its primary disadvantage is that it has higher computational cost 
compared to the traditional WENO scheme over structured meshes. However, for engineering applications involving complex 
geometries, WLS-ENO provides a more general tool for dealing with piecewise smooth functions over unstructured meshes. 
To improve efficiency, it is also possible to develop a hybrid method that utilizes the traditional WENO on structured meshes 
in the interior and utilizes WLS-ENO over unstructured meshes near complex boundaries. Another limitation of the present 
formulation of WLS-ENO is that it only applies to finite volume methods. As future work, we will extend WLS-ENO to 
support generalized finite difference methods on unstructured meshes, optimize the performance of WLS-ENO, and apply 
the methods to applications in computational fluid dynamics.
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