
Journal of Computational Physics 316 (2016) 94–116
Contents lists available at ScienceDirect

Journal of Computational Physics

www.elsevier.com/locate/jcp

A new approach to wall modeling in LES of incompressible 

flow via function enrichment

Benjamin Krank, Wolfgang A. Wall ∗

Institute for Computational Mechanics, Technische Universität München, Boltzmannstr. 15, 85748 Garching, Germany

a r t i c l e i n f o a b s t r a c t

Article history:
Received 2 June 2015
Received in revised form 21 March 2016
Accepted 2 April 2016
Available online 8 April 2016

Keywords:
Wall modeling
Large-eddy simulation
Detached-eddy simulation
Function enrichment
XFEM
Law-of-the-wall

A novel approach to wall modeling for the incompressible Navier–Stokes equations 
including flows of moderate and large Reynolds numbers is presented. The basic idea 
is that a problem-tailored function space allows prediction of turbulent boundary layer 
gradients with very coarse meshes. The proposed function space consists of a standard 
polynomial function space plus an enrichment, which is constructed using Spalding’s law-
of-the-wall. The enrichment function is not enforced but “allowed” in a consistent way 
and the overall methodology is much more general and also enables other enrichment 
functions. The proposed method is closely related to detached-eddy simulation as near-
wall turbulence is modeled statistically and large eddies are resolved in the bulk flow. 
Interpreted in terms of a three-scale separation within the variational multiscale method, 
the standard scale resolves large eddies and the enrichment scale represents boundary 
layer turbulence in an averaged sense. The potential of the scheme is shown applying it 
to turbulent channel flow of friction Reynolds numbers from Reτ = 590 and up to 5,000, 
flow over periodic constrictions at the Reynolds numbers ReH = 10,595 and 19,000 as well 
as backward-facing step flow at Reh = 5,000, all with extremely coarse meshes. Excellent 
agreement with experimental and DNS data is observed with the first grid point located 
at up to y+

1 = 500 and especially under adverse pressure gradients as well as in separated 
flows.

© 2016 Elsevier Inc. All rights reserved.

1. Introduction

Large-eddy simulation (LES) becomes prohibitively expensive for moderate and high Reynolds numbers if near-wall 
turbulence is resolved. Grid-resolution requirements enabling prediction of the necessary scales depend on the friction 
Reynolds number approximately as Re2

τ [1]. Small computation cells in the boundary layer come along with severe con-
straints on the time step size to resolve the temporal scales of momentum-transfer mechanisms and to be compliant with 
the Courant–Friedrichs–Lewy (CFL) condition if explicit time integration schemes are utilized.

The concept of wall modeling was therefore introduced in early works on LES of high-Reynolds-number flow by Deardorff 
[2] and Schumann [3] in an attempt to circumvent the resolution dependence on wall units. Wall modeling implies that 
near-wall turbulence and the accompanying momentum transfer are not resolved in detail but modeled in a statistical sense. 
With near-wall turbulence modeled, the size of dominating eddies in the bulk of the flow are governed by geometrical scales 
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of boundary conditions with resolution requirements increasing approximately as Re0.4 with the Reynolds number of the 
bulk flow [4].

Common approaches in wall modeling focus on imposing synthetic boundary conditions prescribing tractions instead of 
no-slip velocity, see reviews e.g. in [5,4,6,7]. This comes along with the major advantage that the velocity gradient does 
not have to be resolved explicitly by the scheme, enabling very coarse meshes. Yet accurate models are required to predict 
the correct stresses. Simple equilibrium models allow for direct modeling of the tractions but are prone to inaccurate 
predictions in separated regions or flows with high pressure gradients [4]. Advanced wall functions seek to improve this 
problem by including corrections for convective and pressure-gradient effects [8]. More accurate two-layer models have been 
developed, e.g. solving the simplified thin-boundary-layer equations (TBLE) on a separate domain between the wall and the 
first off-wall node to predict the momentum transfer inside the boundary layer [9,10]. For a comprehensive overview of 
wall-layer models it is referred to Piomelli and Balaras [4] and Piomelli [6]. Recent developments in this field include 
application with unstructured grids [11,12], improvement of wall shear stress predictions in equilibrium boundary layers 
[13,14,12], laminar-turbulent transition [11,15] and applications of the TBLE with further simplifications [16,17]. Alternative 
methods of imposing approximate boundary conditions have been proposed such as weak no-slip boundary conditions [18,
19], the filtered-wall model [20] or dynamic slip boundary conditions [21] which are not frequently used but have led to 
new insights and triggered new developments in the field of wall modeling.

Hybrid RANS/LES methods including detached-eddy simulation (DES) represent another paradigm for wall modeling [22,
23]. Instead of employing separate domains for near-wall and bulk turbulence such as in two-layer models, different subgrid 
models are applied in the respective regions of a single mesh. Reynolds-averaged Navier–Stokes equations are commonly 
employed in the wall region and LES subgrid closures in the bulk of the flow. The sharp velocity gradient present in 
high-Reynolds-number flow necessitates many computation points in wall-normal direction; a requirement is often that the 
first off-wall node should be located near y+ = 1 [6].

A major reason for DES requiring many grid points in wall-normal direction to be able to resolve the gradient accurately 
is the common application of low-order computational methods. In this work, we propose a problem-tailored numerical 
method for this region that is capable of resolving the velocity gradient with very coarse meshes. This is done by employing 
general knowledge about turbulent boundary layers without prescribing the velocity profile itself. Theoretical considerations 
on methods that allow for constructing customized numerical methods have first been introduced by Melenk and Babuška 
[24] with their partition-of-unity method (PUM). Belytschko and Black [25] have subsequently suggested a formalism that 
allows for construction of a problem-tailored computational method in the application of crack propagation in solid mechan-
ics. An enrichment function representing an approximate analytical solution is usually used to extend the solution space of 
the method, besides the standard polynomial function space. For a comprehensive overview of the method we refer to the 
review articles in [26,27].

Applications of this method in the field of fluid mechanics can be found in several academic examples such as enrichment 
with analytical high-gradient solutions of the convection-diffusion equation [28], simulating a sharp corner in Stokes flow 
via an asymptotic expansion as enrichment [29] or resolving the bottom boundary layer of oceanic flow via a logarithmic 
enrichment function applied to a 1D water column [30]. A recent publication suggests enrichment with modes obtained 
by a proper orthogonal decomposition to resolve the boundary layer of a stochastically forced Burger’s equation [31]. The 
general framework can also be used to resolve other features of the solution besides high gradients, such as jumps or kinks, 
and can even be used to cut elements (see, e.g., [32]). In general, the enrichment function is not prescribed as solution but 
the method “chooses” the best solution among all functions available in its function space in a consistent manner.

In this study, we suggest to extend the standard solution space with the law-of-the-wall due to Spalding as enrichment 
function such that the numerical method is able to represent the high-gradient velocity profile in a turbulent boundary 
layer with very coarse meshes. The idea follows the paradigm of DES as only the large eddies away from the wall are 
resolved explicitly and near-wall turbulent structures are represented on the same mesh in a statistical sense. The con-
struction of the method does however not require blending of turbulence models as the approach separates the statistical 
model a priori from the eddy-resolving space according to the variational multiscale method. Yet it is required that subgrid 
turbulence is modeled accurately such that the computational method is able to find an appropriate solution. Therefore 
a multifractal subgrid scale model embedded in a variational multiscale method is applied as subgrid scale model which 
gives excellent results for wall-resolved LES [33] and has been successfully extended to passive-scalar mixing [34] as well 
as low-Mach-number flow with variable density [35].

The present article is organized as follows. In Section 2, a weighted residual formulation of the incompressible Navier–
Stokes equations is presented. Subsequently the enrichment of the function space with an appropriate gradient-capturing 
function is proposed in Section 3 and methods are presented for adaptivity in space and time. Turbulence modeling in the 
framework of the variational multiscale method and necessary adaptations to the new function space are revisited in Sec-
tion 4. The method is validated with turbulent channel flow at moderate to moderately large Reynolds number, flow past 
periodic hills as well as flow over a backward-facing step in Section 5. Conclusions close the article in Section 6.
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2. Incompressible Navier–Stokes equations

The incompressible Navier–Stokes equations are considered in this work as outlined in the following. The weighted-
residual formulation presented in the second subsection is the starting point for approximation of the solution spaces in 
Section 3.

2.1. Problem statement

The incompressible Navier–Stokes equations in convective form are considered as

∂u

∂t
+ u · ∇u + ∇p − 2ν∇ · ε(u) = f in � × (0,T ) (1)

∇ · u = 0 in � × (0,T ) (2)

with the fluid velocity u = (u1, u2, u3)
T , the pressure p, the time t , the kinematic viscosity ν and the symmetric rate-of-

deformation-tensor ε(u) = 1
2 (∇u + (∇u)T ). The body force vector is denoted f , the spatial domain � and the simulation 

time T . At t = 0, a divergence-free initial velocity field is prescribed:

u = u0 in � × {0} (3)

Dirichlet boundary conditions are defined as

u = uD on �D × (0,T ) (4)

and traction boundary conditions are applied on the Neumann boundary

σ · n = h on �N × (0,T ) (5)

where the Cauchy–Stress tensor is σ = −p I + 2νε(u). It is assumed that �D ∩ �N = ∅ and �D ∪ �N = �.

2.2. Weighted residual formulation

A weighted-residual formulation is obtained with a standard procedure by multiplying the momentum equation (1) with 
a weighting function v ∈ Vv and the continuity equation (2) with q ∈ Vq . Appropriate spaces for u ∈ Su , p ∈ Sp as well as 
Vv and Vq are assumed. The choice of the discrete solution and weighting function spaces Sh

u and Vh
v is the main innovation 

presented in this article and is discussed in the subsequent Section 3. The equations are integrated over the domain �, the 
pressure and viscous terms are integrated by parts and the Neumann boundary conditions (5) are applied to the arising 
boundary integrals. The result reads

BN S(v,q; u, p) = l(v) (6)

with the left hand side of the momentum equation and the contribution of the continuity equation

BN S(v,q; u, p) = (v,
∂u

∂t
) + (v, u · ∇u) − (∇ · v, p) + (ε(v),2νε(u)) + (q,∇ · u) (7)

and the right hand side of the momentum equation

l(v) = (v, f ) + (v,h)�N . (8)

The L2-inner product is defined as usual (·, ·) = (·, ·)� and (·, ·)�N defines an integral over the Neumann boundary �N .

3. Capturing the boundary layer via function enrichment

The computational method applied to solve the incompressible Navier–Stokes equations has large influence on the quality 
of the solution and number of cells required. The method presented in the following utilizes a problem-tailored solution 
space distinguishing drastically from standard methods. The solution space of the method is capable of resolving high 
boundary layer gradients and adapts to local characteristics of the flow. This is done by extending the solution space with 
the help of an approximate analytical representation of the mean velocity profile given as the law-of-the-wall. With a 
solution space capable of resolving the high gradient, the solution is not prescribed but the numerical method is able to 
find an appropriate solution in the offered function space, provided that turbulence is modeled accurately. The approach 
applied for turbulence modeling is discussed in Section 4. As numerical method, a variant of the PUM or the extended finite 
element method (XFEM) is chosen as it provides a framework for constructing such a customized space.
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Fig. 1. Ramp function for blending.

3.1. Enriching the solution space

The extended finite element method suggests a solution space uh(x, t) consisting of two contributions, a standard ūh(x, t)
and an enrichment part ũh

(x, t) as

uh(x, t) = ūh(x, t) + ũh
(x, t) (9)

dependent on the spatial location vector x = (x1, x2, x3)
T and assuming direct sum decomposition of the underlying discrete 

solution spaces Sh
u = S̄h

u × S̃h
u , which are identified with a characteristic element length h. The standard finite element 

expansion with shape functions Nu
B and degrees of freedom ūB is

ūh(x, t) =
∑

B∈Nu

Nu
B(x)ūB(t). (10)

The enrichment including additional degrees of freedom ũB is with the same partition of unity Nu
B defined as

ũh
(x, t) =

∑
B∈Nu

enr

Nu
B(x)(ψ(x, t) − ψ(xB , t))rh(x)ũB(t) (11)

where only a subset of nodes in the vicinity of the wall Nu
enr ⊂ Nu is enriched. The enrichment function ψ(x, t) represents a 

problem-tailored profile, e.g. an analytical or approximate solution of the underlying problem and the enrichment function 
suggested in this article is presented in the following subsection. Subtracting the enrichment function by its nodal values 
ψ(xB , t) yields zero on the nodes facilitating post processing and application of boundary conditions.

Special treatment of the enrichment in the blending area is required. On the interface towards non-enriched elements, 
the enrichment does not vanish yielding a non-conforming discretization, which results in Neumann boundary conditions 
with h = 0 on the enrichment nodes. As these nodes are subject both to in- and outflow of the domain and it is well-known 
that Neumann boundary conditions are ill-posed as inflow boundary for the incompressible Navier–Stokes equations, con-
vergence problems are observed. This problem is circumvented by multiplying the enrichment with a ramp function rh(x)

as detailed in [36] and depicted in Fig. 1.
In a turbulent boundary layer, high-gradient solutions are only obtained for the velocity profile. The pressure space 

therefore remains unaltered and is given as a standard finite element expansion

ph(x, t) =
∑

B∈N p

N p
B(x)pB(t). (12)

As partition of unity we choose shape functions of a standard eight-noded trilinearly interpolated hexahedral finite 
element throughout this article for Nu and N p . Any other Lagrangian finite element could be employed as well including 
higher-order elements and unstructured grids.

Remark. The doubling of degrees of freedom per element give the numerical method a resolving power well beyond linear 
elements despite its formal accuracy of second order. This fact may contribute to the success of the present method and the 
ability of using very coarse meshes for the boundary layer flows presented in Section 5.

3.2. Law-of-the-wall as enrichment

An appropriate choice of the enrichment function ψ(x, t) is the key feature of the overall methodology. This function 
provides the opportunity to include information a priori known about boundary layers in the function space without pre-
scribing the solution itself. We propose to enrich the function space with an empirical single analytic function for the 
law-of-the-wall including viscous sublayer and inner layer. This idea follows the paradigm of DES stating that not all turbu-
lent scales need to be resolved at the wall but only their ensemble-averaged solution is computed. In contrast to standard 
methods for DES, the resolution in wall-normal direction may be very coarse if the function space is capable of resolving 
the mean gradient and the resolution requirements are essentially independent of wall units. The decomposition of the 
proposed function space into a linear standard and enrichment component is visualized in Fig. 2.
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Fig. 2. Decomposition of the mean velocity in a buffer layer into the linear and enrichment components.

Fig. 3. Comparison of the law-of-the-wall with DNS data of a turbulent channel flow at Reτ = 2003.

Such mean velocity profiles have for example been suggested by Reichardt [37] or more widely known by Spalding [38]. 
They satisfy the boundary conditions at the wall u(y = 0) = 0 and ∂u+

∂ y+ |y=0 = 1 (see e.g. Dean [39]) and may with the latter 
even predict the wall shear stress accurately.

The enrichment function proposed in this work is a minor modification of the law-of-the-wall by Spalding

y+(y, τw) = ψ

κ
+ e−κ B(eψ − 1 − ψ − ψ2

2! − ψ3

3! − ψ4

4! ) (13)

where the common formulation is recovered with u+ = ψ
κ . The constants κ = 0.41 and B = 5.17 by Dean [40] are applied. 

The only remaining parameters are the distance from the wall y and the wall shear stress τw included in the definition of 
the wall coordinate

y+(y, τw) = y

ν

√
τw

ρ
(14)

where the density is denoted ρ . Details on how we evaluate equation (13) numerically are given in Appendix A. Close 
agreement of Spalding’s law-of-the-wall with DNS data of turbulent channel flow at Reτ = 2003 by Hoyas and Jiménez [41]
is observed in Fig. 3 in the viscous sublayer and logarithmic region. The modification of the law-of-the-wall by Dean [39] to 
also describe the wake of the channel flow is not taken into consideration here.

In the final method a discrete version y+,h(yh, τ h
w) is used. The discrete distance from the wall yh is defined as the 

distance of each node yB , with B ∈ Nu
enr , to the closest node at the wall in Nu

D ⊂ Nu
enr

yh =
∑

B∈Nu
enr

Nu
B yB (15)

forming a robust procedure even for surfaces where the wall-normal vector is not unique.
For application with the incompressible Navier–Stokes equations, expressions for the first and second derivatives of 

the enrichment with respect to cartesian coordinates are required. Their derivation is straightforward and included in Ap-
pendix B.
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3.3. Adaptivity in space and time

The wall shear stress being the only parameter of the function space represents an advantageous characteristic. It is 
known for many canonical flows in advance, such as for turbulent channel flow in a mean sense, and the pre-supposed 
value could be applied for computation of the wall model. However, in general flows, the tractions are not a priori known 
and it is desirable that the shape functions adapt to local fluctuations, regions of varying wall shear stresses and their 
temporal evolution. Therefore, it is suggested to explicitly compute the tractions and impose them on the wall model 
including spatial and temporal adaptation.

Several methods are available for determining the instantaneous shear stresses, such as the common gradient-based 
approach via the derivative of the wall-parallel velocity component with respect to the wall distance, given in discrete form

τ h
w =

∑
B∈Nu

D

Nu
Bνρ

∥∥∥∂uh‖
∂ y

∣∣∣∣
xB

∥∥∥
2
. (16)

An alternative method common in the finite element method is calculating the wall shear stress via a nodal wall-parallel 
force vector rv‖B on the Dirichlet boundary �D divided by the nodally defined local area AB and interpolated with the 
standard finite element expansion

τ h
w =

∑
B∈Nu

D

Nu
B

‖rv‖B‖2

AB
(17)

with the norm ‖ · ‖2 of the three components corresponding to the space dimensions. The force vector equals the right-
hand-side residual vector of the final matrix system as discussed in Section 4.4. The nodal area is given as the integral of 
the standard partition of unity on the boundary

AB =
∫
�D

Nu
BdA. (18)

Both of these methods represent an accurate definition of the momentary traction and are exactly equivalent for the 
continuous case but differences arise on discrete level. One of the differences is that the latter force-based method (17)
requires the residual to be converged to give an accurate prediction. Yet it is considered to be better consistent in the 
framework of FEM and chosen in this work as the standard method. The gradient-based method is applied for the first five 
time steps of the transient simulation as a converged residual is not available in the first time step and the gradient-based 
method is more robust if the initial field is not divergence-free.

Another aspect that has to be considered in this context is that Spalding’s law is a relation for mean quantities, i.e. 
the mean velocity is related to the average wall shear stress. The difference between applying statistical and instantaneous 
values of the wall shear stress becomes apparent in the force-based method: The magnitude is computed for each node in 
equation (17) resulting in a statistical over-prediction of the traction since neighboring force vectors usually are non-parallel. 
Therefore, the wall shear stresses are frequently averaged spatially in the context of wall-modeling starting with Schumann 
[3] who averaged the wall shear stress over the walls of channels and pipes.

As we are seeking to develop a flexible tool which also can account for local variations present in complex flow geome-
tries, we average the stresses only locally. It is suggested to calculate the stress via a locally averaged force field with a 
characteristic length scale αh instead of h resulting in a large-scale force. Such a local averaging operation allows for spa-
tial variations of the traction and yet local fluctuations are smoothed. This averaging is realized via level-transfer operators 
from plain aggregation algebraic multigrid methods for separating scales, similar to the method frequently used to explicitly 
separate velocity scales in LES [42]. A discrete wall shear stress ταh

w with a coarser characteristic element length αh as a 
multiple of the element length h is obtained.

For this method a prolongation matrix P h
αh is generated and the restriction matrix is defined as the transpose of the 

prolongation matrix resulting in Rαh
h = (P h

αh)T implying Rαh
h P h

αh = I with the identity matrix I . A scale-separation or 
aggregation operator is defined as

Sαh
h = P h

αh Rαh
h (19)

yielding a coarse-scale force field via a vector-matrix multiplication

rv,αh = Sαh
h rv,h. (20)

This result is applied to calculate the shear stress ταh
w in equation (17) with the usual value of α = 3. Fig. 4 compares τ h

w
and τ 3h

w showing that the field variable is averaged locally for the latter one but still may take larger variations into account. 
Thus, τ 3h

w is an appropriate representation of the wall-shear stress for spatial adaptation of Spalding’s law.
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Fig. 4. Comparison of the wall shear stress (left) with the aggregated wall shear stress (right) of turbulent channel flow on a mesh with 323 elements. 
Red indicates high and blue low values. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this 
article.)

The traction computed at the no-slip nodes is communicated to the respective off-wall nodes in Nu
enr where the node 

pairs are again determined via the shortest distance. Further, special treatment in the case of τ 3h
w approaching zero, such 

as at re-attachment points, is required, as this would result in an ill-conditioned problem. At such locations, we prescribe a 
minimum wall shear stress of 1% of the nominal value for computation of Spalding’s law, which has shown to be sufficient 
to circumvent this issue without loss of accuracy.

The temporal evolution of the turbulent flow results in continuous adaptation of the function space. For simplicity, the 
space is kept constant during the non-linear Newton iterations implying a quasi-static treatment. Updating the wall shear 
stress yielding new shape functions requires a subsequent L2-projection of the solution of the previous time step n onto the 
new space of the current time step n + 1 given in weak form as

(ṽh,n+1
, ũh,n+1

) = (ṽh,n+1
, ũh,n

). (21)

Complementary vectors required by the discrete time integration procedure such as a potential acceleration vector are 
projected with the same matrix system.

4. Subgrid-scale modeling

The major goal of all wall models is to utilize very coarse meshes in the near-wall region implying that a large part of 
the physics is not resolved but modeled. This defines a need for accurate turbulence models ensuring high-quality results. 
In contrast to the common approach in LES of using a filter in order to derive the unresolved part [43], a scale separation 
as suggested originally for large-eddy simulation by Hughes et al. [44] is used here. The scale separation gives rise to 
unresolved scales that we model by a structural reconstruction via a multifractal subgrid scales turbulence model embedded 
in a residual-based variational multiscale method as outlined in the following.

4.1. Scale separation for large-eddy simulation

In addition to the decomposition of the solution space into standard and enriched components, the velocity space is 
further separated into resolved uh and unresolved scales û reading

u = uh + û = ūh + ũh + û. (22)

The resolved scales are again identified by a characteristic element length h and the unresolved scales with ˆ(·). The equiva-
lent separation of scales of the pressure into a resolved ph as well as unresolved component p̂ is also performed resulting 
in

p = ph + p̂. (23)

Direct sum decomposition of the underlying resolved and unresolved spaces is assumed as Su = Sh
u × Ŝu = S̄h

u × S̃h
u × Ŝu

and Sp = Sh
p × Ŝp . Inserting these definitions into the weighted residual formulation (6) gives rise to the following terms:

BN S(v,q; uh, ph) + Blin
N S(v,q; û, p̂) + C(v; uh, û) +R(v; û) = l(v) (24)

The term BN S(v, q; uh, ph) constitutes the part of the relation that is represented by the resolved solution space. The 
contribution Blin

N S(v, q; û, p̂) summarizes the linear terms dependent on the subgrid scales û and p̂:

Blin
N S(v,q; û, p̂) = (v,

∂ û

∂t
) − (∇ · v, p̂) + (ε(v),2νε(û)) + (q,∇ · û) (25)

The non-linear convective term gives rise to the cross- and Reynolds stresses as
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C(v; uh, û) = (v, uh · ∇ û + û · ∇uh) (26)

and

R(v; û) = (v, û · ∇ û). (27)

A basic characteristic of the variational multiscale method is that the solution and weighting function spaces have the 
same structure, i.e. the spaces for the weighting function may likewise be decomposed into the corresponding resolved and 
unresolved contributions:

v = vh + v̂ = v̄h + ṽh + v̂ (28)

q = qh + q̂ (29)

Since equation (24) is linear with respect to the weighting functions, it may be separated and as usual only the resolved 
scale component is taken into further consideration:

BN S(vh,qh; uh, ph) + Blin
N S(vh,qh; û, p̂) + C(vh; uh, û) +R(vh; û) = l(vh) (30)

This result still contains the unresolved scale quantities û and p̂ which are unknown and have to be modeled. In the 
following sections, this is done via multifractal scale similarity as well as residual-based modeling.

Remark. The enrichment approach presented in this paper may also be interpreted as a separation of the solution vector 
in three scale groups as for example described by Gravemeier et al. [45] and indicated in relation (22). The three scales are 
represented by the standard resolved scale ūh , the enrichment scale ũh as well as the unresolved scale û. With regard to LES, 
the standard scale resolves large eddies that are at least of the size of the characteristic element length. The enrichment 
scale, however, represents flow features in a statistical sense and without resolving large eddies in the near-wall region 
explicitly. The physical interpretation of the unresolved scales are fluctuations on subgrid level. This interpretation and 
the framework of the variational multiscale method would allow different turbulence models tailored for the respective 
requirements of the scale. The turbulence models presented in the following show to be sufficiently general and adapt to 
the specific requirements in different regions of the domain such that a three-scale turbulence model is not necessary.

4.2. Subgrid modeling with multifractal subgrid scales

The cross and Reynolds stress terms (26) and (27) are modeled explicitly by reconstruction of the unresolved scale û
via a multifractal subgrid-scale model as proposed by Rasthofer and Gravemeier [33]. The multifractal subgrid scale model 
follows the idea that turbulence originates from repeated stretching and folding of vortical structures and that this process 
is scale-invariant. The model attempts to reconstruct the subgrid-scale vorticity and computes the subgrid velocity through 
the law of Biot-Savart, indicating that the large eddies of the flow have to be resolved explicitly. For a detailed derivation of 
the governing relations it is referred to Burton and Dahm [46].

The subgrid velocity scales with the small-resolved velocity field δūh and a proportionality factor B as

û ≈ Bδūh. (31)

The small-scale velocity is determined by an explicit filtering of the standard FE part of the resolved velocity yielding

u = ūαh + δūh + ũh + û (32)

for the overall composition of the velocity space. The large-scale velocity field ūαh is identified by a length scale of αh
as a multiple of the element length. This decomposition is chosen due to the physical interpretation of the standard finite 
element space as eddies while the enrichment space represents a statistical velocity profile that does not resolve eddies by 
nature.

Explicit scale separation of ūαh and δūh is performed via a plain aggregation algebraic multigrid method as proposed 
in [42] and applies similar relations as used for smoothing of the wall shear stress in Section 3.3. The standard parameter 
α = 3 is applied.

The proportionality factor in (31) is given as

B = Csgs(1 − α− 4
3 )−

1
2 2− 2N

3 (2
4N
3 − 1)

1
2 . (33)

In the current application of convection-dominated high-Reynolds-number flow, the constant Csgs = 0.15 is chosen. This 
value is significantly lower than the one suggested in [33], which is since the near-wall limit as suggested in the original 
publication is not considered here. B is evaluated at the quadrature points during evaluation of the discrete formulation 
(30). The number of cascade steps N from the smallest resolved scales of size h to the viscous scale λv is approximated via 
the local element Reynolds number Reh = ‖uh‖2h and a proportionality constant cv resulting in
ν
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N = log2(
h

λv
) = log2(cv Re

3
4
h ). (34)

A value for the proportionality constant cv = 0.1 is used, which is close to the value of 1
12.3 determined experimentally by 

Mullin and Dahm [47] and h is approximated by the cube root of the local element volume.
The final result for the modeled cross and Reynolds stresses (26) and (27) with the presented relation for the subgrid-

scale velocity (31) is

C(vh; uh, û) ≈ (vh, B(uh · ∇δūh + δūh · ∇uh)) (35)

and

R(vh; û) ≈ (vh, B2(δūh · ∇δūh)). (36)

4.3. Residual-based modeling

The multifractal subgrid scale model as presented in the previous section enables reconstruction of the subgrid velocity 
field and by that models the cross and Reynolds stress terms. As reported in [48], the model allows both for dissipation and 
backscatter of energy resulting in potentially de-stabilizing effects. Therefore, as suggested in [33], it is embedded in the 
residual-based variational multiscale method providing a stable numerical method.

The remaining linear terms of the scale separation (25) are approximated with

Blin
N S(vh,qh; û, p̂) ≈ (uh∇ · vh, τM Rh

M)︸ ︷︷ ︸
SUPG

+ (∇ · vh, τC Rh
C )︸ ︷︷ ︸

grad-div

+ (∇qh, τM Rh
M)︸ ︷︷ ︸

PSPG

(37)

The included terms consist in a Streamline/Upwind Petrov–Galerkin (SUPG), a grad-div (grad-div) and a Pressure Stabilizing 
Petrov–Galerkin (PSPG) term. The SUPG term stabilizes the method with respect to convection by introducing a certain 
amount of artificial dissipation [49]. Better fulfillment of the divergence-free constraint (2) and improved convergence of the 
iterative solver is obtained via the grad-div term [50] which also introduces a certain amount of dissipation in the system. 
The PSPG contribution enables circumventing the inf-sup condition (see e.g. [51]) and allows equal-order interpolation [52].

The momentum residual Rh
M is defined as

Rh
M = ∂uh

∂t
+ uh · ∇uh + ∇ph − 2ν∇ · ε(uh) − f h + B(uh · ∇δūh + δūh · ∇uh) + B2(δūh · ∇δūh). (38)

In contrast to [33], it is suggested to include the modeled cross- and Reynolds stress terms (26) and (27) in the residual for 
better consistency. The discrete continuity residual Rh

C is

Rh
C = ∇ · uh. (39)

The stabilization parameters τM and τC are designed to take into account the non-polynomial character of the element 
space. A definition inspired, among others, by Codina [53] and Gravemeier et al. [54] is chosen including, as usual, a 
transient, convective and viscous contribution for τM as

τM = 1

1

t + 2

√
λh

3 ‖uh‖2 + 4λhν

(40)

with the time step 
t and a reciprocal scaling of τM and τC yielding

τC = 1

4λhτM
. (41)

It is noted that 
(

2
√

λh

3

)2

≤ 4λh which has been reported to be a requirement for example in [53].

The parameter λh generally incorporates the characteristics of the element, for example the polynomial order of the 
underlying function space. For standard Lagrangian elements with well-defined polynomial order, such as the non-enriched 
elements, values are for instance for the polynomial orders p = {1, 2, 3} given as λh = { 3

h2 , 12
h2 , 60

h2 } with the characteristic 
element length h [55,56]. In the current application, element spaces of the enriched elements are non-polynomial making it 
impossible to specify appropriate values a priori. Therefore, an element-specific value for λh is determined consistently via 
inverse estimate as suggested by Harari and Hughes [55] ensuring stability for convection-dominated flows by solving the 
local generalized eigenvalue problem for its maximum eigenvalue λh and vh given as

(
wh,
vh)�e − λh(∇wh,∇vh)�e = 0. (42)
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�e represents the element domain and the solution vh and weighting function space wh are defined similarly as the 
enriched velocity space (9), e.g. for vh:

vh(x, t) = v̄h(x, t) + ṽh(x, t) (43)

The standard and enrichment parts are given with a single degree of freedom per node as

v̄h(x, t) =
∑

B∈Nu

Nu
B(x)v̄ B(t) (44)

and

ṽh(x, t) =
∑

B∈Nu
enr

Nu
B(x)(ψ(x, t) − ψ(xB , t))rh(x)ṽ B(t). (45)

In equation (42), we only consider the diagonal part of 
wh and 
vh such that transition to the values of λh used in 
standard elements, which are derived based on the 1D assumption, becomes smoother.

Evaluating the inverse estimate with only one degree of freedom per node results in matrix dimensions of only 16 × 16
for the elements presently considered, such that the eigenvalue-related computation time is negligible. A great characteristic 
of the presented stabilization parameter is highlighted: τM and τC are completely free of the element length if λh is 
determined via (42). Especially for anisotropic elements, the definition of h is not obvious and many definitions have been 
proposed. The advantages of such a definition are also discussed for example by Franca and Madureira [57].

Solely for linear elements, the standard value of λh = 3
h2 is applied with the volume-equivalent diameter h = ( 6V

π )
1
3 /

√
nsd

with V the element volume and the number of space dimensions nsd for simplicity [58]. Due to large variations of the 
stabilization parameters τM and τC within one element, especially in the first element at the no-slip boundary condition, 
the parameters are evaluated at the quadrature points.

The present approach for turbulence modeling has been presented as a subgrid-scale model for LES assuming that the 
largest eddies present are resolved by the scheme. However, inside the first element at the wall, with the first off-wall node 
placed at y+ > 100, this is certainly not fulfilled in the wall-region. The presented turbulence model has yet proven to be 
able to model the necessary subgrid scales even if the largest eddies are not resolved everywhere.

4.4. Final discrete problem

The final semi-discretized problem becomes

(vh,
∂uh

∂t
) + (vh, uh · ∇uh) − (∇ · vh, ph) + (ε(vh),2νε(uh))

+ (vh, B(uh · ∇δūh + δūh · ∇uh))︸ ︷︷ ︸
C

+ (vh, B2(δūh · ∇δūh))︸ ︷︷ ︸
R

+ (uh∇ · vh, τM Rh
M)︸ ︷︷ ︸

SUPG

+ (∇ · vh, τC Rh
C )︸ ︷︷ ︸

grad-div

+(qh,∇ · uh) + (∇qh, τM Rh
M)︸ ︷︷ ︸

PSPG

= (vh, f h) + (vh,hh)�N (46)

where the contributions of multifractal and residual-based subgrid-scales are labeled. The residuals Rh
M and Rh

C are de-
fined in (38) and (39), the stabilization parameters τM and τC are given in (40) as well as (41) and B in (33). The terms 
are integrated in space applying direction-dependent Gauß-quadrature rules of appropriate order that enable accurate in-
tegration despite the non-polynomial function space. Equation (46) is integrated in time utilizing a second-order accurate 
generalized-α time integration scheme including ρ∞ = 0.5 [59,60]. Adaptive time stepping is employed such that the max-
imum CFL condition is kept constant at CFL = 0.5 for all simulations presented.

The final matrix system is linearized and iteratively solved via a Picard-iteration scheme yielding

K n+1
i 
zn+1

i+1 = −rn+1
i (47)

for the current time step n + 1 and non-linear iteration i + 1, omitting the superscript h for simplicity. The increment 
includes both velocity and pressure increments from the current non-linear iteration such that


zi+1 =
[

U i+1

P

][
U i+1 − U i
P − P

]
. (48)
i+1 i+1 i
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Table 1
Channel flow cases and resolutions.

Case Nx1 × Nx2 × Nx3 Reτ y+
1 Nwm

Ch8wm2 8 × 8 × 8 590; 950; 2,000 147.5; 237.5; 500 2
Ch12wm2 12 × 12 × 12 590; 950; 2,000 98.3; 158.3; 333.3 2
Ch16wm3 16 × 16 × 16 590; 950 73.8; 118.8 3
Ch16wm2 16 × 16 × 16 2,000 250 2
Ch24wm3 24 × 24 × 24 950 79.2 3
Ch24wm2 24 × 24 × 24 5,000 416.7 2
Ch32wm2 32 × 32 × 32 5,000 312.5 2
Ch128 128 × 128 × 128 950 1.54 –

The matrix K contains the linearization of all contributions of (46) except C , R and the respective stabilization terms, which 
are treated in a fixed-point-like procedure [33]. The residual r summarizes all terms of (46) at the previous non-linear 
iteration i. In (49) K is split into four parts including K vu , K v p , K qu and K qp and r is split into two vectors r v and rq:

K =
[

K vu K v p

K qu K qp

]
r =

[
rv

rq

]
(49)

K vu contains the transient, convective and viscous term as well as terms of SUPG and grad-div. K v p comprises the pressure 
term and the respective part of SUPG. K qu and K qp summarize the continuity contribution and the PSPG terms. The nodal 
values of the momentum-residual vector r v on the Dirichlet boundary are equivalent to the nodal forces and are used to 
calculate the wall-shear stress ταh

w in equation (17).

5. Numerical examples

In this section, the performance of the presented approach is investigated for turbulent channel flow at various Reynolds 
numbers, flow over periodic hills and backward-facing-step flow. The latter two examples discuss the performance under 
separated boundary layer conditions and adverse pressure gradients.

5.1. Turbulent channel flow at moderate and moderately large Reynolds numbers

A channel of the dimensions 2πδ × 2δ × πδ in streamwise, wall-normal and spanwise direction, respectively, with peri-
odic boundary conditions and channel-half height δ is considered. We discuss flows of friction Reynolds numbers Reτ = 590, 
950, 2,000 and 5,000 on very coarse uniform meshes with 8 ×8 ×8 up to 32 ×32 ×32 elements, see Table 1 for an overview. 
To the best of the authors’ knowledge, turbulent channel flow of friction Reynolds numbers higher than Reτ = 950 has so far 
never been published employing a residual-based turbulence modeling approach. The column Nwm indicates the number 
of layers of enriched elements employed at the solid boundaries. Table 1 also compares the location of the first off-wall 
nodes in wall units y+

1 , which are located between y+
1 = 73.8 and y+

1 = 500 for the different flows and given discretiza-
tions. For comparison, we also include a simulation with resolved near-wall region without wall model at Reτ = 950 on a 
discretization with 128 ×128 ×128 elements. The mean velocity is post-processed on a large number of wall-parallel planes 
within the elements using the definition of the resolved flow field uh such that the detailed inner-element behavior may 
be analyzed. The results presented in the following are labeled according to Table 1. They are compared to direct numerical 
simulation (DNS) data of Moser, Kim and Mansour [61] for Reτ = 590, Del Álamo and Jiménez [62] for Reτ = 950 and Hoyas 
and Jiménez [41] for Reτ = 2,000. The results for Reτ = 5,000 are compared to u+ = 1

κ ln(y+) + B with κ and B defined as 
in Section 3.2.

We commence the discussion of the results with Fig. 5 showing the decomposition of the mean velocity of case Ch12wm2

at Reτ = 2,000 similar to Fig. 2. The normalized mean velocity profile u+ = u1
uτ

with uτ =
√

τw
ρ follows DNS data closely 

and provides an excellent match despite the extremely coarse resolution. With the first off-wall node located at y+
1 = 333.3, 

a large part of u+ is in the first element represented by the enrichment part of the flow ũ+ which also constitutes the 
largest part of the gradient at the boundary. Away from the wall in the second element layer, the contribution of the 
standard space ū+ constitutes almost the whole solution.

The non-dimensional mean velocity for all 13 simulations included in Table 1 is shown in Fig. 6. A striking independence 
of the mesh applied is observed for all Reynolds numbers. Even for discretizations consisting of only 8 × 8 × 8 elements, 
the resolving power of the additional degrees of freedom together with the law-of-the-wall shape functions yield results of 
acceptable to very good agreement with DNS data. Further, it is noticed that the normalized mean velocity is slightly over 
estimated for friction Reynolds numbers Reτ = 590 and 950. The simulation results at Reτ = 2,000 and 5,000 exhibit an 
excellent match with reference data, however. Comparing the wall-resolved LES of case Ch128 at Reτ = 950, a mean velocity 
of approximately equal quality as the wall-modeled LES is obtained. The differences to LES data presented by Rasthofer and 
Gravemeier [33] may come from the fact that we do not consider the near-wall limit suggested in the original publication of 
the turbulence modeling approach and possibly due to the smaller proportionality parameter Csgs chosen here, as explained 
in Section 4.2.
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Fig. 5. Decomposition of the mean velocity u+ = u1/uτ with uτ = √
τw/ρ of case Ch12wm2 at Reτ = 2,000 into linear and enrichment part and comparison 

to DNS data. Symbols indicate nodes and the first off-wall node is located at y+
1 = 333.3.

Fig. 6. Normalized mean velocity for Reτ = 590, 950, 2,000 and 5,000, each shifted upward by 6 units for clarity. Symbols indicate nodes.

The performance of the present wall model is further assessed via root-mean-square (RMS) data of the fluctuations u′+ , 
v ′+ in wall-normal as well as w ′+ in spanwise direction and Reynolds shear stresses (u′v ′)+ at Reτ = 950 displayed in 
Fig. 7. Considering u′+ , a distinct tendency to convergence for an increasing number of elements is observed. For w ′+ , 
the predictions show a similar behavior as observed for u′+ while v ′+ is generally predicted too small. The Reynolds shear 
stresses are predicted quite accurately for all discretizations. That near-wall fluctuations are not of the same quality as mean 
velocities is presumably inherent in the wall-modeling approach as the enrichment function constitutes a mean-velocity 
profile and the major part of the fluctuations is not resolved due to the coarse meshes applied. As expected, RMS data 
of the case Ch128 is in favorable agreement with DNS data as a significant amount of near-wall turbulent structures is 
resolved.

From the results presented in this section it is concluded that extremely coarse resolutions can be used for simulation 
of turbulent channel flow. The first off-wall node can be located at up to y+

1 = 500 and striking results are obtained even 
for meshes consisting of only 8 × 8 × 8 elements.

5.2. High-Reynolds-number flow over periodic constrictions

We consider flow over a smoothly curved 2D-periodic hill as described and analyzed numerically e.g. by Fröhlich et al. 
[63] and Breuer et al. [64] and experimentally by Rapp [65] with a Reynolds number based on the hill height H of 
ReH = 10,595 as well as 19,000 to validate our wall modeling approach. This flow configuration includes separation at 
the crest of the hill, a recirculation bubble formation, reattachment as well as recovery. Wall models for LES are challenged 
by this flow with a strong adverse pressure gradient that causes many models to produce deficient results. For example, 
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Fig. 7. RMS of velocity fluctuations u′+ = rms(u′
1)/uτ , v ′+ = rms(u′

2)/uτ and w ′+ = rms(u′
3)/uτ as well as Reynolds shear stresses (u′v ′)+ = (u′

1u′
2)/u2

τ for 
Reτ = 950.

Table 2
Simulation cases and resolutions of the periodic hill. ReH = 10,595: PhC coarse mesh with wall modeling, PhF refined mesh with wall modeling, PhFNWM
refined mesh without wall modeling, Froehlich_et_al. highly resolved LES, Rapp_EXP experiments, Chen_et_al._C and Chen_et_al._F wall modeling based 
on simplified TBLE and immersed interface method. ReH = 19,000: PhC19 coarse mesh with wall modeling, PhF19 refined mesh with wall modeling, 
PhFNWM19 refined mesh without wall modeling, Rapp_EXP19 experiments.

Case Nx1 × Nx2 × Nx3 ReH x1,sep/H x1,reatt/H Nwm

PhFNWM 96 × 48 × 48 10,595 0.2 3.68 –
PhC 64 × 32 × 32 10,595 0.25 3.77 4
PhF 96 × 48 × 48 10,595 0.25 4.91 4
Froehlich_et_al. 192 × 128 × 186 10,595 0.2 4.6–4.7 –
Rapp_EXP – 10,600 4.21 –
Chen_et_al._C 96 × 64 × 32 10,595 0.65 4.0 –
Chen_et_al._F 192 × 72 × 48 10,595 0.5 4.42 –

PhFNWM19 96 × 48 × 48 19,000 0.2 3.4 –
PhC19 64 × 32 × 32 19,000 0.24 2.58 4
PhF19 96 × 48 × 48 19,000 0.26 3.94 4
Rapp_EXP19 – 19,000 3.94 –

Chen et al. [17] have found that their wall model based on the simplified TBLE under estimates the skin friction in the 
recirculation region as the convective term is neglected in that model. In the current wall modeling approach, all terms of 
the Navier–Stokes equations are retained such that a better performance with respect to adverse pressure gradients may be 
expected. Temmerman et al. [66] investigated several wall functions and subgrid closures for LES and found that the loca-
tion of the separation point has major impact on the reattachment location. Also, accurate prediction of the separation point 
of this flow are challenging employing steady RANS simulations [67]. Hybrid RANS/LES techniques have been analyzed by 
Breuer et al. [68] and Šarić et al. [69] who have shown that the RANS/LES interface should be located inside the boundary 
layer on the crest of the hill. Due to the construction of the present DES technique, there is no explicit interface between 
the statistical and the LES region such that these problems are not expected to occur.

A domain of the dimensions 9H × 3.036H × 4.5H with periodic boundary conditions in the streamwise and spanwise 
direction and no-slip boundary conditions at top and bottom is considered. A very coarse mesh comprising 64 × 32 × 32 as 
well as a refined, yet very coarse, mesh with 96 × 48 × 48 cells with uniform grid spacings in all directions and vertical grid 
lines as depicted in Fig. 8 are utilized. An overview of the simulations presented is given in Table 2 where the coarser grid 
is labeled PhC and the finer grid PhF for ReH = 10,595. A simulation without wall model is also investigated for comparison, 
which is labeled PhFNWM and employs the finer mesh. Considering ReH = 19,000, the same meshes are applied and labeled 
PhC19, PhF19 and PhFNWM19, respectively. The number of enriched element layers is Nwm = 4 for both meshes on both top 
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Fig. 8. Grid of case PhC. Enriched elements are colored red and 
standard linear elements blue. (For interpretation of the refer-
ences to color in this figure legend, the reader is referred to the 
web version of this article.)

Fig. 9. Location of the first off-wall node in wall units over the 
streamwise coordinate of the periodic hill case.

Fig. 10. Skin-friction (left) and pressure (right) coefficients for the flow over periodic constrictions at ReH = 10,595. The shallower pressure-coefficient 
curves correspond to the top wall.

and bottom wall. Fig. 9 shows the location of the first off-wall grid point estimated as y+,h
1 = yh

1
ν

√
τ h

w
ρ over the x1-coordinate. 

Here, yh
1 is not the actual wall distance but the distance to the closest node at the wall. The first off-wall node is located 

at varying distance depending on resolution and Reynolds number up to approximately y+,h
1 = 216 with minima near the 

zero-crossings of the wall shear stress. The mass flow is kept approximately constant over the simulation time and statistics 
are sampled over 10,000 time steps. For post-processing, we utilize the fact that the enrichment vanishes on the nodes in 
equation (11) such that only the nodal values of the standard FE space ū B are taken into account.

An overview with respect to reference data considered is also given in Table 2. The results for ReH = 10,595 are compared 
to data of highly resolved LES by Fröhlich et al. [63], labeled as Froehlich_et_al. as well as the coarse mesh discussed by Chen 
et al. [17] (Chen_et_al._C) with 64 cells in vertical direction. The separation and reattachment points are further compared 
to experiments by Rapp [65] (Rapp_EXP) and the fine mesh by Chen et al. [17] (Chen_et_al._F). The results for ReH = 19,000
are compared to experiments by Rapp [65] (Rapp_EXP19). Data labeled as Rapp_EXP and Rapp_EXP19 has been obtained 
from the ERCOFTAC QNET-CFD Wiki contributed by Rapp et al. [70].

We start with a discussion of the results for the flow at ReH = 10,595. The skin-friction coefficient c f at the lower wall 
and pressure coefficients cp at the upper and lower wall are compared to resolved LES data in Fig. 10. They are defined as
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c f = τw
1
2ρu2

b

(50)

and

cp = p − pref
1
2ρu2

b

(51)

with the bulk velocity ub and τw via the right-hand side residual (17). As reference pressure pref , the pressure at the 
upper wall at x1 = 0 is chosen. The skin friction computed via wall-modeled LES is in close agreement with reference data 
over large parts of the domain. Solely at the crest of the hill, the peaks between x1 = 8 and 9 as well as x1 = 0 and 1
are significantly over-predicted, but improve for the case PhF with higher resolution. This over-prediction might be related 
to the local averaging operation of the wall shear stress applied during construction of the shape functions. The minor 
recirculation at the top of the hill observed in highly resolved LES data is not visible in the results of PhC and PhF due 
to the coarseness of the mesh. Separation and re-attachment points are predicted accurately via the zero-crossing of c f as 
well and are summarized in Table 2. For the case PhFNWM without enrichment, large discrepancies including high peaks 
are visible on top of the hill. In the recirculation region, the skin-friction is over estimated and the reattachment length is 
predicted shorter than for the cases with wall modeling. The skin-friction coefficient is also compared to the results of Chen 
et al. [17], who under estimate c f significantly due to the neglected convective term as aforementioned.

The pressure curves of the present wall model are also in very good agreement to reference data and improve with 
resolution. The case PhC shows minor discrepancies both at the lower and upper wall, which are due to the coarseness of 
the resolution. The case PhFNWM over-predicts the pressure in the recirculation bubble and exhibits negative peaks on the 
hill crest. In the recovery region, the estimation is comparable to the coarse mesh with wall modeling PhC. At the upper 
wall, the prediction with wall model is superior compared to the one without.

Mean velocities u1 in streamwise and u2 in vertical direction and Reynolds-shear stresses u′
1u′

2 and the turbulent kinetic 
energy (TKE) k = 1

2 (u′2
1 + u′2

2 + u′2
3 ) of the case ReH = 10,595 at ten stations are compared with the LES data of Fröhlich et 

al. [63] in Fig. 11. The mean velocity u1 exhibits discrepancies with reference data for case PhC in the reattachment and 
recovery region while the finer mesh PhF results in a perfect match with reference data. Without wall model, PhFNWM
predicts u1 with similar quality as the coarse mesh with wall modeling, PhC. Also for the mean velocity u2 in vertical 
direction, excellent results are obtained for the fine mesh including wall modeling PhF . For the other cases, u2 is under 
estimated above the recirculation bubble due to the shorter re-attachment length. The Reynolds-shear stresses u′

1u′
2 are 

heavily over-predicted for the cases PhC and PhFNWM at the crest of the hill and in the shear layer between the recirculation 
region and the bulk flow. Refinement leads to an excellent match with reference data for the case PhF . Finally, the TKE 
distributions are only predicted accurately everywhere with PhF while PhC and PhFNWM over-predict its magnitude inside 
the recirculation bubble.

The excellent results observed for ReH = 10,595 motivate an application of the wall model to a higher Reynolds number. 
For this second assessment we choose the next larger Reynolds number for which reference data is available, which is 
ReH = 19,000, and consider the same discretizations labeled PhC19, PhF19 and PhFNWM19, respectively. The results in 
Fig. 12 include mean velocities u1 and u2 as well as Reynolds shear stresses u′

1u′
2 and are compared to experimental data 

Rapp_EXP19, which do not include TKE statistics. The quality of the fine mesh including wall modeling is very similar to 
the Reynolds number ReH = 10,595 discussed above and excellent throughout and also matches the reattachment length 
perfectly. The coarser mesh PhC shows slightly worse predictions in the recirculation, reattachment and recovery region for 
the mean velocity u1 and in the recirculation bubble for the Reynolds stresses. Also the reattachment length is predicted 
significantly too short which may be due to an overly coarse mesh. The case without wall model PhFNWM19 exhibits results 
of quality between the coarse and fine wall-modeled simulations. Here, another defect is highlighted: significant oscillations 
in the mean velocity profiles are visible especially at the lower wall and in the vicinity of the hill. Such oscillations are not 
visible for the wall-modeled computations and show another advantage of our wall model.

From the investigations of flow over periodic hills the conclusion may be drawn that the present enrichment-based wall 
model exhibits favorable characteristics with respect to separated flows as well as under adverse pressure gradients. In this 
flow configuration, very coarse meshes may be used, resembling the observations made for turbulent channel flow.

5.3. Backward-facing step flow

We assess our wall modeling approach further with flow over a backward-facing step at Reh = 5,000 with an expansion 
ratio of ER = 1.2 as studied experimentally by Jovic and Driver [71]. DNS data of a similar configuration at a Reynolds 
number of Reh = 5, 100 has been presented by Le, Moin and Kim [72] and in the context of wall modeling results have been 
presented e.g. by Chen et al. [17] mentioned earlier, who encountered difficulties predicting the correct skin friction and 
reattachment point for this flow as well.

The computational domain behind the step is of the dimensions 30h × 6h × 3h in streamwise, wall-normal and spanwise 
direction, respectively. The domain extends 30h upstream of the step and the velocity is prescribed at the inflow boundary 
using mean DNS data of a turbulent boundary layer at a similar Reynolds number [73] with an additional random perturba-
tion of 10% of the center line velocity uc . The inflow data is only prescribed on the standard space ūh while the enrichment 
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Fig. 11. Mean velocity u1 in x1 and u2 in x2-direction, Reynolds shear stresses u′
1u′

2 as well as turbulent kinetic energy k for the periodic hill at ReH =
10,595.

ũh is set to zero for simplicity. Periodic boundary conditions are applied in spanwise direction and slip boundary conditions 
at the top. The domain is meshed uniformly with four elements per step height h in all space dimensions and for the case 
with wall modeling, three rows of elements at the lower wall are enriched, including the inflow region as well as the step. 
The resulting mesh is extremely coarse and displayed in Fig. 13 along with a contour plot of the instantaneous velocity. 
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Fig. 12. Mean velocity u1 in x1 and u2 in x2-direction as well as Reynolds shear stresses u′
1u′

2 for the periodic hill at ReH = 19,000.

For the statistical results presented in the following, the quantities are sampled for 5,000 time steps starting after the ini-
tial transient. As for the periodic hill benchmark, only the nodal values of the standard FE component are considered for 
post-processing.

An overview over the results discussed is provided in Table 3. The computation including wall modeling is labeled 
as BFS_WM3 and compared to the same mesh where the enriched elements are replaced by standard elements, labeled 
BFS_NWM. We compare our results with the experiments by Jovic and Driver [71] labeled as BFS_ J &D_EXP and the skin 
friction is in addition evaluated against the DNS data by Le, Moin and Kim [72] BFS_LMK_DNS.

Again we start with a discussion of the distribution of the skin friction as well as the pressure coefficient along the 
lower wall. They are defined similar to (50) and (51) with the reference velocity uc and the reference pressure located at 
x1 = 24h. From the results in Fig. 14 it can be seen that the skin friction matches reference data very well for the case 
BFS_WM3 with wall modeling. However, the computation without wall model BFS_NWM does not give physically reasonable 
results. The peak in negative skin friction is very large and shifted in streamwise direction by several step heights and, 
additionally, significant oscillations are observed. Accordingly, the reattachment length defined as the zero-crossing of the 
skin friction coefficient is predicted as x1,reatt = 6.78h for the case with wall modeling which matches the references of 
x1,reatt = 6.0h and x1,reatt = 6.28h quite well. In contrast, the simulation without wall modeling predicts x1,reatt = 13.49h. An 
overview with respect to reattachment lengths for the simulations and reference data considered is also given in Table 3. 



B. Krank, W.A. Wall / Journal of Computational Physics 316 (2016) 94–116 111
Fig. 13. (Top) Instantaneous velocity magnitude over the backward-facing step: red indicates high and blue low values. (Bottom) Mesh in the vicinity of 
the step: enriched elements are colored red and standard elements blue. (For interpretation of the references to color in this figure legend, the reader is 
referred to the web version of this article.)

Table 3
Simulation cases and resolutions of backward-facing step flow. BFS_NWM without wall modeling, BFS_WM3 with 
wall modeling, BFS_J&D_EXP experiments, BFS_LMK_DNS DNS.

Case Reh x1,reatt/h Nwm

BFS_NWM 5,000 13.49 –
BFS_WM3 5,000 6.78 3
BFS_J&D_EXP 5,000 6.0 ± 0.15 –
BFS_LMK_DNS 5,100 6.28 –

Fig. 14. Skin-friction (left) and pressure (right) coefficients for the flow over a backward-facing step at Reh = 5,000.

The prediction of the pressure coefficient shows similar quality as for the friction coefficient. Including wall modeling, the 
curve follows reference data closely, while the one without wall model is delayed by several step lengths.

The mean streamwise velocity, root-mean square velocity fluctuations of the streamwise and wall-normal components 
and Reynolds shear stresses are displayed at six stations in Fig. 15. From these graphs it can be seen that both the velocity 
and fluctuations in front of the step are in good agreement with reference data implying that the simple procedure of 
applying inflow data gives good results. For the case without wall modeling, the fluctuations are not reproduced correctly, 
however, which is probably due to the extreme under-resolution.

The mean velocity behind the step matches reference data very well for the case BFS_WM3 including wall modeling. It 
is mentioned here that the velocity is only post-processed on the element nodes which are connected with straight lines in 
the graph for simplicity. Therefore, the detailed velocity distribution at the second station inside the recirculation region is 
not shown in the graph. Without enrichment the result is barely physical and the size of the recirculation is significantly 
over-predicted.
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Fig. 15. Mean velocity u1 in x1 direction, RMS values of the fluctuations u′
1 and u′

2 in x2-direction as well as Reynolds shear stresses u′
1u′

2 for the 
backward-facing step flow.

The RMS quantity u′
1 is predicted very well for the case with wall modeling. Even without wall modeling the match is 

quite good in the recovery region but lower quantities are observed inside the recirculation. The root-mean square of the 
fluctuation in x2-direction, u′

2, is also predicted well employing the enrichment wall modeling approach. In the recovery 
region, small discrepancies are visible, however. We assume here that this behavior is due to the coarseness of the mesh 
in the shear layer above the recirculation and is not directly related to the wall model. The reference without wall model 
yields insufficient predictions which are faulty already at the first station. The Reynolds shear stresses are predicted with 
acceptable accuracy at the first stations but an over estimation is observable around the fourth station. Without wall model, 
the Reynolds shear stresses are neither predicted accurately at the inflow nor behind the step.

From the backward-facing step flow investigated with and without wall model in this section we find further evidence 
that our wall modeling approach gives excellent results in separated flow regimes. The method is robust with respect to 
jumps in bounding surfaces or ambiguous wall-normal vectors. Its strengths are accurate predictions for the skin-friction 
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and pressure coefficients as well as mean velocity profiles with very coarse meshes, but even turbulence quantities are 
estimated well.

6. Conclusion

A new approach to wall modeling for turbulent incompressible flows at moderate and high Reynolds numbers has been 
proposed. It is suggested to enrich the function space of the computational method with a minor modification of Spalding’s 
law-of-the-wall such that the mean boundary layer gradient can be resolved with very coarse meshes. It is the nature 
of the numerical method applied, the extended finite element method, to select the most appropriate function among all 
functions available in its function space, in this case standard linear Lagrangian shape functions and the enrichment. Hence, 
Spalding’s law is not prescribed but offered as alternative solution in a consistent way. The general framework may be used 
for all kinds of enrichment functions and has been used in a variety of applications. As the enrichment represents near-wall 
turbulent fluctuations in an averaged sense and large eddies in the bulk of the flow are resolved on the same mesh, the 
method suggested may be interpreted as a detached-eddy simulation. In this respect, the authors are not seeking to point 
out the limitations of DES but to pioneer a new class of wall models likely to engage many ideas of previous wall modeling 
approaches in future developments.

The method has been validated with the two most important flow regimes for wall-bounded turbulent flow, that is 
an attached boundary layer represented by turbulent channel flow and separated flow featuring a strong adverse pressure 
gradient present in flow past periodic hills and a backward-facing step. Turbulent channel flow has been evaluated for 
several Reynolds numbers giving rise to the following conclusions: The method enables the use of extremely coarse meshes 
where barely the largest eddies are resolved while high quality of the mean velocity is guaranteed. The results for the 
mean velocity profile have also shown to be essentially independent of the mesh employed. Root-mean-square values of 
the velocity fluctuations require slightly finer resolutions, however, which is due to the fact that the function space is 
“tuned” to represent the mean velocity and not the fluctuations. Flow past periodic constrictions and backward-facing-step 
flow exhibits the large potential of the presented method for many practical applications with high pressure gradient and 
under separated flow conditions. While standard wall models fail to predict the correct wall shear stresses, the present 
enrichment-based wall model predicts the skin-friction and pressure coefficients including separation and reattachment 
points accurately even with very coarse meshes.

Acknowledgements

Computational resources provided by the Leibniz Supercomputing Centre under the project pr83te are gratefully ac-
knowledged. The authors thank Ursula Rasthofer for helpful and inspiring discussions on the turbulence modeling approach 
and Stephan Jäger for preparations towards the periodic hill benchmark.

Appendix A. Evaluation of Spalding’s law

There are many ways to evaluate Spalding’s implicitly given wall function (13). Since a robust and fast algorithm is 
necessary here, we briefly describe the procedure employed. We use Newton’s method where the residual is defined as

F j = −y+,h + ψ j

κ
+ e−κ B

(
eψ j − 1 − ψ j − ψ2

j

2! − ψ3
j

3! − ψ4
j

4!
)

(A.1)

with j indicating the iteration number. As initial condition, we use the explicit expressions for the viscous sublayer and the 
logarithmic region:

ψ0 =
{

y+,hκ, if y+,h < 11

ln(y+,h) + κ B, if y+,h ≥ 11
(A.2)

We iterate until either the residual |F j | or the increment |
ψ j+1| with 
ψ j+1 = − F j
dF j/dψ j

reach an accuracy of 10−14, 

which takes approximately three to eight iterations depending on y+,h . Step size limiting, line search and other modifica-
tions have not been considered.

Appendix B. Derivatives of the enrichment in cartesian coordinates

The first and second derivatives of the enrichment with respect to cartesian coordinates, which are required for evalu-
ation of the Galerkin formulation (46), are obtained by applying the chain rule iteratively starting from equation (11). The 
equations are split into three groups: (i.) expressions in cartesian coordinates, (ii.) transformation to the wall coordinate y+
and (iii.) derivative with respect to y+ . As usual, indices define space dimensions i, j ∈ {1, 2, 3}.
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i. The first derivative is

∂

∂xi
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B∈Nu
enr

(∂Nu
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∂xi
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∂ψ(x, t)
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rh(x) + Nu
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∂xi
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(B.1)

and the second derivative gives
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(B.2)

The ramp function is defined node-wise and interpolated with the standard FE expansion, allowing for straightforward
computation of its derivatives.

ii. As the enrichment function is defined via the wall coordinate, its derivatives are transformed to y+ yielding

∂ψ(x, t)

∂xi
= dψ

dy+
∂ y+

∂xi
(B.3)

with
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w

ρ
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τ 3h

w ρ

)
(B.4)

where ∂ yh

∂xi
and ∂τ 3h

w
∂xi

are obtained in a straightforward manner via the standard FE expansion (15) and (17). Applying 
the chain rule successively, the second derivative becomes
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iii. The derivatives of ψ(x, t) with respect to y+ may be obtained explicitly with given ψ as

dψ

dy+ = 1
1
κ + e−κ B(eψ − 1 − ψ − ψ2

2! − ψ3

3! )
(B.7)

and

d2ψ

dy+2
= −e−κ B

(
eψ − 1 − ψ − ψ2

2!
)( dψ

dy+
)3

. (B.8)
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