Accepted Manuscript

B-spline tight frame based force matching method

Jianbin Yang, Guanhua Zhu, Dudu Tong, Lanyuan Lu, Zuowei Shen

PII:
DOI:
Reference:

To appear in:

Received date:

Revised date:

Accepted date:

S0021-9991(18)30106-2
https://doi.org/10.1016/j.jcp.2018.02.024
YJCPH 7862

Journal of Computational Physics

20 July 2017
23 December 2017
12 February 2018

Journal of
Computational
Physics

Please cite this article in press as: J. Yang et al., B-spline tight frame based force matching method, J. Comput. Phys. (2018),
https://doi.org/10.1016/j.jcp.2018.02.024

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing
this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is
published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all
legal disclaimers that apply to the journal pertain.


https://doi.org/10.1016/j.jcp.2018.02.024

Highlights

e We proposed an L1-regularized least squares model to form the force functions in the force matching method, which makes additional
use of the B-spline wavelet tight frame. Numerical results for molecular systems involving pairwise non-bonded, three and four-body
bonded interactions are obtained to demonstrate the effectiveness of our approach.

e In our approach, the B-spline tight frames system was first used for representing our force functions which has a simple explicit
expression. Moreover, the redundancy of the system offers more resilience to the effects of noise and is useful in the case of lossy data.
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Abstract

In molecular dynamics simulations, compared with popular all-atom force
field approaches, coarse-grained (CG) methods are frequently used for the
rapid investigations of long time- and length-scale processes in many impor-
tant biological and soft matter studies. The typical task in coarse-graining
is to derive interaction force functions between different CG site types in
terms of their distance, bond angle or dihedral angle. In this paper, an
(1-regularized least squares model is applied to form the force functions,
which makes additional use of the B-spline wavelet frame transform in or-
der to preserve the important features of force functions. The B-spline tight
frames system has a simple explicit expression which is useful for represent-
ing our force functions. Moreover, the redundancy of the system offers more
resilience to the effects of noise and is useful in the case of lossy data. Numer-
ical results for molecular systems involving pairwise non-bonded, three and
four-body bonded interactions are obtained to demonstrate the effectiveness
of our approach.
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1. Introduction

Molecular dynamics (MD) simulation is a widely applied technique to
study biomacromolecules in computational biology [1]. In its most common
form, target systems are modeled at the atomistic level. The interactions be-
tween atoms are defined by some empirical force fields, which usually contain
bond, angle, dihedral, van de Waals and Coulombic interactions. Then the
Newton’s equation of motion is solved to model the conformational changes of
biomacromolecules. Despite the intensive computational resources available
nowadays, the time-scale and length-scale of all-atom (AA) MD simulations
are still limited, thus limiting our understanding to important biological pro-
cesses. In this situation, coarse-grained (CG) models are often proposed to
replace AA models [2]. In CG models, nearby atoms are grouped into a vir-
tual CG bead. Thus fewer particles are needed to represent a target system
compared with AA models. The dynamics of the system is also accelerated
due to reduced degrees of freedom. As a result, both time-scale and length-
scale of CG MD simulations are greatly extended.

In the so called multiscale coarse-graining methods, the interactions be-
tween CG beads are usually parameterized to fit the behavior of AA mod-
els. There are several methods in this category available in literature, in-
cluding iterative inverse Boltzmann [3], inverse Monte Carlo [4], and force
matching [5, 6]. The force matching method, sometimes called the multiscale
coarse-graining method (MS-CG), aims at reproducing many-body potential
of mean force (PMF) of atomistic configurations by fitting the total forces
on the CG beads during the atomistic simulations. As proposed by Noid
et al. [6], the CG forces as the fitting target correspond to the derivatives
of PMFs. Force matching fits the derivative of many-body PMF through a
number of over-determined equations, which can usually be solved in a least
squares sense.

Reconstructing the interactions between different CG sites using atom-
istic simulation data can be formulated as a functional reconstruction prob-
lem [7, 8]. Assume that we are given a set of scattered data sites, i.e.,
the Cartesian coordinates for N CG sites in a single configuration: = =
{R1,Rs, ..., Ry} C R? and associated function values »_ ; f(]Rj—Ri\)eﬁj =
¢

£, where f is the force function we want to solve, e; ; 1s the component of unit

vector (R; — R;)/|R; — Ry, and £ is the component of force which possibly
contains noise. Our goal is then to reconstruct the force function f under
the assumption that f is a piecewise smooth function. It is emphasized that



the point of inflection of f need to be well preserved in the reconstruction,
because they encode important information. Also, note that the input data
sites = are scattered, i.e. they are non-uniformly sampled, with large gaps
and even sparsity. Moreover, the obtained function values ff could be very
noisy. All these challenges make the reconstruction a difficult problem.
Among all available functional reconstruction methods, a regularized least
squares model is one of the most widely used methods. For our force matching
model, the function f is determined by solving the variational problem

; ¢ C)2

P2 (; F(R; = Rif)e; ; — )" +T(f) (1)
where R; and R; refer to Cartesian coordinates of CG sites, and V is a
function space where f is derived from. Here, the first term measures the
fitting error while the regularization term I'( f) gives preferences to properties
of the approximant f. It can for instance be chosen such that the roughness of
f is penalized or such that f comes close to a piecewise continuous function.
There are several choices for the function space V in (1), often considered
spaces are the Sobolev space, C?, polynomial space or as we will use in this

paper, a principal shift invariant space

S"(B) ::closure{z u(oz)B(% —a):u(a) eR

and only a finite number of u(a) #0, « € Z},

which is spanned by those h-dilates and h-shifts of compactly supported
function B(r), and h > 0 is a scaling parameter that controls the refinement
of the space. Then any function in S"(B) can be written as a finite expansion

and our aim is to find those coefficients u(a). In this paper, we choose B-
spline function as B(r). Several desirable properties that the space S"(B)
enjoys motivated us to choose it as an approximation space for fitting force
functions. First, it has a simple structure and provides a good approximation
to smooth functions [9], which naturally leads to simple and accurate algo-
rithms. The compact support of B-spline results in sparse system matrices
which is of computational interest. Furthermore, it can be associated to a
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wavelet frame system and hence one can solve the data fitting problem by
taking the advantages that a frame system can offer.

Inspired by some recent wavelet frame based image restoration method-
ologies [10, 11], we determine the approximating function f € S*(B) by
minimizing the functional

N
miny (Y fIR; — Ril)el; — £)° + [diag)Wulle. (2)

i j=l#i

where R; and R; refer to Cartesian coordinates of CG sites, u are the co-
efficients of f, W is the wavelet frame transform and diag(\) is a diago-
nal parameter matrix which scales the different wavelet channels. The first
term in this minimization characterizes the fitting error. The second term
||ldiag(A\)Wu||,, suppresses noise and penalizes the roughness of the solution
on one hand, and preserves the features of the resulting curves on the other
hand. We will give a more detailed discussion on this in the next section.

In [12], a similar model to (2) was applied to approximate the solution
of smoothing spline for fitting a curve or surface to scattered data. The
model was also used in [13] to approximate range data and an asymptotic
approximation analysis of the model and its minimizer was presented in [14].

Recently, Larini and Shea [15] investigated how far a system can be coarse-
grained using functional forms that are commonly employed in standard
atomistic simulations and assessed the impact of poor initial sampling on
the quality of the resulting CG model. Das and Andersen [16] constructed
hierarchical basis functions associated with the elastic net method to de-
rive force functions. M. Maiolo et al. [17] applied Daubechies’ orthogonal
wavelets to represent the coarse-graining potential. More recently, Schoberl
et al. [18] prescribed a probabilistic coarse-to-fine map and presented a data-
driven coarse-graining scheme of atomistic ensembles in equilibrium.

The rest of this paper is organized as follows. In section 2.1 we introduce
the multiscale coarse grained force matching model. To fit the force functions
in B-spline function space with the wavelet smoothing method, in section 2.2
we review some properties of B-spline tight frames. Then, in section 2.3 we
establish the wavelet frame based ¢;-regularized least squares model to derive
forces between different CG sites. In section 3.1 we explain how to treat
the model numerically. In the rest of section 3, we present some numerical
experiments and compare our results with some other known models. Finally,
conclusive remarks are given in section 4.
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2. Theory Details and Mathematical Model

2.1. The Multiscale Coarse-Graining Approach

The multiscale coarse-graining method (MS-CG) aims to optimize a CG
potential to reproduce many-body potential of mean force (PMF) calculated
from atomistic configurations. It is developed by Voth and co-workers [7]. For
an atomistic system with n atoms with coordinates (r" = {ri,rs,...,1r,})
and force functions (f"(r") = {fi(r"),£a(r"),...,£.(r")}), a CG system is
constructed by defining N < n linear mapping operators (M (r™), My (r"), . ..
My (r")) that map the positions of the atomistic particles (r™) to CG sites
(RY = {Ry, Ry, ..., Ry}). Let FY = {F;(RY), Fo(RY),...,Fx(RY)} be
the set of CG force functions, then the MS-CG (i.e., force-matching) method
aims at minimizing the difference between atomistic and CG forces through
a least squares fitting [19]:

min (Y (£ (") — F;(M;(x")))?). (3)

I=1

Here f;(r") = > ier, fi(r"), and Z; is the set of indices of the atomistic
particles that are involved in the definition of the /-th CG site and angular
brackets denote an ensemble average. For simplicity, we abbreviate (3) as

min || Fu — £|[7,. (4)

where F is a matrix which is related to the input atomistic configurations, f is
a vector composed of atomistic force data, u is an unknown vector containing
all CG force field parameters [8]. In the MS-CG theory the optimal CG
potential represented by u corresponds to an approximation of the many-
body potential of mean force derived from an atomistic trajectory.

Solving Eq. (4) can be converted to the following normal equation

F’Fu=F"f, or Gu=b, (5)

in which G denotes the square matrix FTF and b represents the vector Ff.
If the CG potential is pairwise, the MS-CG normal equation (5) is related
to the well-known YBG equation in the liquid state theory [20, 6, 21}, in
which the two- and three- body distribution functions are connected. The
dimension of the matrix G is determined by the total number of parameters
in the molecular forces. For complex protein systems, this dimension can be
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in the order of 10* to 10°, while for simple homogeneous liquids the size of
the matrix is usually several hundreds.

In MS-CG, a pairwise CG force f(r) is usually represented by a number of
delta or spline functions, and the entire range of the pair distance r is divided
into a number of bins accordingly. The spline functions with certain orders
are preferred for higher computational efficiency. For example, the MS-CG
software package MSCGFM supports both linear splines and B-splines of high
order [8]. Mathematically speaking, the force functions are derived from the
following principal shift invariant space

SM(B) :=cl B(+~—a): R
(B) :=c osure{g u(a) (h a)ru(a) €
and only a finite number of u(a) # 0, « € Z},

where B is a B-spline function, h > 0 is a dilation. The concept of shift
invariant spaces arises in approximation theory, wavelet analysis, finite ele-
ments, etc. (see e.g. [22]). Besides its structural simplicity, shift invariant
spaces have the beneficial property that they provide good approximation or-
ders to smooth functions (see [9]). The compact support of B-spline results
in sparse system matrices which is of computational interest. Moreover, the
space gives rise to associated wavelet tight frame systems, as we shall discuss
in the next subsection.

Specifically, the pairwise force at an arbitrary distance r is calculated by

the formula

n—1

J(r) = > u(@)Bu(s — ). (6)
a=0

where B,, is an m-th order B-spline basis function with the polynomial order
m — 1 and u(«) are the corresponding coefficients we want to solve. The di-
lation A is determined by the atomistic data; the number n of basis functions
for a pairwise force in (6) is determined by the number of break points in the
chosen distance range [23].

While Eq. (6) is for pairwise distance dependent interactions, similar
expressions can be obtained for other intermolecular and intramolecular co-
ordinates such as angles and dihedrals. For instance, for a CG angular inter-
action, the left hand side of Eq. (6) turns to f(6), where 0 is the CG angle;
and for a CG dihedral interaction, the left hand side of Eq. (6) turns to f(7),
where v is the CG dihedral angle.



The corresponding terms of the system potential energy function can
then be obtained by integrating the expressions of the forces (6), and the CG
potential energy function consists of the sum of all non-bonded and bonded
components. Then, each of the CG interactions can be calculated according
to (6) and the system potential energy function is the sum of these three
types of interaction potentials.

If the experimental data are sufficient and noiseless, solution to (4) will
fit the CG force functions well with a reasonably flexible CG potential. How-
ever, insufficient sampling and noise are unavoidable in MD simulations. In
this case, solving (4) in the least squares sense cannot obtain a reasonable
solution. For instance, if the sampling for the distance range is poor, i.e.
there are few molecular configurations corresponding to the distance range
of the support, the optimized spline coefficient will cause very large fluctu-
ations, this is because the support of the B-spline function is compact and
there exist very few or even none samples in the support of B(; — «) for
some «.

Therefore, we want to establish a regularized method to tackle this prob-
lem. In the following, a B-spline wavelet frame based approach will be applied
to fit the force functions. Before introducing this method, we review some
properties of wavelet frames first.

2.2. B-spline wavelet tight frames

We present here some basics of B-spline wavelet tight frames. Interested
readers should consult [24, 9] and the references therein to get a complete
picture of it. A countable subset X C Ly(R) is called a tight frame of Ly(RR)

if
F=>Y {f99

geX

This is equivalent to

IFI2 = [f.9P, VfeL(R),

where
(f.g) = / f(@)g(@)da

and

1= ( / (@) da) 2.
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A wavelet system X (W) is defined to be a collection of dilations and shifts
of a finite set of functions ¥ = {4y, ..., 1.} C Ly(R), where

X(U) := {hpjn = 2720020 — k), 4y € U; 5, k € Z}.

When the countable set of functions X (¥) forms a tight frame of Ly(R), it
is called a wavelet tight frame and each 1, € ¥ is called a framelet.

To construct wavelet tight frames, one usually starts with a refinable
function ¢ satisfying

$x) =2 ho(a)d(2z — ),

where hq is a finitely supported sequence called refinement mask. It is well
known that B-splines are refinable. For example, the B-spline of order 1,

1, if 0<z<1,
By(x) :{ d

0, otherwise,
can be used as ¢ with hg = [3, 3]. The piecewise linear B-spline

r+1, if —1<x<0,
By(z) =X —ax+1, if 0<z<1,
0, otherwise,
is refinable with hy = [1, 1, 1.
For a given compactly supported refinable function ¢, the construction
of a wavelet tight frame is to find an appropriate set of framelets ¥ =

{1, ..., 1} defined by

Gi(w) =2 h(@)p2r —a),  L=1,...7 (7)

where the framelet masks h, are finitely supported sequences.

By using B-spline as the refinable function ¢, a family of wavelet tight
frame system is derived by the Unitary Extension Principle (UEP) [24]. For
example, the simplest system in this family is piecewise linear B-spline tight
frame which uses By as ¢ and two framelets ¢ and v, as defined in (7) with

2 1
h1:§[—1,0,1], h2:1[_1’2’_1]



The plot of ¢, 11,15 is given in Fig 1 (a).
A smoother wavelet tight frame system is the cubic B-spline tight frame

which uses By as ¢ with hg = [%, ;11, %, }1, 1—16] Define hy, hs, hs, hy as follows:

11 11 11

13
hl - [167_17§7_171_6]7 h2 - [_gﬂ 1707_175]7
V6 V6 V6 11 11
h’g = [_707__707 _]7 h4 = [__7__707_7_]’ (8>
16 8 16 8 4 "4°8

Then the system X (V) where U = {4y, 99, 13,14} defined in (7) by hy, he,
hs, hy above is a tight frame of Lo(R) (see Fig. 1 (b)). Other constructions
of wavelet tight frames from any B,, can be found in [24].

(a) (b)

¢ A&} v, 34 Y, v, Y, v,

M M VI E

Figure 1: Refinable functions and framelets. (a) Piecewise linear spline and corresponding
framelets (b) Piecewise cubic spline and corresponding framelets

Let Vo = span{¢(- — k), k € Z}. The dilations ¢, ; := 21/2¢(2-—k), k € Z,
form a Riesz basis for a space V; D V4. In fact, we have --- DV} DV D
V.1 D and U;V; = Ly(R), where each V; is spanned by ¢ := 27/2¢(27 -
—k), k € Z. By [25], for any give L € Z, for f € Ly(R), we have

= Z(fy OrLr)PrE + Z Z Z(fv Ve jk)Vejks

kez (=1 j>L keZ

where 1y 1= 29/24),(27 - —k).

Here, we represent a function by a component in V;, plus the component
in W;, written as Lo(R) = Vi + U;> W;, where W; is spanned by vy,
1 </?¢<r, keZ The component in V represents rough components of
f and the component in W; represents the detail, and we might wish to set
some elements of the latter component to zero by shrinking and selecting the
coefficients toward a sparse representation [26].

The difference between B-spline tight frames and Daubechies’ s orthonor-
mal wavelet basis [27] is the follows: first, the scaling function B,, of B-spline
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tight frames has very simple expression which is easy to generate the data
matrix, while the scaling function of orthonormal wavelet basis has no ex-
plicit formula except Haar. Second, the B-spline tight frames are a redundant
system, thus it offers more resilience to the effects of noise, and is useful es-
pecially in the case of lossy data.

B-spline tight frames are very popular in signal and image processing,
since they are able to represent both smooth and/or locally bumpy functions
in an efficient way and provide time and frequency localization [22]. The
effectiveness of the B-spline tight frame has been proved in many applications
in signal and image processing [28, 13, 10, 11]. We will show that such
a simple system can also be used to effectively reconstruct the interaction
functions from MD simulation data.

Numerical computation of the wavelet frame transform is done by using
the wavelet frame decomposition algorithm [22, 25, 11]. Let h;, 0 < i < r be
the framelet masks. For the (¢ 4 1)-th level of wavelet frame transform, the
filters are defined by hy,; := 714,2‘ * ﬁg,l,i ¥ ... % 710,1-, where

- hi27tk], k€274,
healkl = 4 k¢ 207,

Then, the discrete framelet transform without down-sampling are defined by
Wy = hy;|—]*u, where u € ¢,(Z) and * is the discrete convolution opera-
tor. We denote the discrete framelet transform with L levels of decomposition
as

Wau={W,u:0<(<L—-10<i<r}.

The transform can be represented by a matrix whose construction depends
on the boundary conditions. We omit the detailed discussions here and the
interested reader should consult [25] for more details.

2.3. Wawelet Smoothing Model

In this section, we propose a B-spline tight wavelet frame based /¢;-
regularized model to fit CG forces. Let f : R — R be a force function
we want to solve. In MS-CG, for pairwise distance dependent interactions,
the position of each CG site (R; = (z;,y;, 2:))~, is obtained by the centers
of geometry of the corresponding atoms, and (|R; — R;|)}Y;_, are considered
as our input variables.

10



We approximate f between different CG sites in terms of Euclidean dis-
tance r from S"(B,,). That is, let

1) = Y u(@)Bu(s ~ a), )

where the range of « is determined by the number of break points in the
chosen distance range, and the dilation A is determined by the density of input
variables. The force function f will be given once the coefficients u(«) are
determined. By the Boltzmann distribution in statistical mechanics [1], most
of the CG sites are located in a low energy state, whereas only a few CG sites
are located in the high energy state. Moreover, due to inadequate sampling
of phase space and random fluctuations in the measurements, the data R;
and resultant force f; are usually noisy. These factors make it challenge to
derive force functions.

Let ef ; := |§;:§i|, ey, = \Ryj:i/{,-p e, = éj_:;i‘ and {|R; — R;|}},_, be
considered as our input variables, where (x;, y;, z;) is the Cartesian coordinate
of R;. The resultant force f; = (£*, £/, £7) which is acting on each coarse site

W, is calculated as the sum of corresponding atomistic forces, W;(j # i)
acting upon W;. We determine the coefficients u(«) in (9) by solving

mind 37 (D0 f(R;~ Ril)el, — £) + diag )Wl (10)

i Ce{ry,z} J=Llj#

where W is the wavelet frame transform and diag()) is a diagonal parameter
matrix which scales the different wavelet channels. Here, for a sequence a,
lalle, := >, la(a)]. If u* is the minimizer of (10), then we have

In the numerical experiments in section 3.2, we choose the cubic spline (m =
4), i.e.
(23/6 if0<az<1
(=3z3 + 1222 — 122 +4)/6 if 1<z <2
By(z) = ¢ (323 — 242% + 60z — 44)/6  if 2 <z <3
(4—2)%/6 if 3<x<4

{ 0 else
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and its associated wavelet frame transform V¥V with the corresponding masks
hl, hg, hg, h4 in (8)

When all parameters A are chosen zero, the model (10) is the usual least
squares fitting, corresponding to (4). The idea behind the regularization term
in (10) is to make use of the interaction between the framelet transform and
the /1-norm. Here, the force functions are derived from a B-spline function
space Vy (h =277 ) with certain high resolution which can be decomposed
into a coarse resolution space and wavelet frame subspaces [24, 22, 9]. It is
well known that the wavelet frame coefficient of a signal, which is sampled
from a piecewise smooth function, is sparse (i.e. large number of wavelet
frame coefficients are equal or close to zero and negligible, see [22]). Thus,
for a large class of functions, we can get a good approximation by neglecting
small coefficients [26]. Furthermore, since the ¢;-norm minimization annihi-
lates small coefficients in the wavelet frame domain, the regularization term
||diag(A)Wu||s, gives preference to a solution whose wavelet coefficient se-
quence is sparse, and to keep important features of functions.

While model (10) is for distance dependent interactions, similar models
can be obtained for other intermolecular and intramolecular coordinates such
as angles and dihedrals. For a general system, for a CG angular interaction,
f(r) turns to f(#), where 6 is the CG angle; and for a CG dihedral interaction,
f(r) turns to f(7), where 7 is the CG dihedral angle. Let fy, k =1,..., K
be those force functions in a system we want to solve. Then the model (10)
becomes

K N

mind 0 Y0 (DD SelX)el; — 1) + diag()Wally,.

i (e{zyz} k=1 =l

Here, {X7} are the scalar variables (i.e., distance, bond length or dihedral
angle), fr, = >, uk(a)By(;- — ) and u = (uy, o, . .. ,ug)? are the vector
of sequences we want to solve.

In the next section we explain how to treat the minimization problem
(10) numerically, and we expect that our method will be effective for the
realistic cases with poor sampling, which has been challenging in previous
studies.

12



3. Numerical Results and Discussions

3.1. Numerical algorithms

In this section we explain how to solve the optimization problem (10).
This problem can be written in the matrix vector form as

min [|Fu — £[[7, + ||diag(A\)Wull,, . (11)

where f = [+ £, ], Fyy = 20 BB kY and I = {ky, ..., k,}.
Thus, (11) is an ordinary least squares problem with an /¢;-regularization
term. The alternating direction method of multipliers (ADMM) method
29, 28] has been proved to be very efficient in solving (11) with various
successful applications, see e.g. [29, 28, 13].

Note that (11) is equivalent to

midn |Fu— £|)7, + ||diag(A\)d]|, subject tod = W (12)

Then the ADMM algorithm that solves (12) is as follows:

u'*! = argmin [Fu — €7, + £ [Wa—d’ + b, (13)
u

! = argmin |[diag(\)d|ls, + 5ld — W' — b, (14)

bi+1 — bz + Wui+1 o di+1 (15>

with initial u® = 0, d° = 0 and b® = 0. In the following computations, we
choose = 0.1.
The solution to (13) is determined by solving the system of equations

(2FTF + pWTW)u = 2F7f + W7 (d' — b)
which, because of WI'W = I, can be simplified to
(2FTF + pl)u = 2F7f + W' (d" — bY). (16)

Since (2FTF + ul) is symmetric positive definite, the system of equations
(16) can be efficiently solved by applying the conjugate gradient method.
The solution to (14) is given by

di-‘rl — T)\/N(Wui—l-l + bz)

13



For 1 > 0, Ty, is the soft-threshold operator

Toju(x) = [tayu(@1), toyu(@), - bayul@a)]

with ¢y, (x;) == sgn(x;) max{0, |z;| — %}

Further note, that W7 (d" — b?) in (16) is determined by performing the
inverse framelet transform rather than by using its matrix representation,
similar in the iterations (14) and (15). The stoping criteria of the iteration
is

ld" = Wu'|le, <

for some positive constant e.

In order to highlight the effectiveness of our wavelet smoothing method, in
the next part, we will show some numerical results and compare our method
with the Tikhonov regularization method, which is defined as

min ||Fu — £[7, + v|lul[7,, (17)
and the Laplacian regularization method, i.e.,

min ||Fu — f[|7, + vu*Lu (18)
with £ the discrete Laplacian operator.

3.2. Numerical Results

3.2.1. One Site Coarse-Grained Water

The atomistic simulation of 999 water molecules contained in a cubic
box of size 3.111 nm was carried out using the OPLS-AA [30, 31] all atom
force field at 300K. In the atomistic simulations, hydrogens are constrained
using Lincs [32]. The thermostat used is the velocity rescaling method in
Gromacs [33] with 0.1 ps coupling constant. The SPC/E [34] water model
was used. Totally 10 ns simulation was conducted under the constant NVT
condition. The integration step was set to 2 fs. The force matching method
was applied to the atomistic configurations to generate the CG potentials.
In the CG model three atoms in one water molecule were combined to one
singe CG-site “W”.

In Fig. 2 the curve of fitting with sufficient data can be seen as a bench-
mark, which was based on 10° frames of the trajectory data. For 30 frames
of the trajectory data, we applied the wavelet smoothing model (10) with

14



h = 0.005 nm to derive the force function. It can be seen that compared
with the Tikhonov (17) and Laplacian regularization (18) methods, our ap-
proach preserves the minima better, which is important for CG modeling. To
assess the statistic errors in our modeling, we calculated 5 independent nu-
merical results and each experiment randomly sampled 30 frames throughout
the trajectory. The unbiased standard deviation of these 5 results around
the force minima point is 0.8522.

50

Fitting with sufficient data

40}
0 Laplacian regularization

Tikhonov regularization
Our approach

30

Force
=5

! ! ! ! ! ! ! ! !
0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3
r (nm)

Figure 2: Approximation of interaction force (kJ/(mol nm)) of Water-Water molecules by
30 frames

3.2.2. Angular potential from a single propane molecule

A single propane molecule was simulated in vacuum condition using the
Amber-99SB [35] force field at 300 K. The time step was set to 2 fs. Totally
4 us Langevin dynamic simulation was performed and in Langevin dynamics,
the coupling constant was 0.02 ps. Here, CG sites were placed at C atoms,
as shown in Fig. 3. The beads were positioned at C atoms instead of centers
of mass, because this coarse-grained treatment permit a direct comparison
of its bond and angle distributions with AA simulations whose bonds and
angles are physical connections.

15



Figure 3: CG representation of a single propane molecule

Totally, we had 2 x 10° frames. In the CG model, the bond was fitted to a
harmonic potential by using all the frames. The angle term was subjected to
a tabulated potential by using different number of frames. By using all frames
to fit the angle, the CG simulation produced an ensemble of conformations
that was able to fully reproduce the angle distribution of all-atom simulations
(see Fig. 4). With less frames, the force and energy functions became less
smooth with more noise. If the number of frames was reduced to 850, the
force and energy would be too noisy to reproduce the angle distribution with
all frames. In this case, though the peak position in the angle distribution
was correctly located, the peak intensity deviated dramatically. By using
our method, the force can be recovered as a smooth pattern and the angle
distribution was recovered significantly, closer to the all-frame pattern (see
Fig. 5). If fewer frames were used, the force would be noisier even with very
large values (see Fig. 6) and the angle distribution would deviate further
away from that of the all-frame case. This case with noise and very large
forces would produce a random pattern of angle distribution. The exclusion
of outliers (forces larger than 1000) could drive the angle distribution from
the random pattern, but still failed to display the correct distribution. Our
wavelet smoothing model can remove the side-effect of the noise caused by
insufficient frames, successfully reproducing the correct angle distribution.
Besides, we also found that the bond distribution in CG simulations was also
strongly affected by the force noise of angle. Our approach also remarkably
improved the bond distribution compared with the classical least squares
method (see Fig. 7).
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Figure 4: A comparison of angle distributions between all-atom simulations and CG sim-
ulations of all frames (2 x 10° frames).
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Figure 5: 850 fames of propane molecules. (a) force (kJ/(mol degree)). (b) potential
(kJ/mol). (c) angle distribution. Results by the classical least squares method, our ap-
proach, Tikhonov and Laplacian regularizations with 850 frames, and the classical least

squares method with all the 2 x 10% frames.
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Figure 6: 760 frames of propane molecules. (a) force (kJ/(mol degree)). (b) poten-
tial (kJ/mol). (c) angle distribution. Results by the classical least squares method, the
classical least squares method removing outliers (refer to the main text), our approach,
Tikhonov and Laplacian regularizations with 760 frames, and the classical least squares
method with all the 2 x 10° frames.
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Figure 7: A comparison of bond distributions between different methods, with 850 frames
(a) and 760 frames (b) used.

3.2.3. Hexane

The atomistic simulation of 600 hexane molecules contained in a cubic
box of size 5.08 nm was carried out using the OPLS-AA all atom force field
at 300 K. Totally 10 ns simulation was conducted under the constant NV'T
condition. The integration step was set to 2 fs. In the atomistic simulations,
hydrogens are constrained using Lincs. The time constant was 0.1 ps using
the V-rescale method in Gromacs that is a modified Berendsen thermostat
[36]. Two types of CG sites of hexane were implemented, namely CA and
CB (see Fig. 8). The total number of CG sites is 2400.
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A total of 5000 frames were saved from MD simulations and each frame
was a box of 600 hexane molecules. CG MD simulations were performed
to investigate whether our method is able to improve the accuracy of CG
force field of the dihedral angle when the sampling is insufficient. In the
CG model, the bond and angle potentials were fitted to harmonic potentials
and non-bonded interactions were fitted as tabulated potentials. For the di-
hedral angle, if less frames were used, the angle distribution would deviate
away from that of the all-frame case (see Fig. 9 (c)). It is noted that, a
symmetric treatment was subjected to the CG dihedral force that was de-
rived from all-atom simulations because of the symmetric nature of dihedral
angles. As shown in Fig. 9 (a), using 6 frames undermines the accuracy of
force, compared with the force from all 5000 frames, especially an opposite
trend around —50 ~ +50° that was a high-energy region with less sampled
data. As a result, this bad-sampling case failed to capture the high-energy
peak of the dihedral potential at —35 ~ +35° (see Fig. 9 (b)). The CG
MD simulation of this insufficient sampling case produced a dihedral angle
distribution that deviate from the result from all-atom simulations (see Fig.
9 (c)). The inaccurate area of dihedral distribution was around 0° caused by
the inaccurate CG force of bad sampling. In comparison, our method can
improve the force and potential accuracy at worse-sampled dihedral range
around —50 ~ +50°, consequently recovering a correct pattern of dihedral
angle distribution as the all-atom one.

Fig. 9 shows that our approach can preserve the force function well, while
the Tikhonov regularization (17) reduces the energy of force function. The
reason behind this is that for the Tikhonov method, the model minimizes
[ul|7, and causes the force curves to deviate to x-axis. In our approach, a
redundant wavelet frame system was used to represent functions, but then
shrink and select the coefficients toward a sparse representation. This wavelet
smoothing method fit represents locally bumpy functions and nicely localizes
the spikes.
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Figure 8: CG representation of hexane molecule. Four CG beads are CA-CB-CB-CA.
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Figure 9: The dihedral angles of hexane in the case of 6 frames. (a) and (b) are
force (kJ/(mol degree)) and potential (kJ/mol) respectively for the classical least squares
method (red), our approach (blue), Tikhonov (magenta) and Laplacian (gold), in compar-
ison with the counterpart of all the 5000 frames (green). The dihedral distribution in (c)
also shows the dihedral distribution from an all-atom MD simulation (cyan).

3.8. Discussions

The normal equation (5) was proposed by W. G. Noid et al. [6, 7] to
minimize the MS-CG residual. When the data are sufficient and noiseless,
the solution can approximate the CG force functions well. When the data
are poorly sampling or noisy, as it often happens, the regularized models are
preferred to derive the force functions.

The Tikhonov regularization model (17) which minimize the ¢5-norm of
u will reduce the energy of underlying solution. This causes the force curves
to deviate to x-axis (see Fig. 9). The idea in the Laplacian regularization
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method (18) is to restrain the fluctuations of neighbouring u which gives pref-
erence to a smooth solution. However, this method will erase some features
and details of the curve which is important in force functions (see e.g. [14]
and Fig. 2). Therefore, the ¢;-regularized term is preferred in our model. In
addition, when the sampling is very poor, for example, no samples lie in sev-
eral adjacent support of By, (5 —«), high-pass filters with longer support than
Laplacian operator are desirable. In this case, the wavelet frame transform
with long supported masks and multiscale transform can be chosen.

In our approach the B-spline functions and associated wavelet tight frames
are used to derive the force functions between different CG sites. The
Daubechies orthogonal wavelet functions ¢ and 1 are not considered [27, 17],
since they are non-symmetric and have no explicit expression. Furthermore,
wavelet frame, as a generalization to orthonormal basis, relaxes the require-
ment of X (V) being a basis and brings in redundancy, while the redundancy
offers more resilience to the effects of noise, provides more numerical stability,
and is useful in the case of lossy data.

The support of the B-spline functions B,,(; — a) or scaling parameter h
is determined by the density and noise level of experimental data. A large
support B-spline functions can fit the lossy data, but it fails to represent the
details of force functions which is important in MD simulations. Moreover,
due to the large support, the noisy data at r; can change the behavior of
f(ra), even those 1o far away from r;. This property is undesirable for most
applications. On the contrary, a small support B-spline functions can detect
the details of force functions, but the curve fluctuates in the poor sampling
case. Therefore, multiresolution hierarchical basis functions are preferred to
represent the force functions.

Recently, P. Liu et al. [37] presented a Bayesian statistics approach to
improve the MS-CG force field obtained from the CG model. Our wavelet
smoothing model can also be cast in a Bayesian framework. The fitting
term of (10) corresponds to the Gaussian distribution of sample noise, and
the regularization term corresponds to the Laplace distribution of wavelet
coefficients. This optimization problem amounts to finding the posterior
mode and usually can be solved by fast algorithm and be constructed for
functions in any dimension. In the approach of Das and Andersen [16],
they constructed hierarchical basis functions associated with the elastic net
method to derive force functions. M. Maiolo et al. [17] applied Daubechies
scaling functions and orthogonal wavelets to approximate the MSCG. The
idea of both methods is to approximate functions from a relatively coarser
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resolution subspace plus the fluctuated detail subspaces. On the contrary,
our model is to approximate f from the high resolution space directly, which
leads to generating the matrix F easily. In addition, we assume that the
wavelet frame coefficients of f is sparse, i.e. most of the coefficients of wavelet
frame transform of f are negligible. Thus, the threshold procedure should
be given after the wavelet frame transform. In [16], certain hierarchical basis
functions should be carefully constructed, and in [17] subdivision scheme [27]
should be applied to interpolate the scaling function values, since Daubechies
scaling functions and wavelets functions have no explicit formula. Compared
to the construction in [16, 17], our approach has the double advantages of
being multi-resolution hierarchical basis functions and being easier in the
implementation. The structure of B-spline principle shift invariant space
Sh(B,,) is very simple and the tight wavelet frame transform and inverse
transform can be implemented very fast. Furthermore, the B-spline tight
frame system has a simple explicit formula and can reconstruct any f in Lo
space in theory.

4. Conclusion and Future work

In this paper, we proposed an f;-regularized least squares force match-
ing method based on the wavelet frame transform in order to preserve the
important features of the force functions and suppress noise. The force func-
tions were derived from a B-spline function space with certain high resolution
which can be decomposed into a coarser resolution B-spline function space
and wavelet frame subspaces. Here, the wavelet frame system has simple
explicit expression which is useful for representing our force functions, and
we expect that the wavelet coefficients of the underlying functions are sparse.
Furthermore, the redundancy of the frame system offers more resilience to
the effects of noise, and is useful especially in case of lossy data.

In the future work, it is of interest to implement our approach on protein
structure data from experimental database, as proposed by Mullinax and
Noid [21, 38|, since the experimental data are in general more noisy than
those from MD simulations.
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