
Journal of Computational Physics 231 (2012) 2599–2620
Contents lists available at SciVerse ScienceDirect

Journal of Computational Physics

journal homepage: www.elsevier .com/locate / jcp
Multilevel coarse graining and nano-pattern discovery in many
particle stochastic systems

Evangelia Kalligiannaki a,⇑, Markos A. Katsoulakis b,c, Petr Plecháč a, Dionisios G. Vlachos d
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a b s t r a c t

In this work we propose a hierarchy of Markov chain Monte Carlo methods for sampling
equilibrium properties of stochastic lattice systems with competing short and long range
interactions. Each Monte Carlo step is composed by two or more sub-steps efficiently
coupling coarse and finer state spaces. The method can be designed to sample the exact
or controlled-error approximations of the target distribution, providing information on
levels of different resolutions, as well as at the microscopic level. In both strategies the
method achieves significant reduction of the computational cost compared to conventional
Markov chain Monte Carlo methods. Applications in phase transition and pattern forma-
tion problems confirm the efficiency of the proposed methods.

� 2011 Elsevier Inc. All rights reserved.
1. Introduction

Our primary goal in this work is to develop a systematic mathematical and computational strategy for accelerating micro-
scopic simulation methods with competing short and long range interactions, arising in numerous physical systems for
instance in micromagnetics, models of epitaxial growth, etc. We propose the Multilevel Coarse Graining Monte Carlo
(ML-CGMC) method, based on a hybrid statistical mechanics and statistics approach. The method introduces a hierarchy
of Markov chain Monte Carlo methods coupling scales and types of interactions that can sample the exact or controlled error
approximations of Gibbs measures lN;bðdrÞ ¼ Z�1

N e�bHN ðrÞPNðdrÞ defined on a high dimensional configuration space
RN ¼ f0;1gKN , with KN a d-dimensional lattice with N� 1 sites, that can be easily generalized to any probability measure
with similar properties. It is a method of constructing efficient proposal measures in Metropolis sampling using coarse-grain-
ing techniques, aiming at reducing the rejection rate and the computational complexity. The key idea is a decomposition of
the sampling distribution to a product measure
lN;bðdrÞ ¼ �lð0ÞM;bðdgÞmrðdrjgÞ; ð1Þ
withg :¼ Tr a variable with less degrees of freedom compared tor, defined by a projection map T : RN !RM;M < N: �lð0ÞM;bðdgÞ is
a measure with a simple explicit representation approximating the marginal �lM;bðdgÞ ¼ lN;b � T�1ðdgÞandmr(drjg) is a uniquely
defined (prior) measure, responsible for reconstructing variables r giveng [18]. Such a two-level measure decomposition can be
. All rights reserved.
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trivially extended to a multi-level setting where (1) can include different resolution levels interpolating between a coarser level
and the microscopic one r.

We describe a Monte Carlo step of a two-level CGMC method:

1. Sample g from �lð0ÞM;bðdgÞ, using Coarse Grained (CGMC) samplers [17,16]. Appropriate coarse-grained measures have been
evaluated in earlier work via cluster expansions that can be easily constructed with available analytical error estimates,
ensuring that such approximations are controllable, [19].

2. Conditioned on such g, obtained in Step 1, we sample mr(drjg) using an accept/reject method.

A schematic description of this procedure is seen in Fig. 1. Better proposals constructed in Step 1 will lead to fewer rejec-
tions in Step 2, furthermore, there is no need to consider all possible microscopic proposals since at the coarse step we do a
first screening.

In comparison to two-level rejection-free CGMC previously discussed in [4], the approach here provides a rigorous math-
ematical framework and employs a rejection-based type algorithm that is computationally easier to implement and, in con-
trast to the general belief, more efficient than rejection-free methods under certain conditions (e.g. long range interactions
and stiff problems), [33]. Instead of further approximating the sampling measure, as is done with cluster expansion keeping
the typically computationally expensive multi-body higher order terms [19,2], we use the hybrid statistical and statistics
approach that construct mr(drjg). Even when CGMC provides less accurate approximations, the ML-CGMC approach can re-
fine the results by the accept/reject step in the finer space.

A necessary ingredient for applicability of the method is a decomposition of the form (1), which includes a possibly less
accurate coarse-grained measure and the correcting accept/reject Step 2 above. This formulation can make the proposed
method extentable to off-lattice systems where various coarse-graining schemes are already available [25,12], although
without controlled-error approximations. In such off-lattice systems we typically have two main features: a presence of
short and long interactions, as well as comparable energy and entropy, hence fluctuations are expected to be important
in the modelling and simulation.

Systems with smooth long or intermediate range interactions are well approximated by coarse-graining techniques
[16,18,23], and CGMC are reliable simulation methods with controlled error approximations, both for observables and loss
of information [20,19]. Furthermore, models where only short-range interactions appear are inexpensive to simulate with
conventional methods. However, when both short and long-range interactions are present, the conventional methods be-
come prohibitively expensive, and coarse-graining error estimates are not applicable. The proposed method can handle such
systems efficiently by either (a) compressing only the long range interactions for Step 1 and sample with CGMC with low
computational cost, including the short range part at the accept/reject Step 2 (potential splitting), or (b) compress all types
of interactions for Step 1, and correct appropriately in Step 2 (corrections).

A wide literature exists on sophisticated Markov chain Monte Carlo (MCMC) methods designed to accelerate simulations
for large systems, applying for example parallel techniques and/or constructing good first approximations (proposals) in
Metropolis sampling [9,31]. In [10] Efendiev et al., the preconditioning MCMC is proposed, a two stage Metropolis method,
applied to inverse problems of subsurface characterization. Our algorithm shares the same idea of constructing a proposal
density based on meso or macroscopic properties of the model studied and taking advantage of the first stage rejections.
Several methods where the trial density is built up sequentially with stage-wise rejection decision appear [3,27]. There
are also some similarities with simulated sintering, and transdimensional MCMC, see [28,27] and references therein.
However, the novelty of our method lies in the construction of the variable dimensionality (and level of coarse-graining)
Fig. 1. Schematic of a two-level ML-CGMC. Information exchange between coarser and finer resolutions. Step 1: Sample lj+1(dgj+1), Step 2: Reconstruct with
mr(dgjjgj+1) such that lj(dgj) = lj+1(dgj+1)mr(dgjjgj+1).
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state spaces and the corresponding Gibbs measures relies on statistical mechanics tools that allow a systematic control of the
error from one level of coarse-graining to the next. The interplay of different levels of compressed spaces appears also in
spatial multigrid methods coupled with CGMC sampling, studied in [6,4], for accelerating lattice kinetic Monte Carlo simu-
lations where, however, the proposed methods are not exact and do not necessarily provide controlled error approximations.
Various attempts appear on parallelising Monte Carlo simulations, based on a parallel resolution, such as parallel kinetic
CGMC [1], and a combination of CGMC and parallel tempering [36]. In a follow up work we extend our framework for
ML-CGMC to kinetic Monte Carlo methods in order to accelerate sampling of evolution processes on large lattice systems,
based on the knowledge of explicit coarse level approximating processes [17,16].

In Section 2 we introduce microscopic lattice systems and provide a brief review of coarse graining methods. We also
provide the Metropolis–Hastings (MH) MCMC method for numerical simulations and describe microscopic processes. We
introduce the ML-CGMC method in Section 3, describing in detail the two-level method, and provide the mathematical
analysis that ensures its theoretical validity. Section 4 provides a full comparison of the computational complexity be-
tween the conventional MH and the two-level CGMC MH introduced here. More specifically, in Theorem 2 we prove com-
parative estimates on their mixing times using spectral gap estimates. In turn such spectral estimates are obtained
through suitable relative bounds on their respective Dirichlet forms. Concluding, our analysis shows that ML-CGMC has
substantial savings over the conventional MH algorithm, generating low cost proposals with small or controllable rejection
rates. Sections 5 and 6 give example applications of the two-level CGMC method in canonical and microcanonical sam-
pling. In Section 5.1 a benchmark example is employed in order to demonstrate an explicit application of Theorem 2.
In Section 5.2 an order one improvement of the coarse graining error in a phase transition regime is achieved when apply-
ing the ML-CGMC method, for a Kac type potential with algebraic decay. Finally in Section 6 we study nanopattern for-
mation in surface diffusion induced by a Morse type potential, and verify that the proposed method can provide
correctly microscopic details.

2. Stochastic lattice systems at equilibrium

We consider an Ising-type system on a periodic d-dimensional lattice KN with N = nd lattice sites. At each site x 2KN we
define a spin variable r(x) taking values in a finite set. For instance, in a lattice gas model r(x) 2 {0,1} describes that the site x
is vacant or occupied by an atom. The state of the system is described by a configuration r 2 RN ¼ f0;1gKN ,
r = {r(x) : x 2KN}. The interaction energy of the system, e.g. interacting particles in the lattice gas model, is defined by
the Hamiltonian HN. We assume systems where the particles interact only through a pair-wise potential and thus the Ham-
iltonian takes the form
HNðrÞ ¼ �
1
2

X
x2KN

X
y–x

Jðx� yÞrðxÞrðyÞ þ
X
x2KN

hðxÞrðxÞ; ð2Þ
where h is an external field. Equilibrium states at the inverse temperature b are described by the (canonical) Gibbs proba-
bility measure on the space RN
lN;bðdrÞ ¼ Z�1
N e�bHN ðrÞPNðdrÞ; ð3Þ
where ZN is the normalizing constant (partition function). Furthermore, the product Bernoulli distribution PN(dr), is the prior
distribution on KN representing distribution of states in a non-interacting system, or equivalently at b = 0, when thermal fluc-
tuations-disorder-associated with the product structure of PN(dr) dominates. By contrast at zero temperature, b =1, inter-
actions and hence order, prevail. Finite temperatures, 0 < b <1, describe intermediate states, including possible phase
transitions between ordered and disordered states. Specifically, PNðdrÞ ¼

Q
x2KN

qðdrðxÞÞ where q(r(x) = 0) = 1/2,
q(r(x) = 1) = 1/2 is the distribution of a Bernoulli random variable for each x 2KN. In principle dr denotes the variable incre-
ments when the configuration space is a continuous. Since the configuration space RN is discrete, dr is a conventional nota-
tion that is used for notation simplicity, denoting
Z

RN

f ðrÞPNðdrÞ ¼
X
ri2RN

f ðriÞ
Y

x2KN

1
2

dðrðxÞÞ þ 1
2

dðrðxÞ � 1Þ
� �

;

for any function f, where d denotes the Kronecker delta function.
The coarse-graining techniques have been developed in order to study the behaviour in the regimes when the size of the

system N ?1. In the series of papers [16,17,24] the authors initiated the development of coarse-graining (CG) as a compu-
tational tool for accelerating Monte Carlo simulations of stochastic lattice dynamics. The coarse-grained model is con-
structed on a coarse grid KM by dividing KN into M coarse cells, each of which contains Q (micro-)cells, typically Q = qd

with the coarse-graining scale q in each dimension. Each coarse cell is denoted by Ck; k 2 KM . A typical choice for the coarse
variable in the context of Ising-type models is the block-spin over each coarse cell Ck,
g :¼ gðkÞ ¼
X
x2Ck

rðxÞ : k 2 KM

( )
;
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defining the coarse graining map T : RN ! RM; Tr ¼ g. The exact coarse-grained Gibbs measure is given (with a slight abuse
of notation) by �lM;b ¼ lN;b � T�1, written in a more convenient form
�lM;bðdgÞ ¼
1

ZM
e�bHMðgÞPMðdgÞ; ð4Þ
where PM ¼ PN � T�1 defines the coarse-grained prior measure. The exact coarse-grained Hamiltonian is defined by the renor-
malization group map, see, e.g. [11],
e�bHMðgÞ ¼ E½e�bHN jg� ¼
Z

e�bHNðrÞPNðdrjgÞ: ð5Þ
The conditional prior PN(drjg) is the probability of having a microscopic configuration r, given a coarse configuration g.
Although typically PMðdgÞ is easy to calculate the exact computation of the coarse-grained Hamiltonian HMðgÞ given by

(5) is, in general, impossible even for moderately small values of N. Therefore suitable approximations have to be con-
structed. An initial approximation can be then proposed by the technique of cluster expansions [35] providing improved
approximation at suitable phase regimes. The corresponding first order CG Hamiltonian is explicitly given [19],
Hð0ÞðgÞ ¼ �1
2

X
k2KM

X
l–k

Jðk; lÞgðkÞgðlÞ � 1
2

Jð0;0Þ
X

k2KM

gðkÞðgðkÞ � 1Þ þ
X

k2KM

�hgðkÞ; ð6Þ
where the coarse-grained interactions are evaluated explicitly by averaging over the cells k; l 2 KM
Jðk; lÞ ¼ 1
q2

X
x2Ck

X
y2Cl

Jðx� yÞ; Jðk; kÞ ¼ 1
qðq� 1Þ

X
x2Ck

X
y2Ck ;y–x

Jðx� yÞ;
defining the coarse grained Gibbs measure
�lð0ÞM;bðdgÞ ¼
1

Zð0Þ
e�bHð0ÞðgÞPMðdgÞ: ð7Þ
The coarse-graining of systems with purely long- or intermediate-range interactions was studied using cluster expansions in
[19,2,18,21]. In many applications the long-range potentials exhibit scaling property
Jðx� yÞ ¼ L�dV
n
L
jx� yj

� �
; x; y 2 KN; ð8Þ
where V 2 C1([0,1)) and it is normalized to ensure that the strength of the potential J is essentially independent of L, i.e.,P
x–0JðxÞ �

R1
0 VðrÞdr. The constant L can be interpreted as a (characteristic) interaction range of the potential. For example,

if we have V with properties V(r) = V(�r), V(r) = 0, jrj > 1, then a spin at the site x interacts with its neighbours which are at
most L lattice points away from x. One of the results therein is on deriving error estimates in terms of the specific relative
entropyRðljmÞ :¼ N�1P

r logflðrÞ=mðrÞglðrÞ between the corresponding equilibrium Gibbs measures. Note that the scaling
factor N�1 is related to the extensivity of the system, hence the proper error quantity that needs to be tracked is the loss of
information per particle,
R �lð0ÞM;bjlN;b � T�1
� �

¼ Oð�2Þ; � � bkrVk1
q
L

� �
: ð9Þ
Systems with short and long range interactions. One of our goals in this work is to study systems where in addition to the long-
range potential we have a short range
Kðx� yÞ ¼ S�dVs
n
S
jx� yj

� �
; x; y 2 KN; ð10Þ
with Vs having similar properties as V in (8) and S� L distinguishing the short and long range nature of interactions. A typical
case of a short-range potential is encountered in the nearest-neighbour Ising model where K(x � y) = K = constant, for
jx � yj = S = 1 and zero otherwise. The new Hamiltonian including the contributing energy from the short range potential
Hs(r) and the long range part Hl(r) is
HNðrÞ ¼ HsðrÞ þ HlðrÞ: ð11Þ
Study of equilibrium properties of stochastic lattice systems mainly accounts for the evaluation of averages over the coarse-
grained �lM;bðdgÞ or the microscopic lN,b(dr) Gibbs measures of observables / : RN ! R, i.e.,
E½/� ¼
Z

RN

/ðrÞlN;bðdrÞ:
Numerical methods evaluating equilibrium averages are the Markov chain Monte Carlo methods, among which the most
widely used is the Metropolis–Hastings (MH) method [29,13]. The Metropolis–Hastings algorithm generates proposals r0,
for the evolution from the configuration r to r0, that are defined by the proposal probability transition kernel q(r0,r). The
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proposal r0 is accepted with probability a(r,r0) or rejected with the probability 1 � a(r,r0). Let X0 = r0 be an arbitrary initial
configuration, the nth iteration of the algorithm consists of the following steps

Algorithm 1 (Metropolis–Hastings algorithm). Given Xn = r
Step 1 Generate X0n ¼ r0 � qðr0;rÞ.
Step 2 Accept–Reject
Xnþ1 ¼
X 0n ¼ r0 with probability aðr;r0Þ;
Xn ¼ r with probability 1� aðr;r0Þ;

�

with the acceptance probability depending on the energy difference between configurations r and r0, DHN(r,r0) =
HN(r0) � HN(r),
aðr;r0Þ ¼ min 1; expf�bDHNðr;rÞg
qðr0;rÞ
qðr;r0Þ

� �
:

The algorithm generates an ergodic Markov chain {Xn} in the state space RN, with the stationary measure lN,b(dr). Ergo-
dicity ensures the convergence of empirical averages 1

n

Pn
i¼1/ðXiÞ to the desired mean E½/�, for any / 2 L1(lN,b). It is easy to

deduce the probability transition kernel associated to MH Algorithm 1
Kcðr;r0Þ ¼ aðr;r0Þqðr;r0Þ; for r0 – r; ð12Þ

Kcðr;rÞ ¼ 1�
Z

R
aðr;r0Þqðr;r0Þdr0:
Depending on whether one considers microcanonical or canonical ensemble, the ergodic Markov chain {Xn} can be defined
by spin-exchange dynamics that preserve the order parameter or spin-flip dynamics, respectively [26,7]. In the spin-ex-
change the proposed new configuration r0 = r(x,y) is obtained from r by interchanging the spins at x and y, for nearest-neigh-
bour sites x and y,
rðx;yÞðzÞ ¼
rðyÞ; when z ¼ x;

rðxÞ; when z ¼ y;

rðzÞ; otherwise:

8><>:

Analogously for the spin-flip r0 = r(x) is obtained from r by flipping the spin value at site x,
rðxÞðzÞ ¼
1� rðxÞ; when z ¼ x;

rðzÞ; otherwise:

�

3. The ML-CGMC Metropolis–Hastings method

We present in detail and generalize the Coupled CGMC Metropolis–Hastings method originally proposed in [14]. We
introduce the ML-CGMC, a multi-level Metropolis–Hastings method, where each level corresponds to a configuration space
resolution level, and provide the associated mathematical analysis that ensures the theoretical validity of the method.

Let fRMj
gI

j¼0 denote a hierarchy of coarse spaces derived from the microscopic space RN ¼: RM0 by a family of mappings
Tj : RMj

! RMjþ1 ; Tjgj ¼ gjþ1, for N = M0 > M1 > 	 	 	 > MI. The variables gj denote configurations on spaces RMj
, with g0 ¼: r

referring to the microscopic variable on RN. The method is composed by a sequence of I + 1 Metropolis–Hastings steps each
one designed to generate samples from RMj

given a coarser sample from RMjþ1
. Properly constructed measures on RMj

; j > 0
form the basis for constructing efficient proposal kernels for Metropolis–Hastings algorithm allowing sampling of large sys-
tems. The interplay between different resolution spaces is controlled by the hierarchy of projection mappings Tj and corre-
sponding inverse mapping procedures (reconstruction). Appropriate reconstruction measures mr,j(dgjjgj+1) are constructed in
view of decompositions similar to (13), for each pair of Gibbs measures lj(dgj) and lj+1(dgj+1), see Fig. 1. For the sake of expo-
sition we describe in detail the two-level CGMC method, in which two different scale state spaces RMj1

¼ RN and

RMj2
¼ RM; M < N are involved. A situation where a ML-CGMC method with three or more levels can be useful is for

sampling systems of large size N� 1 with long-range interactions of O(N) that exhibit complex behaviour which cannot
be captured when over-coarsening. With a multi-level method one could hierarchically improve the effective approximating
potential. For two levels, the proposals in the CG space are uniformly distributed. However, the introduction of a third coarse
level can construct better proposal configurations that will increase the acceptance rate of the second level. Consider two
coarsening levels Q1 and Q2 s.t. 1 < Q1 < Q2 and Q2M1 = Q2M2 = N. A large coarsening parameter Q2 may miss fine details of
the potential but still captures information about it, see Fig. 6. A second refinement Q1 can correct the prediction, in other
words we discover all the information hierarchically.
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The ML-CGMC method is a hybrid statistical mechanics and statistics approach based on a product measure decomposi-
tion of the target distribution
lN;bðdrÞ ¼ �lð0ÞM;bðdgÞmrðdrjgÞ: ð13Þ
The principal idea is that computationally inexpensive CG simulations will reproduce the large scale structure and subse-
quently microscopic information will be added through the microscopic reconstruction. The two levels of the method are de-
scribed by:

1. Marginal approximation and CGMC sampling. �lð0ÞM;bðdgÞ, given in (7), is an approximation of marginal �lM;b ¼ lN;b � T�1 that is
described explicitly with a controllable error [19].

2. Microscopic reconstruction. Conditioned on g, obtained by sampling from �lð0ÞM;bðdgÞ, we sample mr(drjg) via a simple
inverse-mapping distribution lr(drjg) and an accept/reject method. Measure mr(drjg) is responsible for the reconstruction
procedure of the fine configuration r constrained on the coarse configuration g.

More specifically, reconstruction is the reverse procedure to coarse-graining, i.e., reproducing microscopic properties di-
rectly from CGMC simulations. Reconstruction in off-lattice systems e.g. the calculation of diffusion of penetrants through
polymer melts, is based in local energy minimization methods [30,37]. These methods suggest reconstruction measures,
i.e. lr(rjg), showing our method can be generalized to off-lattice systems. A detailed discussion on reconstruction can be
found in [18,14]. Note that mr(drjg) is a finite measure, uniquely defined by (13) given lN,b(dr) and �lð0ÞM;bðdgÞ.

Remark. Dependent on the coarse graining mapping T, the complexity of sampling the optimal reconstruction operator may
be computationally formidable or even infeasible, suggesting that the proposed method may not be advantageous over a
conventional method or even not applicable. On the other hand, our proposed method does not, in principle, require an
accurate reconstruction step, since the accept/reject move corrects any irrelevant proposals related to that step, as long as
the detailed balance condition is satisfied.

In view of (13) we propose the two-level CGMC algorithm composed of two Metropolis–Hastings steps. The first step
samples the measure �lð0ÞM;bðdgÞ, on the coarse space RM , using an arbitrary proposal transition kernel qðg;g0Þ to produce
coarse trial samples g0. The second step, performed only if the coarse trial sample is accepted, consists of the simple recon-
struction from the coarse state g0 with lr(drjg) and an accept/reject method. If a trial coarse sample is rejected the second
step is not performed and no computational time is wasted on checking fine trial samples that are most likely to be re-
jected. The two-level CGMC algorithm is defined as follows: Let Y0 = r0 be an arbitrary initial configuration, for
n = 0,1,2, . . . ,

Algorithm 2. Two-level CGMC MH Algorithm

Given Yn = r
Step 1 Compute the coarse configuration g = Tr.
Step 2 Generate a coarse sample g0 � �qðg;g0Þ.
Step 3 Coarse Level Accept–Reject.
Accept g0 with probability:

aCGðg;g0Þ ¼min 1; e�bDHð0Þðg;g0Þ �qðg0;gÞ
�qðg;g0Þ

� �
: ð14Þ

if g0 is accepted then proceed to Step 4,
else generate a new coarse sample, Step 2.
Step 4 Reconstruct r0 given the coarse trial g0,
r0 � lrð	jg0Þ:
Step 5 Fine Level Accept–Reject.Accept r0 with probability
af ðr;r0Þ ¼min 1; e�b DHNðr;r0Þ�DHð0Þðg;g0 Þ½ � lrðrjgÞ
lrðr0jg0Þ

� �
: ð15Þ
where DHN(r,r0) = HN(r0) � HN(r), and DHð0Þðg;g0Þ ¼ Hð0Þðg0Þ � Hð0ÞðgÞ.

In terms of the MH Algorithm 1, the method is generating trial samples r0 from proposal kernel q(r,r0), with stationary

measure �lð0ÞM;bðdgÞlrðdrjgÞ, that depends on the statistical mechanics properties of the system. This fact leads to an increase
of the acceptance rate of the MH method, see for example Fig. 4. Indeed, consider the canonical ensemble for x 2KN such that
x 2 Ck; k 2 KM with a potential J(x � y) (8), where the following estimate holds [17],
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DHNðr;rðxÞÞ � DHð0Þðg;gðkÞÞ ¼ OðQ=ð2Lþ 1ÞdÞ;
with g(k) = Tr(x). This estimate shows that the second level acceptance probability af(r,r0) is controlled by the coarsening
parameter, i.e. it is close to 1 for Q/(2L + 1)d� 1 and most of the coarse samples entering the second level will be ac-
cepted. Thus, for fixed L, varying the coarsening parameter we can control the effectiveness of the method as a balance
between acceptance rate and computational cost. That is between small values of Q, leading to high acceptance rate, and
larger Q, leading to lower computational cost at sampling at the coarse space. We elaborate with this issue in detail in
Section 4.

3.1. Examples of multi-level decompositions

In this section we elaborate on how to select the prior measure mr(drjg), that furthermore determines how to perform a
multi-level decomposition of the Gibbs measure. The selection of mr(drjg) depends on two features (a) the choice of the
coarse grained measure �lð0ÞM;bðdgÞ, that is whether we compress the entire interaction potential or split to a short and long
range part and (b) on sampling the exact or an approximation of the microscopic measure lN,b(dr), that suggest the follow-
ing strategies:
1. Exact Corrections. With this strategy all types of interactions are compressed and incorporated into the first level of sam-

pling with Hð0ÞðgÞ, as is depicted in the algorithmic description of the method Algorithm 2. The reconstructive and cor-
rective characteristics of mr(drjg) appear explicitly in the following formulation, that is reconstruct with the uniform
conditional distribution lr(drjg) = PN(drjg) and correct with HNðrÞ � Hð0ÞðgÞ,
mrðdrjgÞ ¼ Zð0ÞM Z�1
N expf�b½HNðrÞ � Hð0ÞðgÞ�gPNðdrjgÞ:
2. Potential splitting. An alternative approach is considered based on splitting the inter particle interactions into short- and
long-range terms. A decomposition of the coarse-graining of the interaction potential can be justified and optimized by
known error estimates, see [2]. These estimates suggest a natural way to split the potential into a short-range piece
K(x � y) with possible singularities and a locally integrable (or smooth) long-range decaying component J(x � y). Here
we suggest to sample on the coarse step according to the effective Hamiltonian Hð0Þl ðgÞ, corresponding only to the
long-range depended energy Hl(r), as in (11), that suggests a rearrangement of (13) where
mrðdrjgÞ ¼ Zl
ð0Þ
M Z�1

N exp �b½HsðrÞ þ HlðrÞ �Hð0Þl ðgÞ�
n o

PNðdrjgÞ:
In the two-level CGMC sampling the costly long-range part is involved only in the coarse updating where the number of
operations to calculate energy differences is reduced and coarsening of the short-range potential is avoided [22].
3. Approximate CG. In many applications where meso/macroscopic information is sufficient CGMC sampling is reliable for

long-range potentials and the error when neglecting terms DHlðr;r0Þ � DHð0Þl ðg;g0Þ is small. In this strategy we suggest
to neglect these terms, despite the encountering of the approximating error, benefiting from a further reduction of the
computational complexity, see Section 4. As a result Algorithm 2 is sampling from a probability measure approximating
lN,b(dr),
lð0ÞN;bðdrÞ / exp �bHsðrÞ � bHð0Þl ðgÞ
n o

PNðdrjgÞ�lð0ÞM;bðdgÞ:
3.2. Reversibility of the ML-CGMC

Mathematical analysis for the two-level CGMC method is carried out in this section for a broad class of probability mea-
sures. The method can be generalized to the sampling of any probability measure l(dr) on a countable configuration space
R, by coupling properly configurations between a hierarchy of coarser and finer spaces. Since almost any probability density
l(r) can be written in the form e�H(r) the method can applied to any model for which one can properly define a function H(r)
and the hierarchy of coarse spaces and densities. The following arguments are straightforward but necessary to prove that
the algorithm samples processes with the desired stationary measure. Algorithm 2 is defined by the acceptance probabilities
aCGðg;g0Þ ¼min 1;
�lð0Þðg0Þ�qðg0;gÞ
�lð0ÞðgÞ�qðg;g0Þ

� �
ð16Þ
and
af ðr;r0Þ ¼min 1;
lðr0Þ�lð0ÞðgÞlrðrjgÞ
lðrÞ�lð0Þðg0Þlrðr0jg0Þ

� �
; ð17Þ
where with a slight abuse of notation we denote the probability density of measures with the same letter. Note that in the
sequel g = Tr, g0 = Tr0, if not otherwise stated. A trial state r0 is generated by the first level and the simple reconstruction
with the transition probability
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Qðr;r0Þ ¼
aCGðg;g0Þ�qðg;g0Þlrðr0jg0Þ; for r – r0;
1�

R
aCGðg;g0Þ�qðg;g0Þlrðr0jg0Þdg0; for r ¼ r0:

�

It is easy to check that Q(r,r0) satisfies the detailed balance condition with l0ðdrÞ ¼ �lð0ÞðdgÞlrðdrjgÞ, i.e.
Q(r,r0)l0(r) = Q(r0,r)l0(r0), see Definition 2. This property led to the simplified formulation of the second level acceptance

probability (17) from the one suggested by the Metropolis method af ðr;r0Þ ¼min 1; lðr
0 ÞQðr0 ;rÞ

lðrÞQðr;r0 Þ

n o
. The probability of moving

from a state r to a next r0is af ðr;r0ÞaCGðg;g0Þlrðr0jg0Þ�qðg;g0Þ. Therefore the method generates a Markov chain {Yn}, starting
from an arbitrary initial state r0, with transition kernel
Ktlðr;r0Þ ¼ af ðr;r0ÞaCGðg;g0Þlrðr0jg0Þ�qðg;g0Þ for r – r0; ð18Þ

Ktlðr;rÞ ¼ 1�
Z

R
af ðr;r0ÞaCGðg;g0Þlrðr0jg0Þ�qðg;g0Þdr0
With the following Theorem, the proof of which is given in Appendix A, we prove that transition kernel Ktlðr;r0Þ satisfies the
detailed balance condition, that ensures the method generates samples from the target measure. Furthermore, irreducibility
and aperiodicity properties are satisfied that guarantee ergodicity of {Yn}, i.e. 1

n

Pn
j¼1/ðYjÞ is a convergent approximation of

the averages
R

/ðrÞlðdrÞ for any / 2 L1(l).
We denote E = {r 2 R : l(r) > 0} and eE ¼ fr 2 R : l0ðrÞ > 0g the support of the microscopic and the proposal distribu-

tions respectively.

Remark. Note that when the (reconstructed) proposed microscopic state r0 is equal to r, the current state, there is no need
of testing the second level acceptance since af(r,r) = 1. This suggests that if the coarse proposal is rejected, i.e., aCG(g,g0)� 1
then the probability of rejecting a r0 reconstructed with lr(r0jg0), is aCG(g,g0) lr(r0jg0)� 1 and r0 is most likely to be rejected.
For this reason we implemented the method described in Algorithm 2 where the rejection decision depends only on
aCG(g,g0).
Theorem 1. For every conditional distribution �qðg;g0Þon R, and lr(	jg) on {r 2 R : Tr = g},

(i) The transition kernel Ktlðr;r0Þ satisfies the detailed balance (DB) condition with l(r).
(ii) l(r) is a stationary distribution of the chain.

(iii) If �qðg;g0Þ > 0;lrðrjgÞ > 0 for all r, r0 2 E and E 
 eE holds, then {Yn} is l-irreducible.
(iv) {Yn} is aperiodic.

4. Computational complexity of ML-CGMC

The effectiveness of the ML-CGMC method is a result of the synthesis of the following two arguments. Firstly, the com-
putational cost of a conventional MH method is reduced by a two-level CGMC method. However this is not enough to prove
that the method can indeed accelerate conventional methods, and a mathematical spectral analysis emerges as a key algo-
rithmic need in order to compare the speed of convergence of two-level CGMC and a conventional algorithm. As we will see
next, Theorem 2 provides the relation of the two methods equilibration times using spectral arguments.

4.1. Computational complexity

An abstract comparison of the computational complexity of a conventional MH and the two-level CGMC is summarized in
Table 1, for sampling a Gibbs measure with Hamiltonian (11). By computational complexity here we mean the cost of calculat-
ing energy differences involved at the acceptance probabilities. The following analysis is based on the approximate CG strategy
with potential splitting as described in Section 3.1. Let us consider the canonical ensemble where energy difference is
DHNðr;rðxÞÞ ¼ ð2rðxÞ � 1Þ
X

y2KN ;y–x

½Kðx� yÞ þ Jðx� yÞ�rðyÞ:
For potential J(x � y) with interaction range L each particle interacts with a number of (2L + 1)d neighbours and similarly for
K(x � y) with range S < L. Therefore the number of operations necessary is (2L + 1)d + (2S + 1)d. Similarly the energy differ-
ences appearing in the two-level method are
Table 1
Operations count for evaluating energy differences for n MC iterations. The total number of accepted
coarse trials m < n is the number of the second level iterations tested.

Method Operations

Metropolis Hastings n � (2L + 1)d + n � (2S + 1)d

Two-level CGMC n � (2L + 1)d/Q + m � (2S + 1)d
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DHð0Þl ðg;g
ðkÞÞ ¼

X
l2KM ;k–l

Jðk; lÞgðlÞ þ Jð0; 0ÞðgðkÞ � 1Þ;

DHsðr;rðxÞÞ ¼ ð2rðxÞ � 1Þ
X

y2KN ;y–x

Kðx� yÞrðyÞ;
at the first and second level respectively, where g(k) = Tr(x). The compressed interaction potential Jðk; lÞ has the reduced

range L/q and the number of operations for calculating DHð0Þl ðg;gðkÞÞ is (2L + 1)d/Q, while for DHs(r,r(x)) is (2S + 1)d. The method,
in addition to the reduction of operations due to range suppression, exhibits a computational reduction as a result of the fact
that rejected trials at the first level will not be tested at the second and the calculation of differences DHs(r,r(x)) is avoided. A

summary of this discussion appears in Table 1. When the correction terms DHlðr;rðxÞÞ � DHð0Þl ðg;gðkÞÞ are present the additional

computational cost in the second level is small, dependent on the decay of rate of Jðx� yÞ � J ðk; lÞ; x; y 2 RN; x 2 Ck; y 2 Cl.
Since this term is in principle fast decaying, in implementations we can neglect interactions with distance larger than a cut-
off range Lc < L with a small error, that will contribute further in the computational time reduction.

4.2. Comparison of equilibration times

A direct estimation of rate of convergence of a Markov chain generated by a Monte Carlo method is model dependent and
in general intractable. Thus for the purpose of this work it is natural to study this property as a comparison of the proposed
method with a conventional method. Theorem 2 provides such a comparison of the spectral gap between the conventional
MH method and the two-level CGMC method, for sampling a measure l(dr) on a countable state space R. This comparison is
summarised in inequality (20) proving that their relation, in terms the spectral gap, is controlled by the approximation
�lð0ÞðdgÞ of marginals �lðdgÞ ¼ l � T�1ðdgÞ.

For a discrete time Markov chain {Xn} with transition kernel K and stationary distribution l, the mixing time s is defined
as
s :¼ minn 8r 2 R : kKnðr; 	Þ � lð	ÞkTV 6
1
4

� �
:

For two probability measures l, m the total variation norm is kl� mkTV ¼ 1
2

P
rjlðrÞ � mðrÞj. Bounds of the total variation

norm appearing can be given in terms of K’s spectral gap kðKÞ [8], for example for a reversible kernel holds
2kKnðr; 	Þ � lkTV 6
1

minr2RlðrÞ1=2 ð1� kðKÞÞn: ð19Þ
The spectral gap of a kernel K is defined by kðKÞ ¼min Eðf ;f Þ
Varðf Þ ; Varðf Þ– 0
n o

with the Dirichlet form Eðf ; f Þ ¼
1
2

P
r;r0 jf ðrÞ � f ðr0Þj2Kðr;r0ÞlðrÞ and the variance Varðf Þ ¼ 1

2

P
r;r0 jf ðrÞ � f ðr0Þj2lðr0ÞlðrÞ, where f is a function on R square

integrable with respect to l. In view of (19), one can say that between two algorithms producing Markov chains with iden-
tical equilibrium distributions better in terms of speed of convergence is the one with the larger spectral gap. Therefore here
we compare the spectral gap corresponding to transition kernels of the proposed method and the conventional MH method.
Let E½Ktl�; E½Kc� denote the Dirichlet forms and kðKtlÞ; kðKcÞ the spectral gap corresponding to the two-level CGMC and the
Metropolis transition kernels Ktlðr;r0Þ (18) and Kcðr;r0Þ (12) respectively.

Theorem 2. Let q(r,r0 ) be a symmetric proposal transition probability for the conventional MH algorithm and �qðg;g0Þ a
symmetric proposal transition probability on the coarse space R for the two-level CGMC algorithm, then for any conditional
probability lr(rjg)
AckðKcÞ 6 kðKtlÞ 6 �ckðKcÞ; ð20Þ
where A ¼ infr;r0 fAðr;r0Þg and c > 0; �c > 0 such that c 6 Bðr;r0Þ 6 �c, with Aðr;r0Þ and Bðr;r0Þ defined in Lemma 1.
Remark

1. Existence of finite and positive values of A ¼ infr;r0 fAðr;r0Þg is ensured for the models studied in this work. Consider the
Gibbs measure lN,b(dr) / exp{�bHN(r)} and �lð0ÞM;bðdgÞ / expf�bHð0ÞðgÞg as defined in Section 2. Let JðrÞ; s:t:

P
rJðrÞ ¼

J� <1 with the compressed interactions J as defined in (6). All possible values of Aðr;r0Þ, (23), are Aðr;r0Þ ¼ 1,
Aðr;r0Þ ¼ minfe�bDHð0Þðg;g0 Þ; e�bDHð0Þðg0 ;gÞgP e�bJ�
and n o  !

Aðr;r0Þ ¼ min e�bðDHNðr;r0Þ�DHð0Þðg;g0 ÞÞ; e�bðDHNðr0 ;rÞ�DHð0Þðg0 ;gÞÞ ¼ 1þO Q

ð2Lþ 1Þd
:
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This is a result of the known estimate, Lemma (2.3) [19],
DHNðr;r0Þ � DHð0Þðg;g0Þ ¼ O Q

ð2Lþ 1Þd

 !

2. The above estimate proves also that values of Aðr;r0Þ are close to 1 controlled by the approximation parameter Q.
3. Term Bðr;r0Þ depends only on the difference between the proposal kernels in the two methods while the marginal

approximation is controlled by A.

Numerically the statement of the Theorem is revealed by a comparison of the average acceptance probabilities in examples,
see Figs. 4 and 5. The proof of Theorem 2 is based on the following lemmata. Lemma 1 gives the detailed relation of the two
methods transition kernels that will aid in the comparison of their Dirichlet forms and subsequently application of Lemma 2
will lead to the desired result.
Lemma 1. For symmetric proposal transition kernels q(r,r0) = q(r0,r) and �qðg;g0Þ ¼ �qðg0;gÞ, for all r, r0 2R with r – r0,
Ktlðr;r0Þ ¼ Aðr;r0ÞBðr;r0ÞKcðr;r0Þ;
where
Bðr;r0Þ ¼
�qðg;g0Þ
qðr;r0Þ

lrðr0jg0Þ; if af ðr;r0Þ ¼ 1
lrðrjgÞ; if af ðr;r0Þ < 1:

�
ð21Þ
Furthermore we define the subsets
C1 ¼ ðr;r0Þ 2 R� R : fa < 1;aCG < 1;af < 1g or fa ¼ 1;aCG ¼ 1;af ¼ 1g
� 	

C2 ¼ ðr;r0Þ 2 R� R : fa ¼ 1;aCG < 1;af ¼ 1g or fa < 1;aCG ¼ 1;af < 1g
� 	

C3 ¼ ðr;r0Þ 2 R� R : fa ¼ 1;aCG ¼ 1;af < 1g or fa < 1;aCG < 1;af ¼ 1g
� 	

C4 ¼ ðr;r0Þ 2 R� R : fa < 1;aCG ¼ 1;af ¼ 1g or fa ¼ 1;aCG < 1;af < 1g
� 	 ð22Þ
and
Aðr;r0Þ ¼

1; if ðr;r0Þ 2 C1

min �lð0Þðg0 Þ
�lð0ÞðgÞ ;

�lð0ÞðgÞ
�lð0Þðg0Þ

n o
; if ðr;r0Þ 2 C2

min lðr0Þ�lð0ÞðgÞ
lðrÞ�lð0Þðg0Þ ;

lðrÞ�lð0Þðg0 Þ
lðr0Þ�lð0ÞðgÞ

n o
; if ðr;r0Þ 2 C3

min lðr0Þ
lðrÞ ;

lðrÞ
lðr0Þ

n o
; if ðr;r0Þ 2 C4:

8>>>>>>><>>>>>>>:
ð23Þ
Proof. Recall that Kcðr;r0Þ ¼ aðr;r0Þqðr;r0Þ, for r – r0, which for the conventional MH method and the hypothesis of sym-

metry of q(r,r0) becomes Kcðr;r0Þ ¼min 1; lðr
0 Þ

lðrÞ

n o
qðr;r0Þ. Similarly the two-level CGMC kernel becomes
Ktlðr;r0Þ ¼min 1;
lðr0Þ�lð0ÞðgÞlrðrjgÞ
lðrÞ�lð0Þðg0Þlrðr0jg0Þ

� �
�min 1;

�lð0Þðg0Þ
�lð0ÞðgÞ

� �
�qðg;g0Þlrðrjg0Þ:
The proof is based on a case study on the values of the acceptance probabilities aðr;r0Þ ¼
min 1; lðr

0 Þ
lðrÞ

n o
; af ðr;r0Þ ¼min 1; lðr0 Þ�lð0ÞðgÞlr ðrjgÞ

lðrÞ�lð0Þðg0 Þlr ðr0 jg0 Þ

n o
and aCGðg;g0Þ ¼min 1; �lð0Þðg0 Þ

�lð0ÞðgÞ

n o
. All possible combinations on their values

are categorized in the sets Ci, i = 1, . . . ,4 defined in (22). For (r,r0) 2 C1 and a(r,r0) < 1, af(r,r0) < 1 and

aCGðg;g0Þ < 1; Kcðr;r0Þ ¼ lðr0 Þ
lðrÞ qðr;r0Þ and
Ktlðr;r0Þ ¼
lðr0Þ�lð0ÞðgÞ
lðrÞ�lð0Þðg0Þ

�lð0Þðg0Þ
�lð0ÞðgÞ

�qðg;g0ÞlrðrjgÞ ¼
lðr0Þ
lðrÞ

�qðg;g0ÞlrðrjgÞ;
that results their relation Ktlðr;r0Þ ¼
�qðg;g0 Þlr ðrjgÞ

qðr;r0 Þ Kcðr;r0Þ. With similar simple calculations for all sub-cases that are encoun-

tered in sets Ci, i = 1, . . . ,4 we have, for (r,r0) 2 C1
Ktlðr;r0Þ ¼ Bðr;r0ÞKcðr;r0Þ;
with
Bðr;r0Þ ¼
�qðg;gÞ
qðr;r0Þ

lrðr0jg0Þ; if af ðr;r0Þ ¼ 1
lrðrjgÞ; if af ðr;r0Þ < 1

�
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For (r,r0) 2 C2 such that a(r,r0) = 1, aCG(g,g0) < 1, af(r,r0) = 1,
Ktlðr;r0Þ ¼
�lð0Þðg0Þ
�lð0ÞðgÞ

�qðg;g0Þlrðr0jg0Þ
qðr;r0Þ Kcðr;r0Þ;
and for a(r,r0) < 1, aCG(g,g0) = 1, af(r,r0) < 1,
Ktlðr;r0Þ ¼
�lð0ÞðgÞ
�lð0Þðg0Þ

�qðg;g0ÞlrðrjgÞ
qðr;r0Þ Kcðr;r0Þ;
that we can summarize to
Ktlðr;r0Þ ¼ min
�lð0ÞðgÞ
�lð0Þðg0Þ ;

�lð0Þðg0Þ
�lð0ÞðgÞ

� �
Bðr;r0ÞKcðr;r0Þ;
since for example in the first case �lð0Þðg0 Þ
�lð0ÞðgÞ < 1 < �lð0ÞðgÞ

�lð0Þðg0 Þ and inversely for the second. Following the same reasoning for (r,
r0) 2 C3,
Ktlðr;r0Þ ¼ min
lðr0Þ�lð0ÞðgÞ
lðrÞ�lð0Þðg0Þ ;

lðrÞ�lð0Þðg0Þ
lðr0Þ�lð0ÞðgÞ

� �
Bðr;r0ÞKcðr;r0Þ;
and for (r,r0) 2 C4
Ktlðr;r0Þ ¼ min
lðr0Þ
lðrÞ ;

lðrÞ
lðr0Þ

� �
Bðr;r0ÞKcðr;r0Þ:
All these steps prove, the following relation of transition kernels generated by Algorithms 1 and 2,
Ktlðr;r0Þ ¼ Aðr;r0ÞBðr;r0ÞKcðr;r0Þ; for all r;r0 2 R;
with Aðr;r0Þ and Bðr;r0Þ defined in (23) and (21). h

The proof of Theorem 2 is based on the application of Lemma 1 and Lemma 3.3 in the work of Diaconis and Saloff-Coste
[8] that is stated next for completeness.

Lemma 2. Let ðK;lÞ and ðK0;l0Þ be two Markov chains on the same finite set X. Assume that there exist A,a > 0 such that
E½K0� 6 AE½K�; al 6 l0;
then k0 6
A
a

k:
We conclude with the proof of Theorem 2.

Proof. We compare the Dirichlet forms E½Ktl�; E½Kc� using the definition of Dirichlet form and Lemma 1. By the definition of
Aðr;r0Þ for all r,r0 2R holds 0 < Aðr;r0Þ 6 1. Then by Lemma 1
inf
r;r0
fAðr;r0ÞgBðr;r0ÞKcðr;r0Þ 6 Ktlðr;r0Þ 6 Bðr;r0ÞKcðr;r0Þ:
Let c > 0 and �c > 0 such that c 6 Bðr;r0Þ 6 �c for all r,r0 2 R. Then
inf
r;r0
fAðr;r0ÞgcKcðr;r0Þ 6 Ktlðr;r0Þ 6 �cKcðr;r0Þ; for all r;r0 2 R:
Recalling the definition of Dirichlet form for kernel Ktlðr;r0Þ; E½Ktl�ðf ; f Þ ¼ 1
2

P
r;r0 jf ðrÞ � f ðr0Þj2Ktlðr;r0ÞlðrÞ, and the above

relation we can write
inffAðr;r0ÞgcE½Kc�ðf ; f Þ 6 E½Ktl�ðf ; f Þ 6 �cE½Kc�ðf ; f Þ;
for any function f square integrable with respect to l. Application of Lemma 2, for which here l0 � l, thus a = 1 and
A ¼ infr;r0 fAðr;r0Þgc for the left hand side inequality, and A ¼ �c for the right hand side, gives the relation of spectral gaps
inf
r;r0
fAðr;r0ÞgckðKcÞ 6 kðKtlÞ 6 �ckðKcÞ: �
5. Benchmark examples for the canonical ensemble

5.1. Combined Ising and Curie Weiss model

We consider a benchmark example of competing short- and long-range interactions, which exhibits critical behaviour.
Furthermore analytical expressions for the free energy in the thermodynamic limit, N ?1, are known for the one dimen-
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sional model as well as representative phase diagrams for higher dimensions [15]. Application of Theorem 2 is described for
this model with an explicit calculation of constants A and c; �c appearing in inequality (20), for the one dimensional model.
Numerical tests are presented for a two-dimensional model and in [14] one can find a detailed numerical study for the one
dimensional case. The energy of the system at configuration r 2 RN ¼ f0;1gKN is
HNðrÞ ¼ HsðrÞ þ HlðrÞ � h
X
x2KN

rðxÞ; ð24Þ

HsðrÞ ¼ �
K0

2

X
x2KN

X
jx�yj¼1

rðxÞrðyÞ; HlðrÞ ¼ �
J0

2N

X
x2KN

X
y–x

rðxÞrðyÞ:
The interactions involved in Hs(r) are of the nearest-neighbour type with strength K0. Equivalent neighbour, distance inde-
pendent, interactions J0/2N define Hl(r), that represent a mean-field approximation of a potential J(x � y), as in (8) for exam-
ple, averaged over all lattice sites. The coarse grained Hamiltonian HlðgÞ is exact, equal to the microscopic energy Hl(r), and
no coarsening error is involved from compressing long range interactions that allows us to study the effect of the splitting of
short- and long-range interactions. Indeed, for any coarsening level q
HlðrÞ ¼ HlðgÞ ¼ �
J0

2N

X
k2KM

X
l2KM l–k

gðkÞgðlÞ � J0

2N

X
k2KM

gðkÞðgðkÞ � 1Þ;
where gðkÞ ¼
P

x2Ck
rðxÞ; k 2 KM . We consider the canonical ensemble with the spin-flip dynamics, that is for the conven-

tional MH each trial at the nth MC iteration with configuration r is r(x). Similarly sampling at the coarse space, in the first
step of the two-level method, is achieved with a birth–death process on a coarse cell, i.e., a trial at the nth MC iteration with
coarse configuration g is g(k) = g ± dk with dk(k) = 1, dk(m) = 0, m – k, more details on implementation of the method are given
in Appendix B.

The detailed calculations on the application of Theorem 2 are given in Appendix B, where we prove that the constants
appearing in inequality (20) are
c ¼ �c ¼ 1; and

A ¼ minfe�jJ0 j; e�2jK0 jg for K0 – 0;
1 for K0 ¼ 0:

(
ð25Þ
For K0 = 0 the energy associated to the second step of the method is zero, and according to (15) the acceptance probability
af(r,r0) = 1, for all r,r0 2 RN, i.e., all proposed states from the first step are accepted. Therefore, in view of the exact coars-
ening of Hl(r), the two-level method and the conventional MH are equivalent. This is verified also by Theorem 2 since
inequality (20) for this trivial case becomes kðKtlÞ ¼ kðKcÞ. For K0 – 0 we have
minfe�jJ0 j; e�2jK0 jgkðKcÞ 6 kðKtlÞ 6 kðKcÞ; ð26Þ
showing that the parameter controlling the relation of the convergence rates is the relative strength of the short and long
range interactions J0 and K0. Table 2 presents a comparison of the computational time between the MH and the two-level
CGMC method for a two-dimensional lattice N = 16 � 16 and coarsening parameter Q = q � q, for q = 4 and q = 8. The results
demonstrate a reduction of computational effort at a rate close to OðQÞ. As is expected this rate is not exactlyOðQÞbecause of
the additional computational effort necessary for implementing the local reconstruction. The hysteresis diagram is indicated
in Fig. 2, for the average total coverage hci first upon increasing the field h from low values and then decreasing it from high
values. The total coverage is cðrÞ ¼ N�1P

xrðxÞ and average quantities hci are computed after approximate equilibration in
the Monte Carlo sampling, using 1000 samples. The tests demonstrate that the two-level CGMC method predicts correctly
the phase transition regime, compared to the conventional MH, with a reduced computational cost. Furthermore the hyster-
esis diagrams obtained with the two-level method agree with the conventional method outcome, for a wide range (not
shown) of the relative strengths of interactions.
Table 2
CPU cost comparisons for different resolutions in hysteresis simulations with parameters K0 = 1, J0 = 5, h 2 [0,6],
N = 16 � 6.

Method CPU (min)

MH 327
Two-level CGMC q = 4 28
Two-level CGMC q = 8 9



Fig. 2. Comparison of average coverage in hysteresis simulations obtained by microscopic MH and two-level CGMC methods for model (24) with
parameters N = 64 � 64, q = 4, K0 = 1, J0 = 5.
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5.2. Kac type interactions

Known error estimates indicate that the potential decay is one of the parameters controlling the approximation error in
coarse graining techniques. The effect of potential singularities on the coarsening error and improving strategies encounter-
ing multi-body interactions and/or potential splitting has been studied in [2]. The example application studied in this section
exhibits an algebraic decay for which direct CGMC error can be significant. The two-level CGMC method with potential split-
ting strategy is applied here and is shown to improve the coarsening error. We consider a long range Kac type interaction
potential J(r) = N�1V(r/N), r = jx � yj > 0, x,y 2KN
VðrÞ ¼ v
r3=2 ; if r > 0; ð27Þ
where constant v is chosen to ensure the conservation of the total mass J0 ¼
R

JðrÞdr. The potential splitting strategy is ap-
plied by decomposing the interacting potential into a short-range Js(r), as well as a long-range Jl(r), defined by
JsðrÞ ¼
JðrÞ for 0 < r 6 S;

0 for S < r

�

and
JlðrÞ ¼ JðrÞ � JsðrÞ:
This splitting defines the energy of the system in the form HN(r) = Hs(r) + Hl(r) as in (11) with K(x � y) = Js(jx � yj) and
J(x � y) = Jl(jx � yj).

In Fig. 3 and Table 3 we present simulation results, for a one dimensional system, in the canonical ensemble obtained by
the conventional MH with interaction potential J(jx � yj), x,y 2KN, the two-level CGMC with interactions �Jlðk; lÞ; k; l 2 KM

and Js(jx � yj), both sampling on the microscopic space RN ¼ f0;1gKN , and the CGMC with interaction potential
Jðk; lÞ; k; l 2 KM sampling on the coarse space RM . A reduction of the computational time of the conventional sampling is
achieved by the two-level method as the numerical tests summarized in Table 3 confirm. Furthermore the proposed method
reduces the coarsening error of CGMC simulations since the most singular part of the interaction potential, Js(r), is treated in
the microscopic space and coarsening is applied only to its fast decaying part Jl(r), see Fig. 3 and Table 3. The error appearing
in Table 3 is the l2 distance of the average total coverage hci, of the indicated method, from the conventional MH result, as a
function of the external field h.
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Fig. 3. Comparison of average coverage in hysteresis simulations obtained by microscopic MH, CGMC and two-level CGMC methods for model (27) with
parameters bJ0 = 6, N = 512, q = 8, S = 1.

Table 3
CPU cost and error comparisons for different resolutions and methods. N = 512, bJ0 = 6, S = 1.

Method CPU time Error

MH q = 1 252 0
CGMC q = 8 47 0.78
Two-level CGMC q = 8 57 0.65
CGMC q = 64 5 2.10
Two-level CGMC q = 64 6 0.81
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The two-level CGMC is an efficient method of generating proposals in Metropolis sampling, verified in Fig. 4 where we
observe a significant increase of the average acceptance probability of the conventional method. The average acceptance
probability is defined as the average over the number of MC iterations of acceptance probabilities a(r,r0) for the conven-
tional MH method, Algorithm 1, and af(r,r0) for the two-level CGMC method, Algorithm 2. Overall the total average accep-
tance probability of the two-level method approaches the one of the conventional method, which confirms the statement of
Theorem 2, see Fig. 5. The total average acceptance probability is defined similarly as the average of the product of the two
levels acceptance probabilities aCG(g,g0) af(r,r0). Thus we confirm the outcome of Theorem 2 that clearly suggest that the
CPU savings reported in Table 3 are entirely due to the inexpensive creation of suitable proposals using the CGMC method.
6. Nanopattern formation in heteroepitaxy – Microcanonical ensemble

Heteroepitaxy describes the procedure of deposition of a crystalline material on a substrate of a different material, a pro-
cedure that in general exhibits a variety of patterns. Models describing these procedures are characterized by the interplay of
short range attraction and long range repulsion interactions between particles. Such an interplay can lead to the formation of
patterns, such as discs and stripes [5]. With this application we show how the proposed method can provide microscopic
information, benefiting from the low computational cost of the coarse graining technique.

The energy of the system is given by HN(r), as in (2), with isotropic interaction potential
JðrÞ ¼ J0 e�ðr=raÞ2 � ve�ðr=rrÞ2
� �

; r ¼ jx� yj > 0; x; y 2 KN: ð28Þ
J0 is the strength of the potential, ra and rr are the dimensionless length scales of attraction and repulsion, respectively and v
is the repulsion strength parameter. In general ra < rr determining the short range nature of attractive interactions. A study of
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Fig. 4. The comparison of the average acceptance probabilities between the second step of ML-CGMC and the conventional MH, in hysteresis simulations
depicted in Fig. 3, demonstrates increased acceptance rate due to better proposals in ML-CGMC.

2.5 2.6 2.7 2.8 2.9 3 3.1 3.2 3.3 3.4 3.5
0.08

0.1

0.12

0.14

0.16

0.18

0.2

0.22

0.24

0.26

External field h

Av
er

ag
e 

ac
ce

pt
an

ce

MH q = 1
Two level CGMC q = 8 

Fig. 5. Comparison of the total average acceptance of the ML-CGMC and the conventional MH confirms equivalent equilibration rates.
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the kinetic phase diagrams and application of CGMC methods for this system is given in [5]. The underlying dynamics
describing the surface diffusion of particles consideredare spin-exchange, obeying the exclusion principle and conserving
the order parameter microcanonically. The order parameter here is the total coverage c0 ¼ N�1P

x2KN
rðxÞ representing the

number of occupied sites on the lattice, where r(x) 2 {0,1}, x 2KN.
In the tables and figures following we provide simulation results from the conventional MH, the CGMC and the two-level

CGMC method. For the two-level CGMC method, two sampling strategies were tested following the description in Section
3.1, the exact sampling with correction terms, strategy 1., (Figs. 7, 8 and Tables 4, 5), and the approximate CG with potential
splitting, strategy 3., (Fig. 9). For the strategy with corrections the potential functions appearing in all methods are depicted
in Fig. 6. The compressed interaction potential is Jðk; lÞ; k; l 2 KM , as in (6), used for the coarse space simulations and the first
step of the two-level method. In the second step of the latest method the potential function is
Jcðjx� yjÞ ¼ Jðjx� yjÞ � Jðjx� yjÞ where Jðjx� yjÞ ¼ Jðk; lÞ; x; y 2 KN with x 2 Ck, y 2 Cl, representing the correction of com-
pressing interactions at the first step of the method.

In all simulations presented in the sequel the range of pure attractive and repulsive forces are ra = 4.47, rr = 10 respec-
tively and the repulsion strength is v = 0.1. Since the potential function (28) follows an exponential decay, in implementa-
tions we use a cut-off range L for the potential J(r) such that J(r) < 10�6 for r > L, which accounts on (2L)2 interactions for each
site. For all sampling methods the number of MC iterations used is 5 � 107.

The numerical results verify that the proposed method provides the expected behaviour of the system for a finite lattice
as its size increases, that is feature properties converge, as is evident in Table 4. For the total coverage c0 = 0.9 that leads to a
pattern of periodic inverted discs Table 4 presents the average diameter of discs and the computational time when varying
the lattice size N. Feature statistics are calculated with the use of edge detection techniques of image processing [32]. In or-
der to demonstrate the effect of the statistical errors we present confidence interval estimates. Such intervals are obtained
after transforming the simulations data to follow an approximately normal distribution. For the sake of comparison in the
Table 4
Finite system size behaviour of the two-level CGMC method. Average discs diameter hdi and computational time. c0 = 0.9, bJ0 = 0.6, q = 8, L = 24.

Lattice Diameter Std Confidence interval CPU time (min)

128 � 128 10.2 3.6 [5.7,13.3] 30
256 � 256 9.5 2.5 [8.7,9.9] 43
512 � 512 8.8 3.4 [8.5,9.1] 66
1024 � 1024 8.6 3.6 [8.5,8.7] 110
MH method
512 � 512 8.27 1.2 [8.1,8.3] 805



Fig. 7. The two-level CGMC method captures the correct feature scaling even when CGMC is inaccurate. Simulations for model (28) with parameters
c0 = 0.5, bJ0 = 0.2, v = 0.1 and N = 256 � 256.
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same table we present results obtained with the MH method for a 512 � 512 lattice, that indicates also the high computa-
tional cost of a conventional microscopic simulation.

For relatively large coarsening parameter CGMC sampling fails to predict the type of the pattern while the two-level
CGMC refines the error introduced and can provide correct feature scales, see Fig. 7(b) and (c). Figs. 7 and 8 show the aver-
aged equilibrium conformations for two total coverage values, c0 = 0.9 and c0 = 0.5 leading to the formation of inverted discs
and stripes respectively. Black and white dots indicate occupied and vacant sites respectively. As the coarsening parameter



Fig. 8. Inverted discs pattern. Simulations for model (28) with parameters c0 = 0.9, bJ0 = 0.6, v = 0.1 and N = 256 � 256.
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decreases CGMC prediction becomes better albeit at a higher computational cost, i.e., for q = 4 in Fig. 7(d). In such cases the
proposed method can be employed as an effective reconstruction method.

A substantial reduction of the computational time compared to the MH method is achieved with the two-level method as
is demonstrated in Table 5. Furthermore even for high values of the parameter q the two-level method estimates approxi-
mate well the conventional method results.

We also performed numerical tests with the approximate splitting approach, where we split the interactions up to the
range S, as was described for the application in Section 5.2, and neglect the correction terms at the second step, see Section
3.1. This strategy captures the qualitative picture but misses the characteristic length scale as is evident in Fig. 9. Model
parameters used to generate these figures are the same as in Fig. 7. From the simulations tested we can conclude that this



Table 5
Different resolutions for the two-level CGMC with corrections capture correctly the feature statistics,
N = 256 � 256, c0 = 0.9.

Method Diameter hdi Std CPU time (min)

MH 8.7 1.3 252
Two-level q = 2 8.4 1.6 66
Two-level q = 4 7.9 4.6 22
Two-level q = 8 8.9 3.2 23

Fig. 9. Splitting interaction potential strategy captures the qualitative picture but misses the characteristic scale.
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approach is not recommended since the splitting disturbs significantly the relative strength of attractive and repulsive forces
that has an impact on characteristic length scales of the features.

7. Conclusion

In this work we have presented the ML-CGMC method and studied its efficiency theoretically and numerically. The hier-
archy of CGMC methods was constructed with introducing multilevel decompositions of the Gibbs measure. The interplay
between different resolution levels is achieved with the accept/reject method that incorporates correctly the information
lost during compression. The potential splitting strategy for the Kac type model provides good approximations to the con-
ventional simulations correcting the coarsening error, while reduces significantly the computational cost. We successfully
apply the method in a nano-pattern discovery problem, verifying that the ML-CGMC method provides the expected behav-
iour of the system even when CGMC is inaccurate. Numerical tests have shown that a potential splitting in models with com-
peting interactions can disturb the system characteristics, therefore the appropriate strategy is to sample with fully
compressed interactions on the coarse space and include a corrective potential at the reconstructing step.
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Appendix A. Proofs

Before studying the proposed method’s mathematical properties we need to introduce some definitions and theoretical
facts [34]. Let {Xn} be a Markov chain on space R with transition kernel K.

Definition 1

(i) A transition kernel K has the stationary measure l if
Z
R
Kðr;r0Þlðdr0Þ ¼ lðrÞ; for all r 2 R:



2618 E. Kalligiannaki et al. / Journal of Computational Physics 231 (2012) 2599–2620
(ii) K is called reversible with respect to l if
ðg;Kf Þl ¼ ðKg; f Þl; for all g; f 2 L2ðlÞ:
where ðg; f Þl ¼
R
R gðrÞf ðrÞlðdrÞ; �g denoting the complex conjugate of g and KgðrÞ ¼

R
RKðr; dr0Þgðr0Þ;8r 2 R. A sufficient

condition for l being a stationary measure of K that is often easy to check is the detailed balance (DB) condition.

Definition 2 (Detailed Balance). A Markov chain with transition kernel K satisfies the detailed balance condition if there
exists a function f satisfying
Kðr;r0Þf ðrÞ ¼ Kðr0;rÞf ðr0Þ; for all r;r0 2 R: ð29Þ

Here we continue with the proof of Theorem 1.
Proof

(i) Let r – r0, recalling the definition of transition kernel Ktlðr;r0Þ (18) we have
Ktlðr;r0ÞlðrÞ ¼ af ðr;r0ÞaCGðTr;Tr0Þlrðr0jTr0Þ�qðTr;Tr0ÞlðrÞ

¼min 1;
lðr0Þ�lð0ÞðTrÞlrðrjTrÞ
lðrÞ�lð0ÞðTr0Þlrðr0jTr0Þ

� �
�min 1;

�lð0ÞðTr0Þ�qðTr0;TrÞ
�lð0ÞðTrÞ�qðTr;Tr0Þ

� �
lrðr0jTr0Þ�qðTr;Tr0ÞlðrÞ

¼min 1;
lðrÞ�lð0ÞðTr0Þlrðr0jTr0Þ
lðr0Þ�lð0ÞðTrÞlrðrjTrÞ

� �
�min 1;

�lð0ÞðTrÞ�qðTr;Tr0Þ
�lð0ÞðTr0Þ�qðTr0;TrÞ

� �
lrðrjTrÞ�qðTr0;TrÞlðr0Þ

¼ Ktlðr0;rÞlðr0Þ:
(ii) follows from (i). Detailed balance with l(r) is sufficient to guarantee that l(r) is the stationary distribution of
kernel Ktlðr;r0Þ, (Theorem 6.46 in [34]).

(iii) To prove that chain {Yn} is l-irreducible we need to prove Ktlðr;AÞ > 0, for all r 2 E and A measurable such that
l(A) > 0. We have
Ktlðr;AÞ ¼
Z

A
Ktlðr;r0Þdr0 P

Z
A�frg

Ktlðr;r0Þdr0 ¼
Z

A�frg
af ðr;r0ÞaCGðTr;Tr0Þlrðr0jTr0Þ�qðTr;Tr0Þdr0:
From assumptions on �qðg;g0Þ and lr(rjg) term lrðr0jTr0Þ�qðTr;Tr0Þ is positive for all r,r0 2 E. Also since A 
 E and
E 
 eE ¼ suppðl0Þ;af ðr;r0Þ and aCG(Tr,Tr0) are positive. These ensure that Ktlðr;AÞ > 0.
(iv) A sufficient condition ensuring that {Yn} is aperiodic is that Kðr; frgÞ > 0 for some r 2 E, that means the event Yn+1 = Yn

happens with positive probability. We have
Ktlðr; frgÞ ¼ 1�
Z
fr0–rg

af ðr;r0ÞaCGðTr; Tr0Þlrðr0jTr0Þ�qðTr;Tr0Þdr0:
If for all r 2 R; Ktlðr; frgÞ ¼ 0 then
Z
fr0–rg

af ðr;r0ÞaCGðTr;Tr0Þlrðr0jTr0Þ�qðTr;Tr0Þdr0 ¼ 1;
which means that af(r,r0) = 1 and aCG(Tr,Tr0) = 1 for almost all r 2 fr 2 E : �qðTr;Tr0Þlrðr0jTr0Þ > 0; for some r0 2 Eg. This
would mean that the reconstructed proposal kernel �qðTr;Tr0Þlrðr0jTr0Þ is sampling from the exact target measure l which
in general is not true. Therefore there exists r 2 E such that Ktlðr; frgÞ ¼ 0. h
Appendix B. Benchmark example calculations

The detailed calculations of the application of Theorem 2 for the benchmark example described in Section 5.1 are pro-
vided here. The conventional MH algorithm is described by a transition kernel proposing a spin-flip at the site x 2KN with
the probability 1/N, that is qðr;r0Þ ¼ N�1P

x2KN
dðr0 � rðxÞÞ, and acceptance probability
aðr;rðxÞÞ ¼min 1; e
ð1�2rðxÞÞ½K0ðrðx�1Þþrðxþ1ÞÞþJ0

N

PN
y–x

rðyÞ�
8<:

9=;;

where, for simplicity, we consider the case of zero external field h. In the two-level CGMC algorithm the potential splitting
approach (Section 3.1) determines the energy terms of each step being HlðgÞ ¼ HlðrÞ and HNðrÞ � HlðgÞ ¼ HsðrÞ. The pro-
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posal probability distribution is �qðg;g0Þ ¼ M�1P
k2KM

dðg0 � gðkÞÞ where g(k)(l) = g(l), l – k and g(k)(k) = g(k) ± 1, that imple-
ments the adsorption (birth +) or desorption (death �) in the cell k. The acceptance probability of the first level is
aCGðg;gðkÞÞ ¼
Q � gðkÞ

Q
min 1; e�DkþHlðgÞ

n o
þ gðkÞ

Q
min 1; e�Dk�HlðgÞ

n o
:

where DkþHlðgÞ ¼ � J0
N

P
i2KM

gðiÞ and Dk�HlðgÞ ¼ � J0
N 1�

P
i2KM

gðiÞ
h i

. The reconstruction probability distribution is a product

of uniform distributions in each cell, that is the probability of constructing r(x) given g(k) is

lrðdrðxÞjgðkÞÞ ¼
Q

i2KM
lðiÞr drðxÞCi

jgðkÞðiÞ
� �

, with rðxÞCi
¼ frðxÞðyÞ; y 2 Cig and
lðiÞr drðxÞCi
¼ rðxÞCk

jgðkÞðkÞ
� �

¼ 1
Q
;

describing the probability of finding an arbitrary x 2 Ck. Note that at each MC iteration the change in the new state g(k) hap-
pens in cell k, thus we need to reconstruct r(x), from g(k), only in one cell. The second level acceptance probability is
af ðr;rðxÞÞ ¼ minf1; e�DxHsðrÞg ¼ min 1; eK0ð1�2rðxÞÞðrðx�1Þþrðxþ1ÞÞ� 	
:

Term Bðr;rðxÞÞ, (21), is identically equal to one for all r 2 RN and x 2KN. Indeed let r 2RN then for all x 2KN such that x 2 Ck

with g = Tr and g(k) = Tr(x)
�qðg;gðkÞÞlrðrðxÞjgðkÞÞ
qðr;rðxÞÞ ¼

1
M

1
Q

1
N

¼ 1:
Therefore we have c ¼ �c ¼ 1. For any x 2KN such that x 2 Ck; k 2 KM we have from (23)
Aðr;rðxÞÞ ¼

1; ifðr;rðxÞÞ 2 C1

minfe�bDkHlðgÞ; ebDkHlðgÞg; ifðr;rðxÞÞ 2 C2

minfe�bDxHsðrÞ; ebDxHsðrÞg; ifðr;rðxÞÞ 2 C3

minfe�bDxHNðrÞ; ebDxHNðrÞg; ifðr;rðxÞÞ 2 C4

8>>>><>>>>:

Set C4 = ; according to the following argument. Let (r,r(x)) 2 C4 such that aCG(g,g(k)) = 1, af(r,r(x)) = 1 and a(r,r(x)) < 1. The
first two relations are equivalent to DkHlðgÞ 6 0 and Dx Hs(r) 6 0 that imply DxHN(r) 6 0, since HNðrÞ ¼ HsðrÞ þ HlðgÞ, thus
a(r,r(x)) = 1, a contradiction. Analogous argument holds for the case a(r,r(x)) = 1, aCG(g,g(k)) < 1, af(r,r(x)) < 1 that proves
C4 = ;.

Consider K = 0 then set C2 = ; that can be proved with a simple argument. Aðr;rðxÞÞ ¼ 1 for all (r,r(x)) 2 C3 which is also
easy to prove based on the fact that DxHs(r) = 0. Therefore when K0 ¼ 0; Aðr;rðxÞÞ ¼ 1; for all r 2 RN and all x 2KN.

For K0 – 0, using the analytic expression of DxHs(r) and DkHlðgÞ we have, for (r,r(x)) 2 C2
min e�bDkþHlðgÞ; ebDkþHlðgÞ
n o

P e�jbDkþHlðgÞjjfgðlÞ¼Q ;8l2KMg ¼ e�j
J0
N Nj ¼ e�jJ0 j;
and
min e�bDk�HlðgÞ; ebDk�HlðgÞ
n o

P e�j
J0
N ðN�1Þj > e�jJ0 j:
Similarly for (r,r(x)) 2 C3
min e�bDxHsðrÞ; ebDxHsðrÞ
n o

P e�2jK0 j:
Therefore infr;xAðr;rðxÞÞ ¼ Aðr;rðxÞÞjfr:rðxÞ¼1;8x2KNg ¼minfe�jJ0 j; e�2jK0 jg:

Remark. We should note that the reconstruction used in implementations is slightly different from the one just described,
taking advantage of the knowledge from the coarse step whether an adsorption or desorption is proposed,
lr drðxÞCl
¼ rðxÞCk

jgðkÞðkÞ
� �

¼ 1
Q � gðkÞ dðk� kþÞ þ 1

gðkÞ dðk� k�Þ;
describing the probability of finding x 2 Ck with r(x) = 0 for k = k+ and r(x) = 1 for k = k�.
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