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enclosed volume of a vesicle are written as functionals of a continuous phase-field, which
describes the interface in a smeared manner. Such functionals involve up to second-order
spatial derivatives of the phase-field, leading to fourth-order Euler-Lagrange partial differ-
ential equations (PDE). The solutions develop sharp internal layers in the vicinity of the
putative interface, and are nearly constant elsewhere. Thanks to the smoothness of the
local maximum-entropy (max-ent) meshfree basis functions, we approximate numerically
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Adaptivity this high-order phase-field model with a direct Ritz-Galerkin method. The flexibility of the
Phase field models meshfree method allows us to easily adapt the grid to resolve the sharp features of the
Biomembranes solutions. Thus, the proposed approach is more efficient than common tensor product
Vesicles methods (e.g. finite differences or spectral methods), and simpler than unstructured C°

finite element methods, applicable by reformulating the model as a system of second-order
PDE. The proposed method, implemented here under the assumption of axisymmetry,
allows us to show numerical evidence of convergence of the phase-field solutions to the
sharp interface limit as the regularization parameter approaches zero. In a companion
paper, we present a Lagrangian method based on the approximants analyzed here to study
the dynamics of vesicles embedded in a viscous fluid.

© 2013 Elsevier Inc. All rights reserved.

1. Introduction

Biomembranes are the fundamental separation structure in animal cells, and are responsible for the compartmentaliza-
tion of the cell or for the transport of substances through cargo vesicles or tubes. They also play a key role in bio-mimetic
engineered systems [1]. Their complex behaviour, rich physical properties, formation and dynamics have been objects of
experimental and theoretical investigation for biologists, chemists and physicists during many years [2,3]. Biomembranes
are composed by several kinds of lipids self-assembled in a fluid bilayer, which presents a liquid behaviour in-plane and solid
out-of-plane [4]. Vesicles are closed biomembranes, which play an important role in biophysical processes such as in the
delivery of proteins, antibodies or drugs into cells, and separation of different types of biological macromolecules within
cells. Vesicles serve as simplified models of more complex biological systems, and can be used to study the interaction be-
tween lipid bilayers and the surrounding medium, e.g. under osmotic stress [5], shear flow [6], or electrical fields [7].
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Depending on the lipid composition, lipid bilayers can phase-separate forming multicomponent vesicles [8], which have also
been the object of numerous studies as model systems for rafts.

Lipid bilayers can be modeled by very different techniques, depending on the focus. Atomistic [9] and coarse-grained [10]
molecular dynamics (MD) can access molecular processes and the self-assembly. However, due to the slow relaxation of the
bending modes, the computational cost of molecular simulations scales as L®, where L is the lateral dimension of the system
[11]. Even if coarse-grained MD simulations have been able to describe the collective dynamics of membrane patches of tens
of nanometers, this sets a very stringent limit on the system sizes accessible with these methods. Other mesoscopic methods
such as dynamically triangulated surfaces have been proposed to deal with intermediate scales [12]. On the other end of the
spectrum, continuum mechanics has shown great success over the last decades in describing the equilibrium shapes of ves-
icles [4,13,14]. Continuum models have also helped understand the dynamics of fluctuations of bilayers [15], or the shape
dynamics of membranes [16,17]. Continuum mechanics models of biomembranes disregard atomic details, but still can
incorporate many important effects such as the bilayer asymmetry, the spontaneous curvature, the diffusion of chemical
species on the bilayer, or the dissipative mechanisms arising from the friction between the lipids [18]. Furthermore, these
methods can easily access wide spans of time and length scales. The main drawback of these models is that they are usually
formulated as complex nonlinear high-order partial differential equations (PDE). Here, we focus on the numerical approxi-
mation of a simple curvature model for biomembranes.

The Canham-Helfrich functional [19,20] is a widely accepted continuum model for the curvature elasticity of fluid mem-
branes, which explains to a large extent the observed morphologies of vesicles. This sharp interface model has been the basis
of a number of numerical parametric approaches for the equilibrium analysis of axisymmetric and three-dimensional ves-
icles. The resulting equations for the parameterization are fourth-order nonlinear PDE. This functional is reparameterization
invariant, which reflects mathematically the in-plane fluidity of lipid bilayers above the transition temperature. This feature
poses numerical difficulties to parametric methods, since this invariance needs to be controlled to avoid serious mesh dis-
tortions [21,22].

Phase-field counterparts of this model have been proposed and exercised numerically [23-25]. Although these methods
increase the dimension of the problem, they naturally overcome the limitations of parametric methods when extreme shape,
or even topology changes are present, and produce more robust simulations. Furthermore, these methods are more amena-
ble to scalable parallel computations for complex systems, particularly when coupling them to the fluid mechanics of the
ambient medium. Yet, the numerical solution of these models, again expressed mathematically as a nonlinear fourth-order
PDE, is challenging. Here, we propose to address the high-order character of the equations and the sharp fronts they develop
with an adaptive meshfree method. We also establish the ability of the local maximum-entropy approximants [26] to accu-
rately and efficiently approximate equilibrium solutions of the phase-field model with a straight Ritz-Galerkin approach. In
a companion paper [27], we propose a Lagrangian method to deal with the dynamics of vesicles embedded in a viscous fluid
in the low Reynolds number limit, representative of most biological situations of interest.

The outline of the paper is as follows. Section 2 introduces the sharp interface and the phase-field models for the curva-
ture elasticity of biomembranes, as well as a brief account of the numerical strategies to address these models. Section 3
describes the discretization of the phase-field functionals with the local maximum-entropy approximations schemes, the
algorithm to find equilibrium solutions, and the method used to distribute the nodes. Numerical experiments to evaluate
the performance of the approximants and the adaptive strategy are presented in Section 4. The final conclusions are collected
in Section 5.

2. Sharp interface model, phase-field model, and its numerical treatment
2.1. Sharp interface model

In the sharp interface (S-I) approach, the membrane is a mathematical surface without thickness. The equilibrium shapes
of vesicles minimize the Canham-Helfrich energy under area and enclosed volume constraints follow from

k
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where I' is the surface, k the bending rigidity, k¢ the Gaussian bending rigidity, H the mean curvature, K the Gaussian cur-
vature, n the normal to the surface, Vy and Aq are the prescribed volume and surface area, and C, is the spontaneous curva-
ture. For surfaces of constant topology, the second integral in the curvature energy is a constant, and for this reason it is often
ignored. We do not consider this term in the remainder of the paper, although is can be easily incorporated.

The area constraint comes from the near inextensibility of lipid bilayers under the usual applied forces. The volume can be
regulated by osmotic effects, since biomembranes are semi-permeable. If the volume V; is smaller than the volume enclosed
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by a sphere of area Ao, then various equilibrium shapes are possible. For a given area and volume, there exist multiple equi-
librium branches, as a consequence of the nonlinearity and non-convexity of the S-I model.

Various numerical methods have been proposed to solve the S-I model. Given the fact that the functional involves second
derivatives of the parameterization, a direct Galerkin approach demands C' parameterizations. In 3D, this has been realized
with subdivision finite elements [21,28] and spherical harmonics [22]. Alternative formulations are amenable to C° finite
elements [29,30]. All these parametric approaches need to control the tangential motions of the mesh to avoid severe
distortions.

2.2. Phase-field model

Phase-field models provide a powerful tool to tackle moving interface problems [31], and have been extensively used in
physics and materials science (see [32,33] and references therein). Recently, they are gaining popularity in a wide set of
applications in applied science and engineering such as fracture [34,35], microstructure formation and fracture evolution
in ferroelectric materials [36], growth of thin films [37], image segmentation [38] and multi-phase flows [39], to mention
a few.

The idea behind phase-field modeling is to replace the sharp description of the interface by a smeared continuous layer.
To this end, an auxiliary field ¢, called order parameter or phase-field, is introduced to represent the phases (e.g. inside and
outside of the vesicle), and also the interface. The phase-field adopts distinct values, say —1 and +1, in each of the phases, and
smoothly varies between these values in the diffuse interface. Typically, an energy functional expressed in terms of the
phase-field models the physical phenomena at hand. Hence, the phase-field equation accomplishes two tasks at once: (1)
it localizes the phase-field to represent a (smeared) interface, and (2) it encodes the interfacial physics. In sharp interface
models, the geometric description of the interface is extrinsic to its physics.

The phase-field model for biomembranes proposed by Du et al. [23,40] replaces the S-I model by:

2
(P-F model) Minimize E[¢] :fgﬁ/ {6A¢+ <%¢+Co\f2> (1- (/)2)} dQ
Q
subject to  V[¢] = % (Vol(Q) + / d)dQ) =V
Q

1
Al¢] :fA/Q Elwf JFE(qs2 - 1)2] dQ = A,
¢|69 = _]7

where € is a small regularization parameter, fz = ﬁ? fa= f—ﬁ, Q is the domain bounding the vesicle, and 9Q its boundary.
The regions {x:¢(x) >0} and {x: ¢(x) < 0} represent the inside and outside of the membrane, while the level set
{x: ¢(x) = 0} can be used to realize the position of the membrane.

Formal asymptotics [40], as well as rigorous mathematical analysis [41] (see also [42] for a review), provide the connec-
tion between the P-F model and the S-I model when € — 0. As this limit is never achieved in the numerical calculations, a
modeling error is always present in practice. This model has been coupled with the Navier-Stokes equations in [43]. Similar
ideas to couple phase-field models of biomembranes with fluid or other physical fields have been developed by other
researchers as well [7,24,44,45].

2.3. Numerical approaches for the phase-field functionals

The main advantage of the phase-field model is the unified treatment of the interfacial tracking and the mechanics, which
potentially leads to simple, robust, scalable computer codes. This comes at the expense of a much higher computational cost,
particularly if the modeling error with respect to the sharp interface limit needs to be small. Indeed, it can be seen that the
phase-field model produces solutions with the profile ¢(x) = tanh %J , where d(x) is the distance to the interface. Resolving
this profile requires a very fine discretization for small values of €, buf this high resolution is only required in the vicinity of
the interface. Away from it, the phase-field is nearly constant. Hence, this problem naturally calls for adaptivity. Further-
more, a numerical method for the phase-field model needs to address the second-order derivatives in the energy and area
functionals.

Traditional numerical methodologies like finite difference [23,44] and spectral methods [43] have been used for phase-
field models of biomembranes. Recently, isogeometric analysis [46], a Galerkin method based on tensor products of 1D
NURBS approximants, has shown an excellent performance for the Cahn-Hilliard equation, handling successfully the sharp
transitions of the solutions without spurious overshoots [47,48]. Although these structured methods can handle higher-or-
der operators, they have difficulties in adapting to localized features. C° finite element approaches can deal with the high-
order character of the functional by reformulating the model as a system of second-order PDE [49] and are well suited for
adaptivity [50], but suffer from poor accuracy for a given computational cost. A number of adaptive techniques have been
developed for the Cahn-Hilliard model, including an adaptive multigrid finite-difference method [51,52], a Fourier spectral
moving-mesh method [53], an adaptive FEM with linear [45,54,55] and quadratic [56] shape functions after recasting the
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higher-order phase-field as a system of lower-order equations, and a finite volume approach for unstructured grids [57].
Adaptive methods based on finite differences [58,59], Fourier spectral [60], or finite volumes [61,62] have been proposed
for other higher-order phase-field equations.

Here, we propose a Ritz-Galerkin method based on the local maximum-entropy meshfree approximants [26]. These
meshfree approximants are:

e C™, and therefore handle without difficulties the high-order character of the functionals,

e non-negative, and therefore possess monotonicity properties, as B-Splines and NURBS successfully applied to Cahn-Hil-
liard models [47],

e ideally suited for local refinement and dynamic adaptivity, as the basis functions rely only on the vicinity of neighboring
nodes, instead of a mesh.

3. Ritz-Galerkin approximation of the functionals with maximum-entropy schemes

We describe here the numerical approximation of the variational problem to obtain equilibrium axisymmetric configu-
rations for biomembranes. To fix the rigid body displacements of the membrane along the axis of symmetry, we need to sup-
plement the P-F model given above with the constraint

M(¢] = / $(z—2) dQ =0,

where z. allows us to center the phase-field solution in the simulation box.

We discretize the equations with local maximum-entropy approximation schemes. These meshfree approximants are non-
negative and satisfy up to first-order consistency conditions. They have been shown to accurately approximate fourth-order
PDE, such as the Kirchhoff-Love theory of thin shells [63,64]. Second-order maximum entropy approximants have been devel-
oped [65,66], and it has been shown that the linear approximants used here deliver comparable accuracy with a much simpler
implementation. We follow a Ritz-Galerkin approach to approximate the variational formulation of the continuous problem by
an algebraic optimization program, which we solve with an augmented Lagrangian method to impose the linear and nonlinear
constraints, combined with L-BFGS and Newton-Rahpson nonlinear solvers. We locally adapt the node distribution to compu-
tationally afford very small values of € by resorting to Centroidal Voronoi Tesselations (CVT) [67]. This method distributes nice
grids of points obeying a prescribed density function, as illustrated in Fig. 1. Here, we define the density functions such that the
points are highly concentrated in the regions with high gradients of the phase-field (see Section 4.2).

3.1. Local maximum-entropy approximants

Meshfree methods define basis functions from a scattered set of nodes, not supported on a mesh as in traditional finite
elements. The most popular meshfree approximants are based on the moving least squares (IMLS) idea [68]. In recent years,
the information theoretic concept of maximum-entropy has been put forth to develop polygonal approximants [69] and
meshfree approximation schemes [26]. These maximum-entropy approximants present some advantages over MLS meth-
ods, such as their strict non-negativity, the straightforward imposition of boundary data, the robustness of their evaluation,
or the simpler quadrature [65]. Moreover, the non-negativity and the linear reproducing conditions endow them with the
structure of convex geometry [26], which enables the connection with other non-negative technologies like isogeometric
analysis [46] or subdivision surfaces [70].

Maximum-entropy basis functions, denoted by p,(x),a =1,...,N with x € RY, where d is the space dimension, are en-
forced to be non-negative and to fulfill the zeroth and first-order consistency conditions

N N
pa(x) = 07 Zpa(x) = ]7 Zpa(x)xa =X,
a=1 a=1

Fig. 1. Voronoi tessellation for a random nodal distribution (left), CVT for a wuniform density (center) and for a density function
p =10exp [-2(x* +y?)] + 0.1 (right).
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where the last equation allows us to identify the vectorial weights x, with the positions of the nodes associated with each
basis function.

The idea behind local maximum-entropy basis functions is to define information-theoretical optimal approximants, only
biased by locality, i.e. the property that the function approximation at a given point should depend on nodal values of nearby
nodes. These approximants exhibit a (Pareto) compromise between two competing objectives, minimum width (locality)
and entropy maximization (information theory optimality criteria), subject to the consistency constraints (reproducibility
conditions). With these requirements, we write the following optimization program to select the approximants

N N
For fixed x, minimize » B.p, | X — X"+ _p,Inp,
a=1

a=1 =

subjectto p, >0, a=1,...,N

N N
Zpa =1, Zpaxﬂ =X,
a=1 a=1
where the non-negative nodal parameters f, = yu/hi, a=1,...,N define the locality of the approximants [26,71]. The

dimensionless aspect ratio parameter 7y, characterizes the degree of locality of the basis function associated to the node
X4, while h, denotes a measure of the nodal spacing around node a. This local grid spacing h, should be chosen to resolve
the sharp features of the phase-field solutions, and should therefore be commensurate to €. The basis functions become shar-
per and more local as the value of the dimensionless parameter y, increases, and the Delaunay approximants arise as spe-
cialized limits (y, > 4 in the practice), as illustrated in Fig. 2 for a one-dimensional domain. In previous works, we
characterized the behaviour of the approximants for problems involving higher-order derivatives, specifically for plates
and thin-shells analysis [63,66]. Typically, low values of y, lead to more accurate results for problems with smooth solutions,
but also result in significantly more expensive calculations. This is due to the wider band-width and to the fact that more
quadrature points are typically required. We found that the appropriate locality parameters are in the range 0.6 <y < 1,
being y = 0.8 the most convenient because it provides a good trade-off between computational cost and accuracy.

As detailed in [26], the optimization problem is smooth and convex, and admits a unique solution. An efficient solution
follows from standard duality methods. Here, we just summarize the recipe for the calculation of the basis functions. By
analogy with statistical mechanics, we define the partition function

N
Z(x,2) = exp [—ﬁb |x— %%+ 4- (x—xb)].
b=1

At each evaluation point x, the Lagrange multiplier for the linear consistency condition is the unique solution to a solvable,
convex, unconstrained optimization problem

(%) =argminlnZ(x, ).
Jerd
This optimization problem with d unknowns is efficiently solved with Newton’s method. Then, the basis functions adopt the
form

Po(X) = exp |—fy | X — Xo* +4(X) - (X — Xq)|.

1
Z(x, 7 (x))
We refer to [64,71] for the expressions to compute the gradient Vp,(x) and the Hessian matrix Hp,(x) of the local maximum-
entropy basis functions, which are illustrated in Fig. 3 for a one-dimensional domain uniformly discretized and a dimension-
less parameter y = 0.8.

y=1[0.6 1.2 1.8 2.4 3 3.6 42 48 5.4 6]

1
0.8
0.6
0.4

0.2

0
0 0.5 1 1.5 2 2.5 3

Fig. 2. Seamless and smooth transition from meshfree to Delaunay affine basis functions. The transition is controlled by the non-dimensional nodal
parameters y,, which here take linearly varying values from 0.6 (left) to 6 (right).
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Fig. 3. One-dimensional local maximum-entropy basis functions (left), and its first and second spatial derivatives (center-right) computed with a
dimensionless parameter y = 0.8.

Fig. 4. lllustration of non-negativity, smoothness and weak Kronecker-delta properties for two-dimensional local maximum-entropy basis functions (left),
and the variation diminishing property (right).

Some features of the local maximum-entropy approximants, such as smoothness and variation diminishing properties
[26], are illustrated in Fig. 4. These approximants also satisfy ab initio a weak Kronecker-delta property at the boundary
of the convex hull of the nodes [26]. With this property, the imposition of essential boundary conditions in Galerkin methods
is straightforward. Moreover, the approximants are multidimensional and lead to well behaved mass matrices [26]. We refer
to [66] for a more detailed description of maximum-entropy approximants and their applications.

3.2. Discretization of the minimization problem

We consider the following expansion for the phase-field in terms of the basis functions

(»b( ) d)h X (D Zpa ¢a7

where ® = (¢4, ¢,, ..., ¢y) is an array containing the N nodal values of the phase-field, and insert this ansatz into the vari-
ational problem describing the P-F model to obtain the following algebraic optimization program:

Minimize En(®) — E[¢;] — fE£ / W2do

subject to V(@) = V[g,] = <Vol / qsth) Vo
Ah<<b>:A[¢h1:fA/ SIV + 40~ 1| da =g M
Ma(®) = M) :/quh(zfzc)dQ:O

¢h‘ao =-1,

where

Wi = €eAgy, + (%(bh + CO\/Z> (1 - (bi)
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The optimality conditions can be obtained from differentiating the Lagrangian function
ﬁ(q), V) = Eh((D) — VA[Ah((I)) —Ao] — V\/[Vh(q)) — Vo] — V[\/][Mh(q)) — 1\/10}7

where the area, volume and static moment constraints are maintained by the Lagrange multipliers v = (va, Vv, vi). Physi-
cally, v4 is a membrane tension and vy a pressure difference between the inside and the outside of the vesicle.

After defining a new set of variables (®,v) = (¢4, ¢, - .., dy, Va, Vv, Vu), the optimal solution of this saddle-point problem
can be sought with the Newton-Raphson method applied to the nonlinear system of equations d¢£ = 0, 9,£ = 0. However,
this approach may lead to mere stationary points, not minimizers of the elastic energy (physically unstable equilibria). Fur-
thermore, given the difficulty in setting good initial guesses for the Lagrange multipliers, this solution strategy is not robust.

A robust strategy that guarantees stable equilibria is based on the augmented Lagrangian method, which combines the
standard Lagrangian with penalties. This method retains the exactness of the Lagrange multipliers method and the minimi-
zation principle of penalty methods. The minimization is performed iteratively on the phase-field variables only for frozen
Lagrange multipliers, which are updated explicitly (see [72,73] for further details). The augmented Lagrangian is

LA®.¥) = Ey(®) — v [Ay(®) — Ag] — vy [Vi(®) — Vo] — My (@) — Mo] + 21—# An(@) — Ao + ;—u Va(®) — Vo]
+21—#|Mh(q>) — Mol

We solve the problem in two stages. First, we follow the augmented Lagrangian method to find an approximate mini-
mizer consistent with the constraints with a coarse tolerance. Then, this approximation is refined with the regular New-
ton-Raphson method on the extended set of variables (®, v). Since the initial guess for this second stage is very close to a
minimizer, the algorithm never leads to unstable equilibria. The expressions to compute the gradients r(®,v) and
T4 (®,v), as well as the hessians, of the Lagrangian and augmented Lagrangian, respectively, are given in Appendix A.

All the integrals in Eq. (1) and in its variations, see Appendix A, are approximated with numerical quadrature based on a
background integration grid, as usually done in Galerkin meshfree methods (see [26] and references therein). Here, we con-
sider Gaussian quadrature rules supported on the Delaunay triangulation associated with the set of nodes, although other
specialized techniques are available [74].

4. Numerical examples

The phase diagram for the equilibrium shapes of vesicles has been extensively studied (see [4,75] and references therein).
This diagram exhibits a number of equilibrium branches, including prolates, oblates, discocytes, or stomatocytes. The equi-
librium shape for a given area, volume, and spontaneous curvature is not unique in general. For instance, upon deflation of an
initially spherical vesicle without spontaneous curvature, the prolate-dumbbell and oblate-discocyte branches are possible,
as illustrated in Fig. 5. Mathematically, the shape transitions and the equilibrium branches can be tracked by changing the
volume constraint and solving for constrained minimizers. A number of equilibrium shapes for the oblate-discocyte equilib-
rium branch are plotted in Fig. 6. Each shape is an energy minimizer with fixed area and volume, after reducing by 5% the
volume of the previous configuration. The computations are carried out with a uniform grid and a regularization parameter
€ = 0.02. In all the calculations, we take Co = 0 and Sy = 47R?, with R = 0.4. The relative error in the energy is approximately
2% as compared to the sharp interface approach.

The accuracy of phase-field solutions relative to the sharp interface model is intrinsically linked to the regularization
parameter €, which in turn sets bounds on the required resolution of the computational grid. This motivates us to study
two relevant aspects of the proposed approach: (i) the convergence as the number of points increases for a fixed regulari-
zation parameter € and uniform grid, and (ii) the convergence to a sharp model as regularization parameter is decreased
(€ — 0) and the grid of points is adapted.

Fig. 5. 3D view of discocyte (left) and dumbbell (right) equilibrium shapes.
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Fig. 6. 3D views of the oblate-discocyte equilibrium branch: each shape is computed by minimizing the energy and reducing by 5% the volume of the
previous configuration.

To answer these questions, we analyze two specific equilibrium shapes, a discocyte and a dumbbell configuration, both of
them with spontaneous curvature Co=0. For the S-I model and the sphere, we have Agpper = 47R? = 0.64m,
Vsphere = %nR3 ~ 0.085337 and Eppere = 27. The discocyte and dumbbell configurations are found by minimization of the cur-
vature energy with constraints Ay = Asphere = 0.647 and Vi = 0.8V gpere = 0.06826, i.e. the volume of the sphere is reduced
by 20%. The energies of the sharp interface model for the discocyte and dumbbell equilibrium shapes are Egiscocyre = 9.12657
and Egympren = 8.71756. These energies are computed with an overkill B-spline discretization of the S-1 Model.

4.1. Convergence for fixed regularization parameter € and uniform grids of points

Table 1 shows the numerical energies for the discocyte equilibrium shape considering different values of € and several
grids of points in a computational domain Q = [0, 1.5] x [0, 2]. The identification code (O for the oblate-discocyte branch,
P for the prolate-dumbbell branch) and the number of nodes for each grid are indicated in the first and the second column.
As the grids are not perfectly uniform (see Fig. 7, for instance), the value of the average nodal spacing h is reported in the
third column. The remaining columns show the energies computed for different values of the regularization parameter €.
We report the energies only when the transition profile is reasonably resolved, as decided by the relation € > 2h. Note
the energy convergence from above as the number of points increases for each € (columns). We can also observe how the
value of the energy converges to the sharp interface value Egiscocyre = 9.12657 as the parameter € decreases.

In experiments not reported here, we consider the same problem in a slightly smaller domain Q, = [0, 1] x [0, 2]. We find
that for the larger values €, the phase-field interacts with the boundary of the simulation box, resulting in higher energies.
The influence of the domain size on the results further highlights the need for adaptivity, as local refinement makes it com-
putationally affordable to increase significantly the size of the simulation box.

Table 2 reports the numerical energies for the dumbbell shape considering different values of € and several refinements of
the grid of points. We observe that the convergence both for € and h presents the same behavior described for the discocyte
shape.

4.2. Convergence as € — 0 and adapted grids of points

As argued earlier, adaptivity is essential for numerical approaches based on phase-field models to be competitive. We
now describe the node density function considered here to relocate the nodes following the CVT method. The phase-field
is constant in a large part of the domain and presents a sharp variation in the thin region corresponding to the smeared inter-
face. To capture this behavior, consider the density function

px) =1+f|Vo() |,

where fis an amplification factor. This heuristic density function allows us to obtain a uniform nodal distribution where the
phase-field is constant, since | V¢(x) |= 0, and to locally concentrate in zones where the field changes abruptly. The factor f

Table 1
Energies of the discocyte equilibrium shape for different uniform grids of points and several values of €. The size of the computational domain is
Q=1[0,1.5] x [0,2]. Reference energy from a sharp interface simulation: Egiscocyte = 9.12657.

ID # Nodes h €=0.05 €=0.04 €=0.03 €=0.02 €=0.01
01 6124 0.024 9.71279 9.59056 - - -
02 12,271 0.017 9.72137 9.59446 9.43775 . -
03 24,597 0.012 9.72671 9.59553 9.43483 9.29532 -
04 49,145 0.0084 9.73203 9.59786 9.43515 9.28938 -
05 98,388 0.0059 9.73536 9.59901 9.43481 9.28674 9.22082
06 146,545 0.0048 9.73716 9.59948 9.43422 9.28378 9.19139

07 296,344 0.0034 9.73989 9.60053 9.43437 9.28326 9.18627
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Fig. 7. Discocyte equilibrium shape. Uniform and adapted grids of 6124 points (top). From left to right: 01,011, 012 and 013. Zoom of the areas indicated
with black boxes (center). Phase-field (bottom). From left to right, the solutions correspond to € = 0.04, € = 0.03, € = 0.02, and € = 0.01. The values of
energy for each solution are given in Table 3.

Table 2
Energies of the dumbbell equilibrium shape for different uniform grids of points and several values of €. Reference energy from a sharp interface simulation:
Equmbben = 8.71756.

ID # Nodes h €=0.05 €e=0.04 €=0.03 €=0.02 €=0.01
P1 6124 0.024 9.29504 9.15560 - - -
P2 12,271 0.017 9.30167 9.15918 9.00361 - -
P3 24,597 0.012 9.30627 9.16106 9.00310 8.87045 -
P4 49,145 0.0084 9.31053 9.16315 9.00362 8.86669 -
P5 98,388 0.0059 9.31307 9.16407 9.00331 8.86445 8.81432
P6 146,545 0.0048 9.31439 9.16421 9.00217 8.86005 8.77677
P7 296,344 0.0034 9.31650 9.16512 9.00251 8.86033 8.77359

gives us the flexibility to increase/decrease the weight of the gradient, which in turn increases/decreases the local concen-
tration of nodes.

A possible strategy for adaptivity is to solve the optimization problem with a coarse grid of points (and thus a large value
of €), apply CVT to redistribute the nodes concentrating them around the interface, and compute the phase-field solution
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with a smaller € for this new distribution of points. In practice, this strategy cannot be applied at once with a large ampli-
fication factor f. Indeed, the initial coarse grid provides an inaccurate phase-field solution, which in turn produces an inad-
equate relocation of the points. This ultimately constraints unphysically the phase-field solutions. A better strategy is to
adapt the grid and reduce € progressively, with moderate values of f.

Table 3 reports the bending energies of the discocyte equilibrium shape for uniform and adapted grids and several reg-
ularization parameters. The first and the last rows correspond to uniform meshes with 6124 and 296,344 nodes, and are the
same as those reported in Table 1. The other rows correspond to adapted grids with 6124 nodes, obtained in each step of the
progressive adaption of the grid and reduction of €. The first column of the table gives an identification code for the grids of
points. A description of the features of each grid is given in Table B.6, and some of the grids are shown in Fig. 7. The smooth
transition between the successive grids is apparent in the figure, as the value of € is slowly decreased in each step, while fis
increased to maintain the relative effect of the phase-field gradient. The minimum allowable value for the regularization
parameter €p;, for a given grid is determined by the nodal spacing distribution, as detailed in Appendix B. As expected,
the ability of adapted grids to accurately support sharp phase-field solutions at an affordable cost is noteworthy. Adapted

Table 3
Energies of the discocyte equilibrium shape for several values of € and uniform and adapted grids of 6124 points. See Table B.6 for a description of the grids of
points. Reference energy from a sharp interface simulation: Egiscocyre = 9.12657.

ID # Nodes €=0.04 €=0.03 €=0.025 €=0.02 €=0.015 €=0.01
01 6124 9.59056 - - - - -
011 6124 9.59678 9.44002 - - - -
012 6124 - 9.43506 9.35810 9.28849 - -
013 6124 - - 9.35970 9.28701 9.22588 9.18703
07 296,344 9.60053 9.43437 9.35488 9.28326 9.22399 9.18627
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Fig. 8. Phase-field solution for the discocyte equilibrium shape: (a) abrupt transition between inner (¢, = 1) and outer (¢, = —1) regions, and (b)

superposition of the sharp interface solution and zero phase-field level set ¢, = 0. The phase-field solution is obtained with an adapted grid of 6124 nodes
and € = 0.01. (c) Cross sections corresponding to the cutline indicated in (b) of the phase-field solutions with different values of . This plot, together with
the zooms in (d) and (e), illustrates the absence of oscillations or overshoots near the interface, and how the interfacial thickness decreases as € is reduced.
The sharp interface solution is shown for comparison.
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grids grant the same accuracy (measured by the optimal energy) as uniform grids with a 50-fold reduction in the number of
degrees of freedom for € = 0.01.

Fig. 7 (bottom) shows the equilibrium phase-field for the grids referred to in Table 3 and shown in Fig. 7 (top, center). It
can be noticed that as the value of € decreases, the thickness of the diffuse interface shrinks considerably. Fig. 8 (a) illustrates
the phase-field solution computed with grid 013 and € = 0.01; an abrupt transition can be observed between the inner
(¢p = 1) and the outer (¢, = —1) regions. The superposition of the sharp interface solution with the zero phase-field level
set (¢, = 0) is shown in Fig. 8 (b). The two curves nearly lie on top of each other, illustrating numerically the connection
between the phase-field and the sharp interface models.

Fig. 8(c)-(e) shows cross sections of the phase-field solutions depicted in Fig. 7 (bottom). The position of the cross section
is indicated in Fig. 8(b) with a dashed-dotted cutline. The cross section corresponding to € = 0.005 is computed with an
adapted grid of 24,597 nodes, as explained later. This figure highlights how the variation dimishing property (informally,
the approximation is not more wiggly than the data) of the local, smooth, non-negative maximum-entropy approximants
results in monotone solutions of the phase-field PDE, devoid of spurious oscillations even for very sharp transitions. A selec-
tion of the basis functions for grid O13 are shown in Fig. 9. The uniform aspect ratio of the interior basis functions is note-
worthy, despite the strong non-uniformity of the grid. The monotonicity of the approximants does not immediately imply
that the numerical solutions of the phase-field PDE is free of overshoots outside of the physically meaningful limits
—1 < ¢ < 1, but the numerical evidence suggests that this is the case. Further numerical analysis is required to clarify this
issue. Again, the convergence of the phase-field solutions to the sharp interface stepped solution as € — 0 is apparent. Similar
conclusions were drawn from isogeometric simulations of the Cahn-Hilliard and isothermal Navier-Stokes-Korteweg
phase-field equations, where similar smooth non-negative basis functions, albeit structured in nature, were used [47,48].

We repeat the refinement experiments reported in Table 3 with grids of 12,271 and 24,597 nodes. The larger number of
nodes allows us to resolve the phase-field model with € = 0.007 for the grid of 12,271 points, yielding Ec_¢.007 = 9.17824, and
with € = 0.005 for the grid of 24,597 points, yielding E._o00s = 9.16539. Table 4 shows the relative errors in energy between
the sharp interface solution and the adapted phase-field solutions for different number of nodes and several values of €. It
can noticed that, with our criterion to select €, for a given grid, the adapted grids resolve the width of the smeared inter-
face, and the error depends basically on €. Again, it is clear that the adaptive strategy can deliver very accurate solutions (er-
ror in the energy below 0.5%) for very small values of the regularization parameter € with a reduced number of degrees of
freedom.

We repeat the experiments for a dumbbell equilibrium shape. We observe the same behavior as reported in Table 5.
Fig. 10 illustrates adapted grids of 6124 points with the corresponding phase-field solution for the regularization parameters

€=0.03, €=0.02 and € = 0.01.

0.5

0.4—

0.3

0.2 -

0.1

15 0

Fig. 9. Illustration of the uniform aspect ratio of the basis functions, despite the strong non-uniformity of the nodal spacing (discocyte solution, N = 6124,
grid 013).

Table 4
Relative error (%) measured in energy for the discocyte equilibrium shape and several values of the regularization parameter € and different uniform (Un) and
adapted (Ad) grids. The energy of the shape-interface model Egiscocyre = 9.12657 is used as reference.

# Nodes Grid €=0.03 € =0.025 €=0.02 €=0.015 €=0.01 € =0.007 € =0.005
6124 Ad 3.38 2.55 1.76 1.09 0.66 - -
12,271 Ad 3.34 2.49 1.69 1.11 0.62 0.57 -
24,597 Ad 3.37 2.51 1.69 1.12 0.63 - 0.43

296,344 Un 3.37 2.50 1.72 1.07 0.65 - -
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Table 5
Energies of the dumbbell equilibrium shape for several values of € and uniform and adapted grids of 6124 points. See Table B.6 for a description of the grids.
Reference energy from a sharp interface simulation: Egymppen = 8.71756.

ID # Nodes €=0.04 €=0.03 €=0.025 €=0.02 €=0.015 €=0.01
P1 6124 9.15559 - - - - -
P11 6124 9.16513 9.01027 8.93545 - - -
P12 6124 - 9.00358 8.92990 8.86381 8.80003 -
P13 6124 = B 8.92452 8.86090 8.80834 8.77909
P7 296,344 9.16512 9.00251 8.92706 8.86033 8.80628 8.77359

Fig. 10. Distribution of points and phase-field density for adapted grids of 6124 nodes (dumbbell equilibrium shape). The values of energy for each solution
are indicated in the Table 5.

5. Conclusions

We have proposed an adaptive meshfree Ritz-Galerkin method to numerically approximate phase-field models of bio-
membranes. We have shown the ability of the proposed method, based on local smooth non-negative approximants, to deal
directly with the high-order character of the equations. Furthermore, adaptivity is very natural for a meshfree method, and
proves essential to resolve the sharp features of the phase-field model at an affordable cost. We have shown that the adap-
tive method is able to resolve phase-field models with very small regularization parameter and numerically converge to the
sharp interface limit. The method proposed here combines the adaptive capabilities of C° finite elements, which nevertheless
require reformulating the fourth-order PDE as a system of second-order PDEs, hence introducing extra degrees of freedom,
with the simplicity of tensor product methods, which do not require reformulations of the model.

An important issue in the adaptive strategy is to avoid excessive variations of the nodal spacing. Otherwise, the resulting
meshfree basis functions can exhibit irregular features, which are difficult to integrate. CVT provides us with high quality
graded distributions of points by designing an appropriate heuristic density function, although it can be computationally
expensive. However, as discussed in a companion paper [27], in the proposed Lagrangian method for the dynamics of bio-
membranes in a viscous fluid, the CVT grid and its associated quadrature points and weights must only be computed once at
the beginning of the calculation, and has a negligible cost overall. Furthermore, the strategy to adapt the nodes is not essen-
tial to the proposed method and other algorithms, such as octree methods, are more suitable and efficient to locally refine
grids in 3D.

The calculations presented here are not practical in many situations of interest to assess the mechanics of vesicles and
biomembranes in general, as these display very large and sometimes abrupt shape changes as the control parameters are
changed. Locally refined grids impose very serious biases on the resolvable solutions, particularly when in a given optimi-
zation step, the system buckles to a distant equilibrium shape. In a companion paper [27] we present a Lagrangian method
to deal with the coupled fluid-membrane overdamped dynamics, which exploits the virtues of the method presented here as
the local refinement follows naturally with the Lagrangian flow the sharp features of the phase-field. This combination of
methods shows promise for robust, scalable computations of complex membrane systems in three dimensions.
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Appendix A. Derivatives for the optimization problem

In Section 3.2 we introduce a discretization for the continuum phase-field
N
¢(X) ~ d)h(xv (D) = Zpa(x)d)m
a=1

where p,(x) denote the meshfree maximum-entropy approximants and ® = (¢4, ¢, ..., ¢y) the array containing the N nodal
values of the phase-field. The gradient and the hessian of the phase-field follow as

Vo (x) = Vi (x, @) = ZVPa ¢, and Ho(x) ~ Hp,(x, @) = ZHPa

The problem posed in Eq. (1) also requires the calculation of the Laplacian of the phase-field, whose expression in Carte-
sian coordinates is A¢(X) =~ A¢y(X) = tr[H¢,(x, @)]. As we consider axisymmetric solutions, we use cylindrical coordinates,
which result in
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The calculation of the hessian of the Lagrangian and the augmented Lagrangian also requires the second derivatives of
Ep, Vi, An and My, with respect to ®
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0O,

After defining a new set of variables X = (®,v) = (¢, ¢,, ..., ¢y, Va, Vv, Vu), Where v denotes the set of Lagrange multipli-
ers, the gradient r(x) for the Lagrangian is given by

W, 3
L= —2DPaDy <E b + Co\/j)

F(%) = LX) = (D0 LX)L®),
where

o L(X) = OoEn(®) — Va0aAn(®) — VvdoVi(®) — VyOeMp(®)
and

NL(X) = [(An(®) — Ao)(Vi(®) — Vo) (My(®) — Mo)].
The hessian J(x) can be computed as

< o - 0000 L(X) O0pOyvL(X

I8) = 0k = 0x0,c) = [ ) WE]
where

0000 L(X) = 0000En(®) — Va0aOaAn(®) — VvOpdoVi(®) — VMOedoMy(P),

0Oy L(X) = [00An(®)0e Vi (P®)0oMi (D)),
and

0y00L(X) = [000yL(X)]".
The gradient f4(®, v) = doL4(®, v) and the hessian J4(®, V) = dpdoLa(®,v) of the augmented Lagrangian with respect to the
phase-field nodal values are

Mp(®) — My
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U
With the above expressions, the Newton-Raphson iterations follow directly,
~ -1

(Dnﬂ — (Dn _ [JA((DH, vn)] i‘/q(q)n7 V”)
in the first stage described in Section 3.2, and

~ ~ 3, ~ 71~ ~

xn+1 —X"— {J(X”)] I'(Xn)
in the second stage.

Appendix B. Progressive refinement of the grid

Table B.6 provides details about the progressive refinement of the grids presented in the paper. The adaptive process pro-
duces non-uniform nodal distributions. We use the nodal spacing as figure to measure the non-uniformity of a grid. The no-
dal spacing h, can be understood as the average distance from a specific node x, to the first ring of nearest neighbors x;,, and
it can be easily estimated with the information provided by the CVT. Indeed, as for a specific Voronoi cell Q, (associated to a
node x,) we know all its adjacent Voronoi cells Q, (and thus the first ring of nodes x;), a good estimation of h, can be ob-
tained by computing the average distance among the node x, and all its neighbors x,. The nodal spacing is also required
to compute the basis functions (see Section 3.1) and to determine the transition parameter €,,, as we explain later.

In Fig. B.11 we illustrate the histograms for the nodal spacing distribution of uniform and adapted grids of 6124 points
corresponding to the discocyte equilibrium shape (see Table B.6 for the features of each grid). To facilitate the comparison
between the different grids, we substract the nodal spacing of the uniform grid, i.e. h = 0.024, to the nodal spacing of all the
histograms. The top-left histogram corresponds to O1, and is strongly concentrated around zero because the grid is almost
perfectly uniform. The other three histograms show the nodal spacing distribution for the adapted grids 011, 012 and O13.
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Table B.6
Description of the uniform and adapted grids used in the calculations.
ID Grid # Nodes Features
01 Uniform 6124 h=0.024
011 Adapted 6124 CVT starting from grid O1, with f = 10, and ® for € = 0.04
012 Adapted 6124 CVT starting from grid 011, with f = 100, and ® for € = 0.03
013 Adapted 6124 CVT starting from grid 012, with f = 1000, and ® for € = 0.025
02 Uniform 12,271 h=0.017
021 Adapted 12,271 CVT starting from grid 02, with f = 10, and ® for € = 0.03
022 Adapted 12,271 CVT starting from grid 021, with f = 100, and ® for € = 0.025
023 Adapted 12,271 CVT starting from grid 022, with f = 1000, and ® for € = 0.015
03 Uniform 24,597 h=0.012
031 Adapted 24,597 CVT starting from grid 03, with f = 10, and ® for € = 0.03
032 Adapted 24,597 CVT starting from grid 031, with f = 100, and @ for € = 0.015
o7 Uniform 296,344 h =0.0034
P1 Uniform 6124 h=0.024
P11 Adapted 6124 CVT starting from grid P1, with f = 10, and @ for € = 0.04
P12 Adapted 6124 CVT starting from grid P11, with f = 100, and ® for € = 0.03
P13 Adapted 6124 CVT starting from grid P12, with f = 1000, and ® for € = 0.025
P7 Uniform 296,344 h =0.0034
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Fig. B.11. Histograms of the nodal spacing distribution for different grids of 6124 points (discocyte equilibrium shape). The histograms are centered in
h =0.024 and correspond to grids O1 (top-left), 011 (top-right), 012 (bottom-left) and 013 (bottom-right).

Note that the distributions exhibit two peaks, one associated to the smallest nodal spacing and the other to the largest one.
The location and amplitude of these peaks change as the adaptivity algorithm concentrates further the nodes in a thin region
near the interface (see Fig. 7). The peak of the left increases its magnitude and becomes narrower, which means that the
smallest nodal spacing decreases and a larger fraction of the nodes is in the refined region. The peak of the right decreases
its magnitude and becomes widespread, as fewer nodes suffice to describe the coarse region. The value of €, that a given
grid can resolve is computed from the criterion €m;, > 2hn,, Where hy,;, is the nodal spacing of the left peak.
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