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Embedded boundary methods alleviate many computational challenges, including those 
associated with meshing complex geometries and solving problems with evolving domains 
and interfaces. Developing model reduction methods for computational frameworks 
based on such methods seems however to be challenging. Indeed, most popular model 
reduction techniques are projection-based, and rely on basis functions obtained from 
the compression of simulation snapshots. In a traditional interface-fitted computational 
framework, the computation of such basis functions is straightforward, primarily because 
the computational domain does not contain in this case a fictitious region. This is not 
the case however for an embedded computational framework because the computational 
domain typically contains in this case both real and ghost regions whose definitions 
complicate the collection and compression of simulation snapshots. The problem is 
exacerbated when the interface separating both regions evolves in time. This paper 
addresses this issue by formulating the snapshot compression problem as a weighted low-
rank approximation problem where the binary weighting identifies the evolving component 
of the individual simulation snapshots. The proposed approach is application independent 
and therefore comprehensive. It is successfully demonstrated for the model reduction of 
several two-dimensional, vortex-dominated, fluid–structure interaction problems.

© 2014 Elsevier Inc. All rights reserved.

1. Introduction

Two common computational frameworks for the solution of problems with evolving domains and interfaces are the 
Arbitrary Lagrangian Eulerian (ALE) [1–4] and Embedded Boundary Method (EBM) frameworks. In an ALE framework, the 
computations are performed on an interface-fitted mesh which is deformed using a mesh motion algorithm [5–7] to follow 
the evolution of the interface. In an EBM framework, the interface is embedded in a background mesh — also called an 
embedding mesh — and allowed to intersect it as it evolves [8–11]. In the latter case, the interface separates the com-
putational domain in two regions: a “ghost” (or fictitious) region usually associated with the volume delimited by the 
embedded interface (boundary, or body), and a “real” region usually associated with the remainder of the computational 
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domain. Both computational frameworks have advantages and shortcomings. An ALE framework is particularly advantageous 
for problems where the evolution of the interface is characterized by small-amplitude motions and deformations. An EBM 
framework is often indispensable for problems where the interface undergoes large-amplitude motions and deformations, 
and/or topological changes.

Irrespectively of the chosen framework however, the computational cost of high-fidelity simulations of problems with 
evolving domains and interfaces can be prohibitive. For this reason, interest in Model Order Reduction (MOR) methods 
continues to grow [12–17,19–24]. Most of these methods are projection-based. Therefore, they rely on the computation of 
suitable basis functions. Typically, these are constructed by computing solution snapshots of some instances of the family 
of problems of interest and compressing them using the Proper Orthogonal Decomposition (POD) or Singular Value De-
composition (SVD) method. In an interface-fitted framework, this computation is straightforward because the computational 
domain does not contain a ghost region. In an EBM framework however, this computation is complicated by the presence 
of a ghost region where the solution snapshots may or may not be populated, and in the latter case, the populated values 
may or may not have a physical meaning. The situation is further exacerbated when the interface evolves in time, as in this 
case the partitioning into meaningful and meaningless components of the collected snapshots also evolves in time, which 
complicates further the compression of the collected snapshots.

Therefore, the main objective of this paper is to propose an effective method for the compression of solution snapshots
collected during the simulation of problems with evolving domains and interfaces using an EBM, in view of enabling the 
projection-based reduction of high-fidelity embedded boundary computational models. This method consists of formulating 
the data compression problem as a weighted low-rank matrix approximation problem, where the weighting is binary and 
identifies the ghost/real partition of the individual snapshots. Therefore, the basis functions derived using this approach are 
optimal for the real component of the partition of the computational domain.

The weighted low-rank approximation problem formulated in this paper is pervasive. It can be found, for example, in:

• Computer vision applications with occlusion.
• Signal processing applications with irregular measurements in time and space.
• Control problems with malfunctioning measuring devices.

This problem is a generalization of the popular compressed sensing problem [28,29]. It also shares many similarities with 
the matrix completion problem [30–33]. For all these reasons, many algorithms for the solution of this problem are readily 
available (for example, see [25–27]).

Whereas the approach outlined above for compressing solution snapshots computed by an EBM in view of constructing a 
reduced-order basis suitable for model reduction is application independent and therefore quite general, it is developed and 
demonstrated in the remainder for this paper for Fluid–Structure Interaction (FSI) problems. To this effect, the remainder of 
this paper is organized as follows.

In Section 2, the main notation used in this paper is laid out to facilitate its reading. In Section 3, a general EBM 
framework for Computational Fluid Dynamics (CFD) is overviewed, and the standard projection-based MOR approach is 
recapitulated. In Section 4, the proposed method for compressing CFD snapshots computed by an EBM is introduced. In 
Section 5, this method is applied to three different FSI problems. Finally in Section 6, conclusions are offered and prospects 
for future work are summarized.

2. Notations and definitions

Throughout this paper, matrices are denoted by bold capitals (ex. A), vectors by bold lower case (ex. a), and subscripts 
identify rows and columns (for example, Ai, j is the entry at the i-th row and j-th column of matrix A). The “colon” notation 
is used to specify columns or rows of a matrix (for example A:, j denotes the j-th column and A1:n,: denotes the first n rows 
of matrix A). In and 0n denote the n × n identity and null matrices, respectively.

For two matrices A and B of equal dimension m × n, the Hadamard product A � B is the matrix of the same dimension 
whose elements are given by

(A � B)i, j = Ai, j · Bi, j (1)

If A is an m × n matrix and B is a p × q matrix, the Kronecker matrix product A ⊗ B is the mp × nq block matrix

A ⊗ B =
⎡⎢⎣ A1,1 B · · · A1,n B

...
. . .

...

Am,1 B · · · Am,n B

⎤⎥⎦ (2)

The operator vec(A) denotes the vectorization of the matrix A formed by stacking the columns of A into a single column 
vector

vec(A) =
⎡⎢⎣ A:,1

...

A

⎤⎥⎦ (3)
:,m
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Fig. 1. Generic setting of an EBM for a generic FSI problem and discretization (the circles filled in black are referred to as “real” nodes, whereas the empty 
ones are referred to as “ghost” nodes).

For a vector x of dimension n, the operator diag( ) returns the n × n diagonal matrix

diag(x) =
⎡⎢⎣ x1 · · · 0

...
. . .

...

0 · · · xn

⎤⎥⎦ (4)

For a matrix A that is m × n, the operator diag( ) returns the diagonal mn × mn matrix

diag(A) =
⎡⎢⎣ diag(A:,1) · · · 0n

...
. . .

...

0n · · · diag(A:,m)

⎤⎥⎦ (5)

The standard Euclidean norm of a vector x and Frobenius norm of a matrix A are denoted by ‖x‖2 and ‖A‖F , respectively, 
and defined as follows

‖x‖2 =
(

n∑
i=1

x2
i

) 1
2

, ‖A‖F =
(

n∑
i=1

m∑
j=1

A2
i, j

) 1
2

(6)

Two of the applications considered in this paper involve compressible flows governed by the Navier–Stokes equations. In 
this case, the fluid state vector is denoted by w , and the fluid pressure, density, and velocity magnitude are denoted by p, 
ρ , and u, respectively. The free-stream conditions are designated by the subscript ∞.

3. Reduction of embedded boundary models

In this work, FSI problems are considered as a vehicle to explain the snapshot compression method proposed for con-
structing a Reduced-Order Basis (ROB) suitable for the nonlinear reduction of embedded boundary models. It is stressed 
however that this method is general. In principle, it applies to any EBM framework designed for solving any computational 
problem. Before presenting this method in Section 4 however, the stage is set here by describing the generic problem of 
interest, and its reduction process.

3.1. Generic nonlinear fluid–structure interaction problem

Consider the problem of computing an unsteady compressible flow around a rigidly moving body B(t) contained in a fixed
region Ω ⊂ R

d (d = 2, 3). A representative geometry of this problem is illustrated in the left part of Fig. 1. Assume that the 
boundary Γ and fluid/body interface ∂ B are equipped with the appropriate boundary and fluid–structure transmission con-
ditions, respectively. In an EBM framework, a background Eulerian mesh is typically used to discretize the global domain Ω . 
The nodes of this mesh that are occluded by B(t) at time t are usually referred to as “ghost” nodes; the others are referred 
to as “real” nodes. A semi-discretization on this mesh of the Navier–Stokes equations governing the fluid subsystem yields 
a set of nonlinear ordinary differential equations (ODEs) which can be written as

dw

dt
+ f (w) = 0 (7)

where t denotes time, w(t) ∈ R
cN , c is the number of fluid variables per mesh node, N denotes the total number of mesh 

nodes, and f : RcN → R
cN denotes a nonlinear function of w that represents the convective and diffusive fluxes.
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Without any loss of generality, it is assumed throughout the remainder of this paper that Eq. (7) is discretized in time 
using an implicit linear multistep scheme. Hence, if t0 = 0 < t1 < · · · < tNt = T denotes a discretization of the time interval 
[0, T ] and wn ≈ w(tn), n ∈ {1, · · · , Nt}, the discrete counterpart of Eq. (7) at time-step n ∈ {1, · · · , Nt} is

R
(

wn) =
s∑

j=0

α j wn− j +
s∑

j=0

β j f
(

wn− j) = 0 (8)

where s is the order of accuracy of the chosen time-integrator and α j and β j are two constants that characterize it.
In an EBM framework for CFD, the fluid–structure transmission conditions require special attention because the fluid/-

body interface ∂ B does not coincide in general with the nodes of the background mesh. Over the years, a large number 
of different boundary treatment schemes has been developed for addressing this issue (for example, see [9] and [38] for a 
review of this and related issues). This is noteworthy because the method proposed in this paper for compressing solution 
snapshots computed by EBMs based on these schemes is actually independent of them.

3.2. Nonlinear model reduction

In a projection-based MOR method, the state vector wn ∈R
cN is approximated in a global affine trial subspace as follows

wn ≈ w̃ := w0 + U an (9)

where U ∈ R
cN×k is a matrix whose columns contain the basis of this subspace, k � cN is the reduced dimension, an ∈ R

k

denotes the generalized coordinates in this basis at time tn , and w0 is the initial condition. Substituting Eq. (9) into Eq. (8)
yields R(w0 + U an) = 0, which represents an overdetermined system of cN equations with k unknowns. Consequently, the 
residual is projected onto a test subspace represented by Φ ∈ R

cN×k , yielding the square system ΦT R(w0 + U an) = 0. In a 
Galerkin projection, Φ = U . In a least-square projection, Φ = J U [17], where J :,i = ∂ R(w0 + U an)/∂an

i is the Jacobian of 
R(w0 + U an) (8) with respect to a. In either case, the vector of generalized coordinates is then obtained by solving a square 
system of nonlinear equations using Newton’s method or a preferred variant.

Computing the vector of generalized coordinates an using a least-squares projection approach is equivalent to solving at 
each time-step the minimization problem [17]

min
an

∥∥R
(

w0 + U an)∥∥
2 (10)

For nonlinear, non self-adjoint problems such as those represented in this case by the set of ODEs (7), this approach is 
more robust than its Galerkin counterpart. Hence, its application in the context of an EBM framework is given here further 
attention.

Since only a portion of the Eulerian computational domain corresponds to the real flow region, minimizing the norm of 
the global residual vector R(wn) — that is, including its ghost component — is neither necessary nor convenient. Instead, 
let mn ∈ {0, 1}cN denote a binary vector identifying the fluid/body — or more generally, the ghost/real — partition of the 
computational domain at time tn

mn
i =

{
1, if i ∈ Ω\B(tn)

0, if i ∈ B(tn)
(11)

The idea here is that at each time-step, the norm of only the real component of R(wn) — that is, that associated with 
the real flow region — needs to be minimized to obtain the vector of generalized coordinates an needed to determine 
the Reduced-Order Model (ROM) approximation (9). In other words, the idea here is that in the context of an EBM, the 
minimization problem (10) can be reformulated as

min
an

∥∥mn � R
(

w0 + U an)∥∥
2 (12)

Eq. (12) above is a nonlinear equation. Therefore, it must be solved iteratively using, for example, the Gauss–Newton 
method, which can be summarized as

for i = 1, . . . , p solve

min
�a(i)

∥∥mn � (
J (i)U�a(i) + R

(
U an,(i)))∥∥

2 (13)

where the superscript (i) designates the i-th iteration, �a(i) is the increment of the sought-after solution at the i-th Gauss–
Newton iteration, and p is determined by a convergence criterion.

Eq. (13) constitutes a k-dimensional Gauss–Newton ROM of the High-Dimensional Model (HDM) — that is, the high-
fidelity CFD model — represented here by Eq. (7). The normal equations associated with Eq. (13) can be written as(

J (i)U
)T

diag
(
mn) J (i)U�a(i) = −(

J (i)U
)T

diag
(
mn)R

(
U an,(i)) (14)

where the superscript T denotes the transpose.
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In any case, whether a Galerkin or least-squares approach is chosen for determining the vector of generalized coordi-
nates an , the time-invariant ROB U must be first determined. In MOR applications, basis functions are usually constructed 
from solution snapshots. These snapshots are collected, assembled into a matrix, and compressed using, for example, SVD. 
In an interface-fitted computational framework, this computation is straightforward because the computational domain does 
not contain a ghost region. In an EBM framework however, this computation is complicated by the presence and evolution 
of a ghost/real partition of the computational fluid domain. In the following section, a method for constructing optimal fluid 
basis functions from snapshots computed by an EBM is presented.

3.3. Computational speed-up

Solving Eq. (14) requires the computation of the projection of high-dimensional vectors and matrices on the ROB U . 
The complexity of this computation scales with the size of the HDM, cN . Therefore, while MOR reduces the size of the 
computational model from cN to k, part of the computational cost associated with solving the reduced problem still scales 
with the size of the HDM. For general nonlinear systems,3 an additional level of approximation is required to achieve the 
desired speed-up. During the last decade, several methods, occasionally referred to as “hyper reduction” methods, have 
been developed for reducing the computational complexity of projection-based ROMs [16,18,22]. The proposed method for 
the compression of solution snapshots collected during the simulation of problems with evolving domains and interfaces 
using an EBM is independent of the target projection-based MOR method. In particular, it is extendible to hyper reduction 
methods, but such an extension is beyond the scope of this paper.

4. Construction of a reduced-order basis for an embedded boundary model

This section is organized in three parts. First, the concepts of solution snapshots and a snapshot matrix are recalled. 
Then, the problem of constructing an optimal ROB for embedded boundary models is formulated as a weighted low-rank 
matrix approximation problem. Finally, an efficient iterative scheme for solving this problem is specified.

4.1. Eulerian snapshots

A solution snapshot, or simply a snapshot, is defined here as a state vector wn ∈ R
cN computed as the solution of 

Eq. (8) for some instance of its parameters — that is, for some specific time tn or specific value of the set of flow pa-
rameters or boundary/initial conditions underlying this governing equation — on the background Eulerian mesh discretizing 
the domain Ω . A snapshot matrix is defined as a matrix X ∈ R

cN×K (K > k) whose columns are individual snapshots. 
For all practical purposes, the main focus of this paper is on unsteady flows and on snapshots associated with different 
time-instances tm . Hence, X:,i := w i for i = 1, · · · , K .

Because the proposed method for computing an ROB for an embedded boundary model does not utilize information 
from the occluded region of the computational domain, the ghost components of these snapshots can take arbitrary values. 
Consequently, the proposed method, which is described below, is independent of the specifics of the EBM framework used 
to generate the snapshots.

4.2. Weighted low-rank matrix approximation problem

Constructing basis functions from snapshots in the spirit of the POD method — that is, using data compression — can be 
formulated mathematically as a low-rank matrix approximation problem as follows.

For a given snapshot matrix X ∈ R
cN×K , find a lower rank matrix X̃ ∈ R

cN×K that solves the minimization problem

min
rank(X̃)=k

‖X − X̃‖F (15)

where k � cN . In this problem, the rank constraint can be taken care of by representing the unknown matrix as X̃ = U V , 
where U ∈ R

cN×k and V ∈ R
k×K , so that problem (15) becomes

min
U∈RcN×k,V ∈Rk×K

‖X − U V ‖F (16)

It is well-known that the solution of the above low-rank approximation problem is given by the SVD of X : specifically, 
U = U∗

:,1:k and V = (ΣV ∗T)1:k,: where X = U ∗ΣV ∗T.
Unfortunately, when the snapshot matrix X is generated using an EBM framework, the solution outlined above cannot be 

expected to yield an optimal ROB. This is because: (a) the snapshots computed using an EBM contain information from both 
the flow (or real) region of the computational domain and its occluded (or ghost) region, and (b) this data inconsistency 

3 For linear, time-invariant systems and nonlinear systems with polynomial nonlinearities, all projection coefficients can be precomputed off-line.
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is not accounted for in the standard low-rank matrix approximation problem (15). Hence, this issue is resolved here by 
proposing the alternative weighted low-rank matrix approximation problem

min
U∈RcN×k,V ∈Rk×K

∥∥M � (X − U V )
∥∥

F (17)

where M ∈ {0, 1}cN×K is a binary mask matrix identifying the ghost/real partition of the snapshot matrix

M := [
m0 m1 · · · mK

]
(18)

where ml has already been defined in (11). This binary weighting ensures that the values of w at the ghost nodes do not 
play a role in the construction of the basis functions, which in turn implies that the derived basis functions are optimal for 
the real components of the snapshots associated with Ω\B .

In the general case (i.e. rank(M) > 1), the weighted low-rank approximation problem formulated above is not reducible 
to the un-weighted problem. Therefore, its solution is not given by the SVD factorization of the snapshots.4 Furthermore, 
no closed form solution of this problem is known. Hence, it must be solved by numerical iterations. In this work, the 
Alternating Least Squares (ALS) algorithm is chosen for this purpose. This algorithm is the most widely applicable and 
empirically successful approach for solving this and related problems [27,34,35].

4.3. Alternating least squares algorithm

The ALS algorithm takes advantage of the bi-linearity of the representation X̃ = U V . Using the connection between the 
Frobenius and Euclidean norms and the notation for the Kronecker matrix product (2), problem (17) can be re-written as

min
U∈RcN×k,V ∈Rk×K

∥∥M � (X − U V )
∥∥

F

⇔ min
U∈RcN×k,V ∈Rk×K

∥∥diag(M)
(
vec(X) − vec(U V )

)∥∥
2 (19a)

⇔ min
U∈RcN×k,V ∈Rk×K

∥∥diag(M)
(
vec(X) − (I K ⊗ U )vec(V )

)∥∥
2 (19b)

⇔ min
U∈RcN×k,V ∈Rk×K

∥∥diag(M)
(
vec(X) − (

V T ⊗ I cN
)
vec(U )

)∥∥
2 (19c)

Problem (19b) is a linear least-squares problem for V if U is known. Problem (19c) is a linear least-squares problem for V
if U is known. This suggests the following simple iterative solution procedure:

1. Guess U ∈R
cN×k (for example, initialize U as the first k left-singular vectors of X )

2. Repeat until convergence
(a) Solve problem (19b) for V ∈ R

k×K given U ∈ R
cN×k

(b) Solve problem (19c) for U ∈R
cN×k given V ∈ R

k×K

A more detailed outline of the above algorithm is given in Algorithm 1, where the stopping criterion has been omitted 
for the sake of brevity (see [36,37] for a discussion of this topic):

Algorithm 1 Alternating least squares algorithm for the solution of the weighted low-rank approximation problem.
Input: Data matrix X ∈R

cN×K and weighting matrix M ∈R
cN×K

Output: Locally optimal solution [U (i), V (i)] of problem (17)
1: Populate the ghost entries of the snapshot matrix X with zeros
2: Compute the SVD of the snapshot matrix: X = U ∗ΣV ∗T

2: Initialize: U (0) = U∗
:,1:k

3: for i = 1, 2, . . . until convergence do
4: Solve problem (19b), i.e. evaluate

vec
(
V (i)) = (

diag(M)
(

I K ⊗ U (i)))+
diag(M)vec(X)

5: Solve problem (19c), i.e. evaluate

vec
(
U (i+1)

) = (
diag(M)

(
V (i)T ⊗ I cN

))+
diag(M)vec(X)

6: end for

The superscripts of U and V in Algorithm 1 designate an ALS iteration. The computational cost of this algorithm is 
roughly k times the computational cost of a single thin SVD of the snapshot matrix times the number of iterations for 

4 The weighted low-rank matrix approximation problem is reducible to the un-weighted problem only for the special case where rank(M) = 1; see Ap-
pendix B for details.
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convergence — that is, O(cNk2 p), where p denotes the performed number of iterations. In Section 5, it is shown that in 
general, p = 1 suffices to obtain good results. The convergence of this algorithm is monitored using the normalized weighted 
projection error

e(i) := ∥∥M � (
X − U (i)V (i))∥∥2

F

/‖M � X‖2
F (20)

This error is guaranteed to decrease monotonically to a local minimum [36,37].
A MATLAB implementation of Algorithm 1 is provided in Appendix A.

5. Applications

Three FSI problems are considered here to illustrate the method proposed in this paper for constructing basis functions 
suitable for the nonlinear model reduction of embedded boundary models, and demonstrate its features and performance. 
The first one is a simple one-dimensional model problem based on Burgers’ equation. It has the merit of illustrating the 
basic idea and being easily reproducible by the interested reader. The second problem focuses on the prediction of a two-
dimensional unsteady viscous flow around a cylindrical body in large-amplitude heaving motion. Because this problem is 
formulated in an unbounded fluid domain, it is also solvable using an interface- (or body-) fitted ALE framework. Hence, 
it offers a venue not only for assessing the intrinsic performance of the proposed method for constructing a suitable ROB 
for an embedded boundary model that is more representative than that of the previous example, but also assessing the 
performance of the resulting nonlinear ROM relative to that of a counterpart ROM constructed using a body-fitted computa-
tional framework. The third problem focuses on the solution of a two-dimensional unsteady turbulent flow inside a square 
cavity containing a rotating ellipsoidal body. In this case, the large-amplitude motion of B(t) challenges the robustness if 
not feasibility of a body-fitted ALE framework and calls instead for an EBM framework. Hence, this third problem highlights 
the need for and demonstrates the performance of the computational methodology proposed in this paper.

For each FSI problem outlined above, the governing (fluid) equations are semi-discretized using the central finite differ-
ence method. They are discretized in time using the backward Euler implicit scheme with a constant time-step �t chosen 
so that B(t) does not travel more than one layer of nodes during this time-step. The Newton method is used to solve all 
nonlinear equations arising from the implicit time-discretization.

Whenever the flow problem of interest is solved using a body-fitted ALE framework, an ROB for this problem is con-
structed by computing K snapshots of the solution at different time instances tn , then compressing them using the SVD. In 
this case, the nonlinear ROM of interest is generated using the GNAT method [17,22] based on a least-squares projection.

On the other hand, whenever an EBM framework is used to solve the flow problem of interest, an ROB for this problem 
is constructed by computing K snapshots of the solution at different time instances tn , and compressing them using the 
ALS algorithm described in Algorithm 1. In this case, the nonlinear ROM of interest is constructed using a variant of the 
same GNAT method where at each time-step, the vector of generalized coordinates is computed by solving (12).

5.1. One-dimensional fluid–structure model problem based on the viscous Burgers equation

First, the following one-dimensional FSI problem based on the viscous Burgers equation, a periodic boundary condi-
tion for the fluid subsystem, and non-homogeneous Dirichlet boundary conditions for the body subsystem in lieu of the 
fluid–structure transmission conditions is considered⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

∂ w

∂t
+ w

∂ w

∂x
= 1

Re

∂2 w

∂x2
, (x, t) ∈ [0,1] × [0,2]

w(x,0) = 0

w(0, t) = w(1, t)

w
(
ξ(t), t

) = w
(
ξ(t) + 0.1, t

) = sin(2πt)

(21)

where Re is a Reynolds-like number and is set to Re = 500, and

ξ(t) = (1 − 0.1)/2 + 0.1 sin(2πt) (22)

The above initial boundary value problem models a flow problem in an unbounded, one-dimensional, fluid domain in the 
middle of which a rigid, linear body B of length 0.1 is placed and set into the oscillatory harmonic motion characterized by 
the amplitude 0.1, frequency 2π , and velocity dξ/dt = 0.2π cos(2πt). At each time t , x = ξ(t) defines the position of the left 
extremity of B(t), and x = ξ(t) + 0.1 defines the position of its right extremity. Hence, this problem is a one-dimensional 
instance of the generic FSI problem discussed in Section 3.1.

The simplicity of problem (21) is such that it can be solved using both an ALE framework on a moving mesh, and an 
EBM framework on a fixed mesh. Hence, both frameworks are considered here, primarily for the purpose of comparisons. 
In both cases, Eq. (21) is discretized on a uniform Cartesian mesh with �x = 0.001 (N = 1000 nodes).

Specifically, due to the unbounded fluid domain assumption and the periodic fluid boundary condition, the body-fitted 
ALE framework considered here for the solution of problem (21) is equipped with a rigid motion of the mesh that is 
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Fig. 2. EBM framework for the solution of the one-dimensional FSI problem based on the viscous Burgers equation.

Fig. 3. Solution of the one-dimensional FSI problem based on the viscous Burgers equation.

identical to that of B(t). As for the considered EBM framework, it is equipped with a first-order ghost fluid scheme where 
the ghost values of w are populated at each time-instance tn = n�t only at the two ghost fluid nodes that are the nearest to 
the left and right boundaries of B(tn), using the same value wn = sin(2πn�t). This EBM framework is illustrated in Fig. 2, 
where the circles filled in black represent the real nodes, the empty ones represent the ghost fluid nodes, and the empty 
squares designate the subset of ghost fluid nodes whose ghost fluid values are populated. Both computational frameworks 
deliver the same HDM solution which is graphically depicted in Fig. 3.

For each of the body-fitted ALE and EBM models, three ROBs of dimension k = 10, 20, and 40 are constructed using 
K = 2000 snapshots of the solution of problem (21), and three corresponding nonlinear ROMs are generated.

Fig. 4(a) reports on the convergence of the ALS algorithm using the normalized weighted projection error (20). It il-
lustrates a well-known property of this algorithm, namely, its guarantee to deliver a monotonic convergence to a local 
minimum. Fig. 4(b) reports on the variation with the ROM dimension k of the EBM ROM error e(i)

ROM defined as

e(i)
ROM := ∥∥M � (

X − U (i) A
)∥∥2

F

/‖M � X‖2
F (23)

where X ∈R
N×K is the matrix of snapshot solutions of problem (21), U (i) ∈R

N×k is the ROB computed at the i-th iteration 
of the ALS algorithm, and A ∈ R

k×K is the matrix of generalized coordinates of the approximate solutions associated with 
U (i) and can be written as

A := [
a0 a1 · · · aK

]
(24)

— that is, each j-th column of the matrix product U (i) A is the EBM ROM solution of problem (21) at time t j = j�t , based 
on the ROB U (i) computed at the i-th iteration of Algorithm 1.

At the initial (0-th) ALS iteration, the ROB U (0) is constructed by performing the SVD directly on EBM solution snapshots 
where the ghost values of the solution — that is, the values of this solution at the occluded mesh nodes — are populated 
with zeros. As shown in Fig. 4(b), this approach — referred to here as the “naive approach” — delivers a poor performance, 
which illustrates the need for an alternative method for constructing EBM ROBs. Fig. 4(b) also reveals that a single ALS 
iteration significantly improves the computed EBM ROM solution. The results reported in Fig. 4(b) also show that after a 
single ALS iteration, the constructed EBM ROMs deliver already a comparable accuracy to that of the body-fitted ALE ROMs 
of same dimensions.

Fig. 5 displays the convergence of the EBM ROM solutions at t = 1.5 for U = U (1) , and contrasts these solutions with 
their counterparts obtained using the body-fitted ALE ROMs of same dimensions. The reader can observe that both types 
of ROMs exhibit comparable convergence behavior and accuracy, thereby demonstrating the effectiveness of the proposed 
method for constructing suitable EBM ROBs.
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Fig. 4. Convergence of the ALS algorithm and associated EBM ROM solutions for the model FSI problem based on the viscous Burgers equation: k = 10
(circles), k = 20 (squares), k = 40 (asterisks).

5.2. Two-dimensional fluid–structure interaction problem in an unbounded fluid domain

Next, the simulation of a compressible viscous flow around a heaving rigid cylindrical body B(t) with a circular cross 
section of radius r = 0.5 is considered. The fluid is assumed to be a perfect gas with the ratio of specific heats γ = 1.4
and is modeled using the two-dimensional compressible Navier–Stokes equations. The cylinder is assumed to be infinitely 
long, and therefore the flow is effectively modeled as a two-dimensional problem around a disk. The physical fluid domain 
is assumed to be unbounded, but the computational fluid domain is bounded by a square of edge length equal to 80r = 40
as shown in Fig. 6. The free-stream Mach number is set to M∞ = 0.5, the Reynolds number based on the cylinder diameter 
to Re = 200, and the Prandtl number to Pr = 0.72.

The center of the disk representing B(t), O , is set into the vertical sinusoidal motion

yO (t) = 2r sin(t) = sin(t) (25)

where yO denotes the y abscissae of O . Hence, the total center-to-center displacement of B(t) is 4r = 2, which is a 

relatively large displacement. Yet, because the fluid domain is also unbounded in this case, and because B is rigid, the FSI 
problem outlined above can be reliably solved by a body-fitted ALE framework where the CFD mesh is rigidly moved to 
follow the vertical oscillations of B(t).

Hence, two similar but strictly speaking different meshes are constructed for discretizing the spatial domain shown in 
Fig. 6. The first mesh is designed for the EBM framework. It is non-uniform, has 256 × 256 = 65,536 elements whose size 
in the vicinity of the cylindrical body is uniform and at its finest is characterized by �xmin = �ymin = 0.02 · r, and embeds 
the circular body B(t). The second mesh is similar except for the fact that it is a body-fitted mesh.

The EBM for CFD used for solving this FSI problem is illustrated in Fig. 7, where the real fluid nodes are shown as 
solid circles and the ghost fluid nodes as empty circles. The kinematic transmission condition (or adherence condition) on 
the fluid/body interface is enforced using a first-order ghost-fluid scheme. At each time-step, the ghost fluid values at the 
ghost fluid nodes that are the nearest to the fluid/body interface (these are identified by squares in Fig. 7), are populated as 
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Fig. 5. EBM ROM vs. ALE ROM solutions at t = 1.5 for the model FSI problem based on the viscous Burgers equation: reference HDM solution (solid), ROM 
solution (dashed).

Fig. 6. FSI problem with a heaving cylindrical body.

Fig. 7. EBM framework for the FSI problem with a heaving cylindrical body: populating the ghost fluid values.
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Fig. 8. Computational snapshots for the FSI problem with a heaving cylindrical body obtained using an EBM.

follows. The ghost fluid velocities at these nodes are set to the velocity of the immersed body B(t). The ghost fluid pressures 
and densities at these same nodes are computed by constant extrapolation of their counterparts at the nearest neighboring 
real fluid nodes. On the other hand, the ghost fluid values at all other ghost nodes, which are labeled “G” in Fig. 7, are 
not populated. At the end of each computational time-step, the fluid state vector at the “transitional” nodes (labeled “T” in 
Fig. 7) — that is, the nodes whose status switches from ghost to real — are populated using the ghost fluid values at these 
nodes from the previous time-step. A snapshot of the vorticity and pressure fluctuations computed using this EBM HDM are 
shown in Fig. 8.

First, a pair of unsteady simulations are performed for t ∈ [0, 20] using the body-fitted ALE and EBM frameworks outlined 
above, in order to generate in each case K = 1000 snapshots for model reduction. Then, ROBs and nonlinear ROMs are 
constructed as outlined above.

Fig. 9(a) reports on the convergence of the ALS algorithm using the projection error e(i) (20). As expected, this error 
decreases monotonically.

For this problem, the ROM error is assessed using the relative error in the lift coefficient measured in the L2 norm for 
the time interval t ∈ [0, 20]

e(i)
L := ∥∥CCFD

L − CROM
L

∥∥
2

/∥∥CCFD
L

∥∥
2 (26)

where CL := F y/
1
2 ρu2∞d and ρu2∞d = 1. This error is reported in Fig. 9(b). As before, the ROB U (0) obtained at the 0-th 

iteration of the ALS algorithm is computed using the so-called naive approach. Fig. 9(b) shows that as expected, the non-
linear ROM constructed using this ROB performs poorly. However, after only one ALS iteration, the ROM constructed using 
the ROB U (1) delivers a good performance. The results reported in Fig. 9(b) also demonstrate that after a single ALS itera-
tion, the generated EBM ROMs deliver an accuracy that is comparable to that of their ALE ROM counterparts of the same 
dimensions.

Fig. 10 displays the evolution of the instantaneous coefficients of lift and drag, CL and C D , where C D := Fx/
1
2 ρu2∞d

and ρu2∞d = 1. The solid curves correspond to computations performed using the EBM HDM, whereas the dashed curves 
correspond to counterparts performed using the constructed nonlinear ROMs (and a single iteration of the ALS algorithm 
in the case of the EBM ROMs). The reader can observe that, as expected, the solutions predicted using both sets of ROMs 
exhibit comparable accuracies and converge to their counterparts obtained using the EBM HDM.
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Fig. 9. Convergence of the ALS algorithm and associated EBM ROM solutions for the FSI problem with a heaving cylindrical body: k = 10 (circles), k = 20
(squares), k = 40 (asterisks).

5.3. Two-dimensional turbulent fluid–structure interaction problem in a cavity

Finally, the two-dimensional computation of a viscous flow inside a square cavity with a rotating ellipsoidal body is 
considered here. Specifically, the objective is to predict the flow past the ellipsoidal body during the time interval in which 
it rotates a full 360 degrees. This FSI problem with large-amplitude displacements and rotations is chosen because unlike the 
previous two problems, it cannot be solved using a body-fitted ALE framework without some form of repeated remeshing 
to avoid mesh entangling. Hence, it is representative of a large family of FSI problems for which the EBM framework is 
preferred, if not essential. The geometry of this problem is illustrated in Fig. 11.

Again, the fluid is modeled as a perfect gas with the ratio of specific heats γ = 1.4. The Reynolds number based on the 
ellipse tip is set to Re = 200 and the Prandtl number to Pr = 0.72. The flow is assumed to be initially quiescent.

The square domain is discretized using a uniform Cartesian grid with 256 × 256 elements. The same EBM outlined for 
the previous FSI problem with a heaving cylindrical body is applied to its solution. Computational snapshots of the vorticity 
contours obtained using the EBM HDM and three different EBM ROMs of dimensions varying between k = 10 and k = 40 are 
illustrated in Fig. 12. All EBM ROMs are constructed with an ROB U (1) obtained using a single iteration of the ALS algorithm.

As in the previous two cases, the EBM ROM solution is shown to converge to its EBM HDM counterpart when the 
dimension k of the ROM is increased. In particular, the reader can observe in Fig. 12(c) that the vorticity field predicted by 
the EBM ROM of dimension k = 20 reproduces remarkably well that obtained using the EBM HDM. For k = 40, the vorticity 
fields predicted by the EBM ROM and EBM HDM are almost indistinguishable, thereby demonstrating the effectiveness of 
the proposed method for constructing ROBs and ROMs for embedded boundary models.

5.4. Robustness with respect to parameter variations

The performance of each basic ROM discussed in this section was assessed for the reproduction of its HDM train-
ing simulation from which the ROB functions were constructed. It is well-known that in general, the quality of such 
a basic ROM is poor outside the underlying training simulation. Building parametrically robust ROMs requires solution 
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Fig. 10. Predicted lift and drag coefficients (bottom and top lines, respectively) for the model FSI problem with a heaving cylindrical body: HDM (solid), 
ROM (dashed).

Fig. 11. FSI problem with a rotating ellipsoidal body.

snapshots that adequately span the parameter space of interest and therefore multiple training inputs. One popular ap-
proach for addressing this issue relies on the adoption of a greedy algorithm and a computationally efficient error 
indicator for sampling the parameter space [39,40]. The proposed method for compressing solution snapshots collected 
during the simulation of problems with evolving domains and interfaces using an EBM is independent of the parameter 
sampling strategy. Therefore, it is applicable to any MOR method aimed at the effective solution of parametric prob-
lems.

6. Conclusions

Embedded boundary models are popular for the solution of nonlinear problems with evolving domains and/or mov-
ing interfaces. The application of projection-based model order reduction methods to the construction of reduced-order 
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Fig. 12. Vorticity contours during the rotation of the ellipsoidal body.

versions of such models calls for the construction first of their underlying reduced-order bases. The collection and com-
pression of solution snapshots using various instances of a computational model of interest is both a popular and effective 
approach for generating reduced bases. For a traditional interface-fitted computational model, it is a straightforward proce-
dure that has been popularized by the Proper Orthogonal Decomposition and Singular Value Decomposition methods. For 
an embedded boundary computational framework, this approach faces the problem of dealing with the partitioning of the 
overall computational domain into a real subdomain and a ghost one corresponding to the region of the overall compu-
tational domain that is occluded by the embedded boundary. For time-dependent problems, this complication is further 
exacerbated by the evolution in time of this partitioning as it implies an evolution in time of the partitioning between 
meaningful (real) and meaningless (ghost) entries of the collected solution snapshots. This makes the problem of com-
pressing these snapshots in view of constructing a reduced-order basis a difficult task. To address this issue, this paper 
formulates the snapshot compression problem as a weighted low-rank approximation problem where the binary weight-
ing identifies the evolving component of the individual simulation snapshots, and proposes to solve this problem using 
the Alternating Least Squares (ALS) algorithm. This approach is applicable in principle to any embedded boundary value 
problem. It is successfully demonstrated in this paper for three different fluid–structure interaction problems of increasing 
complexity. In all considered cases, it is shown to deliver reduced-order bases and models that effectively reproduce the 
high-dimensional solutions even when the flow is vortex-dominated, and the immersed body undergoes large displacements 
and rotations.
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Appendix A. MATLAB implementation of the ALS algorithm

The following is a simple MATLAB implementation of Algorithm 1 presented in Section 4.3. The inputs of the function 
ALS are the snapshot matrix X where the ghost values are set to zero, a binary weighting matrix M, the desired dimension 
of the subspace of approximation k, and the maximum number of iterations it_max. The outputs of this function are the 
low-rank approximation matrices U and V.
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1 function [U,V] = ALS(X,M,k,it_max)
2 [cN, K] = size(X);
3 [U_star, ∼, ∼] = svd(X,'econ');
4 U = U_star(:,1:k);
5 clear U_star;
6 V = zeros(k,K);
7 for p = 1:it_max
8 for j = 1:K
9 x = X(M(:,j),j);

10 u = U(M(:,j),:);
11 V(:,j) = (u'*u)\(u'*x);
12 end
13 for i = 1:cN
14 x = X(i,M(i,:));
15 v = V(:,M(i,:));;
16 U(i,:) = ((v*v')\(v*x'))';
17 end
18 end

Appendix B. Solution of the weighted low-rank matrix approximation problem when rank(M) = 1

If M ∈ {0, 1}cN×K is a rank 1 weighting matrix [41], it can be written as M = stT for some s ∈ R
cN and t ∈ R

K . In this 
case, ∥∥M � (X − X̃)

∥∥2
F =

∑
i, j

sit j(X − U V )2
i, j

=
∑
i, j

(√
sit j Xi, j − (

√
si Ui,:)(

√
t j V :, j)

)2
(B.1a)

Defining X ′ ∈ R
cN×K as X ′

i, j = √
sit j Xi, j ∀i, j, U ′ ∈ R

cN×k as U ′
i,: =

√
si Ui,: ∀i, and V ′ ∈ R

k×K as V ′
:, j = √

t j V :, j ∀ j, the above 
result can be re-written as∥∥M � (X − X̃)

∥∥2
F = ∥∥(

X ′ − X̃ ′)∥∥2
F (B.2a)

where X̃ ′ = U ′V ′ . This shows that when M is a rank 1 weighting matrix, the weighted low-rank approximation prob-
lem (17) reduces to its un-weighted counterpart (15).

An example of a rank 1 weighting matrix M is the weighting matrix appropriate for an embedded boundary model 
where the embedded body B is stationary — that is, mn = m∗, ∀n — but the flow is unsteady. In this case,

M := [
m∗ m∗ · · · m∗ ]

(B.3)
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