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This paper presents a new algorithm KIOPS for computing linear combinations of 
ϕ-functions that appear in exponential integrators. This algorithm is suitable for large-
scale problems in computational physics where little or no information about the spectrum 
or norm of the Jacobian matrix is known a priori. We first show that such problems can 
be solved efficiently by computing a single exponential of a modified matrix. Then our 
approach is to compute an appropriate basis for the Krylov subspace using the incomplete 
orthogonalization procedure and project the matrix exponential on this subspace. We also 
present a novel adaptive procedure that significantly reduces the computational complexity 
of exponential integrators. Our numerical experiments demonstrate that KIOPS outperforms 
the current state-of-the-art adaptive Krylov algorithm phipm.

Crown Copyright © 2018 Published by Elsevier Inc. This is an open access article under 
the CC BY license (http://creativecommons.org/licenses/by/4.0/).

1. Introduction

Exponential integration received increased attention recently as an efficient alternative strategy to standard methods for 
solving systems of ordinary differential equations (ODE). Exponential integrators have the advantage of being accurate and, 
similarly to implicit methods, possess good stability properties, allowing integration with large time steps. These methods 
involve computation of an exponential or an exponential-like function of a Jacobian matrix or an approximation to it (e.g. 
see review articles [1,2]). Approximation of such matrix functions or their products with vectors constitutes the main com-
putational cost of an exponential integrator. Typically it is the latter approximation, i.e. product of exponential-like matrix 
functions with vectors, that is required for an implementation of an exponential method.

A number of methods have been proposed to calculate the exponential or the exponential-like functions of a matrix or 
their product with a given vector (see [3] for a review). Most of them, however, are of little practical use for large-scale 
stiff matrices due either to high computational cost or numerical stability issues. These challenges are described in review 
papers of Moler and Van Loan [4,5]. Other algorithms that are more suitable for large stiff matrices [6,7] require some 
information about the norm or the spectrum of a matrix. It is common, however, that the matrix in question is not given 
in the explicit form and only matrix-vector products can be calculated. This is the case, for instance, when the matrix is a 
Jacobian that results from a complicated spatial discretization of a system of partial differential equations (PDE). As a result 
of these considerations, a conclusion can be drawn that the Krylov subspace projection-based techniques are among the 
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most promising methods for problems where exponential or exponential-like functions of a large stiff matrix have to be 
computed and little or no information can be elicited about this matrix a priori.

The basic idea of the Krylov subspace approach is to project the exponential of a large matrix onto a relatively small 
Krylov subspace where calculating the exponential is significantly less computationally expensive. Recent progress in com-
putational linear algebra has led to efficient Krylov subspace algorithms such as the EXPOKIT software of Sidje [8], restarted 
Krylov methods [9–12], block Krylov subspaces [13–16], time-parallel methods [17,15], the shift-and-invert acceleration 
[18–20] and the adaptive methods [21,22]. The phipm adaptive method of Niesen and Wright [21] has been shown to be 
the most efficient option for the problems under consideration [23].

For the large scale geophysical fluid dynamics problems that motivate our study, it was found by Clancy and Pudykiewicz 
[24] that semi-implicit predictor–corrector schemes [25] where still more efficient. Gaudreault and Pudykiewicz [26] further 
analyzed these results and concluded that the computational cost of the Arnoldi procedure [27] was the origin of the issue. 
The performance was then improved by using an incomplete orthogonalization instead of the Arnoldi procedure based on 
full orthogonalization. This technique has been successfully used for the simulation of the shallow water equations on the 
sphere with second and third order exponential propagation iterative (EPI) schemes [28].

The incomplete orthogonalization procedure (hereafter denoted as IOP) was originally proposed by Saad as an eigenvalue 
algorithm for general non-symmetric matrices [29] and to solve systems of linear equations [30]. The application of IOP to 
approximating the matrix exponential was studied recently by Koskela [31] and by Vo and Sidje [32].

The aim of this article is to explore this technique further with a particular focus on the efficient calculation of 
ϕ-functions within exponential integrators. We call the resulting algorithm the Krylov with Incomplete Orthogonalization 
Procedure Solver (KIOPS). This new method has been carefully designed to allow for an efficient implementation of single 
or multi-stage exponential integrators, such as those recently proposed by Rainwater and Tokman [33].

The paper is organized as follows. In Section 2 we describe the main application of KIOPS method, i.e. evaluation of linear 
combinations of ϕ functions within exponential integrators. Section 3.1 presents a theorem that shows a way to evaluate 
a linear combination of the ϕ-functions used in our KIOPS algorithm. The KIOPS algorithm is presented in Sections 3.2–3.7
where we describe how the method uses Krylov subspace projection with incomplete orthogonalization and a new adaptiv-
ity procedure. Our numerical experiments in Section 4 validate the performance of the proposed solver and demonstrate its 
relative efficiency compared to phipm. Conclusions are presented in Section 5.

2. Approximating ϕ-functions within exponential integrators

The main application of KIOPS and other algorithms that approximate products of ϕ-functions and vectors is their use 
within an exponential integrator designed to solve initial value problems for large scale stiff systems of ordinary differential 
equations (ODE) of the form

d

dt
u(t) = f (u(t)), (1)

u(t0) = u0, t ∈ [t0, tend], u, f (u) ∈R
N .

Differential equations of this form arise in many contexts in the natural and social sciences and engineering disciplines. 
In most applications, the independent variable t usually represents time, N is the number of degrees of freedom, the 
vector-valued function u(t) represents some unknown dynamical quantities and f is a vector-valued function describing all 
forces driving the system.

Exponential integrators gained much interest in recent years as an efficient alternative to implicit schemes in integrating 
stiff systems and a number of exponential methods have been introduced (e.g. [34–40,28,41], see also review [2]). When 
any exponential integrator is applied to a complex nonlinear problem its main computational cost is the evaluation of the 
exponential matrix-functions vectors products. The new KIOPS technique applies to any exponential integrator that employs 
approximation of these products. To make the computational savings of KIOPS concrete, however, in this paper we will 
focus on a class of exponential propagation iterative methods of Runge–Kutta-type (EPIRK). These schemes are particularly 
designed to gain efficiency by exploiting the properties of an algorithm used for the evaluation of ϕ-functions [23,33]. 
Specifically, EPIRK schemes proposed in [23,33] are particularly efficient when used with an adaptive Krylov method [42,43].

To illustrate what are the computational costs associated with approximating ϕ-functions within an exponential integra-
tor we consider a three-stage EPIRK method that can be written as

Un2 = un + α11ψ11(g11hn Jn)hn f (un)

Un3 = un + α21ψ21(g21hn Jn)hn f (un) + α22ψ22(g22hn Jn)hnr(Un2)

un+1 = un + β1ψ31(g31hn Jn)hn f (un) + β2ψ32(g32hn Jn)hnr(Un2)

+ β3ψ33(g33hn Jn)hn(−2r(Un2) + r(Un3))

(2)

where hn = tn+1 − tn , r(u) = f (u) − f (un) − Jn(u − un) is the nonlinear remainder of the second order Taylor expansion of 
f (u) and ψi j(z) are linear combinations of exponential-like functions defined as
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ψi j(z) =
K∑

k=1

pijkϕk(z), ϕk(z) =
1∫

0

ez(1−θ) θk−1

(k − 1)!dθ. (3)

Constant coefficients αi j , βi j and pijk can be derived using either classical or stiff order conditions and methods of up to 
order five have been proposed in [44,33]. Note that since we are interested in problems where Jn ∈ R

N×N with N >> 1, 
the largest per-time step computational cost of (2) lies in evaluating the matrix function-vector products ψi j(g A)b (g ∈ R, 
A ∈ R

N×N , b ∈ R
N ) for different vectors b (e.g. b = hn f (un), b = hnr(Un2), etc.). Thus the most efficient methods should 

have coefficients pijk , αi j and β j that both reduce the number of ψi j(g A)b terms required as well as make each of these 
evaluations as computationally cheap as possible. A strategy to achieve this goal was proposed in previous publications 
[23,33] and involves exploiting the structure of the adaptive Krylov projection algorithm phipm [21].

The phipm algorithm evaluates linear combinations

w(τ ) = ϕ0(τ A)b0 + τϕ1(τ A)b1 + τ 2ϕ2(τ A)b2 + . . . + τ pϕp(τ A)bp, (4)

where τ ∈R, A ∈R
N×N and b0, b1, . . . , bp ∈ R

N . The phipm algorithm proceeds by considering (4) as a solution to the initial 
value problem

w ′(τ ) = Aw(τ ) + b1 + τb2 + ... + τ p−1

(p − 1)!bp w(0) = b0 (5)

The algorithm evaluates solution to (5) over k subintervals 0 ≤ τ1 ≤ (τ1 + τ2) ≤ ... ≤ ∑k
l=1 τl = τ using a substepping proce-

dure. Each substep i is comprised of two main parts. The first part consists of computing the approximation

w(ti+1) = τ
p

i ϕp(τi A)w̃ p +
p−1∑
j=0

τ
j

i

j! w̃ j, (6)

where ti+1 = ∑i
l=1 τl and the vectors w̃ j are calculated recursively from the relation

w̃0 = w(ti) and w̃ j = Aw̃ j−1 +
p− j∑
�=0

τ �
i

�! b j+�, j = 1, . . . , p. (7)

The second part of each substep is the adaptive algorithm that selects the substep size τi+1 and the dimension mi+1 of the 
Krylov projection to be used for the next substep. To approximate

ϕ0(A)b0 + ϕ1(A)b1 + ϕ2(A)b2 + . . . + ϕp(A)bp, (8)

the substepping procedure should be performed over the whole interval τ ∈ [0, 1].
Note that if only a single ϕq(τ A)bq is involved in the linear combination (4) (i.e. b j = 0 for j �= q) then the substepping 

procedure can be modified to compute several terms of type ϕq(Ti A)bq for several values of Ti simultaneously. This is 
accomplished by ensuring that the stops at each τ = Ti are made and the result is recorded and scaled by 1/T q

i .
Efficient EPIRK method (2) is derived when the terms ψi j(g A)v can be combined into a minimum number of groups so 

that all such terms in each group are evaluated using only one execution of the adaptive Krylov projection algorithm. For 
example, a stiffly accurate fourth-order scheme EPIRK4s3 [45,43]

Un2 = un + 1

8
ϕ1

(
1

8
hn Jn

)
hn f (un),

Un3 = un + 1

9
ϕ1

(
1

9
hn Jn

)
hn f (un),

un+1 = un + ϕ1 (hn Jn)hn f (un)

+ (
1892ϕ3

(
hn Jn

) − 42336ϕ4
(
hn Jn

))
hnr(Un2)

+ (
1458ϕ3

(
hn Jn

) − 34992ϕ4
(
hn Jn

))
· hn (r(Un3) − 2r(Un2)) (9)

requires only two calls to phipm. One call is used to evaluate both terms ϕ1
( 1

8 hn Jn
)

hn f (un) and ϕ1
( 1

9 hn Jn
)

hn f (un). Note 
that for this approximation we need to only substep solution (4) over the interval τ ∈ [0, 18 ]. The phipm approximation 
allows us to compute the linear combination (4) which involves coefficients τ i . The terms we need in (9) do not have these 
coefficients. Since the terms in (9) involve only single ϕ1 term with all other bi = 0 (i �= 1), this problem can be easily 
remedied by multiplying the results of phipm by factors 1/τ i . Such fix would not work if several ϕi ’s were involved unless 
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we need the final value of τ be 1. This is precisely the case for the second call to phipm to evaluate the linear combination 
in the last stage of (9).

The second and last call to phipm is used to evaluate the linear combination

ϕ0(τhn Jn)b0 + τϕ1(τhn Jn)b1 + τ 2ϕ2(τhn Jn)b2 + τ 3ϕ3(τhn Jn)b3 + τ 4ϕ4(τhn Jn)b4 (10)

with

b1 = hn f (un),

b2 = 0,

b3 = 1892hnr(Un2) + 1458hn (r(Un3) − 2r(Un2))

b4 = −42336hnr(Un2) − 34992hn (r(Un3) − 2r(Un2)) (11)

for τ = 1. This linear combination involves all exponential terms involved in approximating un+1. Clearly the factors 1/τ i

do not pose a difficulty in evaluation of this linear combination since we substep phipm over τ ∈ [0, 1].
Thus the structure of this exponential integrator utilizes phipm for two types of tasks:

(I) Computing several terms of type ϕk(τ A)bk involving a single function ϕk and a vector bk for several values of τ ;
(II) Approximating linear combinations (4) with τ = 1.

Both higher-order higher-stage-number EPIRK schemes as well as other exponential integrators like exponential Rosenbrock 
methods [41] utilize similar structural properties to construct and implement exponential time integrators efficiently.

We have modified the original version of the phipm to enable these two options of computing either a single ϕq(τ A)bq

or the whole linear combination (4) for multiple values of τ = Ti . In the modified phipm, we use the Algorithm 3 described 
in section 3.3.1 to keep track of intermediate solutions and we scale the final results by 1/τ i whenever task I is executed. 
The rest of the procedure is identical to the one described in [21]. In the subsequent text every mention of phipm refers to 
this slightly modified version of the original phipm algorithm.

For general problems where matrix A is not explicitly available and little is known about its spectrum, phipm has 
been demonstrated to be the most efficient algorithm to date for the implementation of exponential integrators [23]. This 
algorithm has, however, significant drawbacks and the following three considerations were the main driving force behind 
our search of alternative techniques.

• The convergence of the phipm algorithm is often inconsistent. For example, it may happen that computing a solution 
with a small error is significatively faster than computing a solution with a lower accuracy. We also noticed that this 
behavior may occur alternately when more and more accurate solutions are being calculated. As we will see later in 
the section presenting our numerical experiments, this results in zig-zags in a precision diagram.

• The substepping of equation (5) requires several explicit multiplication by the matrix A in Eq. (7). As discussed in [21], 
[22] and [26], this is not only costly, but the procedure might also become increasingly sensitive to rounding errors as p
increases. Since the last stage of a high-order EPIRK scheme often involve multiplications by relatively large coefficients, 
this sensitivity to rounding errors could be worrying if ‖A‖ is large.

• The adaptive procedure of phipm is based on somewhat rough estimates of the floating point operations count on a 
single processor machine. Important details related to a specific computer architecture are not taken into account.

3. The KIOPS algorithm

The KIOPS algorithm, outlined in Algorithm 1, builds on the ideas of phipm, but modifies both the substepping procedure 
and the adaptive algorithm to significantly improve efficiency and accuracy of approximating (4). Specifically:

• Instead of substepping equation (5) we extend theoretical result of Sidjie [8] to linear combinations of ϕ-functions 
(4) and use exponential of an augmented matrix to compute all terms τ iϕi(τ A)bi simultaneously using one Krylov 
projection.

• We use incomplete rather than full orthogonalization procedure for Krylov projections.
• We propose a different adaptivity method to select τi and Krylov subspace sizes mi which brings more efficiency to the 

overall approximation of (4).

Below we provide a detailed description of the KIOPS algorithm and demonstrate its efficiency and accuracy within expo-
nential integrators compared to phipm using a set of numerical examples.
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3.1. Computing linear combinations of ϕ-functions

As mentioned before, the phipm requires several explicit multiplications by A in Eq. (7). Hence, it becomes increasingly 
sensitive to round off errors as p increases. The alternative approach presented in this section allows to evaluate all terms 
of the linear combination (4) simultaneously and thus completely replaces the substepping of (5).

Once again consider the task of approximating

ϕ0(τ A)b0 + τϕ1(τ A)b1 + τ 2ϕ2(τ A)b2 + . . . + τ pϕp(τ A)bp (12)

where τ ∈ R, A ∈ R
N×N and b0, b1, . . . , bp ∈ R

N . In a typical application, the matrix A is large and sparse. Exact evaluation 
of individual ϕ-functions and vector products is then prohibitively computationally expensive. We choose a more efficient 
method to compute the linear combination (12) using a single exponential of a slightly larger matrix [8,6,22]. The following 
theorem is an extension of the result obtained in [8] for the case bi = c for i = 0, ..., p. Theorem 1 shows how the problem 
of computing (12) can be solved by computing a single exponential of a matrix. Hereafter, we denote by Il the l × l identity 
matrix, ep = (0, ..., 0, 1)ᵀ ∈ R

p is the last canonical basis vector in Rp . The colon operator “a : b” is an operation that 
generates the indices ranging from a to b. This operator is used to represent a subset of the elements from a vector or a 
matrix and it has the lowest priority.

Theorem 1. Let A ∈ R
N×N , B = [

bp, . . . ,b2,b1
] ∈ R

N×p , K =
[

0 I p−1
0 0

]
∈ R

p×p , v = [
bᵀ

0 , eᵀ
p
]ᵀ ∈ R

N+p and τ ∈ R. We define 

the augmented matrix

Ã =
[

A B
0 K

]
∈R

(N+p)×(N+p) (13)

and let w = eτ Ã v . Then, the first N elements of the vector w are given by

w(1 : N) =
p∑

j=0

τ jϕ j(τ A)b j (14)

and the rest of the vector is

w(N + 1 : N + p) =
[

τ p−1

(p − 1)! , . . . , τ ,1

]ᵀ
(15)

Proof. Since Ã is block upper triangular, its exponential has the form

eτ Ã =
[

eτ A E12

0 eτ K

]
. (16)

From [8], we have

eτ K =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

1 τ
1! . . . τ p−2

(p−2)!
τ p−1

(p−1)!
0 1

. . . τ p−2

(p−2)!
...

. . .
. . .

...

1 τ
1!

0 . . . 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

(17)

and the columns of E12 are given by the Theorem 2.1 of Al-Mohy and Higham [6], with � = 0, as

E12(1 : N, N + j) =
j∑

k=1

τ kϕk(τ A)bk , for j = 1 to p. (18)

Inserting Eqs. (17) and (18) into Eq. (16), we obtain the following matrix
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eτ Ã =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

eτ A τϕ1(τ A)b1 τϕ1(τ A)b1 + τ 2ϕ2(τ A)b2 . . .
p∑

k=1
τ kϕk(τ A)bk

0 1 τ
1! . . . τ p−1

(p−1)!

...
. . .

. . .
...

1 τ
1!

0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (19)

It only remains to multiply (19) by v = [
b0, ep

]ᵀ to obtain the vector w . �
Now we will use this result inside an iterative procedure to evaluate eτ Ã .

3.2. Krylov adaptive method

The KIOPS algorithm is structured around the idea of utilizing Theorem 1 to approximate

w(τ ) =
p∑

j=0

τ jϕ j(τ A)b j (20)

using the exponential of an augmented matrix. This matrix exponential can be computed using a polynomial approximation 
of the form

w(τ ) = eτ Ã v ≈ Pm−1(τ Ã)v, (21)

where Pm−1 is a polynomial of degree m − 1. There are a number of methods that employ a polynomial approximation of 
the form of Eq. (21) including truncated Taylor series approximation, Leja interpolation, and Chebyshev polynomials-based 
algorithms. The disadvantage of most of these methods is that they require information about the spectrum or norm of the 
matrix. As mentioned earlier obtaining this extra information about the matrix can be impossible or prohibitively expensive 
computationally especially for problems where the action of the matrix-vector product is given by an external “matvec” 
subroutine. In this work, we consider only approaches that do not require any knowledge about the norm or spectrum of 
the matrix. We also avoid methods that require inversion of Ã because this matrix is singular.

Since the approximation (21) is an element of the m-dimensional Krylov subspace

Km( Ã, v) = span{v, Ãv, ..., Ãm−1 v}, (22)

the problem can be recast into the search for an element of Km that approximates w(τ ) [46]. The approximation of the 
vector w(τ ) by an element of a Krylov subspace is made up of two important steps. The first step is the computation of an 
appropriate basis for the Krylov subspace and of a smaller matrix that represents the projection of the action of Ã on this 
subspace. Then, in the second step, the matrix exponential of the smaller matrix is computed using a standard technique 
and the result is projected back onto the original large space. Notice that the definition (22) does not include the factor τ
since the Krylov subspace associated with Ã and τ Ã are the same for any τ ∈ R.

We will see in section 3.4 that if we want to obtain good accuracy, then the size of the Krylov space m has to be 
large when ‖τ Ã‖ is large. This is worrying because it may indicate that an impractical amount of memory storage and 
computational cost could be necessary to obtain a sufficiently small error. A more efficient approach is to apply the Krylov 
subspace method iteratively as in the work of Sidje [8]. The key idea is that computing the action of the matrix exponential 
is equivalent to solving a linear ODE to split τ into a sum of smaller intervals, such that

eτ Ã v = e(τ1+τ2+...+τk) Ã v (23)

= eτk Ã(. . . (eτ2 Ã(eτ1 Ã v))). (24)

Thus, the problem of computing the matrix exponential

w(τ ) = eτ Ã v (25)

is equivalent to finding a solution for the initial value problem

d

dτ
w(τ ) = Ãw(τ ), w(0) = v. (26)

From this viewpoint, one could iteratively solve the recurrence
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w(0) = v (27)

w(τi+1) = eτi Ã w(τi) (28)

and use an adaptive procedure in order to control the errors of the method.
Given a function that computes the product Av of a matrix A ∈ R

N×N and a vector v ∈ R
N each substep τl the KIOPS 

algorithm proceeds according to the following steps:

(i) Given current substep size τl and the size of the Krylov subspace ml an incomplete orthogonalization-based Krylov 
projection algorithm is executed to compute eτl Ã defined in (19) (this step is described in detail in sections 3.3 and 
3.3.1).

(ii) The local error estimate is computed and the approximation from step (i) is accepted for the current interval only if 
the error is within user-specified tolerance (see sections 3.4, 3.5).

(iii) If the approximation in step (ii) is accepted, the adaptive algorithm then determines whether it is more cost efficient 
to compute the approximation at the next substep with a larger value of τl+1 or a smaller Krylov subspace size ml+1. If 
the approximation in step (ii) was rejected, the adaptive algorithm decides whether it is more cost efficient to obtain a 
better estimate by reducing the substep size τl or increasing the Krylov subspace size ml (see sections 3.6.1 and 3.6.2).

As seen in the previous section, an exponential integrator typically requires either evaluation of w at several values of 
τ = gij = Ti < 1 (Task I, usually in cases of w composed of a single ϕ j -function) or over the interval [0, τ = 1] (Task II). 
When several values of τ are needed, they are provided as an argument to Algorithm 1 in the array T = [T1, . . . , Tend]. 
Algorithm 1 then returns several linear combinations of the form

ϕ0(T1 A)b0 + ϕ1(T1 A)b1 + ϕ2(T1 A)b2 + . . . + ϕp(T1 A)bp

...

ϕ0(Tend A)b0 + ϕ1(Tend A)b1 + ϕ2(Tend A)b2 + . . . + ϕp(Tend A)bp .

Algorithm 1 KIOPS: Evaluate linear combination (12).
1: input: T = [T1, . . . , Tend], A ∈R

N×N , U = [
bp , . . . ,b2,b1,b0

]
, tol (default 1e − 7), minit (default 10), mmin (default 10), mmax (default 128), Task (I or II)

2: τ = Tend,
3: m = max(mmin, min(minit, mmax))

4: Tnow = 0
5: j = 0
6: � = 0
7: nsteps = length(T )

8: w(1 : N, 1) = b0

9: while Tnow < Tend do
10: if j == 0 then
11: {Compute the first Krylov basis vector}
12: H = 0
13: w(N + 1, N + p, �) =

[
(Tnow)p−1

(p−1)! , . . . , Tnow,1
]ᵀ

14: V (:, 1) = 1
‖w(:,�)‖ w(:, �)

15: end if
16: V, H, j = Algorithm 2 (A, [bp , . . . ,b2,b1

]
, V , j, m) {section 3.3}

17: H(1, j + 1) = 1
18: F = exp(τ H(1 : j + 1, 1 : j + 1)) {section 3.3.1}
19: Compute the local error estimate as in section 3.4.
20: Calculate suggested τnew and mnew as in section 3.6.
21: Choose to change m for mnew or τ for τnew.
22: if Acceptance criterion described in section 3.5 is satisfied then
23: w , � = Algorithm 3 (T , H , w , �) { Update the w vector }
24: Tnow = Tnow + τ
25: j = 0
26: else
27: H(1, j + 1) = 0 { Restore the original matrix }
28: continue
29: end if
30: end while
31: if TASK I then
32: for l = 1 to nsteps do
33: w(:, l) = w(:, l) ∗ (1/T (l))p

34: end for
35: end if
36: return w�(1 : N) = eT� Ã v , for all 1 ≤ � ≤ end, and m.
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To simplify the notation in the subsequent sections we will refer to the substep size τl as simply τ and the Krylov 
substep size ml as m. Keep in mind, however, that these values change over each substep l.

3.3. Building a basis for the Krylov subspace

The first part of the Krylov subspace method consists of computing a set of basis vectors {v1, . . . , vm} for the 
m-dimensional Krylov subspace Km . This is equivalent to finding a matrix

Vm = [v1, . . . , vm] (29)

whose column space is Km . In a typical implementation, the Arnoldi procedure is used to compute this matrix. As discussed 
in [26], performing the Arnoldi procedure takes O (m2 · [N + p]) operations and constitutes the primary computational cost 
of the Krylov subspace projection technique. For this reason we turn to the incomplete orthogonalization procedure of 
length 2 whose time complexity is O (m · [N + p]).

Starting with the vector v1 = v/‖v‖, the incomplete orthogonalization procedure (Algorithm 2) produces the factoriza-
tion

Ã Vm = Vm Hm + hm+1,m vm+1 eᵀ
m, (30)

where em = (0, ...0, 1)ᵀ ∈ R
m denotes the last canonical basis vector in Rm . The most important by-products of this fac-

torization are the matrix Vm ∈ R
(N+p)×m and Hm ∈ R

m×m . The matrix Hm has a banded structure and it can be seen as 
an oblique projection of the action of the matrix Ã on the Krylov subspace. The entry hm+1,m ∈ R can be interpreted as 
a kind of residual of the projection onto the Krylov subspace and it will enter into the formulation of an error estimate 
in section 3.4. Although we want to generate a basis of an m-dimensional space, the algorithm produces m + 1 vectors in 
general. The last vector vm+1 ∈ R

(N+p) will not be used in our approximation scheme. There exists alternative corrected 
scheme [46] that makes use of this vector, but our experiments showed that it has slightly slower convergence than the 
standard scheme when used in this solver.

The main difference between Algorithm 2 and an equivalent algorithm based on Arnoldi procedure is that each new 
vector is orthogonalized only against the two previous ones instead of all of them. Hence, the matrix Vm obtained after 
Algorithm 2 has rank m and its columns span Km , but they do not form an orthonormal basis in general.

Algorithm 2 Incomplete orthogonalization procedure of length 2.
1: Input: A ∈R

N×N , B ∈R
N×p , V ∈R

N+p×mmax+1, j, m
2: while j < m do
3: j = j + 1
4: V (1 : N, j + 1) = A · V (1 : N, j) + B · V (N + 1 : N + p, j)
5: V (N + 1 : N + p − 1, j + 1) = V (N + 2 : N + p, j)
6: V (N + p, j + 1) = 0
7: for i = max(1, j − 1) to j do
8: H(i, j) = V (:, i)ᵀ · V (:, j + 1)

9: V (:, j + 1) = V (:, j + 1) − H(i, j) · V (:, i)
10: end for
11: s = ‖V (:, j + 1)‖
12: if s ≈ 0 then
13: happy_breakdown = true
14: break
15: end if
16: H(i + 1, j) = s
17: V (:, j + 1) = 1

s V (:, j + 1)

18: end while
19: return V , H , j

It is worth noting that Algorithm 2 does not require the assembly of the augmented matrix Ã. In effect, the product 
Ãv j is formulated, at the lines 4 to 6, using block multiplication involving only the action of A and the matrix B . This 
formulation allows the action of the matrix A, or some approximation of it, to be provided by an external subroutine. 
Typically, such subroutine tries to exploit the sparsity patterns of A to reduce the computational cost associated with the 
matrix-vector product.

3.3.1. Approximation of the exponential in the Krylov subspace
Since columns of Vm obtained using IOP do not form an orthonormal basis, V T

m Vm is not an identity matrix as is the 
case for the Arnoldi procedure. We can nevertheless use arguments similar to those presented by Saad [46] and by Higham 
[3] to obtain a theorem that will justify our approximation scheme.
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Theorem 2. Let Ã ∈ R
(N+p)×(N+p) , v ∈ R

(N+p) and let Vm ∈ R
(N+p)×m, Hm ∈ R

m×m be the result of m steps of Algorithm 2. Then 
for any polynomial P j of degree j < m − 1 we have

P j( Ã)v = ‖v‖ Vm P j(Hm) e1 (31)

Proof. Without loss of generality, the proof can be done by induction on j for the polynomials of the form P j( Ã) = Ã j . For 
j = 0, we have that Ã0 v = v = ‖v‖ Vm H0

m e1 since Vm e1 = v1. Assume that (31) is true for all j ≤ m − 2, then

Ã j+1 v = Ã · Ã j v = ÃVm H j
m(‖v‖ e1)

= (
Vm Hm + hm+1,m vm+1 eᵀ

m
)

H j
m(‖v‖ e1)

= ‖v‖ Vm H j+1
m e1 + hm+1,m vm+1 eᵀ

m H j
m(‖v‖ e1)

and using the fact that hm+1,m vm+1eᵀ
m H j

m(‖v‖ e1) = 0 whenever j ≤ m − 2, we obtain that Ã j+1 v = ‖v‖ Vm H j+1
m e1, as 

required. �
This theorem, combined with the Taylor series definition of the exponential

eτ Ã =
∞∑

k=0

1

k! (τ Ã)k, (32)

suggests the use of the following approximation scheme for the matrix exponential:

eτ Ã v ≈ ‖v‖ Vm eτ Hm e1. (33)

Since in general m 
 (N + p), the matrix exponential eτ Hm can be computed using any standard method with dense 
output [4,5]. In this work, we use a diagonal Padé approximation combined with a scaling and squaring algorithm [47].

Algorithm 3 presents the procedure to calculate the solution for multiple stepsizes.

Algorithm 3 Update the solution using Eq. (33).
1: input: T = [T1, . . . , Tend], H , w , �
2: nτ = 0
3: Tnext = Tnow + τ
4: if TASK I then
5: for k = � to nsteps do
6: if ‖T (k)‖ < ‖Tnext‖ then
7: nτ = nτ + 1
8: end if
9: end for

10: if nτ > 0 then
11: w(:, � + nτ ) = w(:, �) { Copy current w to w we continue with. }
12: for k = 0 to nτ − 1 do
13: τ̃ = T (� + k) − Tnow

14: F 2 = exp(τ̃ H(1 : j, 1 : j))
15: w(:, � + k) = ‖w(:, �)‖ ∗ V (1 : N, 1 : j) ∗ F 2(1 : j, 1) { Using Eq. (33) }
16: end for
17: � = � + nτ { Advance �. }
18: end if
19: end if

w(:, �) = ‖w(:, �)‖ ∗ V (1 : N, 1 : j) ∗ F (1 : j, 1) { Using Eq. (33) }
20: return w , �

3.4. Error estimates

The approximation error for the exponential of a negative semidefinite matrix is bounded as in the following equa-
tion [31] (see also [32] for a comprehensive analysis of the convergence of IOP)

‖eτ Ã v − βVmeHm e1‖ ≤ eα(τ Ã)‖τ Ã‖m + eα(Hm)‖Hm‖m

m! β, (34)

where α( Ã) = max{Re(λi)} denotes the spectral abscissa of Ã (i.e. the supremum among the real part of the eigenvalues 
of Ã), m is the size of the Krylov subspace, β = ‖v‖ and ‖ Ã‖ is the matrix 2-norm. This a priori estimate is useful to gain 
insight on the convergence of the approximation scheme, but it cannot be used in practical calculations because it requires 
knowledge about the spectrum of τ Ã.
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A more practical a posteriori estimate can be derived analogously to the Theorem 5.1 of Saad [46]. This error estimate 
will be useful to formulate an acceptance criterion in section 3.5. The basic idea is that the error of the scheme (33) satisfies 
the expansion

eτ Ã v − β Vm eτ Hm e1 = β τ hm+1,m

∞∑
j=1

eᵀ
m ϕ j(τ Hm)e1 (τ Ã) j−1 vm+1. (35)

If we assume that the magnitude of the terms of the series decreases rapidly as the solution converges, then the absolute 
value of the first term

εm = ‖τ hm+1,m eᵀ
m ϕ1(τ Hm)β e1‖ (36)

can be used as an estimate of the error. This estimate can be computed with little extra cost. Invoking Theorem 1 again, 
the τeᵀ

mϕ1(Hm)e1 term can be obtained along with eτ Hm in a single matrix exponential. To do that, we define the following 
(m + 1) × (m + 1) matrix

H̃m =
[

Hm e1
0 0

]
(37)

and evaluate its exponential

eτ H̃m =
[

eτ Hm τϕ1(τ Hm)e1
0 1

]
. (38)

The term τeᵀ
mϕ1(Hm)e1 corresponds to the entry (m, m + 1) of the resulting matrix. It remains only to multiply by β hm+1,m

to obtain the estimate (36).
Although no serious problems were found in this study, we note that this error estimate is less accurate when m is large 

(see also the discussions [46] and [8]). Using a sharper error estimate or an appropriate residual notion (see e.g. [8,12,48]) 
could lead to better performance and accuracy. We intend to analyze this in detail in future studies.

3.5. Acceptance criterion

For an iteration to be accepted, it must satisfy a user defined tolerance. To verify this, we compute the scaled error

ω = Tendεm

τ Tol
(39)

as in Niesen and Wright [21]. The step is accepted if ω <= δ, where δ = 1.4 is a criterion intended to reduce the risk of 
rejection of the step. Since the adaptive procedure described in section 3.6.1 seeks to get a solution with a value of ω less 
than 0.9, there is little to no risk to allow the tolerance to be slightly exceeded occasionally. An iteration is rejected if ω > δ. 
The adaptive procedure can then extend the existing Krylov subspace basis with more vectors or use a smaller stepsize to 
improve the current solution. This flexibility to improve a missed iteration is an important difference with Krylov solvers 
for linear systems and eigenvalue problems where a bad iteration can wreak havoc.

3.6. Selection of parameters

The accuracy and the efficiency of our algorithm depend on the two important parameters: the size of the Krylov space 
mi and the substep size τi . Thus their values must be chosen with care.

To start the algorithm, we use a somewhat optimistic first guess of τ = Tend and a user provided estimate m = minit. 
A default value of minit = 10 is used if no other value has been specified. However, experiments have indicated that a good 
estimate of the Krylov subspace size can drastically improve the performance of the method [26]. When the solver is used 
repetitively to integrate an ODE over many time steps, a possible strategy is to use the final value of ml from the previous 
time step as a first guess for the next one. This heuristic is justified when the nature of the problem to be solved in a 
particular time step resembles closely that from the previous step. Hence, the algorithm also returns the size of the Krylov 
subspace ml used in the last iteration as an output parameter. A solution is then produced with these parameters. If the 
acceptance criterion is satisfied, then our adaptive procedure will determine if m or τ could be enlarged safely for the next 
substep. If, on the contrary, the acceptance criterion is not satisfied, then we must choose different parameters m or τ and 
try again. The challenge is then to find optimal parameters to avoid step rejection and for quick convergence.

After each iteration (accepted or rejected), the adaptive procedure suggests a stepsize τnew and a dimension of the Krylov 
subspace mnew as in Algorithm 4. Two scenarios can then be considered and the most economical is selected:

(A) keeping m constant and changing τ to τnew,
(B) keeping τ constant and changing m to mnew.
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Starting at a given substep and assuming that the new choice of parameter leads to acceptance for all of the subsequent 
steps we can see that the cost to complete the remaining steps of Algorithm 1 is bounded below by

C(τ ,m) =
⌈

tend − tnow

τ

⌉(
costiop(m) + costexp(Nmult,m)

)
. (40)

In (40) costiop(m) is the cost of making m steps of the Algorithm 2 (the incomplete orthogonalization procedure) that can 
be estimated as

costiop(m) = m[(2 · nz( Ã) + (2p − 1)N + p) + 8(N + p)] − 4(N + p) + 3(N + p)m (41)

and costexp(Nmult , m) is the cost of computing the dense matrix exponential given in [47] as

costexp(Nmult,m) = Nmult[2(m + p) − 1](m + p)2, (42)

where nz( Ã) denotes the number of nonzero elements in Ã and Nmult is the number of multiplications required for the 
scaling and squaring and Padé algorithms [47] that was selected for this study.

We notice that the cost of completing the algorithm with scenario (B), C(τ , mnew), is almost always cheaper than 
C(τnew, m), the cost of scenario (A). Whenever possible, our basic strategy is therefore to keep τ constant and use the 
method described in section 3.6.2 to let m vary up to convergence or to mmax. It is only when mmax has been reached that 
we should consider varying the stepsize to avoid using excessive amount of memory. In the case where mmax is reached, 
we check if the step is going to be accepted. If it does not satisfy the acceptance criterion, then the procedure given in 
section 3.6.1 will suggest a new stepsize that is more likely to satisfy the error tolerance. In this case, we use a safety factor 
γ = 0.6 to reduce the risk of another rejection. If the tolerance is satisfied, then the stepsize is changed using the default 
value of γ = 0.9 to give the possibility to use either a smaller or a larger size in the next step.

Our approach to adaptively propose new stepsize and the dimension is largely inspired by the work of Niesen and Wright 
[21,22] and it is to be outlined in the next subsection.

Algorithm 4 Krylov adaptivity.
1: input: A, (b0, b1, . . . , bp), Tol, m
2: γmax = 0.6, γ = 0.9
3: τ = 1, δ = 1.4
4: if happy_breakdown
5: ω = 0
6: τnew = min(τ , Tend − Tnow)

7: mnew = m
8: happy_breakdown = false
9: else if j == mmax

10: if ω > δ

11: mnew = j

12: τnew = τ
( γmax

ω

) 1
q+1

13: τnew = min(Tend − Tnow, max(τ/5, τnew))

14: else
15: Keep m constant and vary τ as in section 3.6.1
16: end if
17: else
18: Vary m as in section 3.6.2 and keep τ constant
19: return τnew and mnew

3.6.1. Variable stepsize
Each interval must be small enough to reduce the norm of the matrix to a level where the problem could be solved 

with a reasonably large Krylov subspace. On the other hand, it should not be too small because this would necessitate a 
large number of iterations. The challenge is therefore to find an optimal partition of the interval [0, τ ] into k subintervals τl
(l = 1, ..., k) without any a priori knowledge of the matrix characteristics.

The procedure to determine the stepsize is similar to the adaptive strategy used in many ODE solvers. We assume that 
the error is approximately Cτ q+1, for some constants q, C ∈ R. The order q is set to q = m

4 − 1 for the first step as in [21]
and if a previously suggested stepsize is rejected, then we use the following estimate to obtain a new order estimate

q = log(τ/τold)

log(‖εm‖/‖(εm)old‖) − 1, (43)

where the “old” subscript denotes the rejected estimates.
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The suggested stepsize is then given by

τnew = τ
(γ

ω

) 1
q+1

(44)

where ω = Tendεm/(τ tol) denotes the scaled error and γ is a safety factor. Following [8], we chose a value of γ = 0.9, 
except when the size of the Krylov subspace m reaches a certain limit mmax in which case we use γ = 0.6 to avoid step 
rejections. The suggested stepsize is always clipped to restrict its variation around the current stepsize between τ

5 and 5τ
and to make sure it does not exceed the final value of tend.

3.6.2. Variable dimension of the Krylov subspace
As mentioned before, a rapid convergence could be obtained if we choose a large value of m when ‖τ Ã‖ is large. Since 

we do not know the norm of τ Ã, we can use the a posteriori estimate to increase m if the estimated error is too large or to 
reduce it if the error can be kept small enough [21]. In practical applications, it may also be judicious to select a minimum 
and maximum size mmin and mmax to cap the memory requirements and to make efficient use of the CPU cache memory. 
The default values, used in our numerical experiments, are mmin = 10 and mmax = 128.

The estimate (34) suggests that the error is about Cκ−m for some constants C, κ ∈ R. For the first suggestion of a step, 
a default value κ = 2 is used. When an iteration is rejected, the value of κ is estimated as a function of the error estimate 
from the current and the previously rejected error estimates (again denoted with a “old” subscript) by

κ =
(

ω

ωold

)1/(mold−m)

(45)

Given this estimate, we obtain the suggested dimension size with

mnew = m + log(ω/γ )

logκ
(46)

The dimension of the Krylov space is constrained to vary upward or downward in the user specified interval [mmin,mmax]. 
Similarly to what we did for the stepsize, the dimension is clipped to avoid variation larger than 25% below the previous 
value of m or 33% above.

As an aside, we note that there is a small inconsistency in the methodology to limit the evolution of m and τ in phipm. 
This algorithm uses maximum and minimum thresholds to avoid large variations of the parameters, but the clipping of the 
values is done at the end of an iteration. The consequence is that an optimal decision taken on the basis of the cost function 
may be affected later, leading to suboptimal adaptivity. This is in contrast with KIOPS where the clipping of the suggested 
values is always done during the adaptive procedure.

3.7. Avoiding rounding errors

We close this section with a remark about implementation details that could help to reduce the impact of the rounding 
errors due to finite precision arithmetic. As shown in Theorem 1, the exact value of v for entries N + 1 to N + p is given by

v(N + 1 : N + p) =
[

(Tnow + τ )p−1

(p − 1)! , . . . , (Tnow + τ ),1

]ᵀ
. (47)

We can also follow the suggestion of Al-Mohy and Higham [6] and normalize the B matrix. To do so, we substitute B by 
ν · B and change entries N + 1 to N + p of the starting vector v to μ · v(N + 1 : N + p) before applying Algorithm 2. The 
normalization constants

ν = 2−�log2(‖B‖1)� (48)

μ = 2�log2(‖B‖1)� (49)

are defined as a power of 2 to avoid the introduction of rounding errors and has no effect on the solution in exact arithmetic. 
Our experiments have shown that the normalization of the B matrix leads to slightly faster convergence on most problems.

4. Numerical experiments

We evaluate the performance of the KIOPS algorithm in the context of the following fourth- and fifth-order EPIRK expo-
nential methods since these schemes were shown to provide most efficiency in previous studies [33,45,43]. The numerical 
experiments presented below both validate the performance of the KIOPS algorithm and demonstrate how this algorithm 
can improve both efficiency and accuracy of the EPIRK and other exponential schemes compared to the adaptive Krylov 
algorithm phipm from [21].
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Table 1
Coefficients of EPIRK5P1.⎡

⎣α11

α21 α22

β1 β2 β3

⎤
⎦ =

⎡
⎣ 0.3512959269505819

0.8440547201165712 1.690589160956896
1.0 1.272712731735689 2.271459926542262

⎤
⎦

⎡
⎣ g11

g21 g22

g31 g32 g33

⎤
⎦ =

⎡
⎣ 0.3512959269505819

0.8440547201165712 1.0
1.0 0.7111109536436687 0.6237811195337149

⎤
⎦

We choose the following four exponential schemes for our numerical experiments:

• EPIRK4s3 [45,43] – stiffly accurate fourth-order integrator:

Un2 = un + 1

8
ϕ1

(
1

8
hn Jn

)
hn f (un),

Un3 = un + 1

9
ϕ1

(
1

9
hn Jn

)
hn f (un),

un+1 = un + ϕ1 (hn Jn)hn f (un)

+ (
1892ϕ3

(
hn Jn

) − 42336ϕ4
(
hn Jn

))
hnr(Un2)

+ (
1458ϕ3

(
hn Jn

) − 34992ϕ4
(
hn Jn

))
· hn (r(Un3) − 2r(Un2)) . (50)

• EPIRK4s3A [33] – stiffly accurate fourth-order integrator:

Un2 = un + 1

2
ϕ1

(
1

2
hn Jn

)
hn f (un)

Un3 = un + 2

3
ϕ1

(
2

3
hn Jn

)
hn f (un)

un+1 = un + ϕ1(hn Jn)hn f (un)

+ (32ϕ3(hn Jn) − 144ϕ4(hn Jn))hnr(Un2)

+
(

−27

2
ϕ3(hn Jn) + 81ϕ4(hn Jn)

)
hnr(Un3).

(51)

• EPIRK5P1 [23] – classical (non-stiffly accurate) fifth-order integrator:

Un2 = un + α11ϕ1(g11hn Jn)hn f (un)

Un3 = un + α21ϕ1(g21hn Jn)hn f (un) + α22

un+1 = un + β1ϕ1(g31hn Jn)hn f (un) + β2ϕ1(g32hn Jn)hnr(Un2)

+ β3ϕ3(g33hn Jn)hn(−2r(Un2) + r(Un3))

(52)

with coefficients given in Table 1.
• EXPRB5s3 [49] – stiffly accurate fifth-order method that was originally derived as exponential Rosenbrock integrator 

and can also be written as an EPIRK scheme [33]:

Un2 = un + 1

2
ϕ1(

1

2
hn Jn)hn f (un)

Un3 = un + 9

10
ϕ1(

9

10
hn Jn)hn f (un)

+
(

27

25
ϕ3(

1

2
hn Jn) + 729

125
ϕ3(

9

10
hn Jn)

)
hnr(Un2)

un+1 = un + ϕ1(hn Jn)hn f (un)

+ (18ϕ3(hn Jn) − 60ϕ4(hn Jn))hnr(Un2)

+
(

−250

81
ϕ3(hn Jn) + 500

27
ϕ4(hn Jn)

)
hnr(Un3).

(53)
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Fig. 1. Precision diagram (CPU time vs. error) comparing the adaptive Krylov phipm and KIOPS versions of EPIRK4s3 method.

All of these methods are implemented as described in section 2 in a way that groups terms to minimize the number of 
KIOPS calls needed with each call optimized. A more detailed description of this so-called mixed implementation technique 
to optimize performance can be found in [33]. With the mixed implementation the fourth-order methods require only two 
calls to KIOPS or phipm routines per time step, while fifth-order methods require only three calls. This is accomplished by 
simultaneously evaluating the second terms in the right-hand side of equations for Un2 and Un3 using a single call to KIOPS 
or phipm. For fourth-order methods the second call to KIOPS or phipm evaluates the full linear combination of ϕ-functions 
in evaluation of un+1. The fifth-order methods require the third call to KIOPS or phipm to approximate the third term in 
the right-hand side of Un3. All schemes are implemented with constant time step integration. The phipm algorithm used in 
our experiments allows for simultaneous evaluation of linear combinations of ϕ ’s at values T = [T1, ..., Tend]. Further details 
and information on our phipm implementation can be found in [21,23,33].

As in previous publications [33], we choose the following test problems routinely used to study the performance of 
stiff integrators. In all of the problems presented below the ∇2 term is discretized using the standard second order finite 
differences.

Allen–Cahn 2D. Two-dimensional Allen–Cahn equation [50]:

ut = α∇2u + u − u3, x, y ∈ [−1,1], t ∈ [0,1.0]
with α = 0.1, using no-flow boundary conditions and initial conditions given by u = 0.1 + 0.1 cos(2πx) cos(2π y).

Advection–Diffusion–Reaction (ADR) 2D. Two-dimensional advection–diffusion–reaction equation [51]:

ut = ε∇2u − α(ux + u y) + γ u(u − 1 )(1 − u), x, y ∈ [0,1], t ∈ [0,0.1],
2
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Fig. 2. Precision diagram (CPU time vs. error) comparing the adaptive Krylov phipm and KIOPS versions of EPIRK4s3A method.

where ε = 1/100, α = −10, and γ = 100. Homogeneous Neumann boundary conditions were used and the initial conditions 
were given by u = 256(xy(1 − x)(1 − y))2 + 0.3.

Brusselator 2D. Two-dimensional Brusselator [52,53]

ut = 1 + u2 v − 4u + α∇2u, x, y ∈ [0,1]
vt = 3u − u2 v + α∇2 v

α = 0.02

with homogeneous Neumann boundary conditions, t ∈ [0, 1], and initial values

u = 2 + 0.25y

v = 1 + 0.8x

Gray–Scott 2D. Two-dimensional Gray–Scott [54] with periodic boundary conditions:

ut = du∇2u − uv2 + a(1 − u), x, y ∈ [0,1]
vt = dv∇2 v + uv2 − (a + b)v,

and du = 0.2, dv = 0.1, a = 0.04, b = 0.06. Initial conditions given by
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Fig. 3. Precision diagram (CPU time vs. error) comparing the adaptive Krylov phipm and KIOPS versions of EPIRK5P1 method.

u = 1 − e−150[(x− 1
2 )2+(y− 1

2 )2],
v = e−150[(x− 1

2 )2+2(y− 1
2 )2].

1D Semilinear Parabolic. One-dimensional semilinear parabolic problem [55]:

∂U

∂t
(x, t) − ∂2U

∂x2
(x, t) =

1∫
0

U (x, t)dx + �(x, t)

with homogeneous Dirichlet boundary conditions and for x ∈ [0, 1] and t ∈ [0, 1]. The source function � is chosen such that 
U (x, t) = x(1 − x)et is the exact solution.

Figs. 1–4 show precision diagrams (CPU time vs. error) for each of the exponential schemes and all of the test problems 
comparing the performance of KIOPS and phipm versions of the exponential integrators. The following time step sizes and 
spatial discretizations were used in these simulations

• ADR: N = 4002 with h = 0.01, 0.005, 0.0025, 0.00125, 6.25 · 10−4,
• Allen–Cahn: N = 5002 with h = 0.5, 0.25, 0.1250, 0.0625, 0.03125,
• Semilinear Parabolic: N = 1000 with h = 0.1, 0.05, 0.0250, 0.0125, 6.25 · 10−3,
• Gray–Scott: N = 4002 with h = 0.01, 0.005, 0.0025, 0.00125, 6.25 · 10−4,
• Brusselator: N = 3002 with h = 0.25, 0.1250, 0.0625, 0.03125, 0.015625,
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Fig. 4. Precision diagram (CPU time vs. error) comparing the adaptive Krylov phipm and KIOPS versions of EXPRB5S3 method.

where N and h correspond to the number of spatial discretization nodes and the time step size respectively. The tolerance 
is set to 10−14 for KIOPS and phipm. The error is defined as the discrete infinity (maximum) norm of the difference between 
the approximation to the solution and the reference solution computed using MATLAB’s ode15s integrator with absolute and 
relative tolerances set to 10−14.

First, it is important to note that KIOPS outperforms phipm in all of the simulations delivering both better efficiency and 
accuracy. For a given tolerance the speedup of simulations can be a factor of 5 or 7 (e.g. Fig. 4(e), Fig. 3(e)). It is interesting to 
observe that while comparatively EPIRK4s3 is more accurate than EPIRK4s3A and EXPRB5s3 is more accurate than EPIRK5P1 
for the phipm implementation, KIOPS makes these schemes on par with each other. In other words, a KIOPS EPIRK4s3A 
implementation is as efficient and accurate as EPIRK4s3, and similar conclusion holds for EXPRB5s3 and EPIRK5P1. It is 
particularly notable that this phenomenon occurs even between a classically (non-stiffly) accurate EPIRK5P1 and the stiffly 
accurate method EXPRB5s3. Practice shows that stiff order conditions on exponential integrators can sometimes be unnec-
essarily strict for some problems [33]. This result raises a question of whether improvements in approximating ϕ-vector 
products can allow for easing strict stiff order conditions and enable derivation of more efficient methods.

To demonstrate that the computational advantage of KIOPS compared to phipm is retained as the size of the problem and 
consequently its stiffness increase we present numerical experiments for each of the problems with different values of the 
problem size N in Fig. 5. It is expected that as N increases performance of both algorithms will suffer since Krylov subspace 
projection is at the core of each of these methods and its performance is affected by the more spread out spectrum of 
the Jacobian matrix. However, graphs in Fig. 5 indicate that the computational advantage of KIOPS compared to phipm is 
retained and even improved as the problem size N increases.
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Fig. 5. Precision diagram (CPU time vs. error) comparing the adaptive Krylov phipm and KIOPS versions of EPIRK4s3A method as the size of each of the 
problems increases. Advection–Diffusion–Reaction 2D with (a) N = 1002, (b) N = 2002, (c) N = 4002; Gray–Scott 2D with (d) N = 1002, (e) N = 2002; 
Brusselator 2D with (g) N = 1502, (h) N = 3002, (i) N = 6002; 1D Semilinear Parabolic equation with (j) N = 500, (k) N = 1000. Note: Allen–Cahn problem 
is omitted since the results for this problem are essentially the same as for other test problems but for clarity we wanted to keep all the graphs in one 
figure.
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5. Conclusions

We presented a new KIOPS algorithm for evaluating products of exponential and exponential-like ϕ-functions of large 
stiff matrices and vectors. To date, phipm was considered to be the most efficient algorithm for problems where no addi-
tional information about the spectrum or norm of the matrix is available. Our results demonstrated that the new KIOPS 
algorithm outperforms phipm. The efficiency of the proposed algorithm is attributable to a combination of the incomplete 
orthogonalization procedure, a better adaptivity procedure and a heuristic strategy to determine the initial size of the Krylov 
space using information from previous time substeps. The new algorithm offers not only better computational efficiency but 
new pathways to further improvements in making exponential and exponential-type integrators more computationally ap-
pealing. In particular, the adaptivity algorithms within the KIOPS method can be improved further if better error and cost 
estimates are derived. We plan to pursue this line of research in our future work. We note that alternative techniques, like 
restarted Krylov subspace or block Krylov subspace, could be combined with the adaptive method described in this paper. 
We intend to study them in future work. We also plan to investigate effective ways to improve the performance of the 
algorithm on parallel architectures.

6. Code availability

The EPIC package implements the exponential integrators used in our numerical experiments. It is available from 
http://faculty.ucmerced.edu/mtokman/#software.
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