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In this paper, we propose a simple fast Fourier spectral method for the inelastic Boltzmann 
collision operator, with its application to one of the widely used models of granular gases, 
the inelastic Boltzmann equation with a heating source. Compared to the direct Fourier 
spectral method, our fast algorithm reduces the computational complexity from O  

(
N6

)
to 

O  
(
MN4 log N

)
per evaluation of the collision operator in three dimensions, where N is the 

number of discretization points in each velocity dimension and M � N2 is the number of 
quadrature points used on the unit sphere. We test the numerical accuracy and efficiency 
of the proposed method in both two dimensional and three dimensional examples, where 
in the latter case the famous Haff’s cooling law for granular flows is successfully recovered.

© 2019 Elsevier Inc. All rights reserved.

1. Introduction

It has been found in the past few decades that the granular gases behave fundamentally different from the usual molec-
ular gases modeled as elastically colliding spheres. The rich phenomenon of such systems, such as the formation of clusters 
and shear instability, draws a lot of attention from both theoretical and industrial application point of view. Different from 
their molecular counterparts, granular gases allow inelastic collisions, in other words, break the time-reversible symmetry 
because of the energy dissipation. Despite this dissipative nature and its resulting nontrivial properties, the basic equation 
of kinetic theory, the Boltzmann equation, can still be extended to describe the granular gases with a different collision 
operator [1], namely,

∂t f + v · ∇x f = Q in( f , f ), (1)

where f = f (t, x, v) is the one-particle distribution function depending on time t ≥ 0, position x ∈ R
d , and particle velocity 

v ∈ R
d with the dimension d ≥ 1 (d should be 3 in practice, but for simplicity d = 1 or 2 are also considered), and Q in is 

the so-called inelastic or granular collision operator — a nonlinear (quadratic) integral operator modeling binary collisions 
among particles whose exact expression will be presented in later discussions. For convenience, we use Q instead of Q in in 
the rest of this paper, and the notation should not be confused with the usual elastic collision operator [2]. Another widely 

✩ This work was partially supported by NSF grant DMS-1620250 and NSF CAREER grant DMS-1654152. Support from DMS-1107291: RNMS KI-Net is also 
gratefully acknowledged.

* Corresponding author.
E-mail addresses: jingweihu@purdue.edu (J. Hu), ma531@purdue.edu (Z. Ma).
https://doi.org/10.1016/j.jcp.2019.01.049
0021-9991/© 2019 Elsevier Inc. All rights reserved.

https://doi.org/10.1016/j.jcp.2019.01.049
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/jcp
mailto:jingweihu@purdue.edu
mailto:ma531@purdue.edu
https://doi.org/10.1016/j.jcp.2019.01.049
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jcp.2019.01.049&domain=pdf


120 J. Hu, Z. Ma / Journal of Computational Physics 385 (2019) 119–134
used model, first introduced by van Noije and Ernst [3], is the spatially homogeneous inelastic Boltzmann equation with a 
heating source:

∂t f − ε�v f = Q ( f , f ), (2)

where the distribution function f depends only on the time t and velocity v , and the term ε�v f represents the diffusion 
effects with the diffusion coefficient ε � 1, incurred by a heat bath of infinite temperature. The rationale to consider 
this model is that many experiments about granular material include shaking, as a way to input energy into the system, 
counterbalancing the freezing due to energy loss.

In spite of the wide engineering and industrial applications of granular gases, the mathematical theory behind the inelas-
tic Boltzmann equation is still at an early stage and most of the theoretical studies are retained to the spatially homogeneous 
case. We refer to the recent review by Villani [4] for a collection of rigorous mathematical results and open questions on 
this topic. Numerically, mainly two classes of methods have been considered for the inelastic Boltzmann equation, one 
stochastic and one deterministic. In [5–7], the direct simulation Monte Carlo (DSMC) method, initially proposed for solving 
the classical Boltzmann equation [8], is modified and extended to the inelastic case. Due to its simplicity and efficiency, 
DSMC still remains the most viable choice for large scale kinetic simulations. On the other hand, the deterministic method, 
in particular, the spectral method based on Fourier series/transform has become quite popular in the past decade thanks to 
the advances in computing power. Without being exhaustive, we refer to [9] and references therein for a general discussion 
of such methods. For inelastic collision operators, the first attempt was made in [10] for the one dimensional model; later 
in [11–13], both two and three dimensional cases were considered by directly generalizing the spectral method for the 
classical Boltzmann equation. Although the spectral method can produce very accurate results in comparison to DSMC, its 
enormous computational cost and excessive storage requirement present a huge challenge in practice. Indeed, all the above 
mentioned methods require O (N2d) complexity per evaluation of the collision operator and the same amount of memory 
to store the precomputed weights, where N is the number of discretization points in each velocity dimension. This quickly 
becomes a bottleneck as N increases especially for physically relevant three dimensional problems.

Our contribution. In this paper, we propose a simple fast algorithm for the inelastic Boltzmann collision operator. The 
method is based on the same framework as the direct Fourier spectral method [11]. By exploiting the low rank and convo-
lutional structure in the collision integral, we are able to reduce the computational cost from O (N2d) to O (MNd+1 log N), 
where M � Nd−1 is the number of quadrature points used on the unit circle (in 2D) or sphere (in 3D). No precomputation 
is needed for the variable hard sphere (VHS) model (a commonly used collision kernel including Maxwell molecules and 
hard spheres as subcases), and only O (MNd+1) memory is required to store precomputed weights for more general kernels. 
The idea is largely inspired by the recent work [14], where instead of precomputing all the weights we approximate them 
partially “on the fly” using a quadrature rule. We carefully validate the accuracy and efficiency of the proposed method 
using a series of examples. In particular, we find that separate approximation of the gain and loss terms of the collision op-
erator yields better accuracy compared to approximating them as a whole, although the latter seems quite natural starting 
from the weak formulation of the equation; we also numerically verify the famous Haff’s cooling law for 3D inelastic hard 
spheres, which says that the temperature in a granular gas decays like O (t−2) with time, as predicted in Haff’s seminal 
work [15].

Related work. A closely related work is the fast Fourier spectral method introduced in [16] for the generalized Enskog 
equation (the Boltzmann and Enskog collision operators reduce to the same thing in the spatially homogeneous case). This 
method is based on a different representation of the collision operator, the so-called Carleman form, and relies on an extra 
approximation of the integral in the radial direction. As a result, the final computational cost is comparable to our method. 
However, due to the complication of the Carleman representation, precomputation is generally needed in [16] regardless 
of the form of the collision kernel. In contrast, our method only requires precomputation for kernels other than the VHS 
model (explicit formulas are available for the VHS model, see Sections 3.1–3.2) and is very easy to implement. Further, we 
propose to use the spherical design [17] to approximate the integral on the unit sphere, which is the optimal quadrature on 
the sphere up to date and shows better performance (require much fewer points to attain the same level of accuracy) than 
the tensor product Gauss quadrature as used in [16].

The rest of the paper is organized as follows: Section 2 provides a brief overview of the inelastic collision operator, and 
the heated inelastic Boltzmann equation widely used in practice for modeling granular flows. Section 3 presents the details 
of the fast Fourier spectral method for the inelastic collision operator. In Section 4, we perform a series of numerical tests 
in both 2D and 3D to validate the accuracy and efficiency of the proposed method. The paper is concluded in Section 5.

2. The inelastic collision operator and the inelastic Boltzmann equation with a heating source

2.1. The inelastic collision operator – strong and weak formulations

Unlike the classical Boltzmann collision operator [2] where both the momentum and energy are conservative, the math-
ematical expression of the inelastic collision operator Q ( f , f ) is more complicated due to the energy dissipation, and there 
is a lot of ambiguity in the existing literature especially related to its strong formulation. To clarify and fix the notation, we 
introduce in this subsection both the strong and weak forms of the inelastic collision operator. Our presentation is consistent 
to [18] where a more thorough derivation can be found.
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Assume two particles with velocities v and v∗ are going to collide. During the collision, there is some loss of momentum 
in the impact direction ω ∈ Sd−1 (Sd−1 is the unit sphere in Rd), resulting in the post-collisional velocities v ′ and v ′∗ . Let e
stand for the restitution coefficient or inelasticity parameter, then

(v ′ − v ′∗) · ω = −e[(v − v∗) · ω], 0 ≤ e ≤ 1. (3)

Note that the degree of inelasticity is indicated by e, where e = 1 corresponds to perfectly elastic collisions (no loss of 
energy) and e = 0 to sticky collisions (particles travel together after a collision). e could be a constant, or may depend on 
the impact velocity |(v − v∗) · ω| for viscoelastic particles [19].

Using (3), v ′ and v ′∗ can be represented as
⎧⎪⎨
⎪⎩

v ′ = v − 1 + e

2
[(v − v∗) · ω]ω,

v ′∗ = v∗ + 1 + e

2
[(v − v∗) · ω]ω.

(4)

Following Villani [20], we shall call this ω-representation. From (4) one can easily verify the conservation of momentum 
and dissipation of energy:

v ′ + v ′∗ = v + v∗; |v ′|2 + |v ′∗|2 − |v|2 − |v∗|2 = −1 − e2

2
[(v − v∗) · ω]2 ≤ 0. (5)

To write down the strong form of the collision operator, one needs to define the pre-collisional velocities ṽ and ṽ∗ that 
produce velocities v and v∗ after the collision. They follow the same rule as given in (4), with (v, v∗) replaced by ( ̃v, ṽ∗)
and (v ′, v ′∗) replaced by (v, v∗). Note that ṽ and ṽ∗ do not coincide with v ′ and v ′∗ unlike the classical (elastic) case; in 
other words, the collisions are not reversible.

Now the inelastic Boltzmann collision operator (in strong form) can be written as

Q ( f , f )(v) =
∫

Rd

∫

Sd−1

Bω(| g̃|, |ω · ˆ̃g|) f̃ f̃∗ J dω dv∗ −
∫

Rd

∫

Sd−1

Bω(|g|, |ω · ĝ|) f f∗ dω dv∗

: = Q +( f , f ) − Q −( f , f ), (6)

which naturally splits into a gain term Q + and a loss term Q − . In (6), g := v − v∗ is the relative velocity, ĝ is the unit 
vector along g , and we used the shorthand notation g̃ = ṽ − ṽ∗ , f̃ = f ( ̃v), f̃∗ = f ( ̃v∗) and so on. J is the determinant of 
the Jacobian from (v, v∗) to ( ̃v, ṽ∗), i.e.,

J =
∣∣∣∣∂( ṽ, ṽ∗)
∂(v, v∗)

∣∣∣∣ . (7)

Bω = Bω(|g|, |ω · ĝ|) is the collision kernel depending only on |g| and |ω · ĝ|, whose specific form can be determined from 
the interaction potential using scattering theory.

Starting from the strong form (6) of the collision operator, one can derive various weak forms that are more often used 
when studying f via physical observables. For a test function ϕ(v), we have∫

Rd

Q ( f , f )(v)ϕ(v) dv =
∫

Rd

∫

Rd

∫

Sd−1

Bω(| g̃|, |ω · ˆ̃g|) f̃ f̃∗ J ϕ dω dv∗ dv

−
∫

Rd

∫

Rd

∫

Sd−1

Bω(|g|, |ω · ĝ|) f f∗ϕ dω dv∗ dv

=
∫

Rd

∫

Rd

∫

Sd−1

Bω(| g̃|, |ω · ˆ̃g|) f̃ f̃∗ϕ dω d ṽ∗ d ṽ

−
∫

Rd

∫

Rd

∫

Sd−1

Bω(|g|, |ω · ĝ|) f f∗ϕ dω dv∗ dv

=
∫

Rd

∫

Rd

∫

Sd−1

Bω(|g|, |ω · ĝ|) f f∗ϕ′ dω dv∗ dv

−
∫

Rd

∫

Rd

∫

Sd−1

Bω(|g|, |ω · ĝ|) f f∗ϕ dω dv∗ dv, (8)
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where in the second equality we changed dv∗ dv to d ṽ∗ d ṽ in the gain term and in the third equality we changed ( ̃v, ṽ∗)
to (v, v∗) for a fixed ω, hence (v, v∗) becomes (v ′, v ′∗). Therefore, we have

∫

Rd

Q ( f , f )(v)ϕ(v) dv =
∫

Rd

∫

Rd

∫

Sd−1

Bω(|g|, |ω · ĝ|) f f∗
(
ϕ′ − ϕ

)
dω dv dv∗. (9)

In (9), if we swap v and v∗ for a fixed ω, then v ′ is swapped with v ′∗ due to (4):

∫

Rd

Q ( f , f )(v)ϕ(v) dv =
∫

Rd

∫

Rd

∫

Sd−1

Bω(|g|, |ω · ĝ|) f f∗
(
ϕ′∗ − ϕ∗

)
dω dv dv∗. (10)

Averaging the previous two steps, we obtain another weak form

∫

Rd

Q ( f , f )(v)ϕ(v) dv = 1

2

∫

Rd

∫

Rd

∫

Sd−1

Bω(|g|, |ω · ĝ|) f f∗
(
ϕ′ + ϕ′∗ − ϕ − ϕ∗

)
dω dv dv∗. (11)

As we have seen above, the ω-representation is very easy to perform the change of variables, hence to obtain the weak 
forms. For numerical purpose, it is convenient to consider a different parametrization, the so-called σ -representation (again 
following the terminology in [20]):

⎧⎪⎨
⎪⎩

v ′ = v + v∗
2

+ 1 − e

4
(v − v∗) + 1 + e

4
|v − v∗|σ ,

v ′∗ = v + v∗
2

− 1 − e

4
(v − v∗) − 1 + e

4
|v − v∗|σ ,

(12)

where σ is another unit vector on Sd−1 and is related to ω as

(g · ω)ω = 1

2
(g − |g|σ). (13)

It can be verified that the transformation between ω and σ representations in the integral form is given by

∫

Rd

∫

Sd−1

Bω(|g|, |ω · ĝ|) · dω dv∗ =
∫

Rd

∫

Sd−1

Bσ (|g|,σ · ĝ) · dσ dv∗, (14)

with

Bω(|g|, |ω · ĝ|) = |2(ω · ĝ)|d−2 Bσ (|g|,1 − 2(ω · ĝ)2). (15)

Therefore, the two weak forms (9) and (11) written in the σ -representation read as

Weak form 1:∫

Rd

Q ( f , f )(v)ϕ(v) dv =
∫

Rd

∫

Rd

∫

Sd−1

Bσ (|g|,σ · ĝ) f f∗
(
ϕ′ − ϕ

)
dσ dv dv∗, (16)

Weak form 2:∫

Rd

Q ( f , f )(v)ϕ(v) dv = 1

2

∫

Rd

∫

Rd

∫

Sd−1

Bσ (|g|,σ · ĝ) f f∗
(
ϕ′ + ϕ′∗ − ϕ − ϕ∗

)
dσ dv dv∗, (17)

where g = v − v∗ , and (v ′, v ′∗) are given by (12). The collision kernel Bσ may take various forms depending on the types 
of interactions. The most commonly used form is the variable hard sphere (VHS) model [8]:

Bσ (|g|,σ · ĝ) = Cλ|g|λ, 0 ≤ λ ≤ 1, (18)

where Cλ > 0 is some constant. Two special cases are: Maxwell molecules (λ = 0) and hard spheres (λ = 1).
In the following discussions, we shall exclusively use the weak forms (16) and (17).
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2.2. The inelastic Boltzmann equation with a heating source

In this subsection, we consider the inelastic Boltzmann equation with a heating source (2). We shall revisit a few prop-
erties of this equation.

First of all, we define the following moments of f :

ρ =
∫

Rd

f dv, m =
∫

Rd

f v dv, E = 1

2

∫

Rd

f |v|2 dv, (19)

where ρ , m and E are, respectively, the density, momentum and energy. We further define the bulk velocity u and temper-
ature T as

u = 1

ρ

∫

Rd

f v dv, T = 1

dρ

∫

Rd

f |v − u|2 dv, (20)

then

m = ρu, E = 1

2
ρu2 + d

2
ρT . (21)

Now assuming f is a solution to equation (2), the conservation of mass and momentum is straightforward by taking 
ϕ = 1 and v respectively in the weak form (17), i.e.,

ρ ≡ ρ0, m ≡ m0, (22)

with ρ0 and m0 being the initial density and momentum. By taking ϕ = |v|2/2 in (17), one obtains the following energy 
equation

∂t E − εdρ0 = − 1

16

∫

Rd

∫

Rd

∫

Sd−1

(1 − e2)Bσ (|g|,σ · ĝ)|g|2(1 − σ · ĝ) f f∗ dσ dv dv∗, (23)

where we used (5) and (13).
For constant restitution coefficient e and Maxwell molecules (λ = 0 in (18)), equation (23) becomes

∂t E − εdρ0 = −1 − e2

16
C0

∫

Rd

∫

Rd

∫

Sd−1

|g|2(1 − σ · ĝ) f f∗ dσ dv dv∗. (24)

Note that∫

Sd−1

C0(1 − σ · ĝ) dσ (25)

is a positive constant regardless of ĝ and, without loss of generality, is assumed to be 1. Then

∂t E − εdρ0 = −1 − e2

16

∫

Rd

∫

Rd

|g|2 f f∗ dv dv∗

= −1 − e2

16

∫

Rd

∫

Rd

(|v|2 + |v∗|2 − 2v · v∗) f f∗ dv dv∗

= −1 − e2

8

(
2ρ0 E − m2

0

)
. (26)

For simplicity, if we take the initial condition such that ρ0 = 1, u0 = 0, then T = 2
d E satisfies

∂t T − 2ε = −1 − e2

4
T , (27)

whose solution is

T =
(

T0 − 8ε

1 − e2

)
exp

(
−1 − e2

4
t

)
+ 8ε

1 − e2
. (28)

Remark 1. This explicit expression will serve as the reference quantity in our later numerical tests, since in the inelastic 
case it is notably harder to find an analytical f satisfying the Boltzmann equation (in fact there is no such f to the best of 
our knowledge) in contrast to the elastic case where a BKW solution is available.
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3. A fast spectral method for the inelastic Boltzmann collision operator

In this section, we describe in detail the fast spectral method for the inelastic Boltzmann collision operator. Since our 
method aims to directly accelerate the Fourier-Galerkin spectral method proposed in [11], we first lay out the basic frame-
work of this original method and then introduce our new idea.

The starting point is the weak form (16) with a change of integration variable v∗ → g = v − v∗:∫

Rd

Q ( f , f )(v)ϕ(v) dv =
∫

Rd

∫

Rd

∫

Sd−1

Bσ (|g|,σ · ĝ) f (v) f (v − g)
(
ϕ(v ′) − ϕ(v)

)
dσ dg dv, (29)

where

v ′ = v − 1 + e

4
(g − |g|σ). (30)

It is then assumed that f has a compact support: Suppv( f ) ≈ B S , where B S is a ball centered at the origin with radius S
(in practice, S can be chosen roughly as max(u0 ± c

√
T0), where c is some constant around 3). Hence it suffices to truncate 

the infinite integral in g to a larger ball B R with radius R = 2S:∫

Rd

Q ( f , f )(v)ϕ(v) dv =
∫

Rd

∫
B R

∫

Sd−1

Bσ (|g|,σ · ĝ) f (v) f (v − g)
(
ϕ(v ′) − ϕ(v)

)
dσ dg dv. (31)

Next, we restrict v to a cubic computational domain D L = [−L, L]d , and approximate f by a truncated Fourier series:

f (v) ≈ f N(v) =
N
2 −1∑

k=− N
2

f̂kei π
L k·v , f̂k = 1

(2L)d

∫
D L

f (v)e−i π
L k·v dv. (32)

Note that k = (k1, . . . , kd) is a multidimensional index, and 
∑N/2−1

k=−N/2 := ∑N/2−1
k1,...,kd=−N/2. The choice of L can be made sim-

ilarly as in the classical case L ≥ (3 + √
2)S/2, see [21,11] for more details. Now substituting f N into (31) and choosing 

ϕ(v) = e−i π
L k·v , we can obtain the k-th mode of the collision operator as

Q̂ k : = 1

(2L)d

∫
D L

Q ( f N , f N)(v)e−i π
L k·v dv

= 1

(2L)d

∫
D L

∫
B R

∫

Sd−1

Bσ (|g|,σ · ĝ) f N(v) f N(v − g)
(

e−i π
L k·v ′ − e−i π

L k·v)
dσ dg dv

=
N
2 −1∑

l,m=− N
2

l+m=k

∫
B R

∫

Sd−1

Bσ (|g|,σ · ĝ)e−i π
L m·g (

ei π
L

1+e
4 k·(g−|g|σ ) − 1

)
f̂ l f̂m dσ dg, (33)

where in the last equality we used the orthogonality of the Fourier basis.
Define the weight

G(l,m) =
∫
B R

e−i π
L m·g

⎡
⎢⎣

∫

Sd−1

Bσ (|g|,σ · ĝ)
(

ei π
L

1+e
4 (l+m)·(g−|g|σ ) − 1

)
dσ

⎤
⎥⎦ dg, (34)

then (33) can be written as

Q̂ k =
N
2 −1∑

l,m=− N
2

l+m=k

G(l,m) f̂ l f̂m. (35)

In the original spectral method [11], the weight G(l, m) is precomputed and stored as it is independent of the solution f
(memory requirement O (N2d)). During the online computation, the weighted sum (35) is directly evaluated whose com-
plexity is O (N2d).

To reduce the computational cost, we would like to render the weighted convolution (35) into a pure convolution so 
that it can be computed efficiently by the fast Fourier transform (FFT). Inspired by [14], here we propose to decompose the 
weight G(l, m) as follows:
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G(l,m) ≈
N p∑

p=1

αp(l + m)βp(m), (36)

where αp and βp are some functions to be determined and the number of terms Np in the expansion is small. Then (35)
becomes

Q̂ k ≈
N p∑

p=1

αp(k)

N
2 −1∑

l,m=− N
2

l+m=k

f̂l

(
βp(m) f̂m

)
, (37)

where the inner summation is a pure convolution of two functions f̂ l and βp(m) f̂m . Hence the total complexity to evaluate 
Q̂ k (for all k) is brought down to O (Np Nd log N), i.e., a couple of FFTs.

A close inspection of (34) suggests that it is not difficult to generate an expansion of the form (36). The key is to 
approximate the integral in g using a fixed quadrature rule. Specifically, we only precompute the part inside the bracket

F (l + m,ρ, ĝ) :=
∫

Sd−1

Bσ (ρ,σ · ĝ)
(

ei π
L ρ 1+e

4 (l+m)·(ĝ−σ ) − 1
)

dσ , (38)

and approximate G(l, m) “on the fly” as

G(l,m) ≈
∑
ρ,ĝ

wρ w ĝ ρd−1e−i π
L ρ m·ĝ F (l + m,ρ, ĝ), (39)

where the integral in g is split into a radial part ρ := |g| ∈ [0, R] and a spherical part ĝ ∈ Sd−1, and wρ and w ĝ are the 
corresponding quadrature weights. The radial direction ρ can be approximated by the Gauss-Legendre quadrature. Since 
the integrand in (39) is oscillatory on the scale of O (N), the number of quadrature points needed for ρ should be O (N). 
The spherical direction ĝ can be treated as follows: in 2D, the integrand is 2π -periodic, so the simple rectangular rule is 
expected to yield spectral accuracy; in 3D, we propose to use the spherical design [17], which is the optimal quadrature on 
the sphere up to date and performs much better than the tensor product based Gauss quadrature [22]. It should be pointed 
out that it is hard to obtain a priori estimate of the number of points M needed on S2, but numerical experiments show 
that typically M � N2, see Section 4.

In summary, we have obtained the decomposition (39), which is in the desired form (36) with Np = O (MN). So the total 
cost to evaluate Q̂ k (for all k) is reduced to O (MNd+1 log N). Furthermore, the only quantity that needs to be precomputed 
and stored is (38), which in the worst scenario requires O (MNd+1) memory. In fact, no precomputation is needed for the 
VHS model (18), as will be shown below.

The above formulation treats the gain term and loss term (positive and negative parts) in (34) in a unified way. Note 
that the loss term is readily a function of m, hence no approximation/decomposition is actually needed. This suggests an 
alternative way to evaluate the loss term of the collision operator: precompute

G(m) :=
∫
B R

e−i π
L m·g

⎡
⎢⎣

∫

Sd−1

Bσ (|g|,σ · ĝ) dσ

⎤
⎥⎦ dg, (40)

and compute

Q̂ −
k =

N
2 −1∑

l,m=− N
2

l+m=k

f̂l

(
G(m) f̂m

)
(41)

by FFT. In our numerical experiments, we test both approaches carefully. Surprisingly, even it seems quite natural to approx-
imate gain and loss terms together starting from the weak formulation, approximating them separately yields more accurate 
results. For details, see Section 4.

Remark 2. The fast algorithm proposed here works for both constant and non-constant restitution coefficient. If e is a 
function of impact velocity ([19]), i.e., e = e(|g · ω|) = e(|g − |g|σ |/2), it merely complicates the precomputation of F , 
everything else remains the same.

To close this section, we give explicitly the formulas for the VHS model (18) in both 2D and 3D. These will be used in 
Section 4 to validate our proposed method.
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3.1. 2D VHS model

For the VHS model (18) in 2D, we have

F (k,ρ, ĝ) =
∫

S1

Cλ ρλ
(

ei π
L ρ 1+e

4 k·(ĝ−σ ) − 1
)

dσ

= 2π Cλ ρλ

[
ei π

L ρ 1+e
4 k·ĝ J0

(
π

L
ρ

1 + e

4
|k|

)
− 1

]
, (42)

where J0 is zero-th order Bessel function of the first kind. Therefore,

Q̂ k ≈
∑
ρ,ĝ

wρ w ĝ ρ F (k,ρ, ĝ)

N
2 −1∑

l,m=− N
2

l+m=k

f̂l

[
e−i π

L ρ m·ĝ f̂m

]
, (43)

or the loss term can be computed separately as

Q̂ −
k ≈

N
2 −1∑

l,m=− N
2

l+m=k

f̂l

⎡
⎣∑

ρ

wρ 4π2 Cλ ρλ+1 J0

(π

L
ρ|m|

)
f̂m

⎤
⎦ . (44)

3.2. 3D VHS model

For the VHS model (18) in 3D, we have

F (k,ρ, ĝ) =
∫

S2

Cλ ρλ
(

ei π
L ρ 1+e

4 k·(ĝ−σ ) − 1
)

dσ

= 4π Cλ ρλ

[
ei π

L ρ 1+e
4 k·ĝ Sinc

(
π

L
ρ

1 + e

4
|k|

)
− 1

]
, (45)

where Sinc(x) = sin x/x is the Sinc function. Therefore,

Q̂ k ≈
∑
ρ,ĝ

wρ w ĝ ρ2 F (k,ρ, ĝ)

N
2 −1∑

l,m=− N
2

l+m=k

f̂l

[
e−i π

L ρ m·ĝ f̂m

]
, (46)

or the loss term can be computed separately as

Q̂ −
k ≈

N
2 −1∑

l,m=− N
2

l+m=k

f̂l

⎡
⎣∑

ρ

wρ 16π2 Cλ ρλ+2 Sinc
(π

L
ρ|m|

)
f̂m

⎤
⎦ . (47)

4. Numerical examples

In this section, we verify the accuracy and efficiency of the proposed method with extensive numerical studies in both 
two and three dimensions. As mentioned previously, unlike the elastic collision operator where an analytical solution f is 
available, the inelastic case, however, only has analytical formulas for macroscopic quantities, such as the temperature T as 
shown in (28). This means that in order to provide a trustworthy verification of our solver, one needs an accurate scheme 
to solve the inelastic Boltzmann equation (2).

In the following numerical simulations, we apply our fast spectral solver to evaluate the collision operator, paired with 
a standard Fourier spectral method to treat the diffusion term ε�v f and a third-order Runge-Kutta scheme for time dis-
cretization. For the ODE system ∂t f = L( f ), the RK3 scheme we use is given by
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k1 = L( f n),

k2 = L( f n + 1

2
k1�t),

k3 = L( f n − k1�t + 2k2�t),

f n+1 = f n + 1

6
(k1 + 4k2 + k3)�t. (48)

We always set ε = 10−6 for the diffusion term except the last example where ε = 0.

4.1. 2D examples

In this subsection, we perform several 2D examples for Maxwell molecules, i.e., Bσ = 1
2π in (18). Since it is clear that 

the simple rectangular rule on the circle will yield spectral accuracy, our focus here is to verify the spectral accuracy in N . 
We will consider two variants, one is to approximate the gain and loss terms together as in (43), which we shall denote by 
“full” method below; the other is to approximate them separately with the loss term given by (44), which we shall denote 
by “separate” method.

4.1.1. 2D inelastic Maxwell molecules — isotropic solution
We first consider the isotropic initial condition:

f0(v) = 1

2π K 2
exp

(
− v2

2K

)(
2K − 1 + 1 − K

2K
v2

)
, (49)

where K = 1 − exp(−1/16)/2. One can easily check that ρ0 = 1, u0 = 0 and T0 = 1.
We compare the difference of temperature |Tnum − Tref| at some given time tfinal. The numerical Tnum is obtained by 

taking the moments of the numerical solution fnum, computed by our fast spectral method. The reference Tref is obtained 
using the exact formula (28).

In order to minimize the error due to time discretization, we first perform a convergence test in time of the RK3 scheme. 
In Fig. 1 we plot the errors versus different �t at tfinal = 2. Various values of the restitution coefficient e = 0.2, 0.5 and 0.8, 
and both the “full” and “separate” methods are considered. We choose a relatively large N = 64 and Nρ = Mcir = 30, 
where N is the number of discretization points in each velocity dimension, Nρ is the Gauss-Legendre points used in radial 
direction, and Mcir is the (uniform) quadrature points used on the circle. A third order convergence rate can be clearly 
observed. Since in this test we fix all the parameters in our spectral method as �t changes, these results also imply that 
the error of the spectral method can get very small, or at least around O (10−9).

We then perform the convergence test in N . We set �t = 0.01 (the previous test suggests that this is sufficient to 
minimize the time discretization error). In Table 1, we report the errors for different N at tfinal = 2. Various values of the 
restitution coefficient e = 0.2, 0.5 and 0.8, and both the “full” and “separate” methods are considered. These results imply 
that our method can indeed achieve the spectral accuracy, and both the “full” and “separate” methods behave similarly for 
the isotropic solution.

4.1.2. 2D inelastic Maxwell molecules — anisotropic solution
To further test the performance of the “full” and “separate” methods, we consider the following double-well initial 

condition

f0(v) = 0.8

π

(
exp(−4|v − 2|2) + exp(−|v + 0.5|2)

)
. (50)

This function is anisotropic, and ρ0 = 1, u0 = 0, T0 = 1.425.
We choose the same set of parameters as in the previous example and perform the convergence test in N . The results 

are shown in Table 2. Overall, the accuracy degrades a bit compared to the isotropic solution. Surprisingly, the accuracy 
of the “separate” method is much better than the “full” method when N gets bigger. Although it seems more natural to 
approximate the gain and loss terms together using the weak formulation, these results suggest that one should use the 
more accurate formula for the loss term when it is available. Intuitively, the smoothing property of the gain term (see [23]
for the classical collision operator and [24] for the inelastic case) alleviates the error introduced by the quadrature; since the 
loss term does not have this property, the same quadrature can incur more errors, hence a more accurate formula should 
be used.

4.2. 3D examples

In 3D, the quadrature on the sphere can have a rather nontrivial effect. Therefore, we first test the accuracy of spherical 
design for Maxwell molecules. Using the same example, we also demonstrate the efficiency of our method by comparing it 
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Fig. 1. Convergence test in time of the 2D Maxwell molecule (isotropic solution) for e = 0.2, 0.5 and 0.8, and for both the “full” and “separate” methods. 
Errors shown here are |Tnum − Tref| at tfinal = 2. N = 64, Nρ = 30, Mcir = 30, R = 7.8, L = 8.61.
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Table 1
Convergence test in N of the 2D Maxwell molecule (isotropic so-
lution) for e = 0.2, 0.5 and 0.8, and for both the “full” and “sep-
arate” methods. Errors shown here are |Tnum − Tref| at tfinal = 2. 
�t = 0.01, Nρ = 30, Mcir = 30, R = 7.8, L = 8.61.

(a) e = 0.2

N full separate

8 9.21116565e-01 9.21116565e-01
16 1.27640374e-02 1.27634481e-02
32 6.79745658e-06 6.79544555e-06
64 2.36438646e-10 2.34851361e-10
128 6.13890050e-11 6.30565600e-11

(b) e = 0.5

N full separate

8 7.98706096e-01 7.98706096e-01
16 6.42644165e-03 6.42641236e-03
32 4.55730861e-06 4.55713801e-06
64 4.93770580e-11 4.93595165e-11
128 3.14279713e-11 3.13873372e-11

(c) e = 0.8

N full separate

8 5.52666966e-01 5.52666966e-01
16 4.88586534e-04 4.88821204e-04
32 1.13897201e-07 1.14430393e-07
64 9.82520731e-11 9.82359749e-11
128 1.00117470e-10 1.00099595e-10

Table 2
Convergence test in N of the 2D Maxwell molecule (anisotropic 
solution) for e = 0.2, 0.5 and 0.8, and for both the “full” and “sep-
arate” methods. Errors shown here are |Tnum − Tref| at tfinal = 2. 
�t = 0.01, Nρ = 30, Mcir = 30, R = 8, L = 8.83.

(a) e = 0.2

N full separate

8 1.25303916e-01 1.25303916e-01
16 1.42811856e-02 1.41601818e-02
32 8.50383206e-05 1.21162093e-04
64 5.75217760e-05 8.65618628e-08
128 5.74603408e-05 2.64749862e-08

(b) e = 0.5

N full separate

8 9.06935081e-02 9.06935081e-02
16 2.07345865e-02 2.06153352e-02
32 7.68575010e-05 1.08598123e-04
64 4.58166915e-05 3.61540865e-08
128 4.57852460e-05 4.84827622e-09

(c) e = 0.8

N full separate

8 4.21932177e-02 4.21932177e-02
16 2.17989934e-02 2.19257970e-02
32 1.17000137e-04 1.25546782e-04
64 2.42867607e-05 1.55334599e-08
128 2.42767854e-05 5.91159477e-09

with the direct Fourier spectral method [11]. After this we numerically verify the physical Haff’s cooling law for inelastic 
hard spheres.

Numerical examples in this subsection are generated using the “separate” method (the loss term is computed as in 
equation (47)).
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Table 3
Convergence test in Msph of the 3D Maxwell molecule 
(isotropic solution) for e = 0.2. Errors shown here are 
|Tnum − Tref| at tfinal = 1. �t = 0.01, N = 32, Nρ = 30, 
R = 7, L = 7.72.

Msph |Tnum − Tref|
6 0.0013957739849754791
12 9.9706271716293315e-05
32 2.2499901350947482e-06
48 2.4272557155313734e-06
70 2.4703481364962698e-06
94 2.4703481364962698e-06
120 2.453380453903975e-06

Table 4
Convergence test in Msph of the 3D Maxwell molecule 
(isotropic solution) for e = 0.2. Errors shown here are 
|Q num − Q direct|L∞ at tfinal = 1. �t = 0.01, N = 32, Nρ =
30, R = 7, L = 7.72.

Msph |Q num − Q direct|L∞

6 0.00041820767783433107
12 3.1726851245650724e-05
32 6.5752814213618921e-07
48 5.6132233266191489e-07
70 2.6714628356683257e-07
94 1.0508293902503248e-07
120 2.8872928147741922e-08

Table 5
Average running time per evaluation of the collision op-
erator. Comparison between the direct method and the 
fast method for various N and fixed Nρ = 30, Msph =
32. This test is performed using Python (numpy and 
scipy modules for array operations; pyfftw module (a 
Python wrapper of FFTW) for computing FFTs) on a 10
CPUs workstation (Intel(R) Xeon(R) CPU E5-2660 v3 @ 
2.60 GHz, 8 threads per FFTW operation).

N direct fast

8 32.3 ms 17.6 ms
16 602 ms 140 ms
32 23.7 s 1.18 s
64 – 9.7 s

4.2.1. 3D inelastic Maxwell molecules — isotropic solution
Consider the constant collision kernel Bσ = 1

4π and the initial condition:

f0(v) = 1

2(2π K )3/2
exp

(
− v2

2K

)(
5K − 3

K
+ 1 − K

K 2
v2

)
, (51)

where K = 1 − exp(−6.5/6). Note that ρ0 = 1, u0 = 0 and T0 = 1.
We perform a convergence test in Msph, the number of spherical design quadrature points used on the unit sphere. We 

set e = 0.2, tfinal = 1, �t = 0.01, N = 32, and Nρ = 30. The results are reported in Table 3. We find that the error does not 
decrease further when Msph reaches 32. This is due to the fact that the measurement we use is the macroscopic quantity 
T and other sources of errors such as the truncation of the domain and the discretization in v may pollute the solution. 
In order to see this error more clearly, we compare the result of our method with that obtained from the direct spectral 
method (without any speedup strategy), see Table 4.

To demonstrate the efficiency of our method, we show in Table 5 and Fig. 2 the average running time of both the fast 
method and the direct method for one time evaluation of the collision operator, from which we see a significant speedup 
(N = 64 of the direct method is left out due to the memory constraint).

4.2.2. 3D inelastic Maxwell molecules — anisotropic solution
In previous subsection we performed a convergence test in Msph (compared with the direct method and the analytical 

solution of the temperature) by considering an isotropic solution. This test shows that by using spherical design one can 
achieve very high accuracy to approximate the integral on the unit sphere, which is a key step in our 3D algorithm. In order 
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Fig. 2. Same numbers as in Table 5 plotted in a log-log scale.

Table 6
Convergence test in Msph of the 3D Maxwell molecule 
(anisotropic solution) for e = 0.2. Errors shown here are 
|Tnum − Tref| at tfinal = 1. �t = 0.01, N = 32, Nρ = 30, 
R = 7, L = 7.72.

Msph |Tnum − Tref|
6 2.661413377541729e-01
12 1.6773023124809094e-01
32 1.0297536867238799e-01
48 2.584202650005074e-02
70 2.422376071694199e-02
94 3.058799838901116e-03
120 4.413127388460447e-03
156 1.220110856786194e-03
192 3.96517639616345e-04

Table 7
Convergence test in Msph of the 3D Maxwell molecule 
(anisotropic solution) for e = 0.2. Errors shown here are 
|Q num − Q direct|L∞ at tfinal = 1. �t = 0.01, N = 32, Nρ =
30, R = 7, L = 7.72.

Msph |Q num − Q direct|L∞

6 1.4674566108660258e-02
12 9.532325835757156e-03
32 5.92707599850977e-03
48 1.952601851310574e-03
70 1.43696494086e-03
94 4.354500695785647e-04
120 3.534377201557734e-04
156 9.811152052724729e-05
192 3.747408101774895e-05

to further investigate the performance of spherical design and to illustrate its necessity in the algorithm, an example with 
anisotropic solution is presented in this subsection.

For the sake of comparing with isotropic case, this test is done using exactly the same configuration as in previous 
subsection except the initial condition:

f0(v) = 4

5π
3
2

(
exp(− 3

√
16|v − 2|2) + exp(−|v + 0.5|2)

)
. (52)

The results are given in Table 6 and Table 7. The error decays with increasing Msph as expected. However, it is also evident 
that the accuracy is not as good as in the isotropic case. Despite this result, we consider it as acceptable since the problem 
itself (numerical approximation of an integral on 3D unit sphere) is highly nontrivial and is an active research field. We 
believe spherical design is so far among the best methods to deal with such problems. We illustrate this statement by 
performing another test using the standard tensor product based Gauss quadrature, which is also the method used in [16]
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Table 8
Convergence test of Gauss quadrature of the 3D Maxwell 
molecule (anisotropic solution) for e = 0.2. Errors shown 
here are |Q num − Q direct|L∞ at tfinal = 1. �t = 0.01, N =
32, Nρ = 30, R = 7, L = 7.72.

# of (θ,φ) |Q num − Q direct|L∞

(2,3) 9.301850859331023e-03
(3,4) 1.4164542178285952e-02
(4,8) 2.148725985732372e-02
(6,8) 3.952940827407407e-03
(7,10) 3.3540095954422665e-03
(10,10) 3.405850043869026e-03
(10,12) 3.016912442998702e-03
(11,15) 1.227818352872178e-03
(12,16) 1.2310868626689182e-03

Fig. 3. Haff’s cooling law with (51) as initial data. �t = 0.01, N = 32, Nρ = 30, Msph = 32, R = 7, L = 7.72.

for the computation of the integral on 3D unit sphere. The results are shown in Table 8. Under roughly the same total 
number of quadrature points, this method has very bad performance: slow convergence and low accuracy.

4.2.3. 3D inelastic hard spheres — Haff’s cooling law
In this last example, we try to observe the famous Haff’s cooling law numerically. First proposed by Haff in 1983 in his 

seminal work about granular flows [15], Haff’s cooling law implies that the temperature in a spatially homogeneous granular 
gas composed of inelastic hard spheres decays like O (t−2) with time. Note the algebraic decay rather than the exponential 
decay of Maxwell molecules (cf. equation (28)).

We perform two simulations regarding different initial data: the first one we take the same initial data as in (51); the 
second one we consider the following initial data which is a Maxwellian with nonzero bulk velocity:

f0(v) = ρ0

(2π T0)3/2
e−(v−u0)2

, (53)

where ρ0 = 1, T0 = 2 and u0 = (0.5, −0.5, 0)T . From (22) we know ρ and u remain constant in time. Both simulations are 
performed for hard sphere molecules, that is, for the collision kernel Bσ = 1

4π |g|. Also we set ε = 0 in equation (2) (the 
Haff’s law is for unheated case, i.e., the homogeneous cooling state). We numerically evaluate the temperature up to time 
tfinal = 3 with two different values of restitution coefficient e = 0.2 and 0.8. The time evolution of T is shown in Fig. 3 and 
Fig. 4, from which one can see that the numerical temperature decays as

T (t) = T0

(1 + γ0t)2
, (54)

where the constant γ0 depends on the value of e and is estimated by the least squares fitting. This is in perfect agreement 
with the Haff’s formula (see Section 4.1 of [25]).
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Fig. 4. Haff’s cooling law with (53) as initial data. �t = 0.01, N = 32, Nρ = 30, Msph = 32, R = 7, L = 7.72.

5. Conclusion

In this work, we introduced a simple strategy to accelerate the direct Fourier spectral method for the inelastic Boltzmann 
collision operator, which is an accurate and popular deterministic method for approximating kinetic equations yet has been 
hindered in real applications due its huge computational cost and memory constraint. Our fast algorithm, by leveraging the 
low rank and convolutional structure in the collision integral, is able to reduce the computational complexity by orders 
of magnitude as well as relieve the memory bottleneck in the direct method. A series of numerical experiments has been 
performed to validate the accuracy and efficiency of the proposed method. In particular, we recovered successfully the Haff’s 
cooling law for inelastic hard spheres. In the future, we will apply the fast solver to the spatially inhomogeneous setting 
and to simulate more interesting problems in granular materials.
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