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In this paper, a unified approach is introduced to implement high order central difference 
schemes for solving Poisson’s equation via the fast Fourier transform (FFT). Popular high 
order fast Poisson solvers in the literature include compact finite differences and spectral 
methods. However, FFT-based high order central difference schemes have never been 
developed for Poisson problems, because with long stencils, central differences require 
fictitious nodes outside the boundary, which poses a challenge to integrate boundary 
conditions in FFT computations. To overcome this difficulty, several layers of exterior grid 
lines are introduced to convert the problem to an immersed boundary problem with zero-
padding solutions beyond the original cubic domain. Over the boundary of the enlarged 
cubic domain, the anti-symmetric property is naturally satisfied so that the FFT fast 
inversion is feasible, while the immersed boundary problem can be efficiently solved by 
the proposed augmented matched interface and boundary (AMIB) method. As the first fast 
Poisson solver based on high order central differences, the AMIB method can be easily 
implemented in any dimension, due to its tensor product nature of the discretization. As a 
systematical approach, the AMIB method can be made to arbitrarily high order in principle, 
and can handle the Dirichlet, Neumann, Robin or any combination of boundary conditions. 
The accuracy, efficiency, and robustness of the proposed AMIB method are numerically 
validated by considering various Poisson problems in two and three dimensions.

© 2020 Elsevier Inc. All rights reserved.

1. Introduction

Poisson’s equation as a simple partial differential equation (PDE) plays a crucial role in the study of electrostatics, me-
chanical engineering and theoretical physics. Its numerical solution draws extensive attentions as it has many generalized 
forms [30] in practical utility. Efficient algorithm for the Poisson solution is desired, otherwise it may take the majority of 
computation time in many applications.

Fast Fourier transform (FFT) is one of the most successful fast Poisson solvers. On a spatial degree of freedom N in 
multi-dimensions, generic iterative solvers would require a complexity of order O (N2) in solving the sparse system. For a 
second order central difference discretization to a Poisson problem, FFT provides a solver of complexity O (N log N), which 
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results in a significant acceleration. The FFT solver came into being when Hockney [20] used a Fourier method to solve 
Poisson’s equation. Since then, FFT has been further investigated in various situations and applications. Fourier transform al-
gorithms [38] need to be modified for different boundary conditions and discretization on standard or staggered grid lines. 
With Fourier analysis and synthesis well formulated for certain problems, pre- and post-processing algorithms [38] have 
been constructed to convert non-periodic transforms into a periodic form, which fulfills FFT with the help of available soft-
ware. Another approach deploys the symmetric FFTs proposed by Swartztrauber [41], which avoids pre- and post-processing 
stages. Both approaches enable the fast summation of Fourier analysis or synthesis. Theoretical analysis of FFT for second 
order accurate solution to Poisson’s equation has been thoroughly studied over the past decades. Several FFT packages in-
cluding FISHPACK [42] and FFTW [14] have been developed. A survey of FFT-based matrix decomposition algorithms for 
elliptic boundary value problems can be found in [4].

Besides FFT, other popular fast Poisson solvers include multigrid method, cyclic reduction, and FACR algorithm. The FACR 
algorithm [40] is a combination of cyclic reduction and Fourier analysis, and yields an asymptotic operation count that is 
slightly less than either cyclic reduction or FFT. Multigrid methods, particularly geometric multigrid methods, offer some 
of the best Poisson solvers with a computation time on the order O (N), and can be applied on arbitrary regions and 
unstructured grids [54]. The alternating direction implicit (ADI) algorithm, originally developed for parabolic PDEs [12], can 
also be employed as a fast Poisson solver [23] with the operation count being O (N). Typically, a fast Poisson solver refers 
to an algorithm with complexity being O (N) or O (N log N), which is regarded as the fastest solution for Poisson problems 
known today.

This study is concerned with high order fast Poisson solvers, which not only maintain a complexity of O (N) or 
O (N log N) in algebraic computations, but also deliver an order of accuracy higher than two in Poisson solution, such as 
four or six. High order discretizations are indispensable for problems associated with high frequency waves, such as elec-
tromagnetic and acoustic wave propagation and scattering, vibration analysis of engineering structures, and shock-vortex 
interaction in compressible fluid flows. To achieve the same precision, high order methods allow the use of coarse grids, 
whereas dense meshes have to be employed in low order methods. Thus, high order methods are cost-efficient and their 
combination with fast Poisson solvers could further accelerate the computational efficiency. Therefore, in recent years, there 
has been an increased interest in algorithms that combine high order with fast solvers.

Three major types of high order fast Poisson solvers have been developed in the literature, i.e., deferred corrections, 
compact finite differences, and spectral methods. Based on second order finite difference and deferred corrections, a fourth 
order accurate algorithm was proposed by Pereyra [31] in 1966. Later, this technique has been applied for two-dimensional 
(2D) Poisson problems built in the FISHPACK package. Similar works by deferred corrections were conducted for fourth 
order on nonrectangular planar domain [32] and sixth order of accuracy [34].

Compact finite differences have been widely employed in high order fast Poisson solvers, because only the nearest neigh-
boring nodes are involved in the numerical differential kernel. This gives rise to a great convenience not only in handling 
different boundary conditions, but also in FFT or multigrid implementation. In 1978, Houstis and Papatheodorou [21] first 
applied multidimensional compact differences to obtain fourth order fast solution to Helmholtz-Dirichlet problem with 
help of a combination of cyclic reduction and Fourier analysis. Several fourth order compact finite difference schemes have 
been introduced in [5,37] to provide FFT solution of Helmholtz problems with Dirichlet, Neumann, or periodic boundary 
condition. Lai [24] generalized the fourth order compact difference scheme to a FFT Poisson solver on polar geometry. 
Various multigrid-based compact Poisson solvers have also been developed. In solving 2D Poisson equation with Dirichlet 
boundaries, a four order multigrid Poisson solver has been shown to achieve a dramatic improvement in efficiency when 
comparing with its counterpart in second order [16]. Multigrid implementation of fourth order compact difference with 
unequal mesh sizes has been considered in [17] for 3D Poisson’s equation. Accelerated by Richardson extrapolation, sixth 
order of accuracy could be achieved in compact Poisson solvers in multigrid computations [45]. Typically, the compact finite 
difference scheme is directly formulated in a multi-dimensional setting, and yields a block-diagonal matrix structure for fast 
computation. It is pretty common that the generalization of such a compact difference from 2D to 3D requires additional 
works. Recently, a tensor-product style algorithm has been proposed for a fourth order compact scheme [44], and in solving 
Poisson’s equation with Dirichlet boundaries, the same algorithm works for 2D, 3D, and even four dimensions. We also note 
that the implementation of Robin condition in the second order fast Poisson solver is already a tough issue, for which itera-
tive methods are usually employed [33]. The only existing second order fast Poisson solver for dealing with Robin condition 
is introduced in 2D [19]. However, no extension is known in 3D or for high order compact differences.

Spectral methods are another powerful class of fast Poisson solvers. They are usually more accurate than compact finite 
differences, while keeping a high efficiency. A series of Fourier pseudospectral (FPS) methods [2,6,7] have been developed 
for solving Poisson and Helmholtz equations in multi-dimensions with Dirichlet, Neumann, or periodic boundary condi-
tions. The FPS methods are of arbitrary order of accuracy in principle, while the practical numerical order is limited by 
the polynomial subtraction technique used in boundaries and corners implementation. For spectral-Galerkin methods, nu-
merical solution of Poisson’s equation can be realized via constructing modal basis functions as compact combinations of 
orthogonal polynomials so that boundary conditions are satisfied naturally [36]. The compact nature results in a sparse 
system in the frequency space, and the overall complexity of the Fourier and Chebyshev discrete transforms can be re-
duced to O (N log N) by using the FFT. For 1D Poisson problems, spectral-Galerkin methods provide a uniform treatment of 
Dirichlet, Neumann, and Robin boundary conditions. In multi-dimensional spectral-Galerkin methods, fast Poisson solvers 
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are accomplished through the matrix decomposition/diagonalization method [18], which limits the choice of basis functions 
or boundary conditions in different Cartesian directions.

To the best of our knowledge, high order central difference schemes have never been applied in fast Poisson solvers, even 
though the standard fast Poisson solver is based on the second order central difference. This is perhaps because high order 
central differences have long stencils, so that fictitious points outside boundaries are inevitable. Such boundary treatments 
in the framework of FFT or geometrical multigrid solvers are highly non-trivial. Nevertheless, a fast Poisson solver based on 
high order central difference schemes enjoys several potential benefits in comparing with its counterpart based on compact 
finite difference or spectral methods.

First, for separable geometries, central difference approximations are carried out in a 1D manner, which can be easily 
generalized to multi-dimensions based on tensor-products. Sharing the same advantage, the extension of FPS methods 
from 2D to 3D is also straightforward [2,6,7]. Nevertheless, for most compact difference and spectral-Galerkin methods, the 
generalization from 2D to 3D could be nontrivial.

Second, central difference schemes usually can produce a higher order of accuracy than compact finite differences. Most 
of current compact differences achieve the fourth order of accuracy, while sixth order might be reached with the aid 
of Richardson extrapolation [45]. The central difference schemes can be systematically carried out when boundaries are 
appropriately treated [50,52], and can be made to arbitrarily high order in principle. Thus, the accuracy of central differences 
could be comparable to spectral methods.

Third, for separable geometries, the boundary treatments of central difference schemes can be processed in a 1D manner. 
Moreover, the treatments at left and right ends are also independent. Thus, without considering fast algebraic computations, 
boundary treatments become much easier than in compact finite differences and spectral/pseudospectral methods. In fact, 
a systematic approach for handling various general boundary conditions in arbitrarily high-order central difference schemes 
has been developed in the literature [50,52]. This boundary treatment is formulated based on the matched interface and 
boundary (MIB) method, originally developed for solving interface problems [48,53]. The MIB method can handle not only 
standard boundary conditions, including Dirichlet, Neumann, Robin and periodic types, but also non-standard ones, such as 
free-edged condition in vibration analysis [49] and perfect electric conducting condition in computation electromagnetics 
[51]. Another powerful boundary scheme is the inverse Lax-Wendroff (ILW) procedure developed in Shu’s group for con-
servation laws and convection-diffusion equations [22,43,26]. Both MIB and ILW methods generate fictitious nodes outside 
the domain for supporting long stencils of translation-invariant central differences near boundaries. In ILW methods, this is 
mainly achieved by creating high order boundary conditions based on the prescribed boundary condition and the underlying 
PDE, while the MIB method avoids using high order boundary conditions by repeatedly enforcing one boundary condition. 
However, the existing boundary closure procedures of the MIB and ILW methods cannot be directly incorporated into the 
FFT or multigrid fast Poisson solvers.

The goal of this work is to develop high order fast Poisson solvers based on central difference schemes and MIB boundary 
closure [49–52]. We note that when the MIB method is simply coupled with the FFT algorithm, high order accuracy cannot 
be maintained near boundary. This is true even in the simplest case with a zero Dirichlet condition, i.e., u = 0 on boundary. 
Nevertheless, if the solution also satisfies the anti-symmetric property up to (2m)th order near both ends, the (2m)th 
order can be realized by central differences in Fourier transforms without any boundary adjustment. This motivates us to 
introduce a thin fictitious buffer zone or zero-padding region outside the domain so that the anti-symmetric property can 
be assumed up to the desired orders on the boundary of the extended domain. This converts the original boundary value 
problem to an immersed boundary problem. We note that numerous finite difference methods have been developed in 
the literature for solving elliptic interface problems, with the immerse interface method (IIM) being the most famous one 
[25,46,3]. The development of FFT or multigrid based fast interface algorithms is also a hot topic in the literature. Currently, 
only a few interface algorithms can asymptotically achieve O (N) or O (N log N) complexity, i.e., multigrid IIM [1], augmented 
IIM [27], and augmented MIB (AMIB) [13]. Nevertheless, all existing fast algorithms can only achieve second order accuracy 
in resolving interface problems.

In this work, we will develop a novel high order AMIB method for boundary value problems by effectively combining the 
AMIB method with the FFT algorithm. This gives rise to a uniform approach for implementing high order central differences 
in multi-dimensions. Examples in 2D and 3D will be shown. The AMIB method is systematically carried out and can be 
made to arbitrarily high order in principle. Up to 8th order will be demonstrated in this work. Similar to the original MIB 
boundary closure [49–52], the AMIB method can handle periodic, Dirichlet, Neumann, Robin conditions and their arbitrary 
combinations.

For the second order central difference discretization, the FACR algorithm [40] is slightly more efficient than the standard 
FFT Poisson solver, while its implementation becomes complicated. Partly due to such coding complexity, the FACR Poisson 
solver has never been extended to high order in the literature. In principle, the proposed AMIB method can be combined 
with the FACR algorithm to deliver high order, even though many details need to sorted out.

A uniform grid is employed throughout this work. In practice, a non-uniform grid with a finer resolution near boundaries 
could help to reduce the overall error. However, the generalization of the AMIB method to non-uniform grids is highly 
nontrivial, because the FFT inversion is no longer available. Moreover, high order central differences lose the simplicity of 
translation invariant feature, when formulated on non-uniform grids.

In this study, we focus mainly on solving Poisson boundary value problems over rectangular domains. A more challenging 
study is to solve immersed boundary problems with complex shaped domains, for which several advance algorithms have 
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been developed in the literature [15,29,47,39] to achieve high order accuracy, as well as to attain high efficiency with the 
aid of FFT or multigrid. More importantly, by using the Fourier continuation (FC) method for the resolution of the Gibbs 
phenomenon [8,9], a fast solver based on alternating direction (FC-AD) has been developed in [10,28] for solving parabolic, 
elliptic, and hyperbolic PDEs over general smooth domains with Dirichlet boundary conditions. Obviously, such a FC-AD 
algorithm can be simply applied to rectangular domains to give rise to a high order fast Poisson solver.

We note that the proposed FFT-AMIB method could be generalized to solve irregular domain Poisson problems. In fact, 
a second order FFT-AMIB has been developed in [13] for solving 2D elliptic interface problems with complex geometries. 
Moreover, a fourth order MIB boundary closure method has been developed previously in [51] to impose boundary condi-
tions over curved boundaries in 2D. This MIB method could be extended to Poisson boundary value problems over general 
shaped domains, and its acceleration via augmentation and FFT is under our investigation.

The proposed FFT-AMIB method share some similarities with the FC-AD method [10,28], including using the FFT for 
Fourier analysis, achieving O (N log N) high efficiency, and attaining high order convergence. However, there are some dif-
ferences between them. First, the AMIB method is based on high order central difference discretization, while the FC-AD 
method solves 1D boundary value problems by Fourier series type ODE solutions. Second, the Gibbs oscillation is directly 
treated in the FC [8–10], by constructing a smooth periodic function extension. In the AMIB method, with zero padding, 
the solution is still discontinuous. The Gibbs oscillation is indirectly bypassed in the present study by introducing functions 
jumps at boundaries as auxiliary variables, so that in the Schur complement procedure of an enlarged linear system, the 
function discontinuity is not sensed in the FFT inversion part. Finally, the AMIB method can handle Dirichlet, Neumann, and 
Robin conditions, while the FC-AD method is mainly formulated for Dirichlet boundaries [10,28]. We note that by means of 
overlapping domain decomposition and curvilinear coordinate transformation, the FC method can handle Neumann bound-
ary condition [11]. Nevertheless, the application of such boundary treatment to more efficient FC-AD method has not been 
reported yet.

The rest of the paper is organized as follows. In section 2, the Poisson’s problem is reviewed and high order central 
differences are presented. Section 3 focuses on high order fast Poisson solvers via fast Sine transform (FST) with the anti-
symmetric solution across the boundary. Following this, in section 4, the idea of immersed boundary is deployed to satisfy 
the anti-symmetry requirement. High order corrected differences are derived for solving the interface problem from im-
mersed boundary. In section 5, the augmented system is exhibited as the core of the method. And implementation process 
is described. In section 6, numerical examples are carried out to demonstrate the proposed method. Finally, a summary will 
be discussed at the end of the paper.

2. Preliminary

In this work, we focus on high order central difference schemes for solving Poisson’s equation in both two dimensions 
(2D) and three dimensions (3D). The governing equation is

�u = f (�x), �x ∈ � (1)

where �x = (x1, x2, · · · , xd) is the spatial vector, � is the domain of interest, and � is the Laplacian operator defined by

� =
d∑

i=1

∂2

∂x2
i

.

In this paper, d is chosen to be 2 or 3.
Since the periodic boundary condition can be simply handled in the Fourier transform method, we will only focus on 

three standard boundary conditions in this work, i.e.

1. Dirichlet boundary condition:

u = φ j on � j,

2. Neumann boundary condition:

∂u

∂n
= φ j on � j,

3. Robin boundary condition:

ku + ∂u

∂n
= φ j on � j,

where � j is one of the boundaries of the computational domain as shown in Fig. 1, and ∂
∂n denotes the outward normal 

derivative.
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Fig. 1. Illustration of boundary notation in 1D, 2D and 3D.

We are concerned with the solution to Poisson’s equation on domain � = [a, b] ×[c, d] ×[e, f ], which is partitioned into 
M, N, P equally spaced intervals in x−, y− and z−directions such that the mesh sizes are hx = (b − a)/M, hy = (d − c)/N , 
and hz = ( f − e)/P respectively. If only a 2D problem is studied, we just neglect the partition in the z−direction. Therefore, 
the grid node coordinates are defined as

xi =a + ihx, y j = c + jhy, zp = e + phz,

i = 0, · · · , M, j = 0, · · · , N, p = 0, · · · , P . (2)

Central finite differences are utilized for approximating the Laplacian operator in this work. As the partial derivatives are 
defined in a tensor product style for separable geometries, we decompose approximation to Laplacian operator in several 
directions separately. Without loss of generality, high order central differences to second order partial derivative with respect 
to x are adopted for demonstration. For simplicity, we just concern ourselves with u = u(x).

The fourth order central difference to uxx(xi) holds with truncation error O (h4
x):

uxx(xi) ≈ 1

h2
x
[− 1

12
u(xi−2) + 4

3
u(xi−1) − 5

2
u(xi) + 4

3
u(xi+1) − 1

12
u(xi+2)], (3)

and sixth order central difference takes forms as below with truncation error O (h6
x ):

uxx(xi) ≈ 1

h2
x
[ 1

90
u(xi−3) − 3

20
u(xi−2) + 3

2
u(xi−1) − 49

18
u(xi) + 3

2
u(xi+1)

− 3

20
u(xi+2) + 1

90
u(xi+3)], (4)

along with the standard eighth order central difference with truncation error O (h8
x ):

uxx(xi) ≈ 1

h2
x
[− 1

560
u(xi−4) + 8

315
u(xi−3) − 1

5
u(xi−2) + 8

5
u(xi−1) − 205

70
u(xi)

+8

5
u(xi+1) − 1

5
u(xi+2) + 8

315
u(xi+3) − 1

560
u(xi+4)]. (5)

Likewise, the fourth, sixth and eighth order finite differences could be defined for u yy , uzz in a similar fashion.

3. Fast Poisson solver

In the literature, many high order fast Poisson solvers have been designed based on the compact differences. In this 
work, we will take advantage of the aforementioned central differences to construct fast Poisson solvers. As a translation 
invariant application of high order central finite differences will inevitably use points outside the boundary, we extend the 
domain by exterior grids in addition to (2) defined by

x−i = a − ihx, xM+i = b + ihx, i = 1,2,3,

y− j = c − jhy, yN+ j = d + jhy, j = 1,2,3,

z−p = e − phz, zP+p = f + phz, p = 1,2,3.

Ghost values can then be defined on these grids for application of high order central difference schemes.
In the first step of constructing our algorithm, we will consider a simple Poisson problem with Dirichlet zero boundary 

condition. We note that for this simple Poisson problem, a direct application of central differences with FFT fast Poisson 
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solver still cannot maintain high order accuracy. A remedy will be offered so that a FFT fast Poisson solver can be well 
constructed for the Dirichlet zero boundary. The generalization to real boundary conditions will be addressed in the next 
section. For simplicity, we will only consider a one dimension (1D) Poisson’s equation in this section to illustrate the ideas.

3.1. Fourth order central difference scheme

Consider the fourth order finite difference (FD) scheme for a 1D Poisson’s equation:

uxx(x) = f , (6)

subject to Dirichlet zero boundary condition. In order to apply FFT directly, we further assume anti-symmetry property up 
to fourth order for ghost values outside the domain

u(x0) = 0, u(x−1) = −u(x1), (7)

u(xM) = 0, u(xM+1) = −u(xM−1). (8)

Here, we denote ui as the approximation to the exact value of u(xi) and f i as f (xi):

ui ≈ u(xi), i = −1,0, · · · , M + 1,

f i = f (xi), i = 1,2, · · · , M − 1.

To achieve higher order of accuracy, a higher order anti-symmetry property is assumed. Examples with orders being six and 
eight are given in Appendix. We note that the anti-symmetry properties like (7) and (8) may not hold for a general Dirichlet 
zero boundary. A systematic procedure to bypass this constraint will be constructed later.

The fourth order FD discretization (3) for equation (6) gives an equation system:

1

h2
x
(− 1

12
ui−2 + 4

3
ui−1 − 5

2
ui + 4

3
ui+1 − 1

12
ui+2) = f i, for i = 1, · · · , M − 1. (9)

Due to the assumption of anti-symmetry of solution across the boundary, system (9) could be reduced to a matrix-vector 
form

AU = F , (10)

where A ∈RM−1,M−1, U ∈RM−1 and F ∈RM−1 are given by

A = 1

h2
x

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

− 5
2 + 1

12
4
3 − 1

12 0 0 0 · · · 0

4
3 − 5

2
4
3 − 1

12 0 0 · · · 0

− 1
12

4
3 − 5

2
4
3 − 1

12 0 · · · 0

. . .
. . .

. . .
. . .

. . .

0 − 1
12

4
3 − 5

2
4
3 − 1

12
... − 1

12
4
3 − 5

2
4
3

0 0 · · · − 1
12

4
3 − 5

2 + 1
12

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (11)

together with

U =

⎛
⎜⎜⎜⎝

u1
u2
...

uM−1

⎞
⎟⎟⎟⎠ and F =

⎛
⎜⎜⎜⎝

f1
f2
...

f M−1

⎞
⎟⎟⎟⎠ .

Note that the entries at the corners of matrix A are due to the anti-symmetry assumption.
Now we focus on fast solver for the solution of above equation system. Based on discrete Sine transform, the solution 

could be expanded as
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u j =
M−1∑
l=1

ûl sin(
l jπ

M
),−1 ≤ j ≤ M + 1. (12)

where

ûl = 2

M

M−1∑
j=1

u j sin(
l jπ

M
), l = 1,2, · · · , M − 1. (13)

Besides, the source term f j has discrete Sine transform

f j =
M−1∑
l=1

f̂ l sin(
l jπ

M
),1 ≤ j ≤ M − 1, (14)

where

f̂ l = 2

M

M−1∑
j=1

f j sin(
l jπ

M
), l = 1,2, · · · , M − 1. (15)

Plugging (12) and (14) into (9), we obtain

M−1∑
l=1

ûl
1

h2
x
[− 1

12
sin(

l( j − 2)π

M
) + 4

3
sin(

l( j − 1)π

M
) − 5

2
sin(

l jπ

M
)

+ 4

3
sin(

l( j + 1)π

M
) − 1

12
sin(

l( j + 2)π

M
)]

=
M−1∑
l=1

ûl
1

h2
x
[−1

3
(cos(

lπ

M
) − 1)(cos(

lπ

M
) − 7)] sin(

l jπ

M
)

=
M−1∑
l=1

f̂ l sin(
l jπ

M
), for j = 1,2, · · · , M − 1.

The above equation system is well-posed, and hence by equating the coefficients of the same terms, we get the relation

ûl = f̂ l

λl
, for l = 1,2, · · · , M − 1,

where λl = − 1
3h2

x
[cos( lπ

M ) − 1][cos( lπ
M ) − 7].

A procedure for the FFT solution can be described as below:

1. Compute Sine transform for f (x j) via inverse fast Sine transform (IFST).

f̂ l = 2

M

M−1∑
j=1

f (x j) sin(
l jπ

M
), for l = 1, · · · , M − 1.

2. ûl = f̂l
λl

, for l = 1, 2, · · · , M − 1, where λl = − 1
3h2

x
[cos( lπ

M ) − 1][cos( lπ
M ) − 7].

3. Compute u j via fast Sine transform (FST): u j =
M−1∑
l=1

ûl sin(
l jπ
M ), for j = 1, · · · , M − 1.

3.2. Numerical validation

We consider two 1D Poisson problems with Dirichlet zero boundary condition, with one satisfying anti-symmetry and 
the other one not. Two numerical implementations of fourth order central difference will be considered. The first one 
employs the FFT procedure presented above. The second one further assumes that the analytical values on ghost nodes 
outside the boundaries are known. Then one can move such ghost values to the right-side hand of algebraic system, and 
solves the system by the LU decomposition.

Example 1 in 1D. Consider Poisson’s equation

uxx = 16π2 sin(4πx) for x ∈ [0,1]
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Table 1
Numerical errors of the FFT and LU methods for Example 1 in 1D. 
Here N denotes the number of partitions on the given interval.

N FFT LU

L∞ Error Order L∞ Error Order

32 2.607E-4 – 2.607E-4 –
64 1.646E-5 3.99 1.646E-5 3.99
128 1.031E-6 4.00 1.031E-6 4.00
256 6.450E-8 4.00 6.450E-8 4.00
512 4.032E-9 4.00 4.032E-9 4.00

Table 2
Numerical errors of the FFT and LU methods for Example 2 in 1D.

N FFT LU

L∞ Error Order L∞ Error Order

32 1.321E-2 – 5.229E-4 –
64 3.235E-3 2.03 3.294E-5 3.99
128 8.046E-4 2.00 2.063E-6 4.00
256 2.009E-4 2.00 1.290E-7 4.00
512 5.020E-5 2.00 8.061E-9 4.00

with solution u(x) = sin(4πx) satisfying anti-symmetry. The numerical results are shown in Table 1. It is obvious that both 
FFT and LU methods attain the same precision and fourth order of convergence is achieved in both cases. In algebraic 
computations, the FFT method is much faster than the LU decomposition.

Example 2 in 1D. We next consider Poisson’s equation

−uxx = 16π2 cos(4πx) for x ∈ [0,1]
with solution u(x) = − cos(4πx) + 1 satisfying the homogeneous Dirichlet boundary condition u = 0 at x = 0 and x = 1. 
Nevertheless, the anti-symmetry property is not held. Table 2 lists the errors of the FFT and LU methods for fourth order 
central difference scheme. It is observed that the FFT method only provides second order accuracy while the LU gives fourth 
order accuracy. This demonstrates the importance of anti-symmetry of solution when using the above FFT Poisson solver.

Remark 3.1. So far, a fourth order fast Poisson solver via FST has been formulated for the Poisson problem with Dirichlet 
zero boundary condition. A crucial assumption here is that one layer of ghost value outside of domain satisfies the anti-
symmetry property across the boundary. Higher order fast Poisson solvers can be constructed in this manner. In Appendix, 
by assuming two and three layers of ghost values satisfying anti-symmetry respectively, sixth and eighth order central 
difference schemes can be formulated by the same FFT procedure.

Remark 3.2. For the two dimensional (2D) or three dimensional (3D) Poisson’s equation, we continue to assume the ho-
mogeneous Dirichlet boundary and anti-symmetry property in each dimension as described in 1D. By the tensor product 
approach, the discretization and FFT procedure for high dimensional problems can be similarly completed.

Remark 3.3. The aforementioned fast Poisson solvers only apply to the case of homogeneous Dirichlet condition with anti-
symmetric solution across the boundary. However, in practice the anti-symmetry property may not hold or is not easily to 
be verified for homogeneous Dirichlet boundary conditions. Moreover, general Poisson problems face more complex bound-
ary conditions. Hence, it is necessary to explore fast Poisson solvers for general solutions. We will construct a systematic 
procedure to bypass the anti-symmetric issue.

4. Immersed boundary problem and corrected differences

In the previous section, fast Poisson solvers based on high order central differences have been constructed with the 
assumption of anti-symmetry of solution across the boundary. However, such assumption is generally not valid for Poisson 
problems. This is essentially the obstacle that prevents the application of FFT Poisson solver to high order central difference 
schemes. To resolve this difficulty, an immersed boundary problem will be introduced in this paper. To be more clear, the 
original domain is embedded in a larger domain such that fictitious solution equals to 0 on the extended domain. The 
aforementioned fast Poisson solvers can then be facilitated, since the zero solution automatically meets the requirement of 
anti-symmetry on the boundary of extended domain. However, the entire solution consisting of original solution and ficti-
tious solution is discontinuous on the original boundary or on the interface of the immersed boundary problem. The direct 
FFT computation of discontinuous solutions will suffer Gibbs oscillations. Instead, corrected differences will be employed in 
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Fig. 2. A demonstration of immersed boundary problem for fourth order central difference scheme with two interior and exterior layers of fictitious values
around the interface � = ∂�− . Here filled and open circles stand for fictitious values to be used in approximation of jump quantities from corrected 
differences. Meanwhile, ghost values (depicted as crossings) are zero padding values beyond the expanded domain satisfying anti-symmetry.

the proposed augmented matched interface and boundary (AMIB) method, so that central differences are preserved with 
some correction terms being used to restore the desired accuracy.

4.1. Immersed boundary

With a uniform grid spacing in each dimension, we embed the original domain � in a larger rectangle or cube B such 
that the distance between interior boundary ∂� and the exterior boundary ∂ B of B is s multiples of h, where s is a positive 
integer. The value of s varies according to the desired accuracy of central difference approximation for efficiency concern. 
Technically, just a minimum integer number s is needed to carry out the approximation of desired accuracy, otherwise extra 
computational efforts will be wasted. Fig. 2 illustrates the case in 2D for fourth order central difference scheme with s = 3. 
As a consequence, the grid node coordinates are redefined as below in the domain B

xi =a + (i − s)hx, y j = c + ( j − s)hy, zk = e + (k − s)hz,

i = 0, · · · , M + 2s, j = 0, · · · , N + 2s, k = 0, · · · , P + 2s, (16)

where hx, hy, hz are identically defined as (2).
From now on, we denote the original domain � as �− and the extended subdomain as �+ , yielding the whole domain 

B = �+ ∪ �− . Correspondingly, the solution in the original domain is defined as u− in �− , and solution in the extended 
domain �+ as u+ . Source term is defined as f − ∈ �− and f + ∈ �+ . Then the immersed boundary problem can be modeled 
as

�u(�x) = f , �x ∈ B (17)

with source term being

f =
{

f −, �x ∈ �−,

f +, �x ∈ �+.

Note that as the artificial solution u(�x) = 0 for �x ∈ �+ , f (�x) = 0 for �x ∈ �+ . Further beyond the exterior boundary ∂ B , u
is considered as 0 such that the anti-symmetry property is now satisfied on boundary ∂ B . In other words, ghost values 
beyond ∂ B are set to be 0. This facilitates the utilization of high order central differences and FFT Poisson solvers. However, 
this remodeled problem introduces an interface � = ∂�− , across which discontinuity of solution and source term emerges.

It is well known that central difference approximations will suffer accuracy reduction near the interface � when the ap-
proximation involves nodes from both sides of �. Grid nodes in such situation are called irregular points, otherwise regular 
points. To be more clear, we take the case of fourth order central difference for instance. In general, assume the inter-
face intersects the grid line y = y j at some point α between xi and xi+1. As the fourth order central difference for nodes 
xi−1, xi, xi+1 and xi+2 will use the node information on the other side of the interface, these four nodes are called irregular 
points. For sixth and eighth order central difference with even wider stencil, more irregular points are defined along the grid 
line accordingly. In the literature, many methods have been proposed to correct finite difference approximation for interface 
problems [25,27,46,3,48,53]. In this study, we will follow the AMIB method [13] that uses corrected finite differences [46] to 
tackle such irregular points problem. The corrected differences incorporate several interface jump quantities to compensate 
the discontinuity, while central differences are still used for regular points.
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4.2. Corrected finite differences for Laplacian

Taking advantage that central difference approximation to Laplacian is carried out dimension by dimension, we again 
just focus on the derivation of corrected differences in 1D, by taking u = u(x) and h = hx . Assume the smoothness of the 
piecewise function u ∈ Cl+1 in each side of the interface. Function values at two nodes could be related by corrected Taylor 
expansion with some jump conditions included, from which corrected finite difference of different orders could be derived. 
In the first place, the following two important results (18) and (19) can be cited from Lemma 1 and Remark 2 of [46]. Here 
one considers the corrected Taylor expansion for two adjacent points on each side of the interface:

Assume the interface x = α lies in between grid points x j and x j+1, then it follows that

u(x j+1) =
l∑

k=0

hk

k! u(k)(x j) +
l∑

k=0

(h+)k

k! [u(k)]|x=α + O (hl+1) (18)

and

u(x j) =
l∑

k=0

(−h)k

k! u(k)(x j+1) −
l∑

k=0

(h−)k

k! [u(k)]|x=α + O (hl+1) (19)

where h− = x j − α, h+ = x j+1 − α, and [u(m)]α = lim
x→α+ u(m)(x) − lim

x→α− u(m)(x).

In the present study, the above results have to be extended for high order central difference schemes which involve 
longer stencils. In particular, besides x j and x j+1, jump corrected Taylor expansions are needed for nodes further away from 
interface x = α.

u(x j+ j2) =
l∑

k=0

[( j2 − j1)h]k

k! u(k)(x j− j1) +
l∑

k=0

[( j2 − 1)h + h+]k

k! [u(k)]|x=α + O (hl+1) (20)

and

u(x j− j1) =
l∑

k=0

[( j1 − j2)h]k

k! u(k)(x j+ j2) −
l∑

k=0

[− j1h + h−]k

k! [u(k)]|x=α + O (hl+1) (21)

where integers j2 ≥ 1 and j1 ≥ 0 are index increments while j denotes the index location. Here we still assume that 
x j ≤ α ≤ x j+1, h− = x j − α, and h+ = x j+1 − α.

Equations (20) and (21) are generalized form of (18) and (19). The proof of these two equations is just a minor modifi-
cation of the proof for (18) and (19). Thus it is omitted here. For details, refer to [46]. When j2 = 1, and j1 = 0, equations 
(20) and (21) are consistent with (18) and (19). With aid of formula (20) and (21), fourth order corrected differences can 
be obtained as below:

Theorem 1. Corrected fourth differences. Let x j ≤ α < x j+1, h− = x j − α, and h+ = x j+1 − α. Suppose u ∈ C6[x j −
2h, α) 

⋂
C6(α, x j+1 + 2h], with derivative extending continuously up to the interface α. Then the following approximations 

hold to O (h4):

uxx(x j−1) ≈ 1

h2
[− 1

12
u(x j−3) + 4

3
u(x j−2) − 5

2
u(x j−1) + 4

3
u(x j) − 1

12
u(x j+1)]

+ 1
12h2

5∑
m=0

(h+)m

m! [u(m)],
(22)

uxx(x j) ≈ 1

h2
[− 1

12
u(x j−2) + 4

3
u(x j−1) − 5

2
u(x j) + 4

3
u(x j+1) − 1

12
u(x j+2)]

− 4
3h2

5∑
m=0

(h+)m

m! [u(m)] + 1
12h2

5∑
m=0

(h+h+)m

m! [u(m)],
(23)

uxx(x j+1) ≈ 1

h2
[− 1

12
u(x j−1) + 4

3
u(x j) − 5

2
u(x j+1) + 4

3
u(x j+2) − 1

12
u(x j+3)]

+ 4
3h2

5∑
m=0

(h−)m

m! [u(m)] − 1
12h2

5∑
m=0

(h−−h)m

m! [u(m)],
(24)

uxx(x j+2) ≈ 1

h2
[− 1

12
u(x j) + 4

3
u(x j+1) − 5

2
u(x j+2) + 4

3
u(x j+3) − 1

12
u(x j+4)]

− 1
12h2

5∑ (h−)m

m! [u(m)].
(25)
m=0
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Fig. 3. An illustration of fictitious values near the left boundary.

Remark 4.1. We note that one may just take m ranging from 0 to 4 to achieve the third order accuracy locally at irregular 
points. Since the fourth order central difference is applied at all regular points except for at a few irregular points, a global 
fourth order of convergence can still be maintained. Thus, for a better efficiency, we will take m = 0, . . . , 4 in the present 
study.

Remark 4.2. The fourth order corrected differences have been illustrated above in 1D manner. In higher dimensional study, 
such operators are applicable in each dimension once intersections of grid line with interface are encountered. Besides the 
fourth order case, sixth or eighth order corrected difference can be derived with the details described in the Appendix.

Remark 4.3. The local distances h− = x j − α and h+ = x j+1 − α defined in the corrected differences should be determined 
before approximation. In our expanded domain, the interface � aligns with the grid line. Thus either h− or h+ is equal 
to zero. For convenience, we consider all grid nodes on the interface as inside the interface. Therefore, there are only two 
situations in terms of the local distance. For the interface close to the left (bottom) boundary, h− = −h and h+ = 0. We 
name this situation as type I. On the other hand, for the interface close to the right (upper) boundary, h− = 0 and h+ = h. 
We name this situation as type II.

4.3. Reconstructing the Cartesian derivative jumps

So far we have established corrected differences with some derivative jumps [u(m)] undetermined. In the proposed 
AMIB method, such jump quantities will be calculated through enforcing the given boundary conditions. A systematic MIB 
boundary closure [49–52] has been developed in the literature for implementing high order central difference schemes with 
any combination of Dirichlet, Neumann, and Robin conditions. In the present study, this MIB method will be employed to 
enforce boundary conditions and correspondingly generate a sufficient number of fictitious values outside ∂�− or interface 
�. Unlike the original MIB [49–52], one will not directly modify the discrete Laplacian approximation by using fictitious 
values. Instead, the fictitious values will be utilized for calculating the derivative jumps [u(m)], as in the AMIB method [13].

A minimal number of fictitious nodes is determined as follows for the high order central difference schemes. As men-
tioned above, it is sufficient to use one less order locally in the corrected jump quantities to guarantee the high orders. To 
ensure a third, fifth, and seventh order convergence locally for the irregular points for fourth, sixth, and eighth corrected 
differences respectively, polynomials of degree 4, 6, and 8 are needed for approximation. As a consequence, 2, 3, and 4 fic-
titious values outside � are combined with 3, 4, and 5 real function values on the other side of the interface to give desired 
polynomials respectively for each case. Fig. 2 shows two layers of fictitious values needed on each side of the interface �
for the fourth order corrected differences. We note that the interface � is regarded as in �− in the present notation.

4.3.1. Fictitious values formulation
To reconstruct the Cartesian derivative jumps, we first review how fictitious values are calculated in the MIB method 

[52]. A systematic procedure has been developed in [52] for handling Dirichlet, Neumann, and Robin boundary conditions. 
This procedure iteratively enforces the boundary condition to determine fictitious values as smooth extension of solution 
around the interface �. The MIB formulation of fictitious values is explained in great details for various boundary conditions 
in [52].

In the present study, it is sufficient to illustrate the MIB formulation of fictitious values in the case of Robin boundary 
condition in 1D,

ku + ∂u

∂n
= ku − ∂u

∂x
= φ on �1. (26)

We generate fictitious values iteratively by repeatedly matching the boundary conditions across the boundary. Referring to 
Fig. 3, to generate M fictitious values f i for i = 1, 2, · · · , M outside the domain, L + 1 function values u j for j = 0, 1, · · · , L
inside the domain are to be used. Firstly, one fictitious value f1 is constructed according to approximation to boundary (26):

ku0 + C (1)
2,1 f1 +

L+2∑
i=2

C (1)
2,i ui−2 = φ,

where C (1)
2,i are finite difference (FD) weights in approximating first derivative at x = a by using a stencil { f1, u0, · · · , uL}. 

The notation 2 in first subscript of C (1) is because u0 is the second point in the FD stencil. As a result, unknown f1 can 
2,i
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Fig. 4. An illustration of jumps approximation via two Lagrange polynomials from two sides of the interface x = x3 for the fourth order approximation. The 
black dots stand for the real values while the yellow dots denote the fictitious values. (For interpretation of the colors in the figure(s), the reader is referred 
to the web version of this article.)

be represented as the combination of ui for i = 0, 1, · · · , L and φ. Taking f1 as known, we may further seek to determine 
fictitious value f2 using one iterative step

ku0 + C (1)
3,1 f2 + C (1)

3,2 f1 +
L+3∑
i=3

C (1)
3,i ui−3 = φ,

where C (1)
3,i are FD weights to approximate first derivative at x = a using a stencil { f2, f1, u0, u1, · · · , uL}. In this manner, 

we can further obtain representation of fictitious values f3, f4, · · · , f M in terms of ui for i = 0, 1, · · · , L. Even though it is 
flexible to choose the value for L, we expect to set L so that high-order accuracy is achieved in boundary implementation. 
As suggested in [52], the condition L + 1 = 2M is sufficient to guarantee the order requirement when M fictitious values are 
needed in high order central differences near the boundary. For example, in the fourth order central difference, two layers 
of fictitious values are needed. We may adopt L = 3 for formulation of these two fictitious values.

The MIB implementation of Neumann boundary condition can be similarly formulated. For the Dirichlet condition, we 
will follow the idea in [52] to generate a numerical boundary condition of the form

∂2u

∂n2
= φ, (27)

which will be iteratively enforced to calculate fictitious values.
Finally, the fictitious values calculated from Dirichlet, Neumann, and Robin boundary conditions can be rewritten into a 

general form in 2D. Denote ûi, j as a fictitious value at (xi, y j). We have

ûi, j =
∑

(xI ,y J )∈Si, j

W I, J uI, J + W0[u] + W1[ux] + W2[u y] + W3φ, (28)

which is a linear combination of functions values on a chosen set Si, j , and known boundary data. Here the function jump 
[u] can be explicitly given by the Dirichlet boundary condition. For Neumann boundary condition, [ux] or [u y] can be 
analytically given. For Robin and other mixed form of boundary conditions, non-homogeneous term φ is usually known. 
Hence, the linear combination form (28) represents the most general setup for all types of boundary conditions. The node 
set Si, j can be determined by the choice of M and L before calculating the MIB weights W I, J . Such a MIB formulation can 
be easily extended to 3D.

4.3.2. Approximation to derivative jumps
Considering jump quantities in the corrected differences, we want to build polynomials of certain degree to calculate 

limiting derivatives from each side of the interface �. The jump quantity at x = α is defined as

[∂
mu

∂xm
]|x=α = lim

x→α+
∂mu

∂xm
− lim

x→α−
∂mu

∂xm
(29)

Fig. 4 shows the general fourth order numerical approximation to jumps by two polynomials near the interface. We note 
that in our immersed boundary problem, the approximation of up to certain order derivative can just be completed by 
one-sided polynomial from inside of �− together with the external function u+ = 0. By taking derivatives on one-sided 
polynomials, we can approximate the jump values at intersecting point (x∗, y j) with regard to x-partial derivatives. Two 
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ways of approximation should be formulated for two types of interface as mentioned in Remark 4.3. An example for fourth 
order approximation is shown below, which could be generalized to even higher order cases.

For type I, the jump quantities are approximated by (refer to Fig. 4)

[∂
mu

∂xm
] = ∂mu−

∂xm
− 0

≈ wm
i−1, j ûi−1, j + wm

i, j ûi, j +
3∑

k=1

wm
i+k, jui+k, j (30)

and for type II, the jump quantities are approximated by

[∂
mu

∂xm
] = 0 − ∂mu−

∂xm

≈ −
3∑

k=1

wm
i−3+k, jui−3+k, j − wm

i+1, j ûi+1, j − wm
i+2, j ûi+2, j (31)

where u− ∈ �− , and wm
p,q stands for the weights in central finite difference approximation at x = α. In wm

p,q , subscript 
(p, q) denotes the location (xp, yq), and m = 0, 1, · · · , 4 indicates the mth derivative. In these two types, we take xi = α. 
The best accuracy can be obtained in the framework of central finite difference.

Plugging fictitious values representation (28) into (30) or (31) gives equivalent forms:

∑
(xI ,y J )∈S

C I, J uI, J + [∂
mu

∂xm
] = C0[u] + C1[ux] + C2φ, (32)

where C I, J is the corresponding weights of function value uI, J in approximation to jump quantity [ ∂mu
∂xm ], and S is the set 

of needed grid points in (30) or (31). Equivalent form for jump quantities [ ∂m u
∂ ym ] could be derived in a similar fashion in the 

y− direction.

∑
(xI ,y J )∈S

Ĉ I, J uI, J + [ ∂
mu

∂ ym
] = Ĉ0[u] + Ĉ1[u y] + Ĉ2φ. (33)

The original boundary conditions are automatically satisfied then. In equation (32) and (33), [u], [ux] or [u y] is known, 
but uI, J are unknowns to be solved. In the AMIB method, we take [ ∂m u

∂xm ] and [ ∂mu
∂ ym ], m = 0, 1, · · · , 4 as auxiliary variables. 

Equation (32) or (33) can be rewritten in one matrix-vector form:

C U + I Q = 	, (34)

where C stands for the weights coefficients matrix, U represents the function variables, I is the identity matrix, Q is the 
introduced auxiliary variables on all boundary nodes, and 	 is from the known boundary quantities [u], [ux], [u y], and φ.

5. Augmented system

5.1. formulation of the augmented system

In the preceding section, corrected differences are introduced, while the correction terms are approximated using ficti-
tious values from the MIB method. With correction terms defined as auxiliary variables along with the function values, one 
augmented system can be constructed. Now we take approximation to 2D Poisson’s equation for demonstration. Let Ui, j in-
dicate the discrete solution of u(xi, y j) at (xi, y j). Based on the corrected difference analysis, the problem (1) is discretized 
as

LhUi, j + Ci, j = f i, j, 1 ≤ i ≤ M + 2s − 1, 1 ≤ j ≤ N + 2s − 1, (35)

where Ci, j is the correction term, and LhUi, j is the standard high order central difference scheme to Laplacian with a degree 
of freedom N1 = (M + 2s − 1) × (N + 2s − 1). The s has the same meaning in (16).

Below we take the fourth order study for instance. The parameter s is equal to 3. Then N1 = (M + 5) × (N + 5). Note that 
correction term only exists at irregular points but vanishes at regular points. In other words, Ci, j exists for approximation 
at the each two layers of grid points surrounding the interface. Otherwise, Ci, j vanishes for the other interior grid points 
inside the interface as shown in Fig. 2. Via Eq. (35), a relation between numerical solution and auxiliary variables in x- or 
y-partial derivatives is obtained as
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AU + B Q = F , (36)

where A is a symmetric, diagonally dominant matrix of dimension N1 by N1, B is a matrix of coefficients from correction 
terms and F is a vector with entries being f i j . We note that the inversion of matrix A can be facilitated with the above FFT 
algorithm. Variable U stands for the numerical solution to the immersed boundary problem and Q is a vector of introduced 
auxiliary variables [u]i, [ ∂u

∂x ]i, [ ∂2u
∂x2 ]i, [ ∂3u

∂x3 ]i, [ ∂4u
∂x4 ]i for i = 1, 2, · · · , and [u] j, [ ∂u

∂ y ] j, [ ∂2u
∂ y2 ] j, [ ∂3u

∂ y3 ] j, [ ∂4u
∂ y4 ] j , for j = 1, 2, · · · , at 

the intersection of interface and grid lines. The total number of auxiliary variables, denoted as N2, is 5 times that of all 
intersection points, while the latter is proportional to M or N . That means N2 is one dimension smaller than N1. Matrix B
is a sparse matrix of dimension N1 × N2, and it is composed of the coefficients from the correction terms in the corrected 
differences.

Moreover, inspired by formula (34), approximation to jump quantities could be formulated as

C U + I Q = Φ, (37)

where notations in (37) have the same meaning in (34). Matrix C is a sparse matrix of dimension N2 × N1, and I is a N2
by N2 identity matrix. An augmented MIB matrix is therefore obtained by combining (36) and (37),

K W = R, (38)

where

K =
(

A B
C I

)
, W =

(
U
Q

)
, and R =

(
F
Φ

)
.

5.2. Schur complement

We are concerned with solving the linear system of equation efficiently. The symmetric coefficient matrix A enables us 
to take advantage of fast Poisson solvers in the implementation. Eliminating U in (38) gives a Schur complement system 
for Q ,

(I − C A−1 B)Q = Φ − C A−1 F , (39)

which has a much smaller dimension. To solve for Q in (39), a biconjugate gradient method could be utilized. Once Q is 
determined, U could be solved by one more FFT inversion

AU = (F − B Q ). (40)

The Schur complement system (39) takes the majority of computation time. A detailed explanation on the implementa-
tion of the conjugate gradient iteration is described below:

1. The determination of the right side F̂ = Φ − C A−1 F involves one step FFT for A−1 F and a few simple algebraic opera-
tions.

2. For the left hand, the matrix vector product of (I − C A−1 B)Q is completed in a few steps. Based on the equivalence to 
I Q − C A−1 B Q , first a product of B Q is obtained. Then FFT is carried out on A−1 B Q . Finally it is finished by simple 
multiplication and summation for (I − C A−1 B)Q . The transpose of (I − C A−1 B)T Q is done on I Q − BT A−1C T Q by the 
same approach.

3. A initial guess Q = (0, 0, · · · , 0)T starts the biconjugate gradient iteration, and either the maximal iteration number be-
ing 5000 or error tolerance less than 10−15 terminates the iteration. In following numerical experiments, the preceding 
criteria are used unless specified.

Remark 5.1. Note that selection of such small error tolerance in step 3 is reasonable for validating high order scheme. In 
real application, a larger tolerance could be used based on the practical needs.

6. Numerical experiments

In this section, we examine the performance of the proposed augmented matched interface and boundary (AMIB) method 
in solving two or three dimensional Poisson’s equation with an arbitrary combination of Dirichlet, Neumann, and Robin 
boundary conditions. The AMIB approach is primarily designed for high order central difference schemes, but the same 
approach is applicable to second order central difference as well. In the present study, we will test numerical performance 
of AMIB2, AMIB4, AMIB6, and AMIB8 methods, with the number after AMIB standing for the designed order of accuracy. 
For a comparison, the standard MIB boundary closure method [49–52] will be employed too. Without Schur complement 
and FFT components, a biconjugate gradient iteration is simply employed in the MIB to solve the sparse system, and the 



H. Feng, S. Zhao / Journal of Computational Physics 410 (2020) 109391 15
termination criteria are identical to those in the AMIB algorithm. Like the AMIB, one can also specify the order of accuracy 
for the MIB method.

For simplicity, a square domain with uniform mesh is used such that there are same amount of grids in x, y or z direction 
in the given domain, respectively. Fig. 1 gives an illustration of the boundary notations. In the following presentation, we 
will focus mainly on 2D setting. The numerical accuracy and convergence will be tested by comparing the numerical and 
exact solutions under the maximum norm and L2 norm defined as

L∞ = max
(i, j)∈S�−

|u(xi, y j) − uh(xi, y j)|,

L2 =
√√√√ 1

N2

∑
(i, j)∈S�−

|u(xi, y j) − uh(xi, y j)|2,

where uh(xi, y j), u(xi, y j) are numerical and analytical solution, respectively. The set S�− stands for the set of grid points 
on the given domain before the proposed domain expansion, and N is the number of grid points in each direction of set 
S�− . The purpose of error analysis on such set is because the solution on the given domain is of concern, but not on �+ .

The convergence rate of the scheme will be examined by the formula

order =| log(||E1||/||E2||)
log(h1/h2)

|,

where ||Ei|| is the error of mesh hi for i = 1, 2 using either of the above two defined norms on N by N mesh. The solution 
calculation is facilitated by a FFT subroutine from Numerical Recipes [35] with 2n summation. Due to the limitation of 
partition number equal to 2n in the subroutine, non-bisection refinement of interval size is used in the error analysis.

All experiments were carried out on MacBook Pro with 8.00 GB RAM and Intel 2.3 GHz Intel Core i5.

6.1. Accuracy studies

In this section, several comparisons on numerical accuracy between MIB and AMIB methods are studied. In each table 
below, Nx , N y and Nz for AMIB and MIB stand for grid numbers on the domain �− in each direction.

Example 1. We first examine the second and fourth order accuracy of the proposed AMIB method for Dirichlet boundary 
conditions. Tests on 2D Poisson’s equation defined in a domain [−π

3 , π3 ] × [−π
3 , π3 ] are studied for this purpose. Here 

Poisson’s equation is given as

uxx + u yy = ex(2 + y2 + 2 sin(y) + 4x sin(y)),

with analytical solution u = ex(x2 sin(y) + y2). The Dirichlet boundary condition along the four boundaries are determined 
according to the exact solution.

The second and fourth order convergence could be observed under each of the two norms in Table 3. As the computing 
time is related to the iteration number for solving the auxiliary variables in Schur complement, we report the iteration 
numbers in the second last column in Table 3. The last column is the CPU time in seconds for each case. For the present 
study, the iteration number has no change or just increases a little when mesh size is doubled. Consequently, the AMIB 
method is very efficient. By comparing the second and fourth accurate results, the AMIB4 is superior to AMIB2 in terms of 
accuracy and computing time.

Example 2. This example is dedicated to the comparison of AMIB and MIB for solving Poisson’s equation

uxx + u yy = 2ex cos(x + y) − ex sin(x + y)

on domain [−π
3 , π3 ] ×[−π

3 , π3 ], subject to Dirichlet boundary conditions determined by the exact solution u = ex sin(x + y). 
Table 4 indicates that both methods produce a fourth order of convergence, while the AMIB4 is much more efficient than 
the MIB4, especially when a dense mesh is considered.

Example 3. This example focuses on validating the high-order convergence of our new methods. Restricted on a domain 
[−π

3 , π3 ] × [−π
3 , π3 ], a 2D Poisson’s equation is defined as

uxx + u yy = −2k2 sin(kx) cos(ky).

subject to mixed boundary conditions:

u = sin(kx) cos(
kπ

3
) on �1,

u + ∂u = (sin(
kπ

) + k cos(
kπ

)) cos(ky) on �2,

∂n 3 3
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Table 3
Example 1 – Second and fourth order numerical error analysis.

[Nx, N y ] AMIB2

L∞ L2 iter no. CPU time (s)

Error Order Error Order

[29,29] 7.529E-4 – 2.965E-4 – 11 6.95E-3
[61,61] 1.547e-4 2.03 6.333E-5 2.09 12 2.64E-2
[125,125] 3.575E-5 1.99 1.496E-5 1.99 12 9.64E-2
[253,253] 8.631E-6 1.99 3.651E-6 1.99 12 0.325
[509,509] 2.122E-6 1.99 9.030E-7 1.99 12 1.463

[Nx, N y ] AMIB4

L∞ L2 iter no. CPU time (s)

Error Order Error Order

[27,27] 1.336E-6 – 5.251E-7 – 20 1.142E-2
[59,59] 5.485E-8 3.98 2.301E-8 3.90 20 3.954E-2
[123,123] 2.892E-9 3.96 1.264E-9 3.90 20 0.151
[251,251] 1.673E-10 3.97 7.461E-11 3.94 20 0.518
[507,507] 1.088E-11 3.88 4.669E-12 3.93 21 2.406

Table 4
Example 2 – Fourth order numerical error analysis of AMIB vs MIB.

[Nx, N y ] AMIB4

L∞ L2 CPU time(s) iter no.

Error Order Error Order

[11,11] 4.408E-5 – 1.549E-5 – 4.823E-3 20
[27,27] 1.096E-6 3.87 4.712E-7 3.65 1.290E-2 20
[59,59] 4.662E-8 3.94 2.209E-8 3.81 4.056E-2 20
[123,123] 2.442E-9 3.97 1.212E-9 3.90 0.139 21
[251,251] 1.400E-10 3.98 7.111E-11 3.95 0.529 21
[507,507] 7.771E-12 4.10 4.004E-12 4.08 2.403 21

[Nx, N y ] MIB4

L∞ L2 CPU time(s)

Error Order Error Order

[13,13] 4.070E-5 – 1.841E-5 – 2.00E-3
[29,29] 1.076E-6 4.28 5.267E-7 4.19 2.466E-2
[61,61] 4.644E-8 4.12 2.345E-8 4.08 0.207
[125,125] 2.444E-9 4.06 1.252E-9 4.04 1.836
[253,253] 1.423E-10 4.00 7.329E-11 4.00 15.386
[509,509] 3.363E-11 2.06 1.417E-11 2.34 148.41

u + ∂u

∂n
= (cos(

kπ

3
) − k sin(

kπ

3
)) sin(kx) on �3,

ux = k cos(
kπ

3
) cos(ky) on �4.

It has analytical solution u = sin(kx) cos(ky), in which the wave number k could be chosen as a large number. blue Basically, 
only for highly oscillating solutions, high-order convergence can be detected numerically. In this example, the parameter k
is uniformly set to be 15 for testing the AMIB4, AMIB6, and AMIB8 with mixed boundary conditions.

The high-order convergence of the AMIB method is validated in Table 5. It is clear that the AMIB4, AMIB6, and AMIB8 
achieves, respectively, the fourth, sixth, and eighth order of convergence. Moreover, the AMIB8 is obviously the most accurate 
scheme.

The iteration numbers are also reported in Table 5. Two comments are in order. First, the iteration number increases 
with respect to the mesh size for this Poisson problem. But such increment is slow and weakly depends on the mesh size 
- when the mesh size is doubled for four times, the iteration number is doubled once. Second, the iteration number seems 
to not depend on the order of AMIB method. This demonstrates the robustness of the AMIB method.

Example 4. This example is devoted to test the AMIB method for solving the Helmholtz equation

uxx + u yy + k2u = e−x2− y2

2 (4x2 + y2 + k2 − 3)

subject to Robin boundary conditions:

u + ∂u = (1 − π
)e−x2− π2

18 on �1,

∂n 3
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Table 5
Example 3 – High order numerical error analysis.

[Nx, N y ] AMIB4 and k = 15

L∞ L2 iter no.

Error Order Error Order

[27,27] 6.125E-2 - 1.368E-2 - 30
[59,59] 3.000E-3 3.76 5.575E-4 3.99 30
[125,125] 1.476E-4 4.05 2.848E-5 4.00 34
[251,251] 8.521E-6 3.97 1.614E-6 4.00 43
[507,507] 5.072E-7 4.00 9.612E-8 4.00 57

[Nx, N y ] AMIB6 and k = 15

L∞ L2 iter no.

Error Order Error Order

[25,25] 0.135 – 2.001E-2 – 31
[57,57] 9.283E-4 5.87 1.496E-4 5.78 36
[123,123] 7.120E-6 6.39 1.078E-6 6.47 41
[249,249] 8.167E-8 6.15 1.051E-8 6.38 50
[505,505] 1.070E-9 6.11 1.317E-10 6.18 69

[Nx, N y ] AMIB8 and k = 15

L∞ L2 iter no.

Error Order Error Order

[23,23] 0.140 - 2.354E-2 - 34
[55,55] 3.103E-4 6.81 4.482E-5 6.97 42
[121,121] 4.131E-7 8.47 6.780E-8 8.31 48
[247,247] 9.587E-10 8.25 1.242E-10 8.57 57
[503,503] 3.173E-12 8.01 3.760E-13 8.13 70

Table 6
Example 4 – Fourth order numerical error analysis for the Helmholtz 
equation with k = 20.

[Nx, N y ] AMIB4

L∞ L2 iter no.

Error Order Error Order

[27,27] 6.255E-7 – 2.218E-7 – 53
[59,59] 1.1732E-8 4.96 5.777E-9 4.55 38
[123,123] 9.682E-10 3.35 3.307E-10 3.85 64
[251,251] 5.751E-11 3.94 2.014E-11 3.90 75
[507,507] 3.502E-12 3.97 1.246E-12 3.95 94

u + ∂u

∂n
= (1 + 2π

3
)e− π2

9 − y2

2 on �2,

u + ∂u

∂n
= (1 + π

3
)e−x2− π2

18 on �3,

u + ∂u

∂n
= (1 − 2π

3
)e− π2

9 − y2

2 on �4,

which are determined by analytical solution u = e−x2− y2

2 on domain [−π
3 , π3 ] × [−π

3 , π3 ]. Parameter k is chosen to be 20 in 
the test. Table 6 shows that the AMIB4 method is equally successful in solving the Helmholtz equation with Robin boundary 
conditions.

Example 5. Both boundary condition implementation and solution of algebraic system are conducted in dimension by 
dimension manner in the AMIB method. Thus, the generalization of 2D AMIB method to 3D is straightforward. Here the 
AMIB4 method is verified by the following 3D Poisson problem:

uxx + u yy + uzz = sin(kx)e y+z(2 − k2)

with Dirichlet boundary conditions determined by solution u = sin(kx)e y+z on the domain [−π
3 , π3 ] × [−π

3 , π3 ] × [−π
3 , π3 ]. 

Parameter k is set to be 5 in the 3D test. The fourth order convergence of the AMIB4 for 3D Poisson problem is numeri-
cally verified through Table 7. Moreover, the iteration number increases very little when the mesh size is doubled in each 
dimension.
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Table 7
Example 5 –Fourth order numerical error analysis of the AMIB4 on 3D Poisson’s equation.

[Nx, N y , Nz] AMIB4

L∞ L2 iter no. CPU times(s)

Error Order Error Order

[11,11,11] 0.870 – 0.127 – 37 4.722E-2
[27,27,27] 3.337E-2 3.81 3.347E-3 3.80 49 0.392
[59,59,59] 1.426E-3 4.13 1.216E-4 4.13 52 3.191
[123,123,123] 7.436E-5 4.10 5.760E-6 4.10 55 28.792
[251,251,251] 4.270E-6 4.06 3.132E-7 4.06 55 296.97

Table 8
Computational efficiency comparison.

[Nx, N y ] FISHPACK

L∞ L2 CPU time (s)

Error Order Error Order

[65,65] 2.384E-3 – 9.717E-4 – 1.098E-3
[129,129] 6.073E-4 1.97 2.464E-4 1.98 4.837E-3
[257,257] 1.530E-4 1.99 6.207E-5 1.99 1.665E-2
[513,513] 3.840E-5 1.99 1.558E-5 1.99 6.084E-2
[1025,1025] 9.617E-6 2.00 3.902E-6 2.00 0.243

[Nx, N y ] AMIB2

L∞ L2 iter no. CPU time (s)

Error Order Error Order

[61,61] 2.790E-3 – 1.087E-3 – 10 1.92E-2
[125,125] 6.565E-4 1.99 2.604E-4 1.97 10 7.432E-2
[253,253] 1.590E-4 2.00 6.380E-5 1.98 12 0.311
[509,509] 3.915E-5 2.00 1.579E-5 1.99 12 1.471
[1021,1021] 9.711E-6 2.00 3.929E-6 2.00 12 6.267

[Nx, N y ] AMIB4

L∞ L2 iter no. CPU time (s)

Error Order Error Order

[59,59] 1.273E-5 – 4.764E-6 – 19 4.100E-2
[123,123] 6.609E-7 3.98 2.570E-7 3.93 19 0.127
[251,251] 3.768E-8 3.99 1.496E-8 3.97 20 0.516
[507,507] 2.250E-9 4.00 9.03E-10 3.98 20 2.284
[1019,1019] 1.374E-10 4.00 5.544E-11 4.00 21 10.613

6.2. Computational efficiency

In this section, the computational efficiency of the AMIB method will be further investigated. A comparison between 
the results from FISHPACK [42], AMIB2 and AMIB4 will be considered in 2D. In the FISHPACK, a direct FFT implementation 
is conducted for the second order central difference. Theoretically, the computational cost of FISHPACK is of O (N2 log N), 
where N is the degree of freedom in each dimension on a squared domain. In the proposed AMIB method, an iterative 
solution is needed for the Schur complement system, whose size is one-dimensionally smaller. Because the iteration number 
weakly depends on N , the computational cost of the AMIB method could be on the order of O (N2 log N) too. This will be 
numerically verified in this subsection.

We note two things in our flop order test. First, the change of log N in comparing with N is almost negligible in the total 
computational cost. So we have to drop this term in complexity in flop order test. In particular, we will fit the CPU time 
to the form of O (Nr) by the least squares method. The numerically detected flop order r will characterize the efficiency 
of the AMIB method. Second, we re-studied Example 3 from the last section by changing boundary conditions. This is 
because FISHPACK cannot handle Robin condition. Instead, Dirichlet boundary conditions determined by exact solutions are 
employed.

In the experiment, the parameter k is set to be 5. We adopt 10−10 as the error tolerance for the AMIB2, as it already 
guarantees the expected convergence. For the AMIB4, the tolerance is still 10−15. From Table 8, we can see that both AMIB2 
and FISHPACK produce second order accuracy. The AMIB4 has the expected fourth order accuracy. To analyze the flop order, 
the CPU time is plotted against the degree of freedom in each dimension, i.e., N , in Fig. 5. For a given N , AMIB algorithm is 
more expensive than FISHPACK, while the CPU time difference between AMIB2 and AMIB4 is small. Moreover, least squares 
fitting is conducted to compute flop order r in O (Nr) setting. From Fig. 5, it can be observed that the flop order r for each 
method is around 2. Thus, the computational cost of the AMIB method is roughly on the order of O (N2 log N) too, whereas 
the AMIB method has larger proportionality constants on the operation count O (N2 log N) compared to FISHPACK.
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Fig. 5. A comparison of computational cost between three methods, and flop orders are tested to be around 2 for each method.

Fig. 6. A comparison between the three methods on accuracy VS. CPU time under two norms.

On the other hand, in terms of cost-efficiency, high order methods have the advantage of providing better accuracy than 
lower order methods on the same mesh size. Table 8 shows that the AMIB4 has accuracy significantly improved than the 
second order methods. In fact, the errors of the AMIB4 on a coarse mesh 65 × 65 are smaller than those of second order 
AMIB2 and FISHPACK on 513 × 513. To demonstrate the cost-efficiency, we plot the accuracy against CPU time in Fig. 6 for 
both error norms. Obviously, the AMIB2 scheme as a byproduct of this study, is dominated by the FISHPACK - they are of the 
same accuracy level, while the AMIB2 is slower. Nevertheless, it can be observed in this figure that to achieve a precision 
around 10−5, the proposed AMIB4 method is more efficient than the FISHPACK. Moreover, the efficiency gain of the AMIB4 
becomes more significant when a better accuracy is targeted. For log-log lines shown in Fig. 6, we calculated the slopes by 
least squares fitting. The AMIB4 yields a slope around −2, while that of FISHPACK is about −1. Based on these results, it 
is projected that to achieve a precision around 10−10, the FISHPACK would take about 105 seconds of CPU time (assume 
memory is large enough), which is about 10, 000 times more expensive than the proposed AMIB4 scheme.

7. Summary

In this work, a FFT-based high order fast Poisson solver is developed for a cubic type geometry in multi-dimensions. By 
introducing a thin fictitious buffer zone or zero-padding region outside the domain, the Poisson boundary value problem 
is converted into an immersed boundary problem, so that FFT inversion of high order central difference schemes becomes 
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feasible. The boundary conditions then become interface conditions, which are discretized by the matched interface and 
boundary (MIB) method for generating fictitious nodes. The fictitious values are then utilized to approximate Cartesian 
derivative jumps on the boundary, which are introduced as auxiliary variables in the augmented MIB (AMIB) formulation. 
The Schur complement method allows us to iteratively solve these auxiliary variables over a one-dimensionally smaller al-
gebraic system. Moreover, the iteration number for the Schur complement system weakly depends on the degree of freedom 
N in each dimension. Hence, even though the AMIB method involves an iteration process, which is essentially not a direct 
fast solver, it still gives a fast Poisson solution. The numerical flop counts of the AMIB method are the order of O (N2 log N)

for a two-dimensional problem.
Traditional high-order fast Poisson solvers are mostly based on compact finite difference or spectral methods. This study 

is the first of its kind based on high order central differences. As a systematical approach, the AMIB method can easily 
handle the usual Dirichlet, Neumann, Robin or any combination of boundary conditions. Moreover, based on tensor product 
principle, the AMIB method can be implemented in multi-dimensions. Furthermore, the AMIB method can be made to arbi-
trarily high order in principle. Up to 8th order is demonstrated in this work. Finally, we note that due to broad application 
of high order central difference schemes, the AMIB method has potential to be applied to many problems with ease to 
gain a fast solution, including more complicated boundary conditions, boundary value problems over irregular domains, and 
interface problems. The future plan is to use the AMIB method to tackle irregular domain and interface problems.
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Appendix A

A.1. An extension on high order algorithms via FFT

The fourth order algorithms via FFT have been demonstrated in great details. High order algorithms, for example sixth 
and eighth order, can be derived with minor modification on assumptions and parameters. Below lists the procedures for 
sixth and eighth order schemes in one dimensional manner. Reader interested in such high order algorithm could easily go 
through the mathematical formulation in two or three dimensions.

A.1.1. Sixth order FFT solution for one-dimensional Poisson equation
The anti-symmetry for sixth order study can be assumed as

u0 = 0, u−1 = −u1, u−2 = −u2,

uM = 0, uM+1 = −uM−1, uM+2 = −uM−2.

The procedure for one dimensional FFT solution of sixth order can be developed as below:

1. Compute Sine transform for f (x j) via IFST f̂ l = 2
M

M−1∑
j=1

f (x j) sin(
l jπ
M ), for l = 1, · · · , M − 1.

2. ûl = f̂l
λl

, for l = 1, · · · , M − 1, where λl = 1
h2

x
[ 1

45 cos( 3lπ
M ) − 3

10 cos( 2lπ
M ) + 3 cos( lπ

M ) − 49
18 ].

3. Compute u j via FST: u j =
M−1∑
l=1

sin(
l jπ
M ), for j = 1, · · · , M − 1.

A.1.2. Eighth order FFT solution for one-dimensional Poisson equation
For the eighth order study, we further assume the following anti-symmetry

u0 = 0,u−1 = u1, u−2 = −u2, u−3 = −u3,

uM = 0, uM+1 = − uM−1, uM+2 = −uM−2, uM+3 = −uM−3.

Therefore the procedure for the FFT solution of eighth order is formulated as below:

1. Compute Sine transform for f (x j) via IFST f̂ l = 2
M

M−1∑
f (x j) sin(

l jπ
M ), for l = 1, · · · , M − 1.
j=1
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2. ûl = f̂l
λl

, for l = 1, · · · , M − 1,

λl = 1

h2
x
[− 1

280
cos(

4lπ

M
) + 16

315
cos(

3lπ

M
) − 2

5
cos(

2lπ

M
) + 16

5
cos(

lπ

M
) − 205

72
].

3. Compute u j via FST: u j =
M−1∑
l=1

sin(
l jπ
M ), for j = 1, · · · , M − 1.

A.2. An extension on high order corrected differences

Fourth order corrected differences have been explained in the body part of the work. An further extension on high order 
corrected differences are illustrated below.

Theorem 2. Corrected sixth differences. Let x j ≤ α < x j+1, h− = x j − α, and h+ = x j+1 − α. Suppose u ∈ C8[x j −
3h, α) 

⋂
C8(α, x j+1 + 3h], with derivative extending continuously up to the interface α. Then the following approximations 

hold to O (h6):

uxx(x j−2) ≈ 1

h2
[ 1

90
u(x j−5) − 3

20
u(x j−4) + 3

2
u(x j−3) − 49

18
u(x j−2) + 3

2
u(x j−1)

− 3

20
u(x j) + 1

90
u(x j+1)] − 1

90h2

7∑
m=0

(h+)m

m! [u(m)],

uxx(x j−1) ≈ 1

h2
[ 1

90
u(x j−4) − 3

20
u(x j−3) + 3

2
u(x j−2) − 49

18
u(x j−1) + 3

2
u(x j)

− 3

20
u(x j+1) + 1

90
u(x j+2)]

− 1

90h2

7∑
m=0

(h + h+)m

m! [u(m)] + 3

20h2

7∑
m=0

(h+)m

m! [u(m)],

uxx(x j) ≈ 1

h2
[ 1

90
u(x j−3) − 3

20
u(x j−2) + 3

2
u(x j−1) − 49

18
u(x j) + 3

2
u(x j+1)

− 3

20
u(x j+2) + 1

90
u(x j+3)] − 1

90h2

7∑
m=0

(2h + h+)m

m! [u(m)]

+ 3

20h2

7∑
m=0

(h + h+)m

m! [u(m)] − 3

2h2

7∑
m=0

(h+)m

m! [u(m)],

uxx(x j+1) ≈ 1

h2
[ 1

90
u(x j−2) − 3

20
u(x j−1) + 3

2
u(x j) − 49

18
u(x j+1) + 3

2
u(x j+2)

− 3

20
u(x j+3) + 1

90
u(x j+4)] + 1

90h2

7∑
m=0

(h− − 2h)m

m! [u(m)]

− 3

20h2

7∑
m=0

(h− − h)m

m! [u(m)] + 3

2h2

7∑
m=0

(h−)m

m! [u(m)],

uxx(x j+2) ≈ 1

h2
[ 1

90
u(x j−1) − 3

20
u(x j) + 3

2
u(x j+1) − 49

18
u(x j+2) + 3

2
u(x j+3)

− 3

20
u(x j+4) + 1

90
u(x j+5)]

+ 1

90h2

7∑
m=0

(h− − h)m

m! [u(m)] − 3

20h2

7∑
m=0

(h−)m

m! [u(m)],

uxx(x j+3) ≈ 1

h2
[ 1

90
u(x j) − 3

20
u(x j+1) + 3

2
u(x j+2) − 49

18
u(x j+3) + 3

2
u(x j+4)

− 3

20
u(x j+5) + 1

90
u(x j+6)] + 1

90h2

7∑
m=0

(h−)m

m! [u(m)].
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Here note that we may just make m range from 0 to 6 to ensure sixth order accuracy for elliptic problem globally despite 
local fifth order accuracy.

Theorem 3. Corrected eighth differences. Let x j ≤ α < x j+1, h− = x j − α, and h+ = x j+1 − α. Suppose u ∈ C10[x j −
4h, α) 

⋂
C10(α, x j+1 + 4h], with derivative extending continuously up to the interface α. Then the following approxima-

tions hold to O (h8):

uxx(x j−3) ≈ 1

h2
[− 1

560
u(x j−7) + 8

315
u(x j−6) − 1

5
u(x j−5) + 8

5
u(x j−4) − 205

72
u(x j−3)

+8

5
u(x j−2) − 1

5
u(x j−1) + 8

315
u(x j) − 1

560
u(x j+1)] + 1

560h2

9∑
m=0

(h+)m

m! [u(m)],

uxx(x j−2) ≈ 1

h2
[− 1

560
u(x j−6) + 8

315
u(x j−5) − 1

5
u(x j−4) + 8

5
u(x j−3) − 205

72
u(x j−2)

+8

5
u(x j−1) − 1

5
u(x j) + 8

315
u(x j+1) − 1

560
u(x j+2)]

− 8

315h2

9∑
m=0

(h+)m

m! [u(m)] + 1

560h2

9∑
m=0

(h + h+)m

m! [u(m)],

uxx(x j−1) ≈ 1

h2
[− 1

560
u(x j−5) + 8

315
u(x j−4) − 1

5
u(x j−3)

8

5
u(x j−2) − 205

72
u(x j−1)

+8

5
u(x j) − 1

5
u(x j+1) + 8

315
u(x j+2) − 1

560
u(x j+3)] + 1

5h2

9∑
m=0

(h+)m

m! [u(m)]

− 8

315h2

9∑
m=0

(h + h+)m

m! [u(m)] + 1

560h2

9∑
m=0

(2h + h+)m

m! [u(m)],

uxx(x j) ≈ 1

h2
[− 1

560
u(x j−4) + 8

315
u(x j−3) − 1

5
u(x j−2) + 8

5
u(x j−1) − 205

72
u(x j)

+8

5
u(x j+1) − 1

5
u(x j+2) + 8

315
u(x j+3) − 1

560
u(x j+4)]

−8

5

1

h2

9∑
m=0

(h+)m

m! [u(m)] + 1

5h2

9∑
m=0

(h + h+)m

m! [u(m)]

− 8

315h2

9∑
m=0

(2h + h+)m

m! [u(m)] + 1

560h2

9∑
m=0

(3h + h+)m

m! [u(m)],

uxx(x j+1) ≈ 1

h2
[− 1

560
u(x j−3) + 8

315
u(x j−2) − 1

5
u(x j−1) + 8

5
u(x j) − 205

72
u(x j+1)

+8

5
u(x j+2) − 1

5
u(x j+3) + 8

315
u(x j+4) − 1

560
u(x j+5)]

+8

5

1

h2

9∑
m=0

(h−)m

m! [u(m)] − 1

5h2

9∑
m=0

(h− − h)m

m! [u(m)]

+ 8

315h2

9∑
m=0

(h− − 2h)m

m! [u(m)] − 1

560h2

9∑
m=0

(h− − 3h)m

m! [u(m)],

uxx(x j+2) ≈ 1

h2
[− 1

560
u(x j−2) + 8

315
u(x j−1) − 1

5
u(x j) + 8

5
u(x j+1) − 205

72
u(x j+2)

+8

5
u(x j+3) − 1

5
u(x j+4) + 8

315
u(x j+5) − 1

560
u(x j+6)] − 1

5h2

9∑
m=0

(h−)m

m! [u(m)]

+ 8

315h2

9∑
m=0

(h− − h)m

m! [u(m)] − 1

560h2

9∑
m=0

(h− − 2h)m

m! [u(m)],
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uxx(x j+3) ≈ 1

h2
[− 1

560
u(x j−1) + 8

315
u(x j) − 1

5
u(x j+1) + 8

5
u(x j+2) − 205

72
u(x j+3)

+8

5
u(x j+4) − 1

5
u(x j+5) + 8

315
u(x j+6) − 1

560
u(x j+7)]

+ 8

315h2

9∑
m=0

(h−)m

m! [u(m)] − 1

560h2

9∑
m=0

(h− − h)m

m! [u(m)],

uxx(x j+4) ≈ 1

h2
[− 1

560
u(x j) + 8

315
u(x j+1) − 1

5
u(x j+2) + 8

5
u(x j+3) − 205

72
u(x j+4)

+8

5
u(x j+5) − 1

5
u(x j+6) + 8

315
u(x j+7) − 1

560
u(x j+8)] − 1

560h2

9∑
m=0

(h−)m

m! [u(m)].

Here note that we may just make m range from 0 to 8 to ensure eighth order accuracy for elliptic problem globally despite 
local seventh order accuracy.
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