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1. Introduction

In simulating real-world problems using quasi-static mechanics, one often models the material’s constitutive response 
using a strain-rate dependent law. One naturally does this when the material possesses a time dependent relaxation 
mechanism. But it is also common to introduce an artificial strain-rate dependency to regularise numerical solutions of 
a rate-independent material, e.g. in (crystal) plasticity or damage simulations.

In this setting, we most frequently solve the balance of linear momentum in the following form

∇ · σ (ε, ε̇, t, . . .) = 0 (1)

i.e. the divergence of the stress σ has to vanish everywhere in the domain (see Appendix A for our nomenclature). This 
problem is generally hard to solve because of the complexity of the stress response at the material point level, as it often 
depends non-linearly on the strain ε, the strain rate ε̇, the time t , and the loading history (carried in a number of internal 
variables). This partial differential equation thus has to be solved numerically. To this end, one typically discretises space, 
resulting in a system of (non-)linear algebraic equations

f
{
σ (ε, ε̇, t, . . .)

} = 0 (2)

where f {•} is a linear or non-linear functional related to the discretisation in space, whereby • refers to a discrete set of 
variables.
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By and large, the most popular protocol for solving the system of non-linear equations in Eq. (2) is the Newton-Raphson 
procedure. This procedure employs a first-order approximation of Eq. (2) in the neighbourhood of an approximate solution 
εi , resulting in a linear system of the form

∂ f

∂ε

∣∣∣∣
εi

δε = − f (εi, . . .) (3)

that can be solved for δε. The approximate solution is then updated according to

εi+1 = εi + δε (4)

These so-called iterations are repeated until Eq. (2) is satisfied with sufficient precision. In many cases σ contains ordinary 
differential equations in time to describe the evolution of the internal variables. These hidden ordinary differential equations 
are solved by discretising time, often by some finite difference scheme. As a result, Eq. (3) is employed consecutively at 
different points in time.

The computational efficiency of such a scheme relies crucially on i) the accuracy of the first order approximation in 
Eq. (3) [1] and ii) the accuracy of the initial guess ε0 that is iteratively refined using Eq. (4). i) requires a consistent tangent 
at the material point level and its derivation is usually well established [2–4]. For ii) the obvious choice is to take the last 
known converged state as the starting point ε0, however, we show that for time-dependent problems a better choice can 
be made. It involves a subtle interaction between the non-linear solver and the time dependence. This interaction becomes 
obvious in the derivation of i) by properly linearising all terms that are part of the discrete time integration scheme. More 
specifically, we show that a step along the discrete time axis will lead to a viscous flow, regardless of how the system is 
driven. This is incorporated by an additional stress (or force) term present only in the first iteration after the time increment 
amending to a logical choice for ii).

The purpose of this note is to present a derivation that naturally leads to the additional term for the first iteration of 
a new time increment. Furthermore, we show that the additional term can be easily interpreted as an initial guess for 
the Newton-Raphson protocol. We benchmark the improvement by solving the mechanical response of a dual-phase steel 
microstructure using a modern numerical method based on the Fast Fourier Transform (FFT) [5–7]. A reduction of the 
computation time of around 45% is observed in comparison to taking the last known converged state as an initial guess. 
We emphasise that we present the procedure on a relatively simple model, but that it applies to more complex models as 
well. We illustrate this by considering also a more involved time integration scheme, and thereby show that the procedure 
is straightforward to apply.

The remainder of this note is structured as follows: A visco-plastic (time-dependent) material model is introduced 
together with its linearisation. We thereby distinguish two components: the classical consistent tangent used in every 
iteration, and an additional driving force inserted during the first iteration. The performance of the classical and improved 
schemes is examined lastly.

2. Material model

A relatively simple visco-plastic model, based on the small strain assumption, is used here. The employed model is 
described in [3, chapter 11]. The stress is set by the elastic strain using Hooke’s law. Thereto, the total strain ε is additively 
split into an elastic part εe and a plastic part εp as

ε ≡ εe + εp (5)

and thus

σ ≡ 4C e : εe (6)

with

4C e ≡ K I I + 2G 4 Id (7)

where the fourth-order tensor 4 Id ≡ 4 I s − I I/3 projects an arbitrary tensor A onto its deviatoric part Ad = A − tr(A)I/3. 
The elastic material parameters are the bulk modulus K and the shear modulus G , which depend on Young’s modulus E
and Poisson’s ratio ν in the usual way. The evolution of plastic strain is given by the flow rule as

ε̇p ≡ γ̇ N (8)

whereby the direction of the plastic flow is given by

N ≡ 3

2

σ d

σ
(9)
eq
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Fig. 1. Normalised stress-strain curves for an individual visco-plastic material point for σ0/E = 0.01 and an applied strain rate of ε̇eq/γ̇0 = 10 in the normal 
direction. The equivalent strain rate is defined work conjugate to the equivalent stress: εeq ≡ √

2/3εd : εd .

where σ d is the deviatoric part of the stress (σ d = 4 Id : σ ) and σeq is the Von Mises equivalent stress (σeq ≡ √
3/2σ d : σ d). 

The magnitude of the plastic flow γ̇ is given by Norton’s rule as

γ̇ ≡ γ̇0

(
σeq

σs

)1/m

(10)

The material constants are: the reference strain rate γ̇0, the rate-sensitivity exponent m and the yield stress of the material 
σs . Note that γ̇ is by construction nonnegative, and depends non-linearly on the stress σ , and therefore on the plastic strain 
εp , through the rate sensitivity exponent m. We, furthermore, let the yield stress σs evolve with the accumulated plastic 
strain as follows:

σs ≡ σo + h εp (11)

where σ0 is the initial yield stress and h is the hardening modulus. If h = 0 then the model behaves perfectly plastically, 
whereas it hardens when h > 0 and softens when h < 0. Finally, the accumulated plastic strain εp is determined from

εp ≡
t∫

0

γ̇ dt′ (12)

To illustrate the behaviour of the visco-plastic model introduced above, several normalised stress-strain curves for a single 
material point are presented in Fig. 1. Fig. 1a shows the behaviour of the visco-plastic model for several values of the rate 
sensitivity exponent m. A sharp transition from the elastic to the plastic regime, as would be observed for rate-independent 
elasto-plastic behaviour, can be approximated by a small value for the rate sensitivity exponent m. The different regimes of 
hardening, perfect plasticity and softening are shown in Fig. 1b.

3. Time discretisation

The numerical treatment proceeds by discretising the material model in time, for which several choices exist. We employ 
the implicit Backward Euler protocol, known for its ease of implementation and robust convergence. The procedure is 
however general, which we demonstrate using the more advanced generalised trapezoidal integration scheme in Appendix C.

Using the Backward Euler protocol, the discrete version of the flow rule in Eq. (8) reads

�εp = �γ N t+�t (13)

where

�γ = γ t+�t − γ t = �t γ̇ t+�t (14)

To compute the unknowns γ t+�t and N t+�t , we apply the common approach of performing a radial return map. This 
involves formulating a trial state tr•, in which a strain increment is assumed fully elastic, from which the plastic evolution 
is sought to end up in an admissible state. For a model like the one presented here, this involves solving a single scalar, yet 
non-linear, equation, as it is easily shown that the stress directions in the trial state are the same as that of the admissible 
state. We may therefore write N t+�t = tr N , see e.g. [3] for details.

4. Consistent linearisation of the stress update around an arbitrary reference state

The consistent tangent relates, to the first order, a perturbation in the strain, δε, to the resulting perturbation in the 
stress, δσ . In this section we derive this tangent from multivariable linearisation around a fully known ‘reference state’. The 
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reference state is left undefined for the moment, but will be clarified below. This approach allows us to clearly identify the 
terms that are proposed as improvement.

The procedure begins by writing all unknown variables at time t + �t as a fully known reference state •∗ plus a small 
perturbation δ•. In terms of our model we have:

σ t+�t ≡ σ ∗ + δσ (15)

εt+�t ≡ ε∗ + δε (16)

εt+�t
p ≡ ε∗

p + δεp (17)

N t+�t ≡ N∗ + δN (18)

γ t+�t ≡ γ ∗ + δγ (19)

γ̇ t+�t ≡ γ̇ ∗ + δγ̇ (20)

The next step is to linearise all the equations used in the calculation of the constitutive response around the reference 
state •∗ . The elastic law in Eq. (6) is already linear and hence gives

δσ = 4C e : (δε − δεp
)

(21)

A first-order approximation of δεp is slightly more involved as it is non-linear and time-dependent. Its derivation starts 
from Eq. (13) and eventually leads to

δεp = δγ N∗ + (
γ ∗ − γ ∗−�t)︸ ︷︷ ︸

�γ ∗

δN (22)

Note that �γ ∗ and N∗ are known quantities. The derivation continues by developing expressions for δγ and δN , to acquire 
a closed-form expression for the small variation of plastic strain δεp . To obtain δN we use the result from the radial return 
map, so that δN = δ(tr N). The latter can be entirely evaluated in the trial state, and results in

δN =
[

3G
trσ ∗

eq

4 Id − 2G
trσ ∗

eq
N∗N∗

]
: δε (23)

To find δγ , we combine the results of Eqs. (14), (19) and (20) into

γ ∗ − γ t − �tγ̇ ∗ + δγ − �tδγ̇ = 0 (24)

By linearising Eq. (10) around •∗ , the small variation δγ̇ can be written as

δγ̇ = ∂γ̇

∂σeq
δσeq + ∂γ̇

∂σs
δσs = α∗

�t

(
2N∗ : δε − 3δγ − σ ∗

eq h δγ

σ ∗
s G

)
, α∗ = γ̇0G�t

mσ ∗
s

(
σ ∗

eq

σ ∗
s

) 1
m −1

(25)

Thereby we have employed the results of Eqs. (21), (22) and (23).
A closed-form expression for δγ can now be established by substitution of Eq. (25) in Eq. (24). Substituting that expres-

sion for δγ in Eq. (22) and the resulting expression in Eq. (21) finally gives the consistent linearisation of the stress update, 
as follows

δσ = 4C∗
vp : δε − Gβ∗

α∗
(
�tγ̇ ∗ − γ ∗ + γ t)N∗ (26)

where the consistent tangent 4C∗
vp for the visco-plastic model reads

4C∗
vp = 4C e − 2Gβ∗N∗N∗ − �γ ∗4G2

trσ ∗
eq

[
3

2
4 Id − N∗N∗

]
(27)

and

β∗ = 2α∗

1 + 3α∗ + σ ∗
eqh

σ ∗
s G α∗

(28)

which can be further reorganised1 to:

1 It may be helpful to realise that the following identity holds: Gβ∗
α∗ = κ∗ (2G − 3Gβ∗).
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δσ = 4C∗
vp : [δε − (

�tγ̇ ∗ − γ ∗ + γ t)κ∗N∗] (29)

with

κ∗ = 1(
1 + σ ∗

eqh
σ ∗

s G α∗
) (30)

Note how the choice of the reference state •∗ determines at which state the consistent tangent is evaluated and that it 
does not affect the expression itself. It does, however, affect the relevance of the second term between brackets in Eq. (29), 
as we will see next.

5. Reference state

5.1. Recovering the classic Newton-Raphson iteration

We now define the reference state denoted by •∗ . We first consider ‘ordinary’ Newton-Raphson iterations within one 
discrete time step •t+�t as for example in Eq. (4). In this case, an iterative update of the unknown(s) is obtained by 
linearising around the last known iterative state, denoted by the iteration counter i. In this case, Eq. (29) reduces to the 
classical [2–4]:

δσ = 4C i
vp : δε (31)

where the reference state •∗ ≡ •i at t + �t , the latter not being explicitly included in the notation. This result follows from 
Eq. (29) as γ ∗ ≡ γ i and γ̇ ∗ ≡ γ̇ i . Recognising the discretised strain rate (�tγ̇ i ≡ γ i − γ t ) we thus find the three rightmost 
terms in Eq. (29) to cancel.

5.2. Obtaining the improved initial guess

For the first iteration of every new time increment, we have to be careful. Commonly, one simply uses the last available 
tangent as in Eq. (31). This would amend to taking the tangent of the last iteration i of the previous time step (at time t), 
that resulted in a converged state. We argue that, when taking this converged state as our reference state for linearisation 
(•∗ ≡ •t ), an extra term appears in the stress update:

δσ = 4C t
vp : [δε − �t γ̇ tκt N t] (32)

where 4C t
vp is the consistent tangent according to Eq. (27) evaluated at the converged state at time t . Note that this result 

trivially follows from Eq. (29) as γ ∗ ≡ γ t and the two rightmost terms cancel. The extra term in Eq. (32) (cf. Eq. (31)) can 
be interpreted as the increase in plastic strain εp over the time step �t as caused by the stress σ at time t . Note that the 
magnitude of this plastic strain increase computed from �t γ̇ t is scaled with the variable κt , which takes into account the 
effect of the plastic strain increase on the yield stress, i.e. κt > 1 for hardening, κt = 1 for perfect plasticity and κt < 1 for 
softening. Naturally, this expected increase in plastic strain, based on variables at time t , is only an estimate. As a result, δσ
is only a prediction of the incremental change in stress. This prediction thereby effectively sets an initial guess from which 
to start the regular Newton-Raphson iterations.

The avid reader may wonder if for the first iteration after a time increment, i.e. the situation described above, it would 
not simply suffice to use an explicit increment to yield the same result. It is emphasised that interchanging Eq. (14) with 
an explicit substitute (e.g. Forward Euler) yields: i) a different expression for the consistent tangent 4C t

vp in Eq. (32) and ii) 
no compensation for the change in yield stress as the variable κt does not appear.

To conclude, it is emphasised that the extra term in Eq. (32) is a result of the load increment and the time-dependent 
material model. It is therefore only included in the first iteration after a time increment. In the regime where the plastic 
flow is negligible (γ̇ t ≈ 0) or for rate-independent material models, there is no contribution of the improved initial guess.

6. Case study

To show its relevance, we employ the improved initial guess in a case study. Thereby we make use of a modern nu-
merical solution procedure for micro-mechanical problems, that is based on the Fast Fourier Transform (FFT). As extensively 
described in [5], like in the Finite Element Method, Eq. (1) is solved in a weak sense. The resulting volume integral is evalu-
ated numerically by introducing nodal unknowns that are distributed on a regular grid (i.e. pixels or voxels). Owing to this 
choice, they can be interpolated using globally supported trigonometric polynomials. Numerical quadrature then proceeds 
by evaluating equally weighted quadrature points that coincide with the nodes. The result is a scheme in which essentially 
local equilibrium equations are coupled by the application of the Fourier transform and its inverse, which can be done using 
efficient and mature FFT libraries. The details of how the improved initial guess appears in the algorithm proposed by [5]
are given in Appendix B.
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Fig. 2. SEM image (801 x 801 pixels) and visualisation of the magnitude of the residual of the mechanical equilibrium equation normalised with the yield 
stress of martensite at the start of the Newton-Raphson iterations on the SEM micrograph for perfect visco-plasticity at εappl = 5.0 · 10−2.

Table 1
Material parameters as assumed for the ferrite and martensite phases.

Parameter E [GPa] ν [-] γ̇0 [1/s] m [-] σ0 [MPa] h [MPa]
Hard. Perf.pl. Soft.

Ferrite 206.824 0.3 0.001 0.05 425 940 0 -940
Martensite 206.824 0.3 0.001 0.05 1180 1740 0 -1740

We study the efficiency of our improvement based on a realistic example in which we compute the microscopic response 
of a microstructure that is subjected to a macroscopic shear strain. The microstructure is taken from a micrograph of a 
commercial dual-phase steel sample (DP600), acquired using a scanning electron microscope (SEM), as shown in Fig. 2a. 
Dual-phase steel consists of two main constituents: i) ferrite, a soft and ductile phase, which shows up in dark in the 
micrograph in Fig. 2a and ii) martensite, a hard and brittle phase, which shows up bright in Fig. 2a and has a volume 
fraction of about 17% in this image of 801x801 pixels. For our case study we assume that the microstructure is continuous 
and consists only of these two phases, which we both assume to obey the visco-plastic model presented above. To this end 
the micrograph in Fig. 2a is thresholded2 to obtain a binary image. Each pixel then corresponds to a nodal point for the 
FFT-solver, whereby the material parameters are different depending on the phase, see Table 1. Note that we consider three 
cases: hardening, perfect plasticity, and softening. The parameters for these cases are loosely based on [9] and [10].

In the simulations, the specimen is subject to periodic boundary conditions (as so required by our solver, but common 
in this type of homogenisation problems). An average strain ε̄ is prescribed which induces a pure shear strain according to

ε̄ =
√

3

2
εappl

(�ex�ex − �e y�e y
)

(33)

where εappl is the applied strain and �ex and �e y are the unit vectors, respectively in the horizontal and vertical direction. 
For the simulations with hardening and perfect plasticity, the applied strain was incrementally increased to εappl = 0.05
at a strain rate of ε̇appl = 0.01 [1/s] in 100 time steps. For the test cases that include softening, the equivalent strain was 
incrementally increased to εappl = 0.01 with the same strain rate and number of time steps.

Figs. 2(b) and 2(c) give an example of the effect of the extra term using the perfectly plastic material model. The residual 
is visualised based on the computation of the mechanical equilibrium and normalised with the yield stress of martensite. It 
illustrates how, for this case, the initial guess is nearly perfect if the extra term is employed, while it is quite poor without 
it. In particular, the relative residuals are as low as 10−5 - 10−9, whereas the relative residuals for the initial guess using 
[5] are in the order of 10−2 - 10−5.

The average CPU time used to compute the mechanical response of the microstructure is shown in Fig. 3a. For each 
considered case, the extra term decreases the CPU time by approximately 45%, by reducing the number of Newton-Raphson 
iterations per load increment. In particular since the initial guess is closer to the final solution, the convergence of the 
Newton-Raphson protocol is improved. This is confirmed by the convergence of the relative residual norm in Table 2. As the 
extra term essentially calculates the increase in plastic strain using the plastic strain rate from the previous time step, it is 
most accurate where there is little change in plastic strain rate between different time steps, thus especially for the steady 

2 Both the micrograph and the corresponding binary image obtained by thresholding have been taken from the GooseFFT repository [6,7], see [8] for the 
experimental and thresholding protocol.
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Fig. 3. Comparison of the numerical performance of the initial guess from [5] (classical) and the initial guess from this work (improved) for visco-plasticity 
with hardening, perfect plasticity and softening.

Table 2
Convergence of the norm of the mechanical equilibrium equation normalised with the yield 
stress of martensite during Newton-Raphson iterations for the classical and improved initial 
guess, measured at εappl = 0.05 for the hardening and perfectly plastic case, and at εappl =
0.0075 for softening, i.e. well in the plastic regime.

Iteration Hardening Perfect plasticity Softening
Classical Improved Classical Improved Classical Improved

i = 0 4.86E+00 5.86E-04 4.64E+00 2.77E-04 3.26E+00 1.42E-03
i = 1 1.22E-01 1.49E-08 1.62E-01 1.35E-08 1.36E-01 3.30E-07
i = 2 4.96E-04 - 6.87E-04 - 2.02E-03 -
i = 3 2.47E-08 - 1.01E-07 - 1.58E-06 -

Fig. 4. Comparison of the average number of Newton-Raphson iterations per time increment of the initial guess from [5] (classical) and the initial guess 
from this work (improved) for visco-plasticity with hardening, measured on a 101x101 section of the SEM image of Fig. 2a.

state regime of the perfectly visco-plastic model. This is further illustrated in Fig. 3b, which shows the cumulative number 
of iterations as a function of the imposed strain. As observed, the improvement becomes clearly visible once the yield stress 
of the material is reached and the plastic strain starts to develop at a significant rate. For the overlapping curves of the 
hardening and perfectly plastic case, the effect of the improvement is observable from an applied strain of εappl = 0.005
onwards. At εappl = 0.02, the predictability of the plastic strain increases and the improvement distinguishes itself even 
further. Due to the more localised nature of the plastic strain as the result of softening, the improvement in terms of the 
number of Newton-Raphson iterations is not monotonic.

When varying the time-step size �t or the rate-sensitivity exponent m, as shown in Fig. 4, the average number of 
Newton-Raphson iterations used per load increment is consistently halved by the improvement. Note that the number 
of time steps was increased with decreasing rate-sensitivity exponent m, such that the ratio between the two was kept 
constant.

7. Synopsis

A general linearisation procedure for the consistent tangent of a small-strain visco-plastic material model was presented 
in this note. The procedure is based on multi-variable linearisation around a so-called “reference state”. In particular, the 
linearisation of the time integration scheme (i.e. Eq. (24)) was found to yield an extra term compared to classical expressions 
[2–4], which only appears because the material response is time-dependent. It has the effect of yielding a very accurate 
initial guess for the Newton-Raphson protocol based on the ongoing viscous flow. It was shown, using a modern variational 
FFT-based solver, that the extra term reduces both the CPU time and the number of Newton-Raphson iterations by around 
a factor two.
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Appendix A. Nomenclature

We use boldface symbols to denote vectors a = ai �ei , second-order tensors, A = Aij �ei�e j , and fourth-order tensors, 4 A =
Aijkl �ei�e j�ek�el . A tensor contraction is denoted using centered dot, e.g. C = A · B corresponds to Cik = Aij B jk . A double tensor 
contraction is denoted using colon, e.g. c = A : B corresponds to c = Aij B ji . I ≡ δi j �ei�e j is a second-order unit tensor, and 
I I ≡ δi jδkl �ei�e j�ek�el corresponds to a dyadic product of two second-order unit tensors. tr(A) ≡ Aii/3 is the trace of second-
order tensor. ∇ · A corresponds to the divergence operator ∂ Aij/∂x j . Note that for all index notations a summation of the 
three spatial dimensions is implied.

Appendix B. Implementation of the improved initial guess

We use Algorithm 1 of Ref. [5] whereby the only modification is line 7 of the algorithm, which now reads

G C (t) δε
∗
(0) = −G C (t)

[
E(t+�t) − E(t) − �tγ̇ tκt N t

]
(B.1)

see Ref. [5] for nomenclature. Here we only specify that we take all nodes (grid-points) visco-plastic and that γ̇ t , κt and 
N t are columns that collect the nodal quantities. Note also that we use Algorithm 1 of Ref. [5], without any modification, 
as reference.

Appendix C. Generalised trapezoidal integration

We now generalise our results to the generalised trapezoidal integration scheme, which employs a linear combination 
of variables evaluated at time t and at time t + �t through a parameter 0 ≤ θ ≤ 1. Note that the choice of this parameter 
allows one to recover the explicit forward Euler scheme when θ = 0 and the backward Euler scheme when θ = 1. The 
drawback of the generalised trapezoidal scheme lies in its return map, which requires that the following set of non-linear 
equations is solved

εt+�t
e = trεe − �γ

[
(1 − θ) N t + θ N t+�t]

�γ = �t
(
(1 − θ) γ̇ t + θγ̇ t+�t) (C.1)

In comparison, the implicit backward Euler scheme (θ = 1) only requires the solution of the latter, non-linear scalar, equation 
for �γ . Using the generalised trapezoidal integration scheme, Eq. (8) is discretised as follows

�εp = �γ
(
(1 − θ) N t + θ N t+�t)︸ ︷︷ ︸

Nθ

(C.2)

where

�γ = γ t+�t − γ t = (1 − θ)�tγ̇ t + θ�tγ̇ t+�t (C.3)

After linearising Eq. (C.2) around •∗ , we obtain
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δεp = δγ Nθ + (
γ ∗ − γ ∗−�t)︸ ︷︷ ︸

�γ ∗

θδN (C.4)

where the quantities N θ and �γ ∗ are fully known. The expression for δN is derived by linearising its definition in Eq. (9)
around •∗ as

δN =
[

3G

σ ∗
eq

4 Id − 2G

σ ∗
eq

N∗N∗
]

: δεe (C.5)

To find δγ , we combine Eqs. (C.3), (19) and (20) into

γ ∗ − γ t − (1 − θ)�tγ̇ t − θ�tγ̇ ∗ + δγ − θ�tδγ̇ = 0 (C.6)

The small variation δγ̇ is then derived as

δγ̇ = ∂γ̇

∂σeq
δσeq + ∂γ̇

∂σs
δσs = α∗

�t

(
2N∗ : δεe − σ ∗

eq h δγ

σ ∗
s G

)
, α∗ = γ̇0G�t

mσ ∗
s

(
σ ∗

eq

σ ∗
s

) 1
m −1

(C.7)

in which α∗ is unaffected by the choice of integration scheme. A closed form expression for δεp can now be obtained from 
Eqs. (C.3–C.6). This step of the procedure exposes the major disadvantage of the generalised trapezoidal integration scheme. 
The lack of co-linearity between tr N and N∗ requires a system of non-linear equations to be solved during the return map, 
as opposed to the single non-linear scalar equation for the backward Euler scheme. As a result, both the linearised stress 
update:

δσ = 4C∗
vp : δε − Gβ∗

α∗
(
θ�tγ̇ ∗ + (1 − θ)�tγ̇ t − γ ∗ + γ t) (

4 P ∗)−1 : Nθ (C.8)

and the consistent tangent:

4C∗
vp = 4C e − 2Gθβ∗ (

4 P ∗)−1 : Nθ N∗ − �γ ∗4G2θ

σ ∗
eq

(
4 P ∗)−1 :

[
3
2

4 Id − N∗N∗] (C.9)

contain the inverse of the fourth-order tensor

4 P ∗ =
(

1 + 3Gθ�γ ∗

σ ∗
eq

)
4 Id − 2Gθ�γ ∗

σ ∗
eq

N∗N∗ (C.10)

The constant β∗ reads

β∗ = 2α∗

1 + 2α∗θ Nθ : N∗ + σ ∗
eqh

σ ∗
s G θα∗

(C.11)

Note that in the equation above the implicit backward Euler scheme is recovered for θ = 1 as the product Nθ : N∗ = 3
2 after 

applying the linearisation as defined in Eq. (18).
Similar to the main text, we have two relevant choices for the reference state •∗ . An ‘ordinary’ Newton-Raphson iteration 

is recovered by taking •∗ ≡ •i at t + �t . In this case Eq. (C.8) reduces to the classical

δσ = 4C i
vp : δε (C.12)

This result follows from combining the discretised strain rate Eq. (C.3) with Eq. (C.8), cancelling all four terms within 
brackets in the latter. The improved initial guess is found by taking •∗ ≡ •t . In this case γ ∗ ≡ γ t reducing the terms within 
brackets of Eq. (C.8) to �tγ̇ t . After some reorganisation, we can write the final result for the stress update in a form 
identical to the main text, namely

δσ = 4C t
vp : [δε − �tγ̇ tκt N t] (C.13)

in which the change of integration scheme is only observed by a small change in the constant



10 J.C. Volmer et al. / Journal of Computational Physics 420 (2020) 109721
Fig. 5. Comparison of the average number of Newton-Raphson iterations versus the time-step �t of the initial guess from [5] (classical) and the initial guess 
from this work (improved), using visco-plasticity with hardening and the generalised trapezoidal integration scheme with θ = 0.5. These measurements 
were performed on a 101x101 section of the SEM image of Fig. 2a.

κt = 1(
1 + σ ∗

eqh
σ ∗

s G θα∗
) (C.14)

Indeed, for θ = 1 Eq. (30) is recovered. Fig. 5 shows the average number of Newton-Raphson iterations used per load 
increment for different time-step sizes �t using the trapezoidal scheme with θ = 0.5. The improved initial guess gives 
results consistent with that of the backward Euler schemes as the Newton-Raphson iterations are approximately halved, 
saving significant CPU-time.
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