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We present a novel hybrid computational method to simulate accurately dendritic
solidification in the low undercooling limit where the dendrite tip radius is one or
more orders of magnitude smaller than the characteristic spatial scale of variation
of the surrounding thermal or solutal diffusion field. The first key feature of this
method is an efficient multiscale diffusion Monte Carlo (DMC) algorithm which
allows off-lattice random walkers to take longer and concomitantly rarer steps with
increasing distance away from the solid-liquid interface. As a result, the compu-
tational cost of evolving the large-scale diffusion field becomes insignificant when
compared to that of calculating the interface evolution. The second key feature is
that random walks are only permitted outside of a thin liquid layer surrounding the
interface. Inside this layer and in the solid, the diffusion equation is solved using a
standard finite difference algorithm that is interfaced with the DMC algorithm using
the local conservation law for the diffusing quantity. Here we combine this algorithm
with a previously developed phase-field formulation of the interface dynamics and
demonstrate that it can accurately simulate three-dimensional dendritic growth in
a previously unreachable range of low undercoolings that is of direct experimental
relevance. (© 2000 Academic Press

Key Wordsdendritic growth; solidification; phase transformations; moving bound-
ary problem; Stefan problem; multiscale algorithm; adaptive meshing; Monte Carlo
method.

1. INTRODUCTION

Diffusion-limited pattern formation, which leads to the spontaneous emergence of cc
plex branched structures, occurs in numerous contexts. A few examples include dend
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solidification [1], electrochemical deposition [2] and corrosion, and the growth of bacter
colonies [3]. Two distinct length scales are typically involved in this class of problem
one that characterizes the pattern itself, such as the thickness of a branch, and one
characterizes the diffusion field associated with the transport of heat or matter. In m
cases, these two scales are vastly different. For example, in solidification, the decay le
of the thermal or solutal field ahead of a growing dendrite (in a pure or alloy melt) can
one to three orders of magnitude larger than the tip radius of one of its primary brancl
Nontrivial pattern formation dynamics can be expected to occur on all intermediate sca
This poses a serious challenge for numerical simulations since a precise integration o
equations of motion on the pattern scale requires a good resolution of the interfacial reg
and such a resolution is completely inefficient (i.e., much too fine) to treat the large-sc
diffusion field. Therefore, to retain this precision on the small scale and, at the same ti
simulate the pattern evolution on sufficiently large length and time scales, it is necessal
use some form of multiscale algorithm.

Multigrid and finite element methods with nonuniform meshing represent one possi
solution for this type of problem. Their application, however, in the context of growt
simulations faces the additional difficulty of a moving interface, which implies that tt
structure of the simulation grid has to be dynamically adapted. For the classic probl
of dendritic crystal growth, several multigrid [4] or adaptive meshing algorithms [5] hay
been proposed in recent years. The most precise to date is the method of Pebwzhias
which uses the phase-field model on a regular grid on the scale of the dendrite, wherea
diffusion field is integrated on an adaptive mesh using finite element techniques [6]. WI
this method appears to be promising, it has yet to be implemented in three dimensions w
the difficulty of adaptive meshing becomes significantly enhanced.

We present in this paper an alternative solution to this computational challenge and
illustrate its application in the context of the dendritic crystallization of a pure substan
from its undercooled melt, even though this algorithm can be applied to any diffusic
limited growth problem for which an explicit solver of the interface dynamics is availabl
The idea is to use a hybrid approach. The interface dynamics is treated using determir
equations of motion, in particular those of the phase-field model for the dendritic grov
problem considered here. In contrast, the large-scale diffusion field is represented by ai
semble of off-lattice random walkers and is evolved using a diffusion Monte Carlo (DM(
algorithm. The two solutions are connected at some distance from the moving interfz
The key point for rendering our method efficient is that we use random walkers whi
dynamically adapt the average length of their random steps. Far from the interface,
walkers can make large jumps and hence be updated only rarely without affecting the g
ity of the solution near the growing interface. In some sense, our method can be seen ¢
“adaptive grid algorithm without a grid.” The DMC algorithm and the connection betwee
deterministic and stochastic parts are rather simple and straightforward to implemer
both two and three dimensions, both on single-processor and parallel architectures.
demonstrate in this paper that our method is precise, robust, and reliable and hence
stitutes a powerful alternative to state of the art adaptive meshing techniques. Technic
the algorithm bears many similarities to quantum Monte Carlo methods (see for exan
[7]). It is therefore remarkable that the gap between mesoscopic and macroscopic le
scales can be bridged using a method borrowed from microscopic physics in an inte
cial pattern formation context, which was retpriori obvious to us at the start of this
investigation.
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Our algorithm builds on ideas of earlier random walk algorithms for simulating patte
formation during viscous fingering [8, 9] and solidification [10-13] but introduces tw
essential new features. First, random walks with variable step size have been used previc
in simulations of large-scale diffusion-limited aggregation [14], but only one walker at
time was simulated, and hence the time variable did not explicitly appear in the treatm
of the walkers. In the present diffusive case, the memory of the past history, storec
the diffusion field, is essential to the problem. Our DMC algorithm works with a whol
ensemble of walkers in “physical” time and hence constitutes a true multiscale solver
the full diffusion problem. Second, the algorithms mentioned above use a lattice bott
evolve the walkers and to represent the position of the interface by the bonds betw
occupied (solid) and empty (liquid) sites. Walkers are created or absorbed directly at
interface. The discretization of space and the stochastic creation and absorption of wal
make it difficult to control accurately the interfacial anisotropy and the noise that bo
play a crucial role in dendritic evolution [11, 15]. Consequently, the algorithms aimed
describing dendritic growth [10, 11, 13], while correctly reproducing all the qualitativ
features of the growth process, are unable to yield quantitative results that can be te
against experiments. We solve both problems by creating and absorbing walkers nc
the solid—liquid interface, but at a “conversion boundary” at some fixed distance from t
interface. This means that the stochastic representation of the diffusion and the motion o
interface can be treated separately, which allows us to evolve the interface accuratel
the phase-field method using a finite difference representation of controlled precision.
the same time, the stochastic noise created by the DMC algorithm is rapidly damped by
deterministic diffusion in the “buffer layer” between the conversion boundary and the soli
liquid interface, and hence the amplitude of the fluctuatianthe solid-liquid interface
can be reduced to a prescribed level without much cost in computation time by increas
the thickness of the buffer layer. This is an important issue for simulations of dendri
growth, since the amplification of microscopic fluctuations of the interface is believed to
the main cause for the formation of secondary dendrite branches [16]. Henpay#gieal
noise that arises from the fundamental thermodynamical fluctuations of the diffusion fi
is essential to the pattern formation process. In contrashericalnoise can lead to the
formation of spurious sidebranches in simulations. We demonstrate here that the nume
noise of the present hybrid algorithm can be reduced to a level that does not affect
pattern evolution, such that the physical noise can be added in a controlled manner in fu
simulations.

Another benefit of the buffer layer is that it makes the algorithm very versatile. Away fro
the interface, only the standard diffusion equation has to be solved. Therefore, the DMC|
of the algorithm and the conversion process between deterministic and stochastic solut
are completely independent from the method used for simulating the interface dynam
and they can easily be carried over to other free-boundary problems.

The purpose of the present paper is to describe the algorithm in detail and to demons
its reliability and precision by benchmark simulations. Some results concerning thre
dimensional crystal growth at low undercoolings have already been presented elsew
[17,18], and hence we will focus here on the computational aspects of the problem. Secti
contains a brief introduction to dendritic solidification and the basic equations of moti
and describes the phase-field method. In Section 3, the DMC algorithm and its interfac
with the phase-field equations are described in detail. In Section 4, we present resull
benchmark simulations, assess the efficiency of the code and the magnitude of nume
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noise, and present simulations of three-dimensional dendritic growth. Section 5 contai
conclusion and the outline of future work.

2. DENDRITIC GROWTH AND THE PHASE-FIELD METHOD

When a crystal grows from an undercooled melt, it develops into an intricate branct
structure, called a dendrite. This phenomenon has been of central importance to the ul
standing of spontaneous pattern formation during phase transformations and the emer
of branched structures [19-21]. In addition, it is of considerable practical interest, beca
dendrites form during the solidification of many commercially important alloys and inflt
ence the mechanical properties of the finished material.

We will focus on the dendritic solidification of a pure substance from its homogeneou:
undercooled melt, starting from a single supercritical nucleus [22—26]. This situation
well described by the symmetric model of solidification, which assumes that the diffusiv
and thermophysical quantities such as the specific heat and the density are equal fo
solid and the liquid phases. During the growth of the crystal, the latent heat of meltinc
released, and in the absence of convection, the growth becomes limited by the diffusio
heat away from the growing dendrite. The state of the system at any time is describec
the temperature fieldl (x, t) and the shapg (t) of the boundary between solid and liquid.
It is customary to define a dimensionless temperature field

T(Xs t) - Tm
U(X,t) = T
p

: (1)
wherelL andc, are the latent heat of melting and the specific heat, respectively aisd
the melting temperature. In terms of this field, the equations of motion of the symme
model are

&u = DV?2u, (2
vy = DA - (Vuls — Vu|), 3
d_l 2 ~
0 1
up=—do y [a(ﬁ) + aa@;n)] R A, (4)

i=1

whereD is the thermal diffusivityp,, is the normal velocity of the interface, afds the unit
normal vector of the surfade pointing toward the liquid. The diffusion equation, Eq. (2),
is valid everywhere (in the liquid and in the solid) except on the surfacéhe Stefan
condition, Eq. (3), valid or'(t), expresses the conservation of enthalpy at the movin
phase boundary. Her& u|s and Vu|_ denote the limits of the temperature gradient wher
I is approached from the solid side and the liquid side, respectively, and the equa
states that the local heat flux at the interface must be equal to the latent heat generat
consumed during the phase transformatigis positive if the solid grows (i.e., freezes). The
dimensionless temperature at the interfagés given by the generalized Gibbs—Thomson
condition Eq. (4). The first term on the right-hand side (RHS) is the anisotropic form
the local equilibrium condition (Gibbs—Thomson condition) which relates the temperatt
to the curvature of the interface and the anisotropic surface tepgion= ypa(f). For a
crystal with cubic symmetry in three dimensions, the anisotropy funetién is usually
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written as

dey

A) =(1—3ey) |1
a(n) = ( €4) +1_364

(Nt +nJ+n3) . (5)

wheree, is the anisotropy parameter. Note that in two dimensidns @), this expression
reduces to

a(0) = 1+ €4c0549), (6)

wheref is the angle between the normal and one of the axes of symmetry. On the RHS
Eq. (4),

_ Y0TmCp
do = 1207

(7)

is the capillary lengthdl is the spatial dimensiof, are the angles between the noriaind
the two local principal directions on, andR; are the principal radii of curvature. Finally,
the second term on the RHS of Eq. (4) describes the shift of the interface tempera
due to molecular attachment kinetics, @) is the orientation-dependent linear kinetic
coefficient. Kinetic effects are believed to be small for the range of solidification spee
of interest here. We will therefore focus on the case where the interface kinetics var
(B(h) = 0), which corresponds to local equilibrium at the interface. In this case, the physi
length and time scales are set by the capillary length and the diffusivity, and the con
parameters of the problem are the anisotrapgnd the dimensionless undercooling

Tn—To

A= L, 8)

whereTyis the initial temperaturd; (x, 0) = Tp, which provides the thermodynamic driving
force for solidification. We assume that the dendrite grows into an infinite volume of liqui
and hencai(x,t) - —A as|x| — oo Vt. Typical experimental values fak range from
0.001 to Q1. The length scales involved in the problem are (i) the capillary ledgttii) a
typical scale of the pattern such as the radius of curvature apaaipd (iii) the length scale
of the diffusion field p. To fix the ideas, let us consider the measurements of Rubinstein a
Glicksman on pivalic acid (PVA) [23]. For a dimensionless undercooling e 0.075,

o =85um, and the speed of the tips is= 390 um/s, which gives a diffusion length
Ip = 2D/v = 0.38 mm, wheread, = 3.8 nm. The multiscale character of this situation is
obvious:lp anddy differ by five orders of magnitude, arg is forty times larger thap.
These ratios become even larger for lower undercoolings. We emphasize that in the pre
paper we do not attempt to actually simulate the cited experiments, since debate contil
on several issues regarding PVA, such as the anisotropy strength and the importanc
interface kinetics as well as the influence of convection in terrestrial experiments. T
numbers serve here to illustrate the minimum performance requirements for an algori
that aims to achieve a truly quantitative modeling.

The above equations constitute a notoriously difficult free-boundary problem. To simpl
the task, theoretical and numerical efforts first concentrated on the treatment of a sir
needle crystal growing at constantvelocity. This situation can be treated by boundary inte
methods [20], which are exact in two dimensions (2-d) but have remained approxim
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in three dimensions (3-d). More recently, time-dependent methods have been devel
to describe the full growth dynamics [27-29]. Of those, the phase-field nfetemins
presently the most compact and precise approach. We use a recent efficient formule
of this method, which has been benchmarked against boundary integral calculations |
An “order parameter,” or phase-fielgl(x, t), is introduced, which is an indicator field
distinguishing the solid§ = 1) and the liquid {* = —1) phase. The two-phase system is
described by a free energy functional of Ginzburg—Landau type,

}':/dv EWZ(ﬁ)NmZJr f(y,u), 9

whereW ) is the orientation-dependent interface thickness, i.e., the spatial scale on wt
the phase-field varies smoothly between its equilibrium vajues +1, andf (¥, u) is the
free energy density. The equations of motion are

8F

Aoy = ————, 10
R Ty (10)
wheres F /8y denotes the functional derivative, and
5 1
hu=DV u+§8t1p. (11)

The phase-field relaxes toits local minimum free energy configuration, which depends or
local temperature field, with an orientation-dependent relaxation tifhe The diffusion
equation contains a source term to account for the latent heat released or consumed d
the phase transformation. For a suitable choice of the functid@ris u), W(A), andz (A),
these equations reduce precisely to the free boundary problem given by Eqgs. (2) to (4) ir
limit where the interface thickness is small compared to the radii of curvature [29]. A bri
description of the model used for our simulations and its relation to the macroscopic f
boundary problem is given in the Appendix. The key point is that the phase-field equati
of motion are partial differential equations which can be integrated on a regular grid
the scale of the dendrite, without explicit knowledge of where the solid—liquid interface
located. The phase field rapidly decays to its equilibrium vallies +1 away from the
interface. Therefore, well within the bulk phases, Eq. (10) becomes trivial and Eq. (!
reduces to the ordinary diffusion equation.

3. DIFFUSION MONTE CARLO ALGORITHM

3.1. Outline

Our goal is to combine the precision of the phase-field method and the efficiency ¢
DMC treatment for the diffusion field. This is achieved by dividing the simulation domai
into an “inner” and an “outer” region as shown in Fig. 1. In the inner region, consistir
of the growing structure and a thin “buffer layer” of liquid, we integrate the phase-fie
equations described above. In the outer region, the diffusion field is represented by

2 For a brief historic overview and a comprehensive list of references concerning the phase-field method
Ref. [29].
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FIG. 1. Simulation of two-dimensional dendritic growth for a dimensionless undercodlirg 0.1 and
a surface tension anisotrogy = 0.025. The solid line is the solid—liquid interfadg the dashed line is the
conversion boundary’ between the inner (deterministic) and outer (stochastic) domains, and the dots show
positions of random walkers (only one walker out of 50 is shown for clarity).

ensemble of random walkers. Walkers are created and absorbed at the boundary bet
inner and outer domains at a rate which is proportional to the local diffusion flux. The val
of the diffusion field in the outer domain is related to the local density of walkers, and t
boundary conditions for the integration in the inner region are obtained by averaging t
density over coarse-grained boxes close to the boundary. We will now describe in de
the DMC algorithm for the evolution of the random walkers and the connection of the tv
solutions.

Let us start by recalling some well-known facts about random walkers. Consider fi
a single point particle performing a Brownian motion in continuous space and time. T
conditional probabilityP (X', t’ | x, t) of finding the particle at positior’ at timet’, given
that it started from positior at timet, is identical to the diffusion kernel,

P, t I xt)=

—|X/—X|2:|’ (12)

[47D (U — 1)]72 eXp[4D(t’ s

whereD is the diffusion coefficient and is the spatial dimension. This kernel satisfies the
well-known convolution relation

PX',t"|x,t) = / P’ t" | X, thPX, t' | x,H)dx Vt<t <t”. (13)

Therefore, a realization of a random walk, i.e., the position of a walker as a functi
of time, represented by a time-dependent vector of real numiferscan be obtained
on a computer by successive steps. The position of the walker is updated following
scheme

X(t+7) =XO + £, (14)

where the components of the random vegtare independent Gaussian random variable:
of unit variance. The time increment(not to be confused with the phase-field relaxation
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time () defined in the preceding section) and the step &ieist satisfy the relation

EZ

— =2D. (15)

T
Since time is continuous and Eq. (13) is not restrictetf'te t’ = t’ — t, successive steps
may have different time increments (and concomitantly use different step lengths
Eq. (15) is satisfied for each update.

The basic idea of diffusion Monte Carlo simulations is to sample many realizatio
of diffusion paths. The density of random walkers then satisfies a stochastic differen
equation which converges to the deterministic diffusion equation in the limit of an infini
number of walkers. A density of walkers can be defined by a suitable coarse-grain
procedure on a scaleg, i.e., by dividing space into cells of volun*u%’g and counting the
number of walkers within each cell. If the coarse-graining length is chosen larger than
average step length this density evolves smoothly on the scald_gf over times of order
ng/D, the time for one walker to diffuse through a coarse cell.

From the above considerations, it is clear that the characteristic length and time sc
that can be resolved by a stochastic DMC algorithm are set by the stepaizkthe time
incrementr, respectively. The key point is that for the present application a high spat
and temporal resolution is needeuly close to the interfagevhereas far from the dendrite,
the coarse-graining length and hence the step size can become much larger than the
features of the growing crystal. In practice, we choose the step size to be approxima
proportional to the distanog, of the walker from the conversion boundary between th
inner (deterministic) and outer (stochastic) regions, i.e.,

¢~ clyp (16)

with a constant « 1. According to Eg. (15), the time increment between updates grov
as the square of the step size, and hence the walkers far from the dendrite have t
updated only rarely. We use dynamical lists to efficiently handle the updating process
will be described in more detail in Section 3.2. For low undercoolings, where the sci
of the diffusion field is much larger than the dendrite itself and most of the walkers ne
only be updated sporadically, we obtain enormous savings of computational time ove
straightforward integration of the diffusion equation.

Let us now discuss how the inner and outer regions are interfaced. Two essential g
have to be accomplished. First, we have to supply a boundary condition at the conver
boundary for the integration of the deterministic equations in the inner region, and sec
we need to create and absorb walkers at a rate which is proportional to the local heat
across this boundary.

The phase-field equations are integrated in the inner region on a regular cubic g
henceforth called the “fine grid,” with spacigx. Each node on this grid contains the local
values of the phase fieldd and the temperature field We superimpose on this grid another,
coarser grid, of mesh sitey = nAx, such thatthe links of the coarse grid intersect the link
of the fine grid as shown in Fig. 2. The first purpose of this grid is to define the geometrie:
the two simulation regions and of the conversion boundary. We describe the “state” of e
coarse cell by an integer status variaﬁgy . Here and in the following, Greek indices, (8,

y) label thecellsof the coarse grid along the, y-, andz-directions, whereas latin indices
(i, j, K) label thenodesof the fine grid. All cells which contain at least one node of the



600 PLAPP AND KARMA

A .
e ® " * * .
. . b (1) . .
]
l.o . - o« ®
]
|_____'__.__. .
Ll
1e e
e * . s
RN F

FIG. 2. Sketch of a small part of the conversion boundary in two dimension fe4. Each cell of the coarse
grid (thick lines) contains 16 points of the fine grid (thin lines). The fine grid is shown only in the inner region f
clarity. The shaded cells are conversion cells, and walkers are represented by black dots. The bobetagen
inner and outer regions is indicated by a dashed line.

fine grid whereyr > 0 are assigned the status “solid £ —2). All cells with a center-to-
center distance to the nearest solid cell smaller than a prescribed layayth “buffer cells”
(S= —1), whereas all other cells belong to the outer region. Cells of the outer region whi
have at least one nearest neighbor with buffer status are cailedersion cell{S = 0)
and play the central role in interfacing the two solutions. The dividing suffabetween
inner and outer regions is the union of all the links (or plagquettes in three dimensions) of
coarse grid which separate conversion from buffer cells (see Fig. 2). Evidently, as the cry
grows, the geometry of the two regions changes, which means that the status variables
be periodically updated. Details on this procedure are given in Section 3.3.

We always choosky, sufficiently large to ensure that the phase field is already close to i
liquid equilibrium valueyr ~ —1, at the conversion boundary. Hence we canjset —1
in the entire outer region and treat only the standard diffusion equation there. In the ini
state, the entire system is undercooledite —A, and no walkers are present. When the
crystal grows, it releases latent heat which diffuses away from the interface, and hence
inner region becomes a heat source for the outer region. This heat flux is converted
walkers, with each walker representing a certain discrete amount of heat. We define in ¢
coarse cell an integer variahia}xﬁy, which gives the number of walkers within this cell
at timet. For a specific heat which is independent of temperature, the density of walk
is proportional to the difference between the actual and the initial temperatures; i.e.,
temperature in the outer region is related to the number of walkers by

m
t _ afy
Uyp, = —A(l M ) , a7

where the constari¥l fixes the number of walkers in a cell that corresponds to the meltin
temperaturel = 0.

The inner region is completely delimited by conversion cells. To fix the boundary con
tion for the integration on the fine grid, it is therefore sufficient to set the field all nodes
of the fine grid in each conversion cell to the value specified by Eqg. (17). The diffusi
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equation is then timestepped in the inner region using the standard explicit scheme

t t t t t t t
(ui+ljk + Ui_gjk T Ujjpc + Uij_ax + Uijkgr + Uije—g — 6uijk)'
(18)

Note that we have omitted for simplicity the source terms due to the phase field, which
zero at the conversion boundary. Seen on a discrete level, this equation can be interpret
a “pipe flow” equation: the local change oiis given by the sum of the “flow” through all
the discrete links (“pipes”), where, for example, the “flow” through a link algrdyring

a timestep is given byD At (Uj;1jx — Uijk)/(AX)?. For nodes at the boundary of the inner
region, some links cross the conversion bound&ryvhich means that there is exchange of
heat with the neighboring conversion cell. This heat flux is collected by the conversion
and stored in a heat reservoir varialbigﬁy. A symbolic manner to describe the updating
of Hig, is

a

DAt
t+At __ t t t
Haﬂ}/ - Hﬂlﬁl/ + (AX)Z (Z ugrid - ucc> s (19)

bonds

where the sum runs over all the bonds of the fine grid that drGssyq is the temperature
on a node of the fine grid, ang. is the temperature in the conversion cell given by Eq. (17)
For example, for a conversion célt, 8, y) in contact with a buffer celle — 1, 8, ), we
have (we recall that the linear dimension of a coarse ceélis= NAX)

= " DAt
t+At t t t i
Hoz,?;)/ = Hy, + Z Z (Ax? (ui_ljk — uijk), i =(@-DLn+1
j=(B=Dn+1 k=(y—1n+1
(20)
If the stored quantity of heat exceeds a critical vategiven by
ndA

He= (21)

a walker is created at the center of the conversion cell ldnds subtracted fronH,g, .
Conversely, if the local heat flux is negative (heat is locally flowioggard the dendrite)
and Hyg, falls below —Hc, a walker is removed from the cell artd. is added to the
reservoir. This algorithm exactly conserves the total heat if the contributions of the fi
grid, the reservoir variables, and the walkers are added. In dimensional quantities, e
walker is equivalent to an amount of hea€ equal to

L(nAX)4A
N )

The walkers are restricted to the outer region. There are essentially two methods to ha
the walkers that attempt to jump back into the inner region across the conversion bounc
The first is to deposit the heat content of the walker on the fine grid at the position wh
it lands and to remove the walker. This increases the local temperature in the inner reg
The local flux through the conversion boundary is enhanced, and the probability of crea
a new walker close to the one just annihilated is consequently increased. The second

AQ= (22)
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simply discard the move and leave the walker in its old position.itf Eq. (16) is small
enough, crossings are attempted almost only by walkers close to the conversion boun
i.e., by those that are already in conversion cells. Consequently, leaving the walker ir
place leads to anincrease of the local temperature in the outer region, thatis, in the boun
condition for the inner region. The local flux is decreased, and hence the probability for
absorption of the walker increases. Consequently, while the motion of individual walke
is biased in the conversion cells, there is also a bias in the fluxes through the conver
boundary, and both processes combined faithfully reproduce the diffusion equation.
thoroughly tested both methods and found that they yielded on average identical res
Since the second produced considerably less temperature fluctuations in the inner re
it was adopted for all subsequent simulations.

In summary, the conversion process is handled using three auxiliary fields on the co:
grid: the status fiel&,s, which encodes the geometry of the buffer layer and the conversic
boundary, the fieldn,g, that contains the number of walkers in each cell and is zero i
the inner region, and the heat reservoir fi¢lgs, , which is different from zero only in
conversion cells. Let us comment on the size of the grids and the resulting memory us:
The fine grid needs to be large enough to accommodate the dendrite and the liquid bt
layer during the whole time of the simulation. Especially in three dimensions, the restrictic
on storage space make it necessary to fully use the fine grid. The coarse grid needs to
at least the same space region as the fine grid. As will be detailed below, for an effici
handling of the walkers close to the conversion boundary, it is desirable to always h
some portion of coarse grid in front of the conversion boundary, and hence the coe
grid should actually cover a slightly larger region of space than the fine grid. Since t
coarse grid has far less nodes than the fine grid (1 node of coarse gnf fardes of
fine grid), this does not significantly increase the storage requirement. In addition, we n
an array to store the positions of the walkers. The latter are represented by “continuc
positions and need no grid for their evolution. The walkers can therefore leave the reg
of space where the grids are defined and diffuse arbitrarily far away from the dendr
allowing us to simulate growth into an infinite medium. The most storage-intensive par
the fine grid. In fact, the limiting factor for most of our three-dimensional simulations |
not so much computation time, but rather the storage space needed to accommodate
dendrites.

Finally, letus describe how the different parts of the algorithm are connected. The progt
runs through the following steps:

1. Set up (or update) the status fiedgs, on the coarse grid to fix the geometry of the
conversion boundary.

2. Calculate the temperature in each conversion cell and set the boundary conditior
the inner region on the fine grid.

3. Timestep the phase-field and diffusion equations on the fine grid and calculate
heat flux between the inner region and the conversion cells.

4. Update the heatreservoir variablég, and create or absorb walkers in the conversior
cells.

5. Advance the walkers.

6. Repeat steps 2 through 5. From time to time, extract the shape of the dendrite
store it for future processing. If the phase boundary has moved by more than a coarse
size, go back to step 1.
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In the following sections, we will give more details on some features of our impleme
tation, such as the updating of the walkers, the updating of the geometry, the choic
parameters, and parallelization.

3.2. Updating Random Walkers

Before going into details, let us briefly point out similarities and differences between c
method and other DMC algorithms. Such methods are widespread in quantum Monte C
(QMC) calculations where they are used to solve the &tihger equation inimaginary time
[7]. Each walker represents a configuration in a usually high-dimensional Hilbert spa
and the density of walkers is proportional to the square amplitude of the wave function
contrast, in our method the walkers evolve in real space, and their density represent:
temperature field. The most important difference, however, is that in QMC all walkers :
usually updated at the same time, whereas in our method some walkers are updated |
more rarely than others. Therefore, it would be very inefficient to visit every walker in ea
timestep. Instead, we work with dynamical lists.

To simplify the bookkeeping of the different update times, we enforce that updating tal
place only at the discrete times when the fine grid is updated, i.¢.#drAt,i = 1,2, ....
Then, we can make a list for every timestep containing all the walkers that have to
updated at that moment. However, these lists greatly vary in length and cannot easily
accommodated in standard arrays of variables. Therefore, we define a data structure
contains the coordinates of one walker plus a pointer variable. Within a given list, the poir
associated with one walker indicates the next element of the list, or it contains an en
list tag if the corresponding walker is the last one of the list. An array of pointer variabl
indicates for each timestep the first element of the corresponding list. This array is
“backbone” of the list structure. It is easy to add new walkers to a list: the pointer of t
new walker is set to the former first element of the list, and the pointer of the backbone
set to the new walker (see Fig. 3). Lists of arbitrary length can be constructed, and e\
walker is visited only when it actually has to be updated.

.
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FIG. 3. Sketch illustrating the configuration of the dynamical walker lists. Each box stands for a walker, a
the full arrows indicate pointer variables; the “backbone” array of pointers is represented by the downward ar
on the left. At timet, walkers are updated and prepended to the lists corresponding to their next update time
indicated by broken arrows.
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Ata given timet, the program works through the corresponding list of walkers. The trea
ment of each walker starts by our looking up the status of the coarse grid cell corresponc
to its position. If the walker is inside a buffer cell because the conversion boundary |
moved since its last update, it is removed. This removal does not violate heat conserve
because the heat associated with the walker is accounted for in the initialization of
temperature field inside newly created buffer cells (see Section 3.3, Eq. (24) below). If i
inside a conversion cell, and the corresponding reservoir variecgl@ < —Hg, the walker
is removed andH. is added to the reservoir. In all other cases, the jump distérared
corresponding time increment are determined and a new position is selected accordir
Eq. (14). To apply Eq. (16) for the jump distanGewe need to determine the distance of
a walker to the conversion boundary. It would be very inefficient to calculate this distan
for each walker separately, especially when the shape of the boundary becomes com
Therefore, we use the status fi%y on the coarse grid in the outer region to store ar
approximate value for this distance, which can then be easily looked up by each wal
before a jump. Additional details are given in Section 3.3.

As mentioned above, we restrict the walker updating to a discrete set of times. Theref
the time increment in Eq. (14) has to be an integer multiple of the time stap which
would not be the case if we directly applied Egs. (16) and (15). We solve this problem
defining a lower cutoff for the jump distances,

Kmin =V 2DntAt, (23)

wheren; is a fixed integer, and replace the jump distancésund from Eq. (16) by the
closest integer multiple of,in. We also define a maximum jump lengthax, mainly to
limit the size of the backbone pointer array: with a maximum jump distdpge each
walker is at least updated evet¥,,,/(2D At) timesteps. Consequently, the discrete time
modulo this number can be used to index the pointer variables in the backbone array.
It should be mentioned that in our list structure, it is difficult to find a walker which i
close to a given position, because all sublists must be searched. This is important bec
the number of walkers in the conversion cells has to be known for the interfacing with t
inner solution. To avoid time-consuming sweeps through the walker lists, we update
walker number fieldnfxﬁy on the coarse grid whenever a walker jumps.

3.3. Updating the Geometry

We now describe more in detail how the status field on the coarse grid is set up
adapted to the changing geometry. When the dendrite grows, the configuration of the bt
layer and the conversion boundary has to change to maintain a constant thickioéise
buffer layer. Cells which are part of the outer region at the beginning of the simulation m
become conversion cells, then part of the buffer layer, and finally part of the dendrite. Un
the conditions we want to simulate, the crystal may locally melt back, but no large regic
of space will undergo the transition from solid to liquid, and hence we do not consid
the inverse status change (from buffer to conversion cell, for example). Typically, at I
undercoolings a readjustment of the geometry becomes necessary only after 1000 to 1(
timesteps. Therefore, the efficiency requirements are not as stringent as in the other |
of the program.

The procedure starts with a sweep through the fine grid. Every cell of the coarse ¢
which contains at least one node of the fine grid whiere 0 is assigned the status “solid”
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(S;ﬁy = —2). Next, the solid cells at the boundary of the dendrite (i.e., each solid cell whi
has at least one neighboring cell which is not solid) are used to define the buffer region
cells with a center-to-center distance less thgrof a boundary cell which are not solid

are assigned the status “buffesfxgy = —1). When a conversion cell or a cell of the outer
region becomes a buffer cell, we need to define the initial values of the two fields on

fine grid. The phase field is set to its liquid valge= —1. The temperature is calculated
from the total heat contained in the cell, taking into account both the walkers and the t
reservoir variables in the conversion cells to ensure that the total amount of heat rem

conserved, i.e.,

A
Ui = 3 (M, = M iy 1) 29

All nodes of the fine grid within the new buffer cell are initially assigned this value. Th
walkers contained in the cell are removed.

All cells of the outer region which are adjacent to the buffer, i.e., which have at least c
neighbor with buffer status, are conversion c&%; = 0). When a cell of the outer region
becomes a conversion cell, its heat reservoir variable is initialized at zero.

Finally, in the outer region, which is comprised of all the other cells, the status fie
is used to store an approximate value for the distance from the conversion boundar
precise determination of this distance is rather costly in computation time, because
each cell in the outer region, we must calculate the distance to all conversion cells
retain the minimum value. A much cheaper, albeit approximate method is the followir
As mentioned, in a conversion cell we hzﬁ;%y = 0. We assign to all cells adjacent to a
conversion cell the valug,, = 1. Neighbors of the latter receive the vallg, = 2, and
we continue this process outward by assigning the ijlyg =i+ 1to all cells adjacent
toacell WithSﬁlﬂy =i. For a relatively simple geometry such as a single growing dendrit
the status field can be correctly set up on the whole lattice during a single outward swe
starting from the center of the dendrite. The number assigned to a given cell can be use
a measure for the distance. Note that the exact relationship of the number to the dist
depends on the direction with respect to the axes of the coarse grid; our numerical t
below show, however, that this anisotropy in the distance function does not significar
influence the dendrite shapes.

If we follow this procedure, the coarse grid needs to cover the entire region of space wt
the jump distance varies. Even though we introduce a large-scale éuteffthis would
become prohibitive in terms of memory usage for truly multiscale problems. Fortunate
such a sophisticated scheme for the determination of the distance is mainly needed
to the dendrite (for example, a walker that enters in the space between two dendrite ¢
needs to make small steps). Once a walker has left the vicinity of the dendrite, this rai
complicated estimate for the distance to the conversion boundary can be replaced
simpler one, for example the distance to the closest dendrite tip. In consequence, the c
grid needs to cover only a slightly larger region of space than the fine grid.

Finally, let us comment on the integration of the phase-field equations in the inner
gion. We need to know which part of the fine grid must be timestepped. This informatior
encoded in the status fiel};, on the coarse grid. It would, however, be rather inefficien
in terms of memory access time to integrate the inner region “coarse cell by coarse ¢
Instead, integration proceeds along the spatial direction corresponding to successive n
ory locations, which is the-direction in our implementation. During the updating of the
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status field, the program determines for egeimdz coordinate the range(s) to be integrated
alongx and keeps this information in a lookup table. This table is updated every time t
status field changes.

3.4. Choice of Computational Parameters

There are a number of parameters in our algorithm which can be adjusted to maxin
the computational efficiency. However, certain restrictions apply. First, there are varic
length scales. In order of increasing magnitude, those are:

1. the lattice spacing of the fine grid)x,

2. the minimum jump length of the walke&yin,

3. the size of a coarse-grained céllg = nAXx, and
4. the buffer thicknesky,.

The minimum jump length should be of the order of the inner grid spacing to assure a pre
interfacing between inner and outer solutions. Since a l#rgemeans less frequent walker
updating we usually worked witky,in =~ 2AX, orny ~ 10 in Eq. (23). However,,i, has to

be smaller thar .4 to achieve a well-defined coarse-graining. The coarse-graining leng
in turn, is limited by geometrical constraints. The conversion boundary appears “jaggs
on the scale of 4 (see Fig. 2). To render the effects of this coarse geometry irrelevant f
the interface evolution, the buffer thickness must be much larger than thisisgade L .

We found that ¢4 ~ 0.1 L, is sufficient to achieve this goal. In our simulations, we mostly
worked withn = 4 (L¢g &~ 2¢min) andn = 8 for larger buffer sizes.

Next, consider the constant of proportionalithetween the walker jump length and the
distance to the conversion boundaty, Since the Gaussian random ve@an Eq. (14) has
no cutoff, steps of arbitrary length are possible, and hence even a walker which is far a\
can jump directly to the conversion boundary. The number of such events has to be |
small, because otherwise the conversion process is influenced by the far field with its co
length and time scales. This goal can be naturally achieved by choosimgll enough.
For example, foic = 0.1, only jumps with a length of more than 10 standard deviation
can reach the conversion boundary, which represents a negligible fraction. However,
increase of with distance determines the efficiency of the algorithm, and hest®uld
be chosen as large as possible. We usually workedanittD.1, which seems to provide a
good compromise.

Finally, the parametavl determines the number of walkers per coarse cell and hence t
precision of the stochastic representation for the temperature field and the diffusion equat
Considering Eg. (17), we see that the temperature at the boundary of the inner region t
discrete values spaced y/M. In addition, for a homogeneous distribution of walkers in
a system atl = 0, the temperature fluctuations are of ordetv/M. However, increasing
M means longer computation time because more random walks have to be performe
addition, the total number of walkel$ necessary to simulate a dendrite of final voluvhe
is

MV

= (naxia’ (29)

which means that high values M become prohibitive, especially at low undercooling.
Fortunately, a good precision of the solution can be obtained also by incréasiag will
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be described in Section 4. In practice, we worked with valuéd odnging between 25 and
100.

3.5. Boundary Conditions and Symmetries

For a two-dimensional dendrite seeded at the origin and with arms growing along
x- andy-directions, the simulations can be accelerated by taking advantage of the ct
symmetry. There are several symmetry axes, and consequently it is sufficient to integrat
equations in a part of the plane while imposing reflective boundary conditions at the pro
axes to enforce the symmetry. These boundary conditions have to be imposed both ol
fine grid and for the walkers. For the symmetry axes at 0 andy = 0, this can be easily
achieved by choosing one of the nodes of the coarse grid to coincide with the origin. Tt
the two symmetry axes coincide with bonds in the coarse grid. On the fine grid, the no
outside the simulation domain but adjacent to the boundary are set to the values of t
mirror images inside the simulation domain after each timestep. Walkers that attemp
cross the boundaries are reflected; i.e., instead of a walker’s “true” final position outside
simulation domain, its mirror image with respect to the symmetry axis is chosen. Anotl
interpretation of this boundary condition for the walkers is to imagine that there exists
ensemble of “mirror walkers” which are the images of the walkers inside the simulati
domain. When a walker jumps outside of the simulation domain, its mirror image jum
inside, and interchanging the walker and its mirror, we just obtain a reflection of the wall
at the boundary as above.

The latter view is useful when considering the last symmetry axis, the diagcaal.
While the boundary conditions on the fine grid and for the walkers can be implementec
before, the conversion process requires special attention, because the symmetry axis
not coincide with the boundaries of a coarse cell. When a walker enters a coarse cell situ
on the diagonal, there is an additional “mirror walker” enteriihg samecoarse cell (see
Fig.4), and hence the number of Walken@ﬁy has to be increased by two (or, equivalently,
decreased by two if a walker leaves the cell). Similarly, walkers are created and absol
in pairs, which means that walker creation in such a cell can occur only when the h
reservoir exceeds twice the equivalent of one walker. In addition, when calculating

"mirror walker"
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FIG. 4. Sketch illustrating the implementation of reflecting boundary conditions at the symmetoy axis
Shown is a cell of the coarse grid (solid lines) on the diaganaly (dashed line). A walker inside the simulation
domain & > 0, 0 < y < x) enters the cell. An accompanying “mirror walker” (open circles), the image of the
walker with respect to the symmetry axis, enters the same cell.
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heat flux received by conversion cells on the diagonal, we must take into account both
“real” and the “mirror” flux. It is clear that this procedure induces an anisotropy in th
conversion process; our tests showed, however, that its effect is undetectable for reasol
buffer thickness.

In three dimensions, the reduction in computational resources is even more dram:
For example, using the symmetry planes: 0,x = y, andx = z, i.e., integrating only the
domainx > 0, 0 < y < X, Z > X, we need only integrate 1/48 of the full space, i.e., 1/€
of one dendrite arm. The plangs= y andx = z can be handled as described above, witt
the exception of cells on the diagonak y = z. Such cells actually have only 1/6 of their
volume within the simulation domain, and for each walker entering a cell, there are fi
mirror walkers to be considered.

3.6. Parallelization

Even though our algorithm is very efficient as will be shown below, the demands on co
putation time and RAM storage space rapidly increase when the undercooling is lowel
Therefore, we have developed a parallel version of our code for the Cray T3E at the Natic
Energy Research Scientific Computing Center (NERSC), using the shared memory libl
SHMEM.

We are mainly interested in the development of a single primary dendrite branch. Her
an efficient method of parallelization is to divide the simulation domain into “slices” norm:
to the growth direction, and to distribute the slices among the processors. In the in
region, the integration of the partial differential equations makes it necessary to excha
the boundary values between neighboring processors after each timestep. This is a stal
procedure. The more delicate points are the handling of the walkers and the updating o
geometry.

Each processor stores only the parts of the fine grid it has to integrate, along with
values of the status field in the whole simulation domain. The latter is necessary to corre
handle the walkers. For the walkers which are far from the dendrite, the average ju
distance may become much larger than the thickness of a computational slice. But
walker approaches the conversion boundary, the conversion process has to be handl
the “local” processor which contains the appropriate part of the fine grid. Therefore, 1
walkers need to be redistributed after their jumps. We have found it sufficient to implem
“exchange lists” between neighboring processors, i.e., processors which contain adja
parts of fine grid. If a walker jumps to a position outside of the local slice, it is stored
one of two lists, corresponding to “upward” and “downward” motion. After each timeste|
these lists are exchanged between neighboring processors. As most of the walkers r
several small steps before reaching the conversion boundary, this procedure assure
correct redistribution of walkers with insignificantly few errors, which arise in the rare ca
that a walker arrives at the conversion boundary after several large jumps.

The only step of the algorithm which needs massive exchange of data between the
cessors is the updating of the geometry: each processor has to determine locally the “s
part of its computation domain, and this information has to be exchanged to correctly
up the whole status field on each processor. However, as mentioned earlier, the geome
updated only rarely, and therefore this part of the algorithm does not represent a signific
computational burden. We have found that the parallel version of our code showed s
factory execution time scaling when the number of processors is increased.
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4. NUMERICAL TESTS

The accuracy of the standard phase-field method has been assessed in detail by
parison to boundary integral results [29]. Therefore, to test the stochastic algorithm i
sufficient to check its results against direct simulations of the standard deterministic ph:
field equations. The most critical questions are whether the use of the rather coarse Iz
for the conversion introduces spurious anisotropy and what is the magnitude of the temp
ture fluctuations generated by the stochastic treatment of the far field. The main parame
which control both of these effects are the thickness of the buffer layer and the nivhder
walkers generated per coarse cell. The boundary condition for the inner region is impc
on a coarse geometry with a cutoff scalenXx, and the temperature at the boundary
is a stochastic variable which changes as walkers are created, absorbed, enter, or le
conversion box, and which assumes discrete values spacedMy When the buffer layer
is much larger than the size of a coarse ce},> nAx, the field is “smoothed out” in
space and time by the diffusive dynamics. We expect high spatial and temporal frequen
to decay rapidly through the buffer layer and hence the evolution of the interface to becc
smoother a4y, is increased.

We conducted two-dimensional simulations at an intermediate undercoaliag0.3.

At this value ofA, the standard phase-field method can still be used to simulate nontriv
length and time scales of dendritic evolution, but the length scale of the diffusion fie
is large enough to provide a serious test for the random walker method; i.e., the diffus
length is much larger than the thickness of the buffer layer. Table |1 shows the compt
tional parameters that were used for these tests. Only the first quadrant was simulated,
reflecting boundary conditions at= 0 andy = 0. Figure 5a shows a comparison of den-
drite shapes obtained from the standard phase-field and from our algorithm with differ
buffer sizes. While the shapes slightly differ fog/ Ax = 20, the curve folL,/AXx = 40

is almost indistinguishable from the deterministic shape. Figure 5b shows the velocity
the dendrite tip along the-direction, measured over periods of 500 iterations, versus tim
The fluctuations around the deterministic value are much largdrfpax = 20 than for

Ly/Ax = 40, and forL,/Ax = 80 (not shown) the curve obtained from the stochasti

TABLE |
Computational Parameters for the Benchmark Simulations in Two
Dimensions with Vanishing Interface Kinetics (i.e.,3(f) = 0)

Quantity Symbol Value
Interface thickness W, 1
Anisotropy €4 0.025666, 0000666
Effective Anisotropy €5 0.025, Q0
Relaxation time 7 1
Grid spacing AX 0.4
Timestep At 0.003
Diffusion coefficient D 10
Coupling constant A 15957
Capillary length do 0.0554
Undercooling A 0.3
Coarse cell size n 4

Number of walkers per coarse cell M 50
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FIG. 5. Comparison of standard (deterministic) phase-field and random walker method in two dimensic
for A = 0.3 ande, = 0.025. (a) Dendrite shapes, represented by the contouglired, after 200,000 iterations;
(b) tip velocity versus time.

method is very close to the deterministic data. For comparison, the diffusion leBgth 2
at the end of the run is about 4088.

A particularly sensitive test for the anisotropy of the conversion process is the grov
of a circular germ without anisotropy, because such a germ is unstable against ever
smallest perturbations. This can be clearly seen from Fig. 6: even though we comple
screen the fourfold anisotropy created by the lattige< 0), the weak next harmonic of the
lattice anisotropy, proportional to co8 8lestabilizes the circle and leads to the formation of
bulges in thg21)- and(12)-directions. FolL,/ Ax = 80, the stochastic algorithm perfectly
reproduces this trend, and we can hence conclude that the anisotropy created by the ¢
structure of the conversion boundary is negligible. Note that the diffusion field extends t
distance of more than 1000 lattice units at the end of this run, which means that the lal
part of the simulation domain is integrated by the stochastic method.

To quantify the numerical noise, we performed 2-d simulations of the simple diffusic
equation in a system dff x N lattice sites withN = 160. One-half of the systenx (< 0)
was integrated by the stochastic algorithm, whereas in the otherhalfQ) we used a
standard Euler algorithm. The conversion bound&ryence coincides with thg-axis, and
there is a single column of conversion cells along this axis. We nsed- 1, At = 0.02,
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FIG. 6. Comparison of “dendrite” shapes without fourfold anisotropy after 500,000 iterations.

D =1, andA = 1, and we applied no-flux boundary conditiongat +£N/2 and periodic
boundary conditions along. The system was initialized at= 0 everywhere; i.e., in the
walker region we randomly placéd walkers in each coarse cell. When the walkers evolve
fluctuations are created in the deterministic region, which plays the role of the buffer lay
We recordedi? as a function ofk and averaged over a time which is long compared t
the diffusive relaxation time of the systemN2/D. The results for two different choices
of the walker parametevl are shown in Fig. 7. In an infinite homogeneous system fille
with walkers, the distribution of the number of walkers in a given coarse cell is Poissoni
which means that the fluctuations in the walker numbers are of afdiér If this scaling
remains valid for the conversion cells in our hybrid system, we ex@ggt~ 1/M close

to the conversion boundary, which is indeed well satisfied. As shown in Fig. 7, the variai
of the temperature fluctuations rapidly decreases with the distance from the conver
layer—by four orders of magnitude over the distance of 80 lattice sites. No simple functio
dependence dii?) onx is observed. We expect high spatial and temporal frequencies to
rapidly damped. A theoretical calculation @f(x)?) seems possible but nontrivial because

107 . . .
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FIG.7. Variance of temperature fluctuatiog?), as a function of the distance from the conversion boundary
for two values of the walker parametit.
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TABLE Il
Execution Times of the Benchmark Simulations for Various Sets
of Computational Parameters

M L,/ AX CPU time (min)
Deterministic — — 1950
50 20 89
50 40 110
100 40 119

the random variables which are the sources of the fluctuations in the deterministic regior
correlated in space and time by the exchange of walkers through the stochastic region
the diffusion of heat through the deterministic region. For our present purpose, we can d
two important conclusions. First, for a reasonable thickness of the buffer layer, fluctuatic
are damped by several orders of magnitude. The residual fluctuations are much sm
than the thermal fluctuations represented by Langevin forces that have to be introdi
in the equations of motion to observe a noticeable sidebranching activity [30]. Indeed,
sufficiently large buffer layers we always observe needle crystals without sidebranct
Second, the fluctuations at the solid—liquid interface can be reduced both by increasing
number of walkers and by increasing the thickness of the buffer layer, which allows us
accurately simulate dendritic evolution with a reasonable number of walkers.

In Table II, we compare the run times of our code on a DEC Alpha 533 MHz workstatic
along with the run time of the deterministic phase-field reference simulation. The gain
computational efficiency is obvious. Increasing the buffer layer ftgye= 20Ax to L, =
40Ax reduces the amplitude of the temperature fluctuations at the solid-liquid interface
more than an order of magnitude, whereas the computation time increases by only 2
Comparing the runs with different values ldf, we see that the walker part of the program
accounts only for a small part of the total run time.

From these results, we can conclude that the computational effort that has to be inve
to simulate a given time increment scales approximately as the size of the fine grid reg
i.e., as the size of the dendrite. This is a major advance with respect to the standard pt
field implementation on a uniform grid, where the computation time scales with the volur
enclosing the diffusion field. The spatial and temporal scales of dendritic evolution tt
can be simulated with our method are hence limited by the integration of the phase-fi
equations on the scale of the dendrite.

We did not directly compare the performance of our code to that of more conventiol
multigrid or adaptive meshing algorithms. We expect, however, that the number of floati
point operations required to carry out a given low undercooling simulation should be of t
same order of magnitude in these codes and ours for two main reasons. First, the most
consuming part of the calculation is to track the interface evolution, which must be dc
with a similar spatial resolution in all codes. Second, the overhead arising from updat
the geometry and interfacing the finite difference and DMC algorithms in our code shoi
be at most comparable to the overhead of regridding with several grid levels in conventic
codes. We emphasize once more that the main advantage of the present hybrid meth
its simple and straightforward implementation. In practice, 450 (600) lines of FORTRA
in 2-d (3-d) needed to be added to the conventional phase-field codes to implement
complete multiscale algorithm.
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FIG. 8. Snapshots of a three-dimensional dendrita at 0.1 after 60,000, 120,000, 200,000, 300,000, and
650,000 timesteps (from top left). The computational parameters are given in the text and differ from thos
Table | used in two-dimensional simulations.

All the data shown so far are for two-dimensional simulations. We repeated similar te
in three dimensions and obtained comparable results for the quality of the solution
the efficiency of the code. We will not display the details of these comparisons here,
rather we show an example of a three-dimensional simulation under realistic conditi
to demonstrate that our method is capable of yielding quantitative results in a regime
parameters that was inaccessible up to now. In Fig. 8, we show snapshot pictures of a tl
dimensional dendrite growing at an undercooling2f= 0.1 and for a surface tension
anisotropyeg = 0.025, which is the value measured for PVA [24]. The other computation
parameters adp = 1, AX = 0.8,¢4 = 0.0284,79 = 0.965,64 = 0.0364,n =4, M = 50,
Lp/AX = 48,D = 24,At = 0.004, and. = 39.6. These parametersyield alocalinterfacial
equilibrium Gibbs—Thomson condition with a capillary length= 0.0223 and8(A) = 0
(see the Appendix for additional details). The simulation was started from a homogeneo
undercooled melt with an initial solid germ of radius= 2Ax centered at the origin. During
the run, we recorded the velocityt) and the radius of curvatur(t) of the dendrite tip.
The latter was calculated using the method described in Ref. [29]. With these two quantit
we can calculate the time-dependent tip selection parameter

2Ddp

)= ———.
0= Lorm

(26)
The results are shown in Fig. 9. In the initial stage during which the arms emerge from
initial sphere, growth is very rapid. Subsequently, the tips slow down while the diffusic
field builds up around the crystal.

At the end of the run, the velocity has almost converged to a constant value. Accordin
solvability theory, this steady-state velocity should depend only on the undercooling and
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FIG. 9. Tip velocity, tip radius, and selection parameter versus time for the run of Fig. 8. Arrows mark t
times of the snapshot pictures. Length and time are rescalégdngld?/ D, respectively. The steady-state velocity
vss Was calculated using a boundary integral method [18].

value of the anisotropy. In Table Ill, we show that the velocities obtained in the present s
ulations are in excellent quantitative agreement with the velocity predicted by the bound
integral solution of the sharp-interface steady-state growth equations assuming an axis
metric surface energy and tip shape (i.e., the most accurate humerical implementatio
solvability theory to date [18]). We also find reasonably good agreement with the veloc
predicted by the linearized solvability theory of Barbieri and Langer [31], even though tl
actual tip radius in both the phase-field simulation and the boundary integral calculat
differ from the tip radius of the paraboloidal shape assumed in this theory. A more ¢
tailed discussion of this point and the entire steady-state tip morphology can be foun
Ref. [18].

Remarkably, the selection constaritbecomes almost constant long before the velocity
and the tip radius have reached their steady-state values. For the run in&igia®ies by
less than 1% over the last 80% of the run, whereas pathdv vary by more than 10%
over the same time span. This is in good agreement with the concepts of solvability the
which stipulates that the selection of the tip parameters is governed by the balance betv
the anisotropic surface tension and the local diffusion field at the tip. To establish the cor
local balance, diffusion is necessary only over a distance of a few tip radii, whereas
buildup of the complete diffusion field around an arm requires heat transport over the s
of the diffusion length, B /v. Our simulation shows that* indeed becomes essentially

TABLE IlI
Dimensionless Steady-State Tip Velocity = vdy/D as Obtained from the Present Phase-Field
Simulations, Boundary Integral Calculations [18], and the Linearized Solvability Theory [31]

Boundary Solvability
A €4 Phase field integral theory
0.2 0.025 110x 1073 1.07x 1073 1.31x 1073
0.2 0.0125 551x 104 517 x 104 574 x 10°*

0.1 0.025 137 x 10 1.35x 104 1.60x 104
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constant soon after the formation of the primary arms. This fact can be used to derive sce
laws for the evolution of the dendrite arms at low undercooling during the transient that le:
to steady-state growth [17]. Finally, even at the end of the simulations, where the denc
arms are well developed, no sidebranches are visible. We repeated the same simulatic
different thickness of the buffer layer and observed no changes in the morphology. T
ripples can in fact be seen close to the base of the dendrite shaft, but the amplitud
these perturbations does not depend on the noise strength. We therefore believe that t
a deterministic instability due to the complicated shape of the dendrite base rather thi
beginning of noise-induced sidebranching. In summary, there are at present no indicat
that the noise created by the walkers has a noticeable effect on the morphological evolu

5. CONCLUSIONS

We have presented a new computational approach for multiscale pattern formatiol
solidification. The method is efficient, robust, precise, easy to implement in both two &
three dimensions, and parallelizable. Hence, it constitutes a powerful alternative to s
of the art adaptive meshing and finite element techniques. We have illustrated its use
ness by simulating dendritic growth of a pure substance from its undercooled melt in
infinite geometry. Because only a very limited amount of “geometry bookkeeping” is r
quired, our method can be easily adapted to other experimental settings, such as direct
solidification. In addition, the DMC algorithm is not limited to the present combinatio
with the phase-field method but can be used in conjunction with any method to solve
interface dynamics, as long as the diffusion equation is explicitly solved. The adaptatior
our method to other diffusion-limited free-boundary problems is straightforward; probler
with several diffusion fields can be handled by introducing multiple species of walkers.

In view of the results presented here, there is a realistic prospect for direct simulati
of solidification microstructures for experimentally relevant control parameters. An esj
cially interesting prospect is to combine our method with a recently developed approac
guantitativelyincorporate thermal fluctuations [30] in the phase-field model. Such an exte
sion should make it possible to test noise-induced sidebranching theories [16, 32] in t
dimensions and for an undercooling range where detailed measurements of sidebranc
characteristics are available [22, 26, 33, 34]. If thermal noise in the liquid region outsi
the buffer layer turns out to be unimportant for sidebranching, the straightforward addit
of Langevin forces as in Ref. [30] in the finite difference region (i.e., the buffer regic
plus the solid) should suffice for this extension. In contrast, if the noise from this region
important, a method to produce the correct level of noise in the walker region will need
be developed. Work concerning this issue is currently in progress.

To conclude, let us comment on some possible extensions and improvements of
method which will be necessary to address certain questions. First, we have describe
method here using an explicit integration scheme on the fine grid in the inner region, wh
enforces rather small time steps. We also tested an alternating direction Crank—Nicho
scheme in 2-d, which speeds up the calculations but makes it necessary to introduce cc
tive terms at the conversion boundary to guarantee the local heat conservation. Secon
the moment we use the stochastic algorithm only agttterior of the dendrite; for other
geometries, such as directional solidification where the volumes of solid and liquid are c
parable, it might be useful to introduce a second stochastic region in the solid. It would &
be desirable to combine our algorithm with more efficient memory managing techniqt
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to overcome the limitations due to storage space. Finally, a completely open questio
whether it is possible to combine our stochastic algorithm with a suitable method for si
ulating hydrodynamic equations. This would open the way for studies of the influence
convection on dendritic evolution at low undercooling, thereby extending in a nontrivi
way recent studies that have been restricted to a relatively high undercooling regime |

APPENDIX: PHASE-FIELD METHOD

We will briefly outline the main features of the phase-field method used for our simul
tions. More details can be found in Ref. [29].

The starting point is the free energy functional, Eq. (9), together with the equations
motion for the phase field and the temperature field, Eqgs. (10) and (11). The free ene
density in Eq. (9) is chosen to be of the form

A ( 2 1/,4)

f(,u)= "+ —+ AUy (1—2— + —

Al
2 4 3 5 A1

This function has the shape of a double well, with minimg at +1 corresponding to the
solid and the liquid phases, respectively. Heris, the dimensionless temperature figlds
a dimensionless coupling constant, and the term proportionebtothe RHS of Eq. (A.1)
“tilts” the double well in order to favor the solid (liquid) minimum when the temperature
is below (above) the melting temperature. The coefficiigh) of the gradient term in the
free energy (9) determines the thickness of the diffuse interface, i.e., the scale on whick
phase field varies rapidly to connect the two equilibrium values. In addifibis,related to
the surface tension, and exploiting its dependence on the orientation of the interface all
us to recover the anisotropic surface tension of Eq. (5) by choosing

0

The orientatiorfi is given in terms of the phase field by
Vv
IVl

Note that this dependence @/ on ¢ has to be taken into account in performing the
functional derivative, such that the explicit form of Eq. (10) becomes

A= (A.3)

IW (R
tMay = [V ==y A=y + V- WOV Y] + oy <|wf|2w<ﬁ>—8 T 2’;;)
2y S W () 2eny s OW()
+ay<|vw| W(n)a(ayw)> +az(|vw| W(”)a(azw))' (A4)

The phase-field equations can be related to the original free-boundary problem by
technique of matched asymptotic expansions. Details on this procedure can be foun
Ref. [29]. As a result, for the capillary length and the kinetic coefficient in terms of th
phase-field parameteY§, andz (i), we obtain the expressions

aaWy

do .

: (A.5)
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B(B) | 1-ah———

_apt(h) W (A)?
T Wo ( Dr(ﬁ))’ (A.6)

wherea; = 0.8839 anda, = 0.6267 are numerical constants fixed by a solvability condi
tion. There is an important difference between this result and earlier matched asympt
expansions of the phase-field equations, owing to a different choice of the expansion
rameter. If the coupling constaitis used as the expansion parameter, the first order |
A gives only the first term in Eq. (A.6), while the complete expression is the result of
expansion to first order in the interfaced®t number, which is defined as the ratio of the
interface thickness and a relevant macroscopic scale of the pattern (local radius of curve
or diffusion length). An important consequence of Eq. (A.6) is that the kinetic coefficie
and its anisotropy can be set to arbitrary values by a suitable choizeantl 7 (f). In
particular, we can achieve vanishing kinetiggf{) = 0) by choosing

T(A) = ola(M)]? (A7)

andx = Dto/(22Wg). As a consequence, the ratlgy W, can be decreased without chang-
ing the kinetics by simultaneously increasihgand the diffusivityD. This method dra-
matically increases the computational efficiency of the phase-field approach, because
interface widthW determines the grid spacing which must be used for an accurate num
ical solution. For a physical system with fixed capillary lendghthe number of floating
point operations necessary to simulate dendritic evolution for some fixed time interval ¢
system size scales(dy/ Wp)?*2 for the choice of phase-field parameters where the interfac
kinetics vanish (i.e.Dto/WZ ~ A ~ Wp/do), whered is the spatial dimension [29].

We integrate the phase-field equations on a cubic grid with spatigAll spatial
derivatives are discretized usirig.x)2-accurate finite difference formulas, and timestep:
ping is performed by a standard Euler algorithm. The use of a regular grid induces sr
anisotropies in the surface tension and the kinetic coefficient. These effects have been
cisely quantified in Ref. [29]. Since the grid has the same symmetry as the crystal we w
to simulate, the presence of the lattice simply leads to small shifts in the surface ten:
anisotropy and in the kinetic parameters. Evidently, the use of this method restricts the si
lation to crystals with symmetry axes aligned to the lattice, but this is not a severe limitati
in the present study, which focuses on the growth of single crystals. The effective surf
tension anisotropyy is slightly smaller than the “bare” valug. The kinetic corrections
are negligible for grid spacings up tox/ Wy ~ 0.5, and hence for the 2-d test simulations
we can apply Eq. (A.7). For larger lattice spacings, this equation has to be replaced by

454
1— 384

T(f) =70 (1—389) |1+ (n%+ny+n7)|. (A.8)

where the kinetic anisotropy, has to be determined numerically. In Ref. [29], it has beel
shown that a good precision can be maintained up to grid spagirg¥p = 0.8, and we
use these optimized parameters for the 3-d simulations. The phase field varies betv
+0.95 over a spatial region of widtikdWy. This means that foax/ Wy = 0.8, there are
still about five points well within the interfacial region, providing a sufficiently accurat
resolution.
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