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Abstract

We present a new fast multipole method for particle simulations. The main feature of our algorithm is that it does

not require the implementation of multipole expansions of the underlying kernel, and it is based only on kernel

evaluations. Instead of using analytic expansions to represent the potential generated by sources inside a box of the

hierarchical FMM tree, we use a continuous distribution of an equivalent density on a surface enclosing the box. To

find this equivalent density, we match its potential to the potential of the original sources at a surface, in the far field, by

solving local Dirichlet-type boundary value problems. The far-field evaluations are sparsified with singular value de-

composition in 2D or fast Fourier transforms in 3D. We have tested the new method on the single and double layer

operators for the Laplacian, the modified Laplacian, the Stokes, the modified Stokes, the Navier, and the modified

Navier operators in two and three dimensions. Our numerical results indicate that our method compares very well with

the best known implementations of the analytic FMM method for both the Laplacian and modified Laplacian kernels.

Its advantage is the (relative) simplicity of the implementation and its immediate extension to more general kernels.
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1. Introduction

Many methods in computational physics (e.g., vortex methods, molecular dynamics) are based on the

evolution of particle systems with pairwise interactions corresponding to potentials related to the funda-

mental solution of elliptic partial differential equations (PDEs). The most important among these kernels is

the single-layer Laplacian. Other kernels include the kernels of the Stokes and Navier operators, their

modified versions, and their derivatives (double-layer and hypersingular kernels).
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Particle formulations result in dense linear algebraic systems because all pairwise interactions have to be

computed. This is a significant bottleneck since for N particles and results in a OðN 2Þ computation. In order

to make large scale problems tractable it is essential to efficiently compute these interactions. A number of
algorithms have been proposed for this purpose. The fast multipole method (FMM) has been one of the

most successful, especially for nonuniform particle distributions.

In this paper, we present a new kernel-independent FMM-like algorithm. Our algorithm has the

structure of the adaptive FMM algorithm [12] but requires only the kernel evaluations, and it does not

sacrifice the efficiency of the original algorithm. The crucial element of our approach is to replace the

analytic expansions and translations with equivalent density representations. These representations are

computed by solving local exterior and interior problems on circles (2D), spheres or cubes (3D) using the

integral equation formulations. We demonstrate the efficiency of our method in both 2D and 3D for many
kernels: the single and double layer potentials of the Laplacian, the modified Laplacian, the Navier, the

Stokes, and their modified variants. Our method has OðNÞ asymptotic complexity, and, like analytic FMM,

works well for nonuniform particle distributions.

1.1. Synopsis of the new method

The basic structure of our method follows [14], the original fast multipole method, which we briefly

review in Section 2. FMM consists of the following steps:
1. generation of a hierarchical tree partitioning of the computational domain;

2. accumulation of the multipole expansions for the far field by a postorder traversal of the tree;

3. translation of the multipole moments to the local expansions;

4. construction of local expansions by a preorder traversal of the tree;

5. evaluation of the far-field action on the particles using local expansions;

6. evaluation of the near field interactions.

The same steps are used in our algorithm. However in the postorder traversal of the tree, the multipole

expansion construction is replaced by solving local exterior inverse problems. To represent the potential
generated by particles inside a box, we use a continuous distribution of an equivalent density on a surface

enclosing the box. To find this equivalent density on the surface, we match its potential to the potential of

the original sources at another surface in the far field. The translations are done by direct evaluation on the

far field, sparsified with SVD or FFT. During the preorder traversal of the tree, we evaluate the far-field

interaction on a surface enclosing a target box, and solve an interior Dirichlet-type integral equation to

compute an equivalent density. Then we use this density to represent the potential inside a target box.

Our method does not require implementation of analytic expansions for the kernel, it only requires their

existence, and exclusively uses kernel evaluations. Like FMM, our algorithm is recursive and has an OðNÞ
complexity. Additional properties like scale invariance and rotational symmetries of kernels can be used to

further accelerate the translation step, as in the case of the standard FMM.

1.2. Related work

There are four basic classes of fast summation algorithms: (1) tree codes like Barnes–Hut [2], (2) fast

multipole methods and (3) regular grid fast convolution methods like FFT 1 Our algorithm belongs to the

second category. The description of the original fast multipole algorithm can be found in [14,23]. Although
the method is highly successful in two dimensions, the three-dimensional version of the original method was
1 This method is somewhat related to particle–particle (near field interaction) with particle-mesh algorithms. Particle-mesh methods

use fast PDE solvers on regular grids (multigrid) to evaluate the far field contributions. In this paper, we are not reviewing these

methods since they are mostly useful for uniform particle distributions.
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inefficient. Efficient extensions in three dimensions were realized only recently [7]. For these reasons, many

researchers tried to devise algorithms which were hybrids of tree codes and FMM, in order to combine the

high accuracy of FMM methods with the simplicity of tree codes. In addition, the extension of the FMM to
more general kernels like the modified Laplacian [13], the Stokes [10], and the Navier [9,26] operators can

be quite cumbersome, due to the need to implement efficient translation operators. In this paper, we only

review algorithms that could be used to develop kernel-independent methods.

The idea of using a set of equivalent sources was first introduced in [1]. In that paper, the far field is

represented as the solution to an exterior Dirichlet problem on a ball surrounding the particles using the

exact Green�s function (Poisson formula) for Laplacian. The method is somewhat easier than FMM to

implement, but requires the analytic form of the Green�s function for each kernel, which may not be

available in the general case.
In [3] instead of using the exact Green�s function, a number of equivalent densities are placed on a

Cartesian grid in each source box; these densities are computed analytically by matching a number of

multipole moments in the multipole expansion series of the original source densities. An important feature

of this method is the fact that the Cartesian grid allows the use of FFT to accelerate the multipole to local-

expansions translations. However, the method is not kernel-independent since for different kernels different

expansions have to be constructed. The same idea is used in [19], and like in Andersen�s method the

densities are distributed over a ball containing the source box.

The idea of equivalent densities is also used in the precorrected FFT method [21]. The equivalent
densities are distributed over a regular grid, so that the far-field convolutions can be computed with FFT

instead of FMM. The term ‘‘precorrected’’ is related to the computation of the local interactions: the

subtraction of the local influence of the equivalent densities and the addition of the near field interactions.

The regular grid sources are computed by matching the field at selected checking points, usually located on

a ball enclosing the original sources. In [6], a precorrected FFT method is applied to the Helmholtz kernel,

but the equivalent sources are distributed along the faces of an enclosing cube, and three FFTs along the

coordinate system planes are used to compute the far interaction. FFT-based methods are very efficient,

often faster than FMM due to much smaller constants. For uniform distributions of particles FFT is likely
to be preferable and it is kernel-independent. However, in the case of highly irregular particle distributions

FMM is more efficient.

A hybrid method for kernel independent matrix–vector multiplication algorithm was proposed in

[16,17]. Based on the fact that large blocks of the particle interaction matrix are low rank, this method uses

singular value decomposition to sample and sparsify these blocks. It can be applied recursively and attains a

OðN logNÞ complexity. We have applied this method on the Stokes and Navier operators [4,5] with very

satisfactory results in both accuracy and speed. One serious shortcoming of this method is the high setup

cost. For problems with static particle distributions this is not a concern, but it becomes a bottleneck for
problems with time evolving particles. The SVD approach was been further explored in series of papers

[11,24,25] to obtain a kernel-independent method that does not require the kernel to be a solution of an

elliptic PDE or a convolution. However, due to its generality, as the authors of these papers assert, the

method does not achieve the efficiency of FMM for kernels that are related to fundamental solutions of

PDEs.

Another method for fast matrix multiplication is based on higher-order Taylor expansions in Cartesian

coordinates. This approach is not suitable for high accuracy computations because is computationally

expensive (for pth-order accuracy it requires OðpdÞ expansion terms). However, it is a kernel-independent
method (the higher-order expansions can be easily obtained by differentiation). For example, it has been

used to accelerate problems with the Stokes kernel [22].

Another category of kernel-independent approaches used in solving boundary integral equations is

based on wavelet decompositions, combined with a Galerkin scheme. This approach is quite promising,

since it has the same complexity with FMM, and allows the constructions of efficient preconditioners for
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the resulting systems. However, it is hard to compare directly to FMM, as different trade-offs are made:

FMM is a ‘‘bottom-up’’ approach, and is relatively insensitive to the distribution of samples. Adaptive

wavelet methods are ‘‘top-down’’ but require samples to be located on a surface satisfying certain as-
sumptions, which may not hold in the general case.

1.3. Organization of the paper

In Section 2, we briefly review the classical FMM algorithm for the two-dimensional Laplacian. In

Section 3, we present the new algorithm and its implementation; in Section 4, we present an error analysis

for the algorithm, and in Section 5, we present numerical results for several different scalar and vector

kernels in two and three dimensions.
2. Review of the fast multipole method

Given N source densities f/ig located at N points fyig in Rd ðd ¼ 2; 3Þ, we want to compute the potential

fqig at N points fxig induced by a kernel G (single layer, double layer or other kernels of a elliptic PDE)

using the following relation: 2

qi ¼ qðxiÞ ¼
XN
j¼1

Gðxi; yjÞ/ðyjÞ ¼
XN
j¼1

Gij/j; i ¼ 1; . . . ;N :

Direct implementation of this summation gives an OðN 2Þ algorithm. For a large class of kernels and

under reasonable assumptions on the particle distribution, FMM requires OðNÞ work to compute an ap-

proximate potential with a prescribed relative error [7,20]. The constant in the complexity estimate depends

on the relative error. 3

We will use the single layer Laplacian kernel to describe FMM. In two dimensions, we have

Gðx; yÞ ¼ � 1
2p log q, with r ¼ x� y, and q ¼ jrj. In the FMM context, it is convenient to use

Gðx; yÞ ¼ Reðlogðzx � zyÞÞ, where zx and zy are complex numbers corresponding to x (target) and y (source)

points on the plane. The idea of FMM is to encode the potentials of a set of source densities using the

multipole expansion and local expansion at places far away from these sources. Suppose the source densities

are supported in a disk centered at zC with radius r. Then for all z outside the disk with radius R ðR > rÞ, we
can represent the potential at z from the source densities using a set of coefficients fak; 06 k6 pg, where

qðzÞ ¼ a0 logðz� zCÞ þ
Xp
k¼1

ak
ðz� zCÞk

þ O
rP

Rp

� �
ðMultipole expansionÞ: ð1Þ

On the other hand, if the source densities are outside the disk with radius R, the potential at a point z
inside the disk with radius r can be represented using a set of coefficients fck; 06 k6 pg, where

qðzÞ ¼
Xp
k¼0

ckðz� zCÞk þ O
rP

Rp

� �
ðLocal expansionÞ: ð2Þ

In both expansions, p is usually a small constant determining from the desired accuracy of the result. The

definitions of the coefficients are given in Appendix B.
2 We use x to refer to target locations and y to refer to source locations, but in general fxig and fyig can be the same set of points.
3 In the classical FMM, the absolute error of the potential is bounded by the product of the relative error and the total charge.



L. Ying et al. / Journal of Computational Physics 196 (2004) 591–626 595
FMM employs the above representations in a recursive way. The computational domain, a box large

enough to contain all source and target points, is hierarchically partitioned into a tree structure (a quadtree

in 2D or an octtree in 3D). Each node of the tree corresponds to geometric box (square or cube). The tree is
constructed so that the leaves contain no more than a prespecified number of points. For each box, the

potential induced by its source densities is represented using a multipole expansion, while the potential

induced by the sources from non-adjacent boxes is encoded in a local expansion. For a prescribed relative

error �, the number of expansion terms p is chosen to be j logc �j where c is ð4�
ffiffiffi
2

p
Þ=

ffiffiffi
2

p
in 2D and

ð4�
ffiffiffi
3

p
Þ=

ffiffiffi
3

p
in 3D.

Not only these expansions (multipole and local) can be used for efficient evaluation, but translations

between these expansions are also available which make an OðNÞ algorithm possible. In particular, the

following types of translations are used:
M2M. The multipole to multipole translation transforms the multipole expansions of a box�s children to its

own multipole expansion.

M2L. The multipole to local translation transforms the multipole expansion of a box to the local expan-

sion of another non-adjacent box.

L2L. Finally, the local to local translation of the local expansion of a box�s parent to its own local expan-

sion. See Appendix B for the equations that define these translations.

Using the tree structure, FMM consists of two basic steps. During the first step, the upward pass, the tree

is traversed in postorder 4 to compute the multipole expansion for each box. At the leaves, the multipole
expansions are built following Eq. (1) (this procedure is also called the source to multipole (S2M) trans-

lation). At each non-leaf node, the multipole expansion is shifted from its children using the M2M

translation. In the second step, the downwards pass, the tree is traversed in a preorder 5 to compute the local

expansion. For each box B, the local expansion is the sum of two parts: first, the local-to-local transfor-

mation collects the local expansion of B�s parent (the result condenses the contributions from the sources in

all the boxes which are not adjacent to B�s parent), and second, the multipole-to-local transformation

collects the multipole expansions of the boxes which are the children of the neighbors of B�s parent but are
not adjacent to B (these boxes compose the interaction list of B). The sum of these two parts encodes all the
contribution from the sources in the boxes which are not adjacent to B itself. At the end, for each box, the

far interaction, which is evaluated using the local expansion at this box (this step is called the local to target

(L2T) translation), is combined with the near interaction evaluated by iterating over all the source points in

the neighborhood of the target box to obtain the potential (see Fig. 1).

Instead of Laurent series, in three dimensions the far field is represented by spherical harmonics. There

are several implementation details (mostly for the M2L transformation) that are required for efficient

implementation (especially in 3D), but we do not mention them here. Overall, however, the organization of

the computation is the same as the two dimension case. For the derivation of the expansions and a detailed
discussion on error bounds and implementation details see [7,14].
3. The new algorithm

Our algorithm is designed to generalize FMM to second-order constant coefficient non-oscillatory el-

liptic partial differential equations. Examples of such systems are given in Appendix A, where we also list

the corresponding fundamental solution kernels. Such kernels satisfy the underlying PDE everywhere but
the singularity location (pole), and are smooth away from the singularity. All problems under consideration
4 The children of a box are visited before the box itself.
5 The children of a box are visited after the box itself.
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Fig. 1. The multipole expansion at zS encodes the influence from the source densities (marked with ‘‘+’’) to the far field. The local

expansion at zT encodes the influence from the far field to the target points (marked with ‘‘n’’). M2M translation transforms between

the multipole expansions of the boxes in adjacent levels ðzS to zM), M2L translation transforms multipole expansion of a box to the

local expansion of non-adjacent boxes ðzM to zL), and finally L2L translation transforms between local expansions between adjacent

levels ðzL to zT).
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admit a unique solution for the properly posed interior/exterior Dirichlet problems. Smoothness and

uniqueness are the basic properties that we use to develop our FMM approximation.
Our algorithm has the same structure with the original FMM method. The differences are how the

densities are represented efficiently and how the M2M, M2L, and L2L transformations are computed. We

first describe these representations and transformations, then state the complete algorithm and conclude

with a discussion on efficient implementation. Below we summarize the notation we use in the description of

the method; these notations are defined as follows:
B a box in the computation tree

NB the near range of the box B in Rd

FB the far range of the box B in Rd

IBs the set of indices of source points or densities in B

IBt the set of indices of target points or potentials in B

yB;u the upward equivalent surface of B
/B;u the upward equivalent density of B

xB;u the upward check surface of B

qB;u the upward check potential of B

yB;d the downward equivalent surface of B

/B;d the downward equivalent density of B

xB;d the downward check surface of B

qB;d the downward check potential of B

p the degree of discretization for equivalent densities
s the maximum number of source (or target) points allowed in a leaf box

N the total number of source and target points

R the depth of the computation tree

M the total number of boxes in the computation tree
3.1. Density translations

Given a set of N points, we define the computational domain to be a box large enough to contain all

points. We construct a hierarchical tree (a quadtree in 2D and an octtree in 3D) so that each leaf of the tree
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contains no more than s points, where s is a prescribed number. We assume that some points are labeled as

sources yi and other points as targets xi. The source densities /i at the source locations yi; i ¼ 1; . . . ;N are

given, and we want to evaluate the potential fqig at the target locations fxig.
We refer to the tree nodes (squares in 2D and cubes in 3D) as boxes. For a spatial region R, we use IRs and

IRt to denote the index sets of the source and target points in R. Most commonly, R is a box of the com-

putational tree.

If B is a box centered at c and has side length 2r, then the box centered at c with side length 6r is called
the near range of B and is denoted by NBRd=NB is called the far range and is denoted by FB . Note that in

our definition, B is a part of NB.

3.1.1. Equivalent densities and check potentials

We represent the potential in FB from the source densities f/i; i 2 IBs g in B as the potential from a

density distribution /B;u supported at prescribed locations yB;u in NB (Fig. 2). We call /B;u the upward

equivalent density and yB;u the upward equivalent surface of box B.
Results from potential theory put two restrictions on the positions of yB;u (see [18, Chapter 6]). First, to

guarantee the smoothness of the potential produced by /B;u, its support yB;u should not overlap with FB.

Second, to guarantee that /B;u is able to represent the potential produced by any source distribution in B,
yB;u needs to enclose B. Therefore, in order to ensure the existence of /B;u, yB;u is required to lie between B
and the boundary ofFB. We use a circle in 2D and a sphere or cube in 3D for reasons that will be explained
later.

The potentials induced by the source densities and the upward equivalent density satisfy the underlying

second-order linear elliptic PDE. As the solution of an exterior Dirichlet problem for such PDE is unique,

these two potentials are guaranteed to be equal in all of FB if they coincide at the boundary of FB, or any

surface between FB and yB;u. We call such an intermediate surface the upward check surface and denote it

by xB;u. We call the potential computed on this surface the upward check potential and denote it by qB;u.
These surfaces are also chosen to be circles in 2D, and spheres or cubes in 3D. The equality of potentials on

the upward check surface can be written as follows:
Fig. 2. The equivalent/check surfaces in 2D. Left: Given the potential generated by the source densities inside a box, located at the

points marked with ‘‘+’’, we represent it by using the upward equivalent density located at the upward equivalent surface. The

equivalent surface is shown as the solid circle enclosing the box. The upward check potentials induced by the sources and the upward

equivalent density are matched at the upward check surface (the dashed circle). Right: To represent the potential in the box generated

by the source in the far range, we use the downward equivalent density located at the downward equivalent surface. The downward

equivalent potentials induced by both sources are matched at the upward check surface. In both plots, the discretization points of the

equivalent and check surfaces are equally spaced and marked with ‘‘d’’ and ‘‘s’’, respectively. For both upward or downward steps,

the computation of the equivalent density includes two steps shown by arrows in each plot: (1) the evaluation of the check potential

using the original source, and (2) the inversion of the integral equation to obtain the equivalent density.
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Z
yB;u

Gðx; yÞ/B;u dy ¼
X
i2IBs

Gðx; yiÞ/i ¼ qB;u for any x 2 xB;u: ð3Þ

Similarly, we represent the potential in B from the source densities in FB as the potential induced by a

density distribution /B;d defined at prescribed location yB;d in NB (Fig. 2). We call /B;d downward equivalent

density and yB;d downward equivalent surface. To ensure the existence of /B;d, yB;d needs to be located be-

tween FB and B. As the solution of the interior Dirichlet problem for the PDE we consider is also unique,

we need to match the potentials only on a surface xB;d between B and yB;d. We call the surface xB;d downward

check surface, and the matched potential qB;d the downward check potential.
We usually choose both yB;d and xB;d to be circles in 2D and spheres or cubes in 3D. The potential yB;d

satisfies the following equation for any x 2 xB;d:Z
yB;d

Gðx; yÞ/B;d dy ¼
X
i2IFB

s

Gðx; yiÞ/i ¼ qB;d: ð4Þ

The integral equations (3) and (4) are the first-kind Fredholm equations. Inverting such equations for a

general right-hand side is an ill-conditioned problem since it is an ill-posed infinite dimensional problem.

However, the right-hand sides have a special form that guarantees the existence of the solution of the

integral equation. To solve these equations numerically in a stable way, we use a regularization scheme, as

discussed in Section 3.2.

3.1.2. M2M translation

For every leaf box B in the tree, the computation of the upward equivalent density /B;u from the source

densities uses Eq. (3). The procedure of M2M translation is similar (Fig. 3). To translate the upward

equivalent density from a box A to its parent box B, we solve the following equation for /B;u:
Fig. 3. Three translations in 2D. Left: M2M translation. To compute the upward equivalent density of the large square, we evaluate

the (upward check) potential at the dashed circle using its child box�s upward equivalent density at the small solid circle (this operation

is marked with arrow (1)), and invert the integral equation to get its upward equivalent density at the large solid circle (marked with

arrow (2)). Middle: M2L translation transforms the upward equivalent density of the left box (surrounded by one circle) to the

downward equivalent density of the right box (surrounded by two circles). We first evaluate the downward check potential at the

dashed circle using the upward equivalent density (located at the small solid circle) (marked with (1)), and then invert the equation to

obtain the downward equivalent density at the downward equivalent surface — the large solid circle (marked with (2)). Right: L2L

translation transforms the downward equivalent density of the large box to its child — the the small box. In all three figures, the

discretization points for the equivalent surface are marked with ‘‘d’’ and the ones for check surface are marked with ‘‘s’’.
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M2M :

Z
yB;u

Gðx; yÞ/B;uðyÞdy ¼
Z
yA;u

Gðx; yÞ/A;uðyÞdy for all x 2 xB;u: ð5Þ

To ensure the existence of /B;u for B; yB;u must enclose yA;u for any of its children A.

3.1.3. M2L translation

Once the upward equivalent density has been computed for each box, M2L translation computes the

downward equivalent density (Fig. 3). Suppose A is a box in FB. The M2L translation is similar to (4), and

we solve the following equation to find /B;d:

M2L :

Z
yB;d

Gðx; yÞ/B;dðyÞdy ¼
Z
yA;u

Gðx; yÞ/A;uðyÞdy for all x 2 xB;d: ð6Þ

To ensure the existence of /B;d, yB;d must be disjoint from yA;u for all A in FB.

3.1.4. L2L translation

The L2L translation computes the downward equivalent density of a box B at level i from that of its
parent A at level i� 1 (Fig. 3). The procedure is again similar to Eq. (4). The potential /B;d satisfies

L2L :

Z
yB;d

Gðx; yÞ/B;dðyÞdy ¼
Z
yA;d

Gðx; yÞ/A;dðyÞdy for all x 2 xB;d: ð7Þ

To ensure the existence of /B;d, yB;d must lie in yA;d.

Eqs. (5), (6) and (7) corresponding to M2M, M2L and L2L translations are all ill-conditioned for an
arbitrary right-hand side. However, similar to (3) and (4), the right-hand sides in our case are sufficiently

smooth to guarantee the existence and stability of the solution of the integral equation.
3.1.5. Summary

We have described two density representations and three translations used to convert between these

densities. The two equivalent densities correspond to the multi-pole and local expansions in FMM, while

the three translations replace the three transformations in FMM.

In order to guarantee the existence of the equivalent densities the equivalent and check surfaces have to
satisfy certain restrictions. We summarize them as follows: for each box B
• yB;u and xB;u lie between B and FB; xB;u encloses yB;u;

• yB;d and xB;d lie between B and FB; yB;dencloses xB;d;

• yB;u encloses yA;u for any descendant box A,
• yB;u is disjoint from yA;d for all A in FB,

• yB;d lies inside yA;d where A is B�s parent.
3.2. Discretization

3.2.1. Regularization

Eqs. (3), (5), (6) and (7) need to be discretized. Each one of them consists of two steps. First, we need to

evaluate the check potential at box B using the equivalent density from box A. This step is discretized using

a simple numerical quadrature. Second, we need to compute the equivalent density at B from the check

potential computed in the previous step. This requires the numerical solution of a first-kind Fredholm

equation. We denote this equation as

K/ ¼ q;
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where / is the equivalent density of B, q is the check potential of B and K evaluates q from the kernel and /.
We solve this equation using Tikhonov regularization [18]:

/ ¼ ðaI þ K�KÞ�1K�q:

This becomes a second-kind Fredholm integral equation, and in our implementation we solve it using the

Nystr€om method (Galerkin or collocation methods could be used).

3.2.2. Surface geometry and discretization

The above two steps need to discretize the equivalent surfaces and check surfaces. In 2D, we choose

circular equivalent and check surfaces. We use the trapezoidal rule to integrate the check potential and to

discretize the integral equations; in this manner we obtain super-algebraic convergence. In 3D, this is no

longer possible: to the best of our knowledge, there are no simple quadrature rules for functions defined

on spheres that converge super-algebraically. Instead, we use cubes as the equivalent and check surfaces

(Figs. 4 and 5), and construct quadratures of fixed order on the faces of the cubes. In Section 3.4, we explain

how this approach facilitates fast M2L translations, and in Section 5 we show that the accuracy in 3D is not

too different from the 2D case.
Fig. 5. Three translations in 3D. Left: M2M translation. Middle: M2L translation. Right: L2L translation. 3D translations are similar

to 2D. There are two differences: (1) equivalent/check surfaces are now cubes and (2) discretization points are the boundary nodes of a

regular Cartesian grid. Note that for M2L translation the discretization points of upward equivalent surface and downward check

surface are from the same Cartesian grid, therefore it can be sped up with FFT (interior nodes are padded with zero density).

Fig. 4. The cross sections of the equivalent/check surfaces in 3D. Left: the upward equivalent density. Right: the downward equivalent

density. In both plots, the innermost square is the source box. The equivalent and check surfaces are both discretized using the

boundary nodes of a regular Cartesian grid. The nodes for the equivalent surfaces are marked with ‘‘d’’ and those for the check

surfaces with ‘‘s’’.
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3.2.2.1. 2D case. For a box B centered at c with side length 2r, all related surfaces are circles centered at c.

The upward equivalent surface yB;u has radius ð
ffiffiffi
2

p
þ dÞr, where d a fixed number satisfying 06 d 6 4�

ffiffi
2

p

3
.

The upward check surface xB;u has radius ð4�
ffiffiffi
2

p
� 2dÞr. The downward equivalent surface yB;d has radius

ð4�
ffiffiffi
2

p
� 2dÞr. Finally, the downward check surface xB;d has radius ð

ffiffiffi
2

p
þ dÞr (Figs. 2 and 3). Note that

our choice of the surfaces satisfies all restrictions at the end of Section 3.1. All circles are discretized with p
equally spaced points with trapezoidal rule. The accuracy of our method is determined by the choice of p.
This simple rule is known to have super-algebraic convergence for smooth functions, d is chosen to be quite

small (equal to 0.1 in our implementation). By doing so, the equivalent surface and check surfaces involved

in each translations are well-separated and the kernel used in the check potential integration step is very

smooth. Therefore the trapezoidal rule gives good accuracy in the integration of check potential.

Remark 3.1. We could have chosen the upward/downward check surface to be identical with the upward/

downward equivalent surface. However, in this case the integral equation would have a kernel-dependent

form and we would need more complex quadrature rules that can be used to integrate singular kernels.

3.2.2.2. 3D case. For a box B centered at c with side length 2r, all the related surfaces are the boundaries of

cubes centered at c. The upward equivalent surface yB;u is the boundary of a boxwith halfwidth ð1þ dÞrwhere
06 d 6 2=3. The upward check surface xB;u is the boundary of a box with halfwidth ð3� 2dÞr. The downward
equivalent surface yB;d is the same as xB;u. Finally, the downward check surface xB;d is the same as yB;u (Figs. 4

and 5). These surfaces satisfy the restrictions at the end of Section 3.1. For every surface, the quadrature points
are distributed evenly on six faces, and on every face, the points are distributed on an evenly spaced 2D

Cartesian grid.Under this distribution, the quadrature points at the corner of the box are shared by three faces,

and those at the edge of the box are shared by two faces. We can also view these quadrature points as the

boundary nodes of a 3D regular Cartesian grid. Similar to the 2D case, we use p to denote the total number of

quadrature points on the surface of the box. 6 The quadrature weights are chosen in a way such that on every

face the quadrature rule integrates low order 2D polynomials exactly. In our experiments, good quadrature

results are observed since all the kernels are smooth away from the singularity. The parameter d is chosen to be
quite small (again equal to 0.1 in our implementation) due to the reason stated in the 2D case.

3.2.3. Summary

Each one of the discretized M2M, M2L and L2L translations involves a potential evaluation and a solution

of an integral equation. However, by choosing the quadrature points fixed relative to the box, both the

evaluation and the solving depend only the level and the relative positions of the boxes involved in these

translations. We can precompute and store these operators for each level and each relative position.

Therefore, each translation invokes two matrix multiplications.

3.3. The complete algorithm

In this section, we describe our algorithm in detail. First we give some definitions related to the algo-

rithm. Our definitions closely follow Greengard [12].

3.3.1. Definitions

The neighbors of a box are adjacent boxes in the same level. For uniform distributions of particles, a

uniformly refined grid is used. In this case, the neighbor list LB
N of a box B is the set of all neighbors of B and
6 Note that, in 3D analytic FMM, p is the order of the multipole/local expansion, therefore, p2 is the actual number of coefficients

used in the expansion.
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B itself. For a box away from the boundaries, the neighbor list contains nine boxes in 2D or 27 boxes in 3D.

These boxes are all contained in NB.

The interaction list LB
I is the set of children of the neighbors of B�s parent which are not B�s neighbors.

Again, ignoring the boundary effects, this list contains 27 boxes in 2D and 189 boxes in 3D. These boxes are

all contained in FB.

If the particle distribution is uniform, a regular grid can be used; however, we are primarily interested in

non-uniform particle distributions. In this case, an adaptively refined grid is needed. The grid is recursively

refined until the number of points in each leaf box is less than a fixed number s. Following the adaptive

FMM algorithm, we give the following definitions (Fig. 6).

For a leaf box B, the U list LB
U contains B itself and the leaf boxes which are adjacent to B. For a non-leaf

box, the U list is empty.
The V list LB

V is the set of the children of the neighbors of the parent of B which are not adjacent to B.
If B is a leaf box, the W list LB

W consists of all the descendants of B�s neighbors whose parents are adjacent
to B, but who are not adjacent to B themselves. For a non-leaf box, the W list is empty.

The X list LB
X consists of all boxes A such that B 2 LC

W .

For a leaf box B, LB
U is similar to LB

U in the uniform case, and LB
V is similar to LB

I . There is also a conjugate

relation on these four lists. Suppose that A and B are two boxes.

• If A is in LB
U , then B is in LA

U .

• If A is in LB
V , then B is in LA

V .
• If A is in LB

W , then B is in LA
X .

• If A is in LB
X , then B is in LA

W .

For a box B, the U ; V ;W and X lists contain all boxes whose contribution needs to be processed by B
itself. The contribution from more distant boxes are considered by B�s ancestors. For a box U in LB

U , a direct

computation of the interaction of U �s source points with B�s target points is necessary since U and B are

adjacent. For a box V in LB
V we compute the interaction from V to B using M2L translation since two boxes
Fig. 6. Lists LB
U , L

B
V , L

B
W and LB

X of box B.



L. Ying et al. / Journal of Computational Physics 196 (2004) 591–626 603
are well-separated. For a box W in LB
W , we can evaluate the potential directly at B�s target points using the

upwards equivalent density of W , as B is in the far range of W . Finally, for a box X in LB
X , since B is still in

the near range of X , we represent the potential from X to B by first evaluating the potential at the
downwards check surface at B and then invert it to the downwards equivalent density /B;d. The pseudocode

is given in Algorithm 1.

3.4. Implementation issues

In the previous section, we described the overall structure of the algorithms with some implementation

details omitted for clarity. These details, however, are very important for an efficient implementation of any

FMM method. The most important issues are the efficient acceleration of the M2L computation, and the
overall memory management.

Another aspect of our discussion is the distinction between the setup phase and the fast summation

phase. Many times the particle distributions come from discretization of integral equations; then, given a

fixed spatial particle distribution, the summation is carried many times (i.e., the matrix vector multipli-

cation within an iterative solver such as GMRES). Many issues that we discuss here are related to efficient

multiple evaluations.
3.4.1. Acceleration techniques

In our complexity analysis, we consider only the uniform particle distribution and uniform grids. While

analysis of adaptive refinement is possible it requires assumptions on particle distribution. We refer the

reader to [20]. The most expensive part of our algorithm are the M2L translations: the evaluation of the

contribution to qB;d of a target box B from /A;u, where A is a source box in the interaction list of B.
We denote the size of the interaction list by I. For a single box, the complexity of the M2L translation is

OðIp2Þ. The M2M and L2L translations are applied only once for each box and their contribution to the

overall algorithm is not as important. Thus, the M2L part needs to be efficiently implemented since it is one

of the two most expensive parts of the algorithm. (The other bottleneck is the computation of particle-to-
particle dense interactions.)

3.4.1.1. SVD-based acceleration (2D).

Algorithm 1 (Adaptive case).
ASSUMEASSUME

N is the total number of points

s is the maximum number of points allowed in leaf box

STEPTEP 1 TREE CONSTRUCTIONREE CONSTRUCTION

for each box B in preorder traversal of the tree do

subdivide B if B has more than s points in it
end for

for each box B in preorder traversal of the tree do

construct LB
U , L

B
V , L

B
W and LB

X for B
end for

STEPTEP 2 UPWARDS PASSPWARDS PASS

for each leaf box B in postorder traversal of the tree do

evaluate qB;u at xB;u using f/i; i 2 IBs g
solve for /B;u at yB;u that matches qB;u at xB;u (Eq. (3))

end for

for each non-leaf box B in postorder traversal of the tree do



add to qB;u at xB;u the contribution from /C;u for each child C of B
solve for /B;u at yB;u that matches qB;u at xB;u (Eq. (5))

end for

STEPTEP 3 DOWNWARDS PASSOWNWARDS PASS

for each non-root box B in preorder traversal of the tree do

add to qB;d at xB;d the contribution from /V ;u for each box V in LB
V

add to qB;d at xB;d the contribution from f/i; i 2 IXs g, for each box X in LB
X

add to qB;d at xB;d the contribution from /P ;d, where P is the parent of B
solve for /B;d at yB;d that matches qB;d at xB;d (Eqs. (6) and (7))

end for

for each leaf box B in preorder traversal of the tree do

add to fqi; i 2 IBt g the contribution from /B;d

add to fqi; i 2 IBt g the contribution from f/i; i 2 IUs g for each box U in LB
U

add to fqi; i 2 IBt g the contribution from /W ;u for each box W in LB
W

end for
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In 2D, we use an SVD-based acceleration technique. We first assemble the matrix M of the interaction

from yA;u to xB;d. We observe that M is numerically low rank. The number of the significant singular

values of M is small compared to the dimension of M , and the rest of the singular values are less than the

accuracy required by the pairwise interaction evaluation. Suppose USV T ¼ M is the SVD of M . We can

store only the columns of U and V which correspond to the dominant singular values of S and discard

the rest. This approach gives us an efficient representation of M . In 3D, this approach does not yield

satisfactory results. Although M2L operators are low rank, in practice the cutoff number of equivalent
density points in which the compression is effective, is very large. For this reason an FFT-based approach

is preferable.
3.4.1.2. FFT-based acceleration (3D). Suppose box A is in the interaction list of box B. As mentioned in

Section 3.2, yA;u is chosen to be the boundary of A, and the integration points are the nodes of a

Cartesian grid which are on the boundary of of A. The same is true for xB;d. Therefore, by assigning

zero density to the grid points in the interior of B we can view the evaluation of the potential qB;d from

the density /A;u as a 3D convolution. This convolution can be evaluated efficiently by FFT. Since

we use 3D convolutions, there are Oðp3=2Þ instead of p densities and targets in each M2L translation.
For each box, we carry out the FFT and inverse FFT only once, to obtain an Oðp3=2 logðpÞÞ com-

plexity. The convolution (pointwise vector multiplication) is applied I times for each box, with OðIp3=2Þ
complexity.

Several acceleration schemes for the M2L translation of the analytic FMM have been proposed in the

past. In [8], a 2D FFT-based scheme is used to transform the multipole coefficients to the local coefficients.

This scheme gives a Oðp logðpÞÞ complexity for each M2L translation. In [7,15] exponential representation,

an intermediate representation between multipole and local expansions is introduced. Based on this new

representation, a diagonal transformation is used to transfer between exponential expansions efficiently.
This technique cuts down the complexity to OðIpÞ. An essential step of the translation to exponential

representation is the computation of some nontrivial kernel-dependent quadrature weights. While both of

these two schemes give asymptotically superior complexity than the OðIp3=2Þ complexity of our FFT-based

acceleration technique, our FFT-based technique only involves potential evaluations and thus is kernel-

independent.

Storage compression. Since the M2M, M2L and L2L translations are used repeatedly, we precompute

and store the matrices of these operators. Three storage compression techniques are used to reduce the

memory usage.
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3.4.1.3. Homogeneity. Many kernels in the problems we are considering are homogeneous: if we scale the

distance between the source point and the target point by a factor a, the potential at the target is amplified

by a factor ak, where k is a constant. For example, the 3D Laplace single layer kernel, Sðx; yÞ ¼ 1
4p

1
r, has this

property. Since the integration points of the equivalent densities of a box are fixed relative to the box, the
translation operators between different levels of the computation tree only differ by a constant, usually a

power of 2. Hence, instead of storing the matrices for each level, we store only the matrices for a single level.

Modified kernels, like modified Laplace, modified Stokes and modified Navier equations, do not have this

property.
3.4.1.4. Symmetry. In 2D, the integration points are equally spaced on a circle; in 3D the integration points

of the equivalent densities are chosen to be the nodes of a regular Cartesian grid. In both cases, they are

symmetric with respect to the x, y and z axes. For example, if we flip the positive x-direction to be the

negative x-direction, the positions of the set of the integration points do not change, even though two

integration points might swap their positions. Consider the M2M translation: Suppose B is the parent box
of two different boxes C1 and C2 and we need to evaluate the potential qB;u at xB;u, the contribution from

/C1;u at yC1;u and from /C2;u at yC2;u. Further suppose we already have the matrix of the operator from yC1;u

to xB;u. In order to evaluate the contribution from /C2;u at xB;u, we first perform a change of coordinates to

move yC2;u to yC1;u, and then evaluate the contribution using the operator from yC1;u to xB;u. We then

perform another change of coordinates to move yC1;u back to yC2;u. The same techniques can be carried out

for M2L and L2L translations.

The above procedure is only correct in the case of a scalar density and a scalar potential. In the cases

with vector or tensor densities and potentials, the change of coordinates not only affects the support of the
density or potential, but it also modifies their values. Therefore, a rescaling step is necessary after each

change of coordinates. A general translation using symmetry involves five steps: (a) forward change of

coordinates, (b) rescaling of density, (c) translation using stored matrix, (d) rescaling of potential, and (e)

backward change of coordinates. This technique works for all the kernels considered in this paper, and

gives us a compression factor of eight in 3D and four in 2D.
3.4.1.5. Lazy computation. In the case of nonuniform density distribution, the depth of the computation tree

can be quite large. However, not all the M2L translations are actually needed in the computation.

Therefore, in our algorithm, the matrix representation of a M2L translation is only computed where it is

actually needed by some box. This lazy computation strategy results in significant savings on memory usage
in nonuniform density distributions, and modified kernels.

Complexity. The analysis of the adaptive algorithm is essentially the same, but more involved and re-

quires assumptions about the particle distribution. For simplicity, we give the complexities of our method

and FMM in [7] for 3D uniform particle distribution. The number of boxes M is approximately N=s. We

use p to denote the number of coefficients.
Step Our method FMM

S2M translation OðNp þMp2Þ OðNpÞ
M2M translation OðMp2Þ OðMp3=2Þ
M2L translation OðMp3=2 log p þ 189Mp3=2Þ Oð20Mp3=2 þ 189MpÞ
L2L translation OðMp2Þ OðMp3=2Þ
L2T translation OðNpÞ OðNpÞ
Near interaction Oð27NsÞ Oð27NsÞ
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The hidden constants in the complexity estimates are approximately the same for all translations; 189 is

the number of the M2L boxes and 27 is the number of boxes in the near interaction. In practice, s is of the
same order as p. Therefore, the S2M and L2T steps of both methods are of the same order OðNpÞ. Our M2L

translation is also of the same order as that of [7]. The M2M and L2L steps have higher complexity in our

method, due to the fact that no acceleration techniques are applied in these two steps. However, in all

experiments in Section 5, we observe that this does not slow down our method significantly since these steps
are applied once for each box.
4. Error analysis

Given the direct interaction operator G between the sources in a box B at level I and targets in a well-

separated target box A at level m, we examine the error related to the FMM approximation. First, we show

that our FMM acceleration can be viewed as a factorization of G, provided that all integrations are carried
out exactly. Then we present analysis of the discretization error behavior for homogeneous kernels from

scale invariant PDE in 2D case. The scale invariance means that the PDE only involves the second-order

derivatives of the potential variable, such PDEs includes Laplace, Stokes and Navier equations.

Numerical results indicate that the method works well in 3D and for inhomogeneous kernels; we leave

derivation of rigorous error bounds in these cases as future work.

It is important to point out that here we prove an error bound of the FMM approximation of the in-

teraction operator G. This error is a relative error in the sense that the absolute error for the computed

potential is bounded by the product of the relative error with the magnitude of the exact potential.
4.1. FMM factorization

FMM can be viewed as a factorization of the operator G. Suppose the M2L translation operator is
applied at level k when the interaction between A and B is evaluated. Let B ¼ bl; bl�1; . . . ;Bk be the sequence

of ancestor boxes of B up to level k, and A ¼ Am;Am�1; . . . ;Ak the sequence of ancestor boxes of A. For our
purposes, it is convenient to consider a single sequence of boxes, Bl; . . . ;Bk, Ak; . . . ;Am, of length

lþ m� 2k þ 2; we denote this single sequence fCig, i ¼ 0; . . . ; nþ 1, where n ¼ lþ m� 2k. With each box

Ci, we associate an equivalent surface yi, and a check surface xi, with equivalent density /i defined on yi and

potential qi defined on xi. For boxes Bi upward surfaces are used, and for boxes Ai downward surfaces are

used.

We introduce sequences of operators Ki and Ei mapping densities defined on equivalence surfaces to
potentials defined on check surfaces. These operators correspond to left and right-hand sides of (5)–(7). We

use an auxiliary operator K½Y ! X �: CðY Þ ! CðX Þ, where Y and X are regions in 2D or 3D (typically

surfaces or boxes). The operator K is defined by

ðK½Y ! X �f ÞðxÞ ¼
Z
Y
Gðx; yÞf ðyÞdy for x 2 X :

Then

Ki ¼ K½yi � xi�; Ei ¼ K½yi ! xiþ1�; Li ¼ EiKþ
i ; ð8Þ

where Kþ
i ¼ ðK�

i KiÞ�1K�
i is the pseudoinverse of Ki.

Finally, let D ¼ K½yA;u ! A�, the operator evaluating the density on the upward equivalent surface of

A ¼ Cnþ1 at an arbitrary point inside A. Using these operators, evaluation of the potential qA at the target

box due to the sources in B using our hierarchical decomposition can be written in the following form:
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qAhier ¼ DKþ
nþlEn � � �E0Kþ

0 q
B;u: ð9Þ

Existence of the inverse operators K is discussed in Appendix C.

As illustrated in Fig. 7, the first sequence part of the sequence of operators corresponds to the upward

traversal of the tree, with the M2M translation defined by (5) applied on each step. It is followed by the

M2L translation (6) and the downward traversal with the L2L translation (7) applied on each step. Since
the kernels are homogeneous, the operators Ki and Ei are level-independent of Ci up to an identical scale

factor, and the composition Li ¼ EiKþ
i is level-independent as these factors cancel. For such kernels, we

rescale Ei and ki to make them completely level-independent.

In comparison, direct evaluation yields

qdirect ¼
X
i2IBs

Gðx; yÞ/i:

Expression (9) can be viewed as a sequence of transformations of densities, starting with /0 ¼ /B;u to

/nþ1 ¼ /A;d, defined on the sequence of upward and downward equivalent surfaces. Let fDig be the se-

quence of nested open domains with boundaries xi: ExtðxBl;uÞ � � � � � ExtðxBk ;uÞ � IntðxAk ;dÞ � � � � �
IntðxAm;dÞ � A (for the upward traversal, we use exterior domains, for the downward traversal, interior).

Similarly we define fFig to be the sequence of the nested open domains with boundary
yi : B � IntðyBl;uÞ � � � � � IntðyBk ;uÞ � ExtðyAk ;dÞ � � � � � ExtðyAm;dÞ:

It is sufficient to show that the potential qvoli in Di induced by /i, q
vol
i ¼ K½yi ! Di�/i, is equal to qvoliþ1 in

Diþ1 � Di, and that the potential induced by the first density /0 is the same as qdirect in D0, the exterior of

xB;u. Equivalence of qAhier and qdirect in the interior of A follows by induction.

The key is the observation that in the interior of Di, qvoli satisfies the elliptic PDE for which the kernel

Gðx; yÞ satisfies the underlying elliptic PDE. Therefore, we can regard it as the solution of the Dirichlet

problem with boundary conditions qvoli jxi ¼ qi. The Dirichlet problem is exterior for upward check surfaces

xi, and interior for downward surfaces xi. In either case, from the uniqueness of the solution of the Dirichlet
problem, it follows that the potential is defined uniquely by its boundary values. The density /iþi is

computed from /i using Kiþ1/iþ1 ¼ Ei/i, i.e., the potentials induced by these densities on xiþ1 are required
Fig. 7. Operators used in the error analysis.
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to coincide. It follows that the potentials coincide in all of Diþ1. Similarly, /0 is computed using the con-

dition that the induced potential coincides with pB;u, i.e., qdirect evaluated at xB;u ¼ x0; therefore, q0 coincides
with qdirect in D0.

4.2. Discretization error

We present a qualitative error analysis in 2D, determining the dependence of the error on the tree depth l
and the discretization error � introduced at a single translation step. In 2D, the equivalent surfaces and

check surfaces are chosen to be circles. Our analysis is carried out in the Sobolev spaces on a unit circle

Ht½0; 2p� for tP 1, which we denote Ht. We use k � k to denote the Ht norm. Since the kernel is C1 ev-

erywhere away from the singularity, qA is in Ht for any t. Although the error is more naturally measured in
L2, Ht is a more convenient choice for analysis of our method, as the Nystr€om method for integral

equations is norm-convergent in Ht for tP 1 in 2D. Note that this approach also yields an upper bound for

the L2 error, although this bound is likely to be too conservative.

We also define Si, a subspace of Ht, with

Si ¼ fK½Fi [ yi ! xi�ðqÞ; q 2 Htg: ð10Þ

Since the potential produced by the density in Fi, can be represented by the one produced by the density

on yi, we can also write Si to be fK½yi ! xi�ðqÞ; q 2 Htg.
To simplify the exposition, in our error analysis we omit the last step DKþ

nþ1 which introduces an ad-
ditional fixed error due to solution of Knþ1/nþ1 ¼ qn. Expression (9) with the last step excluded can be

written as

qn ¼ LnLn�1 � � � L0q0: ð11Þ

We use notation Lðj:iÞ for the composition LjLj�1 � � � Li for jP i; we also abbreviate Lðj:0Þ as LðjÞ. We define

Lðj:iÞ to be the identity for j < i.
We use the following four auxiliary results in in our error analysis. The proofs of the first two lemmas

can be found in Appendix C.

Lemma 4.1. Ei : Ht ! Siþ1, Ki : Ht ! Si and Li : Si ! Siþ1 are all compact in the Ht norm.

Lemma 4.2. The Ht norm of any operator Lðj:iÞ ¼ LjLj�1 � � � Li : Si ! Sjþ1 is uniformly bounded independently

of i and j.

Lemma 4.3. Suppose Pn is a sequence of bounded symmetric operators from Ht to Ht with Pn ! I pointwisely,
and D is a compact operator also from Ht to Ht. Then sequences PnD and DPn are norm convergent to D.

Proof. Approximate D by a finite dimensional operator. h

Lemma 4.4. In 2D, the Nystr€om method with trapezoidal rule is Ht norm convergent for second-kind Fredholm

integral equations with smooth kernels.

Proof. See Chapter 12 of [18]. h

As mentioned in Section 3.2, we use Tikhonov regularization to invert Ki. We introduce the regularized

operator �Li as

�Li ¼ EiðaiI þ K�
i KiÞ�1K�

i
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and its Nystr€om discretization by

~Li ¼ ~EiðaiI þ ~K�
i
~KiÞ�1 ~K�

i :

~Ki is the discretization of Ki defined by ~Kif ðxÞ ¼
Ppi

r¼1 w
r
iGðx; yri Þf yri for x 2 xi, where qi is the number of

quadrature points and wr
i and yri are quadrature weights and discretization points, respectively, ~Ei is defined

in the same way. It is important to notice that ~Ki is from Ht to Si since the quadrature points fyrig stay on yi.

Similarly, ~Ei is an operator from Ht to Siþ1. Therefore, both ~Li and Li are well-defined operators from Si, to
Si þ 1.

It can be shown that closure of Si in Ht is the orthogonal complement of a finite number of functions.
These functions span the null space of K. Therefore, Li, can be extended to be defined over the whole Ht by

using continuity and assigning Li to be zero operator on these finite number of functions. The norm of the

extension of Li is bounded by the Ht norm of Li on Si. The compactness of Li is also preserved. Similarly, the

same argument applies to Lðj:iÞ; �Li and ~Li. All of them can be defined over Ht. The goal of our analysis is to

estimate the Ht norm of ~LðnÞ � LðnÞ ¼ ~Ln
~Ln�1 � � � ~L0 � LnLn�1 � � � L0.

4.2.1. Single step error

Our first step is to estimate the error ~Li � Li for a single translation step. We split the error into two parts:
�Li � Li and �Li � ~Li.

We regard Ht as a Hilbert space with the standard scalar product defined by ðf ; gÞ ¼
Pt

i¼0

R 2p
0

DifDig.
Since Ki is a compact operator in Ht (Lemma 4.1), for any f 2 Ht we can expand Kif as

Kif ¼
X1
r¼0

rr
i ðf ; vri Þuri ;

where furig and fvrig are orthonormal bases in Ht and rr
i are singular values of Ki. In operator form, this

decomposition can be written as UiSiVi , where Vi : Ht ! l2 is defined by the map from f to the sequence

fðf ; vri Þg;Ui : l2 ! Ht maps a sequence of coefficients farg to
P

r a
ruri , and Si : l2 ! l2 is a diagonal op-

erator with entries rr
i . Clearly, UiU �

i ¼ I and ViV �
i ¼ I because the bases furig and fvrig are orthonormal.

Then

�Li ¼ EiðaiI þ K�
i KiÞ�1K�

i ¼ EiKþ
i KiðaiI þ K�

i KiÞ�1K�
i ¼ LiUiS2

i ðaiI þ S2
i Þ

�1U �
i :

As ai, approaches 0, UiS2
i ðaiI þ S2

i Þ
�1U �

i approaches I pointwisely. Since Li is compact in Ht norm, �Li ! Li

in Ht norm as ai ! 0 (Lemma 4.3 applied to the extensions of Li and �Li to Ht). Hence, for any fixed �, we
can choose a fixed ai, such that kLi � �Lik6 �

2
.

Since Nystr€om�s method is norm convergent for second-kind Fredholm integral equations in Ht (Lemma
4.4), as pi increases, ðaiI þ ~K�

i
~KiÞ�1

approaches ðaiI þ ~K�
i
~KiÞ�1

in Ht norm. Therefore, for any fixed � we can
find pi such that k�Li � ~Lik6 �

2
.

Combining the above estimates we get

k~Li � Lik6 kLi � �Lik þ k�Li � ~Lik6 � ð12Þ

by choosing ai, and pi based on �.
Since the kernel is homogeneous and related to a scale invariant PDE, Si and Li depend only on the

relative positions of the boxes Ci and Ciþ1. Therefore, there are only finite number of operators Li that can

appear in the above analysis: 4 from each of the M2M and L2L translations and 72 � 32 ¼ 40 from the

M2L translations. As we stated before, Ei and Ki can also be chosen to be level independent. Similarly, there

are only a finite number of Ei and Ki operators as well. Therefore, we can choose a and p uniformly so that

the estimate (12) applies for any Li, Ki and Ei.
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Total discretization error estimate. Using a single step norm estimate of ~L� L, we can estimate

k~LðnÞ � LðnÞk using Lemma 4.2. We use a constant C to denote the uniform bound for Lði:jÞ for all

06 j6 i6 n. Then for any i,

kLðiÞ � ~LðiÞk ¼
Xi

j¼0

Lði;jþ1ÞðLj

����� � ~LjÞ~Lðj�1Þ

�����6C� 1

 
þ
Xi�1

j¼0

k~LðjÞk
!
:

This expression gives us a recurrence relationship on the norm of k~LðiÞk:

k~LðiÞk6C þ C� 1

 
þ
Xi�1

j¼0

k~LðjÞk
!
:

Assuming CP �, from the recurrence we obtain

k~LðjÞk6 2Cð1þ C�Þj

and thus

k~LðnÞ � LðnÞk6C� 1

 
þ
Xn�1

j¼0

2Cð1þ C�Þj
!

¼ Cð2ðð1þ C�Þn � 1Þ þ �Þ: ð13Þ

Although this estimate has an exponential dependence on n, it is only an upper bound and, in our expe-

rience, quite pessimistic. Moreover, our numerical experiments show that the uniform bound C is a small
constant both in 2D and 3D for various kernels. Further, in actual calculations n is likely to be less than 40,

and � at least of order 10�4. Therefore, in practice ð1þ C�Þn � 1 behaves as Cn�.

Remark 4.1. Unlike our method, in the original analytic FMM method, there is no error associated with

M2M, M2L and L2L transformations. The only error introduced in the analytic FMM are the S2M and
M2T operators.

Remark 4.2. The basic parameters in our approximation are the regularization parameter a and the

number of quadrature points p. In general, the regularization parameter a is chosen to filter out the noise or

error in the data. In our experiments, we choose a to be a constant factor of the desired accuracy of the
FMM approximation ð�Þ and then we choose the correct number of quadrature points by trial-and-error.

The latter is very inexpensive because is independent of the size of the problem, and thus can be estimate

quickly with a small test case.
Remark 4.3. The error associated with an approximate integral evaluation

q� ~q ¼
Z

Gðx; yÞ/�
X
i

wiGðx; yiÞ/i

is the quadrature error. In 2D, we use the trapezoidal rule on the circle which is super-algebraically con-

vergent. This enables us to approximate the operator L with ~L with a small number of quadrature points.

However, to our knowledge, in 3D there is no simple integration rule on the sphere that will result in similar

high order accuracy; standard polynomial accuracy algorithms must be used. This is an important differ-

ence with the analytic FMM, which guarantees exponential convergence (on the number of multipole

terms) for the far field approximation. Nonetheless, in our numerical experiments we did not observe

noticeable differences between the 2D and 3D version.
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5. Numerical results

In this section, we present numerical results for our method. First, we examine the accuracy of the
equivalent density approximation. Second, we present results on the overall accuracy of the method.

5.1. Accuracy on the equivalent density approximation

In this section, we present results that indicate that our equivalent density approximations give good

accuracy in both two and three dimensions.

For two and three dimensions, we show the results of three kernels: the Laplace single layer kernel, the

modified Stokes double layer kernel and the Navier single layer kernel (Figs. 8 and 9). For each kernel, the
left plot is the accuracy of the upward equivalent density approximation, and the right one is the accuracy

of the downward equivalent density approximation. For the upward equivalent density, we give the error

for points in the exterior of the source box in the region corresponding to the interaction list of the box. For

the downward equivalent density, we give the error in the interior of the box. In all plots, the side length of

the box is 2; we calculate the error by taking the maximum norm over a sphere centered at the center of the

box. The abscissa of a plot is the radius of the sphere, and the ordinate is the logarithm of the error.

5.1.1. 2D case

Fig. 8 shows the error of the equivalent density approximation for the 2D Laplace single layer kernel, the

2D modified Stokes double layer kernel and the 2D Navier single layer kernel. In all three cases, the source

density is located close to a corner of the box. The regularization parameter a is chosen to be 10�12 in all

plots. Although not reported here, we have generated similar plots for all kernels given in Appendix A. All

results exhibited similar accuracy. 7 We do not have a strict analytic error bound like the analytic FMM

algorithm for the Laplace equation. However, Fig. 8 shows that our scheme gives comparable accuracy.

5.1.2. 3D case

Fig. 9 shows the equivalent density approximation errors for the 3D Laplace single layer kernel, the 3D

modified Stokes double layer kernel and the 3D Navier single layer kernel. In each case, the source density

is again placed close to one corner of the cube. The regularization parameter a used in these plots is 10�9.

5.2. Overall approximation error

In this section, we give wall-clock time and memory requirements for several kernels. All experiments

were performed on a Sun Ultra 80 workstation with a 450 MHz CPU. In 3D case, the FFTW package is
used for FFT computation. Our code has been implemented in C++.

In our experiments, we assume that the source points and the target points coincide. We use three sets of

density distributions in the cube with range ½�1; 1� in each dimension. The first set is a distribution on a

sphere, which is typically nonuniform. The second set is a uniform distribution of density in a cube. The last

set has densities only at one of the box corners. The objective of this set of points is to check the stability of

multiple M2M and L2L transformations of our method. For all density distributions, the densities are

chosen randomly from ½0; 1Þ. The three data sets for the 3D case are shown in Fig. 10.

We organize the table in a way similar to [7].
7 In some plots for 2D case, the 32-point error curve has larger error than the 24-point error curve. This is related to the

regularization: we use 10�12 for a when solving the inverse problem and this complicates direct comparisons as we increase p.



Fig. 8. Results of the equivalent density approximation in 2D. Left: the error of the upward equivalent density approximation. Right:

the error of the downward equivalent density approximation. The abscissa of the plots is the radius of the sphere Rs, and the ordinate is

the logarithm of the error �app. The solid curve is the maximum norm of the potential. The remaining three curves show the maximum

norm error for 16-, 24- and 32-point approximation of the equivalent densities. For modified Stokes, we tested k from 1E) 3 to 1E+3

and obtained similar error plots. For k greater than 1E+3, far field interaction is negligible.

612 L. Ying et al. / Journal of Computational Physics 196 (2004) 591–626



Fig. 9. Results of the equivalent density approximation in 3D. Left: the error of the upward equivalent density approximation. Right,

the error of the downward equivalent density approximation. The abscissa of the plots is the radius of the sphere Rs, and the ordinate is

the logarithm of the error �app: For each plot, the solid curve shows the maximum norm of the potential. The rest three plots show the

maximum norm error where the equivalent density is approximated with 56, 152 and 296 points. These numbers correspond to dis-

cretization points that are the boundary nodes of volume Cartesian grids of size 4� 4� 4, 6� 6� 6, 8� 8� 8 (per box).
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Fig. 10. Three data sets in 3D: Left: densities distributed on the unit sphere, Middle: densities distributed uniform in the unit cube,

Right: densities distributed at the eight corners of the unit cube.
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The columns of every table represent the following quantities.

N: the number of points used in computation (we use the same number of source and target points).

R: the number of levels of the computation tree.

M: the number of boxes in the computation tree.

p: the number of discretization points used in the equivalent density approximations. In 2D exam-

ples, we use 16, 24 and 32 points. In 3D examples, we choose the discretization points to be the

boundary nodes of volume Cartesian grids of size 4� 4� 4, 6� 6� 6, 8� 8� 8. These numbers

correspond to 56, 152 and 296 points, respectively.
s: the maximum number of points allowed in a leaf box of the computation tree.

Storage: the memory used to store M2M, M2L, and L2L translations.

Tfmm: the running time of our algorithm.

Tdir: the running time of the direct evaluation. For each table, only the number in the first line is ac-

tually tested; all other numbers are obtained by extrapolation. The error is computed in relative 2-

norm. We randomly select k points x1; x2; . . . ;xk, evaluate the potential qi, using our algorithm

and the potential ~qi using direct evaluation at these k points. The error is estimated using the for-

mula from [7]:

E ¼
Pk

i¼1 jqi � ~qij2Pk
i¼1 j~qij

2

 !1=2

;

where k is chosen to be 40 in all experiments.

Below, we report the results on the first two data sets (nonuniform and uniform distribution) for five

different kernels:

• 2D Laplace single layer kernel (Table 1),

• 3D Laplace single layer kernel (Table 2),

• 3D Modified Laplace single layer kernel (Table 3),

• 3D Modified Stokes double layer kernel (Table 4),

• 3D Navier single layer kernel (Table 5).
Our results from 2D are quite satisfactory since we can compute interactions between 2 million particles

in six digits of accuracy in around 90 s, as we can see in Table 1. We discuss relative performance of our

method in greater detail in the 3D case since this is more difficult to implement efficiently. We compare with

results from two papers: the single-layer 3D Laplacian results of Cheng et al. [7] and modified single-layer

3D Laplacian results of Greengard and Huang [13].



Table 1

Performance for particles interacting via the single-layer Laplacian in 2D

N R M P s Storage (Mb) Tfmm (s) Tdir (s) Error

The particles are uniformly distributed on the perimeter of a circle

32,768 10 2989 16 40 1.52E+00 1.53E+00 1.71E+02 2.80E) 06

131,072 12 11,857 16 40 1.91E+00 5.85E+00 2.74E+03 1.24E) 06

524,288 14 47,241 16 40 2.30E+00 2.36E+01 4.39E+04 1.51E) 06

2097,152 16 190,601 16 40 2.69E+00 9.32E+01 7.02E+05 2.80E) 06

32,768 9 1597 24 60 2.97E+00 1.92E+00 1.71E+02 2.68E) 08

131,072 12 6505 24 60 3.94E+00 7.47E+00 2.74E+03 2.84E) 08

524,288 14 26,073 24 60 5.10E+00 2.97E+01 4.39E+04 3.36E) 08

2,097,152 16 104,129 24 60 5.98E+00 1.24E+02 7.02E+05 2.24E) 08

32,768 9 1493 32 80 5.28E+00 2.23E+00 1.71E+02 1.89E) 10

131,072 11 5953 32 80 6.84E+00 1.03E+01 2.74E+03 1.77E) 10

524,288 13 23,825 32 80 8.41E+00 4.04E+01 4.39E+04 7.05E) 10

2,097,152 15 95,425 32 80 9.97E+00 1.49E+02 7.02E+05 6.03E) 10

The particles are uniformly distributed inside a cube

32,768 8 2837 16 40 1.14E+00 1.45E+00 1.71E+02 5.72E) 07

131,072 10 12,245 16 40 1.53E+00 5.26E+00 2.74E+03 3.71E) 07

524,288 12 47,829 16 40 1.92E+00 2.16E+01 4.39E+04 4.46E) 07

2,097,152 14 189,717 16 40 2.31E+00 8.89E+01 7.02E+05 5.24E) 07

32,768 7 1557 24 60 2.13E+00 1.78E+00 1.71E+02 2.05E) 09

131,072 9 5909 24 60 3.01E+00 7.21E+00 2.74E+03 2.50E) 09

524,288 11 25,557 24 60 3.88E+00 2.75E+01 4.39E+04 1.64E) 09

2,097,152 14 104,085 24 60 4.85E+00 1.07E+02 7.02E+05 1.48E) 09

327,68 7 1557 32 80 3.78E+00 2.12E+00 1.71E+02 2.83E) 11

131,072 9 5269 32 80 5.34E+00 8.81E+00 2.74E+03 2.87E) 11

524,288 11 23,893 32 80 6.91E+00 3.54E+001 4.39E+04 2.17E) 11

2,097,152 13 95,253 32 80 8.47E+00 1.34E+02 7.02E+05 6.50E) 11
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In the first paper, the authors use a 167 MHz Sun workstation and in the second a 440 MHz Sun

platform. As mentioned before we are using a 450 MHz Sun workstation. The metric we use for the

purposes of comparison is the total number of CPU cycles in millions per grid point. We compute this

number as

g ¼ Tfmm � CPU

N
;

where ga and g are the numbers of cycles per particle for the analytic FMM and and for our algorithm, re-

spectively. This is a only rough estimate that does not take into account the difference in chip architecture (e.g.,

memory bus clock), different floating point precision of the calculations (most calculations in the first paper

were performed in single precision, all our results are in double precision), and different input densities.

First, we compare Table 2 with [7, Tables IV–VI]. For the three digit accuracy (Table IV) the average ga
is 0.07 for single precision. Our method achieves an g equal to 0.11 (in double digit accuracy), approxi-

mately a factor of 1.5 slower. Similar conclusions hold for the six-digit accuracy results (Table V), for which

the analytic FMM achieves ga ¼ 0:15 in single precision, whereas our method achieves g ¼ 0:23 in double
precision. For the modified single layer Laplacian we compare the six-digit accuracy entries [13, Table I]

with Table 3 (uniform distribution in a cube). In this case, ga ¼ 0:3 and g ¼ 0:4, which is slightly better than

1.5; the actual difference in performance is even less, since we achieving about one additional digit of ac-

curacy (average error 7� 10�7 for the analytic FMM compared an average of 7� 10�8 in our case).



Table 2

Performance for particles interacting via the single layer Laplacian in 3D

N R M P s Storage (Mb) Tfmm (s) Tdir (s) Error

The particles are distributed on the surface of a sphere

24,576 6 1377 56 60 1.72E+00 5.72E+00 9.74E+01 2.12E) 05

98,304 7 5049 56 60 1.72E+00 2.38E+01 1.56E+03 3.21E) 05

393,216 8 19,065 56 60 1.72E+00 9.51E+01 2.49E+04 6.08E) 05

1,572,864 9 76,185 56 60 1.72E+00 3.82E+02 3.99E+05 6.03E) 05

24,576 5 585 152 150 5.90E+00 1.16E+01 9.74E+01 3.34E) 07

98,304 6 2289 152 150 5.90E+00 4.76E+01 1.56E+03 5.86E) 08

39,3216 7 11,193 152 150 5.90E+00 2.18E+02 2.49E+04 2.45E) 07

1,572,864 9 44,145 152 150 5.90E+00 8.35E+02 3.99E+05 3.08E) 07

24,576 4 273 296 250 1.47E+01 1.81E+01 9.74E+01 1.59E) 09

98,304 6 1449 296 250 1.47E+01 8.15E+01 1.56E+03 1.40E) 09

393,216 7 5073 296 250 1.47E+01 3.41E+02 2.49E+04 1.10E) 09

1,572,864 8 19,161 296 250 1.47E+01 1.38E+03 3.99E+05 2.81E) 09

The particles are uniformly distributed inside a cube

24,576 4 585 56 60 1.72E+00 6.40E+00 9.74E+01 6.64E) 06

98,304 5 3657 56 60 1.72E+00 3.11E+01 1.56E+03 1.27E) 05

393,216 7 28,233 56 60 1.72E+00 1.30E+02 2.49E+04 5.00E) 05

1,572,864 8 88,137 56 60 1.72E+00 4.08E+02 3.99E+05 5.84E) 05

24,576 4 585 152 150 5.90E+00 1.60E+01 9.74E+01 1.54E) 08

98,304 5 3657 152 150 5.90E+00 9.28E+01 1.56E+03 4.70E) 08

393,216 6 14,409 152 150 5.90E+00 3.18E+02 2.49E+04 1.10E) 07

1,572,864 7 37449 152 150 5.90E+00 8.47E+02 3.99E+05 2.13E) 07

24,576 4 585 296 250 1.47E+01 3.65E+01 9.74E+01 5.25E) 10

98,304 4 585 296 250 1.47E+01 1.11E+02 1.56E+03 4.57E) 10

393,216 5 3657 296 250 1.47E+01 4.31E+02 2.49E+04 6.85E) 10

1,572,364 6 17,481 296 250 1.47E+01 1.46E+03 3.99E+05 1.46E) 09
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Another reason our method is slower might be related to the dense interactions. In order to save storage

we do not precompute them, and we have found that this slows down our method by a factor of 2–4. The

most time consuming part is computing the 1=
ffiffiffiffiffiffiffiffiffiffiffi
ðr � rÞ

p
term, which we have found impossible to optimize

either with lookup tables or with special vector routines available from most vendors. For large problems

that require several summations for the same particle partitions further running time improvements can be

achieved by precomputing and storing all dense interactions. The memory requirements in this case can be

substantial.

In conclusion, it appears that our method compares reasonably well with the analytic FMM by being a

factor of 1.5 or less slower. Extending our code from the Laplacian to the modified Laplacian was very easy

as we simply implemented a different kernel evaluation. Inspecting the results for the other kernels, we can

confirm the OðNÞ complexity of our method and the convergence to the exact sum as we increase the
number of quadrature points.

In all experiments, we store only the linear operators for M2M, M2L and L2L translations, since these

operators are applied repetitively in a single pairwise interaction evaluation. The dense interactions between

adjacent boxes are not stored. The storage number reported in all tables considers only the memory used by

M2M, M2L and L2L operators, while the storage used to store the densities and potentials (which scales

linearly with respect to the number of points and boxes) is not included. This explains why for the results of



Table 3

Performance of our method for particles interacting via the modified single layer Laplacian in 3D

N R M P s Storage (Mb) Tfmm (s) Tdir (s) Error

The particles are distributed on the surface of a sphere

6144 5 441 56 60 4.55E+00 1.97E+00 1.15E+01 3.55E) 05

24,576 6 1377 56 60 6.27E+00 8.24E+00 1.83E+02 7.71E) 05

98,304 7 5049 56 60 8.29E+00 3.33E+01 2.94E+03 3.11E) 05

39,3216 8 19,065 56 60 1.00E+01 1.28E+02 4.70E+04 8.22E) 05

6144 4 225 152 150 1.08E+01 4.38E+00 1.15E+0l 2.48E) 07

24,576 5 585 152 150 1.57E+01 1.99E+01 1.83E+02 9.55E) 08

98,304 6 2289 152 150 2.26E+01 7.58E+01 2.94E+03 3.18E) 07

393,216 7 11,193 152 150 2.85E+01 3.39E+02 4.70E+04 3.63E) 07

6144 3 57 296 250 1.18E+01 6.90E+00 1.15E+01 2.50E) 09

24,576 4 273 296 250 2.64E+01 3.00E+01 1.83E+02 1.88E) 09

98,304 6 1449 296 250 5.30E+01 1.23E+02 2.94E+03 1.96E) 09

39,3216 7 5073 296 250 6.99E+01 5.35E+02 4.70E+04 3.71E) 09

The particles are uniformly distributed in a cube

6144 4 585 56 60 3.35E+00 3.72E+00 1.15E+01 5.28E) 06

24,576 4 585 56 60 3.35E+00 1.06E+01 1.83E+02 2.29E) 05

98,304 5 3657 56 60 5.07E+00 4.25E+01 2.94E+03 3.98E) 05

393,216 1 28,233 56 60 8.14E+00 1.64E+02 4.70E+04 4.88E) 05

6144 3 73 152 150 5.38E+00 4.09E+00 1.15E+01 2.10E) 08

24,576 4 585 152 150 1.13E+01 2.11E+01 1.83E+02 9.86E) 08

98,304 5 3657 152 150 1.72E+01 1.08E+02 2.94E+03 7.23E) 08

393,216 6 14,409 152 150 2.31E+01 4.14E+02 4.70E+04 4.57E) 08

6144 3 73 296 250 1.29E+01 5.87E+00 1.15E+01 7.15E) 10

24,576 4 585 296 250 2.75E+01 4.39E+01 1.83E+02 6.02E) 10

98,304 4 585 296 250 2.75E+01 1.98E+02 2.94E+03 4.28E) 10

393,216 5 3657 296 250 4.22E+01 6.65E+02 4.70E+04 8.24E) 10
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homogeneous kernels (Tables 2 and 5), the storage numbers remain small and do not increase with the

number of points and the number of levels.

Stability of multiple M2M and L2L translations. Here we test the stability of the M2M and L2L

translations of our algorithm using the last data set which only has density distribution at the corners of the

cube. Table 6 shows the result on this data set with 2D Laplace single layer kernel. Table 7 reports the

errors with 3D Laplace single layer kernel.
6. Conclusions and future work

We have presented a new kernel-independent fast multipole method, which generalizes FMM to a broad

class elliptic kernels while attaining an algorithmic complexity (including constants) which is on par with

the analytic FMM. Here, we summarize the main features of our algorithm.

• Our algorithm has the same structure as the original adaptive FMM method.

• We have demonstrated that the method performs well for single and double layers, the Laplacian, the
modified Laplacian, the Stokes, the modified Stokes, and the Navier kernels in two and three dimen-

sions. By providing just a kernel evaluation routine our method is immediately applicable, as long as

the kernel is associated with a non-oscillatory second-order elliptic PDEs.



Table 4

Performance of our method for particles interacting via the modified double layer Stokes kernel in 3D

N R M P s Storage (Mb) Tfmm (s) Tdir (s) Error

The particles are distributed on the surface of a sphere

6144 5 441 56 60 8.18E+01 2.65E+01 1.04E+02 9.56E) 04

24,576 6 1377 56 60 1.13E+02 1.02E+02 1.66E+03 1.45E) 03

98,304 1 5049 56 60 1.49E+02 3.91E+02 2.66E+04 1.47E) 03

6144 4 225 152 150 2.00E+02 7.59E+01 1.04E+02 5.66E) 06

24,576 5 585 152 150 2.92E+02 2.39E+02 1.66E+03 6.90E) 06

98,304 6 2289 152 150 4.20E+02 l.OlE+ 03 2.66E+04 1.06E) 05

6144 3 57 296 250 2.16E+02 6.44E+01 1.04E+02 8.77E) 08

24,576 4 273 296 250 4.89E+02 3.59E+02 1.66E+03 1.67E) 07

98,304 6 1449 296 250 9.87E+02 1.69E+03 2.66E+04 1.88E) 07

The particles are uniformly distributed in a cube

6144 4 585 56 60 6.03E+01 6.97E+01 1.04E+02 5.32E) 04

24,576 4 585 56 60 6.03E+01 1.23E+02 1.66E+03 5.01E) 04

98,304 5 3657 56 60 9.13E+01 6.09E+02 2.66E+04 7.00E) 04

6144 3 73 152 150 9.87E+01 4.35E+01 1.04E+02 1.77E) 06

24,576 4 585 152 150 2.09E+02 3.57E+02 1.66E+03 2.96E) 06

98,304 5 3657 152 150 3.19E+02 2.04E+03 2.66E+04 9.32E) 06

6144 3 73 296 250 2.36E+02 7.63E+01 1.04E+02 3.71E) 08

24,576 4 585 296 250 5.09E+02 8.28E+02 1.66E+03 8.02E) 08

98,304 4 585 296 250 5.09E+02 2.01E+03 2.66E+04 9.88E) 08

Table 5

Performance of our method for particles interacting via the single layer Navier kernel in 3D

N R M P s Storage (Mb) Tfmm (s) Tdir (s) Error

The particles are distributed on the surface of a sphere

6144 5 441 56 60 1.55E+01 1.29E+01 5.91E+01 8.54E) 05

24,576 6 1377 56 60 1.55E+01 4.93E+01 9.46E+02 6.71E) 05

98,304 1 5049 56 60 1.55E+01 1.98E+02 1.51E+04 6.32E) 05

6144 4 225 152 150 5.50E+01 3.29E+01 5.91E+01 1.07E) 06

24,576 5 585 152 150 5.50E+01 1.10E+02 9.46E+02 1.66E) 06

98,304 6 2289 152 150 5.50E+01 4.59E+02 1.51E+04 1.02E) 06

6144 3 57 296 250 1.08E+02 3.28E+01 5.91E+01 7.30E) 09

24,576 4 273 296 250 1.36E+02 1.82E+02 9.46E+02 8.51E) 09

98,304 6 1449 296 250 1.36E+02 8.51E+02 1.51E+04 8.73E) 09

The particles are uniformly distributed in a cube

6144 4 585 56 60 1.55E+01 3.41E+01 5.91E+01 3.70E) 05

24,576 4 585 56 60 1.55E+01 6.65E+01 9.46E+02 4.82E) 05

98,304 5 3657 56 60 1.55E+01 3.13E+02 1.51E+04 6.68E) 05

6144 3 73 152 150 4.94E+01 2.19E+01 5.91E+01 1.81E) 07

24,576 4 585 152 150 5.50E+01 1.62E+02 9.46E+02 3.50E) 07

98,304 5 3657 152 150 5.50E+01 9.48E+02 1.51E+04 4.86E) 07

6144 3 73 296 250 1.18E+02 3.78E+01 5.91E+01 2.56E) 09

24,576 4 585 296 250 1.36E+02 4.22E+02 9.46E+02 3.58E) 09

98,304 4 585 296 250 1.36E+02 1.00E+03 1.51E+04 4.39E) 09
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Table 6

Performance of our method for a the 2D single layer Laplacian

N R M P s Storage (Mb) Tfmm (s) Tdir (s) Error

524,288 18 47,449 16 40 2.17E+00 2.17E+01 4.39E+04 4.46E) 06

524,288 18 26,041 24 60 4.54E+00 2.63E+01 4.39E+04 1.20E) 08

524,288 17 23,833 32 80 7.91E+00 3.50E+01 4.39E+04 1.04E) 10

In this experiment the particles are distributed over the boundaries of four circles. These circles are quite small compared the size of

the (square) computational domain, and located near to the four corners of the domain. In this way the tree is ’’forced’’ to have many

levels (up to 18). We use this experiment to test the numerical stability of our M2M and L2L translations.

Table 7

Performance of our method for a the 3D single layer Laplacian

N R M P s Storage (Mb) Tfmm (s) Tdir (s) Error

196,608 12 11057 56 60 1.72E+00 4.58E+01 6.23E+03 1.75E) 05

196,608 11 4721 152 150 5.90E+00 1.04E+02 6.23E+03 1.20E) 07

196,608 10 2225 296 250 1.47E+01 1.50E+02 6.23E+03 1.53E) 09

In this experiment the particles are distributed over the boundaries of eight spheres. These spheres are quite small compared the size

of the (cubic) computational domain, and located near to the eight corners of the box.
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• Comparisons of the running times between our method and the best known FMM implementations, and

for same accuracy levels, indicate that our approach was successful in efficiently extending FMM to

other kernels.

• I�o our knowledge, our results are the first fast summation computations for the modified Stokes and
Navier operators.

• Our method is also directly applicable for derivatives of the kernels we have presented here. Indeed, we

have tested our method on the hypersingular kernels resulting from differentiating the double layer

Stokes and Navier equations.

• The M2L translations in our method are suboptimal. In 3D, the analytic exponential translations require

O(p), whereas ourmethod requiresO (p3=2), where p is the number of coefficients used in the approximation

(the number of moments in the analytic FMM, and the number of discretization points in our method).

• Our method does not have a level independent error estimate that comes with the original FMM algo-
rithm for Laplacian kernel. However, the error analysis in Section 4 shows that in practice the error can

increase with the depth at most in a linear fashion.

In this paper, we have focused on second order constant coefficient PDEs with non-oscillatory solutions.

However, our method is not restricted to such systems. It should be straightforward to generalize it to

higher order systems like the biharmonic equation. In such cases the Dirichlet problem involves first and

second derivatives of the underlying field. We can either differentiate the kernel to obtain the derivatives or

use a set of two check-point surfaces. We plan to explore this approach in the future.

Another class of problems is related to second-order PDEs with oscillatory solutions or Helmholtz-type
problems. For low frequencies, we have performed preliminary tests (on the M2M and L2L transforma-

tions) that indicate that our method works as is. An implementation for this class of problems, adding the

kernels and support for complex numbers, is under way.

Finally let us mention that our method has been fully parallelized using MPI. Algorithmic details and

numerical results will be presented in other papers.
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Appendix A. Kernels

In this section, we give a summary of the elliptic partial differential equations (PDEs) studied in this

paper and their relevant kernels. In the formulas below, y is the location of the singularity, x is the location

the evaluation point, n a unit vector (usually the normal direction at y), r ¼ x� y and r ¼ jrj, denoting the

length or r. S stands for single layer and D for double layer.

Laplace equation:

�Du ¼ 0;
Sðx; yÞ ¼
1
2p ln

1
r ð2DÞ;

1
4p

1
r ð3DÞ;

�
Dðx; yÞ ¼ � 1

2p
1
r2 ðr � nÞ ð2DÞ;

� 1
4p

1
r3 ðr � nÞ ð3DÞ:

�
Modified Laplace equation:

au� Du ¼ 0;
Sðx; yÞ ¼
1
2p k0ðkrÞ ð2DÞ;
1
4p

1
r e

�kr ð3DÞ;

�
Dðx; yÞ ¼ � k

2p
k1ðkrÞ

r ðr � nÞ ð2DÞ;
� 1

4p
1
r3 þ k

r2

� �
e�krðr � nÞ ð3DÞ;

�

where k ¼
ffiffiffi
a

p
.

Stokes equation (incompressible creeping flows):

�lDqþrp ¼ 0; Divq ¼ 0;
Sðx; yÞ ¼
1

4pl ðln 1
r I þ r�r

r2 Þ ð2DÞ;
1

8pl ð1r I þ r�r
r3 Þ ð3DÞ;

(
Dðx; yÞ ¼ � 1

p
r�r
r4 ðr � nÞ ð2DÞ;

� 6
8p

r�r
r5 ðr � nÞ ð3DÞ:

�

Modified Stokes equation (unsteady incompressible creeping flows):

aq� lDqþrp ¼ 0; Divq ¼ 0;
Sðx; yÞ ¼ 1

l
ðGI þ Hðr� rÞÞ;
Dðx; yÞ ¼ Aððr � nÞI þ n� rÞ þ Bðr� nÞ þ Cðr � nÞðr� rÞ;

where

G ¼ �frr � ðd � 2Þ fr ;

r

H ¼ frr
2
� fr

3
;

r r
A ¼ � frrr
r

� ðd � 3Þ frr
r2

þ ðd � 3Þ fr
r3
;
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B ¼ �p þ 2
frr
r2

� 2
fr
r3
;

C ¼ 2
frrr
r3

� 6
frr
r4

þ 6
fr
r5
;

and

f ¼
1

2pk2
ðlnð1rÞ � k0ðkrÞÞ ð2DÞ;

1

4pk2
ð1r � 1

r e
�krÞ ð3DÞ;

(
p ¼

1
2p

1
r2 ð2DÞ;

1
4p

1
r4 ð3DÞ;

�
k ¼

ffiffiffi
a
l

r
:

Navier equation (elastostatics):

�lDq� l
1� 2m

r �Divq ¼ 0;
Sðx; yÞ ¼
1
l

3�4m
8pð1�mÞ logð1rÞ þ 1

8pð1�mÞ
ðr�rÞ
r2

� 	
ð2DÞ;

1
l

3�4m
16pð1�mÞ

1
r þ 1

16pð1�mÞ
ðr�rÞ
r3

� 	
ð3DÞ;

8<:

Dðx; yÞ ¼

1�2m
4pð1�mÞ � ððr�nÞIþn�rÞ

r2 þ ðr�nÞ
r2 � 2

1�2m
ðr�nÞðr�rÞ

r4

� 	
ð2DÞ;

1�2m
8pð1�mÞ � ððr�nÞIþn�rÞ

r3 þ ðr�nÞ
r3 � 3

1�2m
ðr�nÞðr�rÞ

r5

� 	
ð3DÞ:

8<:
Modified Navier equation (Elastodynamics):

aq� lDq� l
1� 2m

r �Divq ¼ 0;
Sðx; yÞ ¼ 1

l
ðGI þ Hðr� rÞÞ;
Dðx; yÞ ¼ ððr � nÞI þ n� rÞ þ Bðr� nÞ þ Cðr � nÞðr� rÞ;

where

G ¼ g2f � frr þ ðbþ 1� dÞ fr
r
;

H ¼ b
frr
r2

� b
fr
r3
;

A ¼ � 1

r
frrr þ

2bþ 1� d
r2

frr þ
g2

r

�
� 2bþ 1� d

r3

�
fr;
B ¼ cðb� 1Þ
r

frrr þ
2bþ cðb� 1Þðd � 1Þ

r2
frr þ

cg2

r

�
� 2bþ cðb� 1Þðd � 1Þ

r3

�
fr;
C ¼ 2b
r3

frrr �
6b
r4

frr þ
6b
r5

fr



622 L. Ying et al. / Journal of Computational Physics 196 (2004) 591–626
and

f ¼
1

2pðk2�g2Þ ðk0ðgrÞ � k0ðkrÞÞð2DÞ;
1

4pðk2�g2Þ ð
1
r e

�gr � 1
r e

�krÞð3DÞ;

8<:

k ¼

ffiffiffi
a
l

r
; g ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 2m
2ð1� mÞ �

a
l

s
; b ¼ 1

2ð1� mÞ ; c ¼ 2m
1� 2m

:

Appendix B. Coefficients of fast multipole method

We give the coefficients of the FMM for 2D single layer Laplacian. Fig. 1 illustrates the relative positions

of the symbols used in the following equations.

Multipole expansion. Suppose the m source densities f/jg located at fzjg, with jzj � zCj < r, then for any
jz� zCj > R, the induced potential qðzÞ can be approximated by:

qðzÞ ¼ a0logðz� zCÞ þ
Xp
k¼1

ak
ðz� zCÞk

¼ O
rp

Rp

� �
; ðB:1Þ

where fak; 06 k6 pg satisfies

a0 ¼
Xm
j¼1

/j and ak ¼
Xm
j¼1

�/iðzi � zCÞk

k
:

Local expansion. Suppose the m source densities f/jg located at fzjg, with jzj � zCj > R, then for any

jz� zCj < r, the induced potential qðzÞ can be approximated by:

qðzÞ ¼
Xp
k¼0

ckðz� zCÞk þ O
rp

Rp

� �
; ðB:2Þ

where fck; 06 k6 pg satisfies

c0 ¼
Xm
j¼1

/j logðzC � zjÞ and cl ¼
Xm
j¼1

�/j

lðzj � zCÞl
:

M2M translation. Suppose zC is the center of a box and zM is the center of its parent. Suppose further

fakg is the multipole expansion at zC, then the multipole expansion at zM can be written as:

qðzÞ ¼ b0 logðz� zMÞ þ
Xp
l¼1

bl
ðz� zMÞl

þ Oð�Þ; ðB:3Þ

where fbk; 06 k6 pg satisfies

b0 ¼ a0 and bl ¼ � a0ðzC � zMÞl

l
þ
Xl
k¼1

akðzC � zMÞl�k l� 1
k � 1

� �
:

M2L translation. Suppose zM and zL are the centers of two non-adjacent boxes on the same level, fbkg is

multipole expansion at zM. Then the local expansion at zL transformed from fbkg is:
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qðzÞ ¼
Xp
l¼0

clðz� zLÞl þ Oð�Þ; ðB:4Þ

where fck; 06 k6 pg satisfies

c0 ¼ b0 logðzL � zMÞ þ
Xp
k¼1

bk
ðzM � zLÞk

ð�1Þk;
cl ¼ � b0
lðzM � zLÞl

þ 1

ðzM � zLÞl
Xp
k¼1

bk
ðzM � zLÞk

lþ k � 1

k � 1

� �
ð�1Þk:

L2L translation. Suppose zT is the center of a box and zL the center of its parent. Suppose further fclg is
the local expansion at zL, then the local expansion at zT can be written as

qðzÞ ¼
Xp
l¼0

dlðz� zTÞl þ Oð�Þ; ðB:5Þ

where fdk; 06 k6 pg satisfies

dl ¼
Xp
k¼1

ck
k
l

� �
ðzT � zLÞðk�lÞ

:

Appendix C. Proofs of lemmas

Proof of Lemma 4.1. First, we prove the compactness of Ki and Ei. Since yi and xi are disjoint, the kernel G

in Ki is C1 in both variables. Thus, Ki, as a convolution operator with C1 kernel, is compact in Ht norm. Ei

is also compact in Ht norm since yi is disjoint from xiþ1.

Now, we prove that Li is compact in Ht norm (see Fig. 11 for the domains involved). Suppose qi 2 Si on
xi, we can find /i 2 Ht on yi, such that /i ¼ Kþ

i qi.
Since K½yi ! xi�ð/iÞ ¼ Ki/i ¼ KiKþ

i qi ¼ qi ¼ qi, K½yi ! Di�ð/iÞ is the solution of boundary value

problem on domain Di with boundary condition qi. On the other hand, qiþ1 ¼ Eið/iÞ ¼ K½yi ! xiþ1� is the
solution of this problem on xiþ1. Hence, LiðqiÞ ¼ EiKþ

i ðqiÞ ¼ Eið/iÞ ¼ qiþ1 is equivalent to the Poisson
y
i x

i x
i+1

D
i

Fig. 11. The domains used in the proof of Lemma 4.1 where Li corresponds to a M2M translation. The grayed region is Di.
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formula which evaluates the potential at xiþ1 from the potential at xi. The kernel in Poisson formulae,

which corresponds to the fundamental solution of the PDE with domain Di, is C1 smooth since xi; and xiþ1

are disjoint. This means that the Poisson formulae represents a compact operator in Ht norm for any t.
Therefore, Lt is a compact operator in Ht norm. h

To clarify the idea behind the proof, we give the analytic form of the M2M translation operator for a
simplified case for the single layer potential for the 2D Laplacian. The main reason for the compactness is

the inclusion of xi, in xiþ1.

We assume that the three surfaces yi, xi and xiþ1 are concentric circles such that their radii qe
i , q

c
i and qc

iþ1

satisfy the condition 06 qe
i 6 qc

i 6 qc
iþ1.

Standard logarithm expansion and simple algebraic manipulations yield

log jx� yj ¼ log jxj þ
X1

k¼�1;k 6¼0

ð�1Þk

jkj
jyj
jxj

� �jkj

eikhxe�ikhy ; ðC:1Þ

where hx and hy are the polar coordinate angles of the position vectors x and y, respectively. If we assume

that this kernel acts on the space of continuous periodic functions in ½0; 2p� with zero mean and we can drop

the log jxj term. As the trigonometric functions are orthogonal on L2ð0; 2pÞ, the above expression is a

diagonalization of the single layer operator. As the eigenvalues are all positive, they coincide with singular

values.

First, we solve Ki/i ¼ qi. In this case, since jxj ¼ pci P jyj ¼ qe
i , the singular values decay exponentially,

so the problem Ki/i ¼ qi is ill-posed: small perturbations on the high frequency components of qc get
exponentially amplified. However, since qi; is the potential induced by the densities in the interior of yi, /i is

a well-defined function with the following relationship on Fourier coefficients:

b/iðkÞ ¼ ð�1Þkjkj qc
i

qe
i

� �jkj bqiðkÞ:
Second, we evaluate qiþ1 with Ei/i. The Fourier coefficients of qiþ1 are given by
q̂iþ1ðkÞ ¼
ð�1Þk

jkj
qe
i

qe
iþ1

� �jkj

/̂iðkÞ ¼
qc
i

qc
iþ1

� �jkj

q̂iðkÞ:
This expression actually gives the singular value decomposition of Li using the trigonometric basis on the

circle, where qc
i =q

c
iþ1

� �jkj
are the singular values of Li. The singular values decay exponentially to zero since

qc
i < qc

iþi, therefore Lia compact operator (with analytic kernel).

Proof of Lemma 4.2. A product of LðkÞ terms each one being an L operator, represents a sequence of M2M

translations followed by a M2L translation and followed by a sequence L2L translations. To prove the

lemma, we only need to show the existence of uniform bounds for the cases where LðkÞ corresponds to a

sequence of M2M translations or a sequence of L2L translations. Here, we prove the latter case. The proof

for the other case is the same.

Suppose LðkÞ transforms qA;d at xA;d of box A into qB;d at xB;d of box B. Since LðkÞ only involves L2L
translations, B is contained in A and it is k level deeper in the computation tree. Suppose A has halfwidth r,
from Section 3.2, we know xA;d has radius ð

ffiffiffiffiffiffiffiffiffiffiffi
2þ d

p
Þr and xB;d for any box B is contained in a circle which is

concentric to xA;d and has radius ð
ffiffiffiffiffiffiffiffiffiffi
2þ d

2

q
Þr. Hence, xB;d is always away from xA;d by a distance d

2
r, which is

independent of k.
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As we pointed out in the proof of Lemma 4.1, the transformation LðkÞ can be viewed in a different way: it

is equivalent to the Poisson formulae which evaluates the potential at xB;d from the potential qA;d at xA;d.

The Ht norm of the Poisson formula grows to infinity only when xB;d and xA;d approach to each other. In
our case, since xB;d and xA;d are separated by a distance d

2
r which is independent of k, the norm of LðkÞ is

bouned from above uniformly. h
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