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This article presents a general approach akin to domain-decomposition methods to solve 
a single linear PDE, but where each subdomain of a partitioned domain is associated to 
a distinct variational formulation coming from a mutually well-posed family of broken
variational formulations of the original PDE. It can be exploited to solve challenging 
problems in a variety of physical scenarios where stability or a particular mode of 
convergence is desired in a part of the domain. The linear elasticity equations are solved 
in this work, but the approach can be applied to other equations as well. The broken 
variational formulations, which are essentially extensions of more standard formulations, 
are characterized by the presence of mesh-dependent broken test spaces and interface trial 
variables at the boundaries of the elements of the mesh. This allows necessary information 
to be naturally transmitted between adjacent subdomains, resulting in coupled variational 
formulations which are then proved to be globally well-posed. They are solved numerically 
using the DPG methodology, which is especially crafted to produce stable discretizations of 
broken formulations. Finally, expected convergence rates are verified in two different and 
illustrative examples.

© 2017 Elsevier Inc. All rights reserved.

1. Introduction

Many equations arising from physical applications can be given a variational formulation, which can then be analyzed 
using functional analysis, and solved using a discrete version of the formulation and the finite element method [12,29]. In 
fact, for a fixed set of equations, there may even be multiple variational formulations which are essentially equivalent to 
the initial equations. Typically, some of these formulations have significant advantages and disadvantages over the other 
formulations. For example, in linear elasticity, the classical formulation coming from the principle of virtual work is well-
known to be computationally efficient to solve with the Galerkin method, but is subject to volumetric locking phenomena 
for nearly incompressible materials [29]. On the other hand, the Hellinger–Reissner mixed formulation is not as efficient, 
but it does remain robustly well-posed for nearly incompressible materials and produces a locally conservative stress tensor 
[22,6].

This article studies the scenario where distinct variational formulations are implemented in different subdomains of 
the same physical domain. This can be useful in situations where a certain behavior of the equations to be solved is 
known (or expected) in particular parts of the domain. Hence, in each region one can choose a variational formulation 
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which is well-suited to the expected behavior. For example, consider a material with heterogeneous material properties 
varying within the domain. The properties can vary continuously, as in cloaking applications or biological materials, or 
discontinuously, as in multi-material problems. Then, in the parts of the domain where it can be an issue (e.g. a nearly 
incompressible material in linear elasticity), one can choose a variational formulation that is robustly well-posed with 
respect to the material properties. In the remaining regions, where such robustness is not fundamental, one can choose 
a more computationally efficient formulation. Another example occurs when a near singularity is expected in a particular 
area, so that one would hope to use a variational formulation (with possibly an associated adaptivity scheme) which is 
desirable in that subdomain, but not necessarily in the entire physical domain [34].

The main issue with such an implementation arises at the interfaces between the two subdomains having distinct vari-
ational formulations. At this interface, information must pass between the two subdomains to enable communication. This 
imposes a coupling with both theoretical and practical compatibility issues which can be difficult to resolve and analyze. 
Moreover, the coupling must be constructed properly so that the entire problem is well-posed. This is not immediate, even 
if each of the interacting variational formulations is well-posed when considered independently across the whole domain.

At the theoretical and infinite-dimensional level, an attractive possibility that naturally unburdens the compatibility 
and well-posedness requirements is the use of broken variational formulations. These mesh-dependent formulations are 
extensions of the usual variational formulations to the case involving broken (or discontinuous) test spaces. They first 
arose in the analysis of the DPG methodology, which is a minimum residual method with broken test spaces [16–18]. 
As will be seen, a family of distinct broken variational formulations can originate from the same system of equations 
through variational testing and by integrating by parts in different ways. As expected, the formulations in the family will 
be closely related to each other. In fact, for many systems of equations, the collection of formulations in each associated 
family can be shown to be mutually well-posed [9,30,15]. More importantly, the broken formulations in the family will be 
observed to inescapably possess interface variable unknowns which are a desirable means of communicating the necessary 
solution variable information across subdomains. This is what allows introducing a proper definition of coupled variational 
formulations, which will later be proved to be globally well-posed.

To actually compute approximate solutions to such a coupled system, one needs a method having discrete trial and 
test spaces that together retain well-posedness (i.e. numerical stability) [3,5]. This is easily achieved by use of the practical 
DPG methodology, the very method which motivated the systematic study of broken variational formulations. Indeed, given 
a discrete trial space, the DPG methodology is especially crafted to approximate an optimal test space which reproduces 
the stability of the underlying infinite-dimensional broken variational formulation [18]. Due to this unique design, it can be 
used with often discarded variational formulations which have different trial and test spaces, such as ultraweak formulations 
[18,33,7]. Apart from stability, the methodology carries other significant advantages including a well-behaved a posteriori 
error estimator for use in adaptive methods and a parallelizable assembly structure allowing local computation of optimal 
test functions from a standard (yet enriched) discretization of the underlying functional spaces. However, the method is 
sometimes computationally intensive, because, when compared to standard methods, it typically comes at the cost of adding 
degrees of freedom along with some extra local computations [32].

The purpose of this work is to demonstrate the use of the DPG methodology in solving the equations of linear elastic-
ity via coupled variational formulations. The family of variational formulations we study was introduced in [30], where all 
formulations were shown to be simultaneously well-posed. Here, broken formulations will be shown to naturally dispose 
of many complications arising with the compatibility and well-posedness of coupled variational formulations. Moreover, 
the use of the DPG methodology will corroborate expected theoretical convergence results. Examples showing the viability 
of the approach at a practical level will be illustrated, including a case where the demanding scenario of a fully incom-
pressible material is considered. This last case has physical applications in modeling steel braided rubber hoses and even 
stents.

For the treatment of the DPG methodology as it applies to the equations of linear elasticity, it is worth highlighting 
[4,26,8,30]. Regarding the coupling of formulations, similarity exists between the approach in this work and that taken in 
[27] (used for elliptic transmission problems). There, a variational formulation similar to those considered here is coupled 
with a variational formulation composed of boundary integral operators. Afterward, the coupled formulation is discretized 
with the DPG methodology throughout the entire computational domain. A remark is also warranted for the contributions 
in [24,25] where the ideas in [27] are extended to couple the DPG methodology with more standard boundary element 
methods (BEMs), so that different discretization methods are considered across the domain.

This article is organized as follows. In Section 2 a family of variational formulations equivalent to the equations of linear 
elasticity are introduced, followed by the associated family of broken variational formulations. In Section 3 coupled varia-
tional formulations are described. The distinct broken formulations are shown to be compatible across common interfaces 
and the coupled formulations are proved to be well-posed. In Section 4 the DPG methodology used to solve the coupled for-
mulations is outlined and novel linear algebra improvements are described. Then, in Section 5 two examples are exhibited, 
numerically solved, and discussed in detail. The last example is a physically-relevant sheathed hose, for which a benchmark 
exact solution is derived.
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2. Variational formulations in linear elasticity

2.1. Linear elasticity equations

In this work, the classical equations of static linear elasticity will be solved [11]. These are simply the linearization in 
the reference configuration about a stress-free state of the general constitutive model for solids and the conservation of 
momentum in the static case. Indeed, let � ⊆ R

3 be a simply-connected bounded Lipschitz domain, whose boundary, ∂�, 
with normal, n̂, can be partitioned into relatively open subsets, �u and �σ , satisfying �u ∪ �σ = ∂� and �u ∩�σ = ∅. Then, 
the equations of linear elasticity can be written as the following first order system,⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

σ − C : ε(u) = 0 in �,

−divσ = f in �,

u = u�u on �u ,

σ · n̂ = σ�σ
n on �σ ,

(2.1)

where u is the displacement, ε(u) = 1
2 (∇u +∇uT) is its associated strain and σ = σ T is the stress (which must be symmetric 

in order to satisfy conservation of angular momentum). Meanwhile, f is the known body force and the boundary conditions 
are given by the known displacement u�u and traction σ�σ

n . Lastly, C : S → S is the stiffness tensor, where S is the space 
of symmetric 3 × 3 matrices. For isotropic materials, it is Ci jkl = λδi jδkl + μ(δikδ jl + δilδ jk), where λ and μ are the Lamé 
parameters. All variables are assumed to be appropriately nondimensionalized.

The constitutive equation can be rewritten as

S : σ − ε(u) = 0 , (2.2)

where C−1 = S : S → S is the compliance tensor. It is Si jkl = 1
4μ(δikδ jl + δilδ jk) − λ

2μ(3λ+2μ)
δi jδkl for isotropic materials. This 

form is preferred when dealing with nearly incompressible materials (as λ → ∞) because the norm of S remains finite, 
while that of C diverges. This is the underlying reason why using this form in a variational setting prevents volumetric 
locking phenomena.

If instead of rewriting the constitutive equation one substitutes the stress σ = C : ε(u) into the equation for conservation 
of momentum, the resulting equation becomes − div(C : ε(u)) = f . This single second order equation with the correspond-
ing boundary conditions is the starting point for the more traditional variational formulations. However, as it will be seen, 
using the first order system gives more versatility to construct variational formulations.

2.2. Hilbert spaces

Before proposing any variational formulations, it is first necessary to define the spaces of functions where the unknown 
variables will be sought. First, define the L2 inner product in a domain K ⊆ � as

(u, v)K =
∫
K

tr(uTv)dK , (2.3)

where tr is the usual algebraic trace of a matrix, so that depending on whether u and v take scalar, vector or matrix values, 
tr(uT v) will be uv , u · v or u : v , respectively. The underlying Hilbert spaces are

L2(K ) = {u : K →R
3 | ‖u‖2

L2(K )
= (u, u)K < ∞} ,

L2(K ;U) = {ω : K →U | ‖ω‖2
L2(K ;U)

= (ω,ω)K < ∞} ,

H1(K ) = {u : K →R
3 | ‖u‖2

H1(K )
= ‖u‖2

L2(K )
+ ‖∇u‖2

L2(K ;M)
< ∞} ,

H(div, K ) = {σ : K →M | ‖σ‖2
H(div,K ) = ‖σ‖2

L2(K ;M)
+ ‖divσ‖2

L2(K )
< ∞} ,

(2.4)

where U is a subspace of M, the space of 3 × 3 matrices, and where ∇u and divσ refer to the row-wise distributional 
gradient and divergence respectively. More specifically, U can be the symmetric matrices, S, the antisymmetric (or skew-
symmetric) matrices, A, or M itself.

Next, assume K ⊆ � is a Lipschitz domain and define the well-known surjective and continuous boundary trace opera-
tors,

trK
grad : H1(K ) → H1/2(∂ K ) , trK

gradu = u|∂ K ,

trK : H(div, K ) → H−1/2(∂ K ) , trK σ = σ · n̂| ,
(2.5)
div div ∂ K
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where n̂ is the outward normal along ∂ K and σ · n̂ represents a row-wise contraction. Continuity of the operators is valid 
when H1/2(∂ K ) and H−1/2(∂ K ) are given minimum energy extension norms, in which case the two spaces are dual to each 
other. Indeed, the following equalities were proved in [9],

‖û‖H1/2(∂ K ) = inf
u∈(trK

grad)−1{û}
‖u‖H1(K ) = sup

σ∈H(div,K )\{0}
|〈û, trK

divσ 〉∂ K |
‖σ‖H(div,K )

,

‖σ̂n‖H−1/2(∂ K ) = inf
σ∈(trK

div)
−1{σ̂n}

‖σ‖H(div,K ) = sup
u∈H1(K )\{0}

|〈σ̂n, trK
gradu〉∂ K |

‖u‖H1(K )

,

(2.6)

where 〈·, ·〉∂ K is the duality pairing 〈·, ·〉H1/2(∂ K )×H−1/2(∂ K ) or 〈·, ·〉H−1/2(∂ K )×H1/2(∂ K ) depending upon the context. The duality 
pairings are well-defined by 〈û, σ̂n〉H1/2(∂ K )×H−1/2(∂ K ) = (u, divσ)K +(∇u, σ)K for any u ∈ (trK

grad)−1{û} and σ ∈ (trK
div)

−1{σ̂n}. 
When K = �, recall ∂� is partitioned into �u and �σ , and it may be useful to define spaces that vanish in these parts of 
the boundary. Hence, define

H1
�u

(�) = {u ∈ H1(�) | tr�gradu|�u = 0} and H�σ (div,�) = {σ ∈ H(div,�) | tr�divσ |�σ = 0} , (2.7)

where the distributions tr�
gradu|�u and tr�divσ |�σ are defined by restriction.

Usually, the spaces defined above (for K = �) are all that is required, but, as it will be seen, broken spaces will also be 
needed. To define them, one must first note that these spaces are broken along a given mesh (i.e. an open partition), T , of 
�, containing elements (i.e. subdomains) K ∈ T . Hence, these spaces are mesh-dependent. Indeed, they are merely those 
spaces in L2 in � which are elementwise (locally defined by restriction) in the desired underlying space,

L2(T ) = {u ∈ L2(�) | ‖u‖2
L2(T )

= ∑
K∈T ‖u|K ‖2

L2(K )
< ∞} = L2(�) ,

L2(T ;U) = {ω ∈ L2(�;U) | ‖ω‖2
L2(T ;U)

= ∑
K∈T ‖ω|K ‖2

L2(K ;U)
< ∞} = L2(�;U) ,

H1(T ) = {u ∈ L2(�) | ‖u‖2
H1(T )

= ∑
K∈T ‖u|K ‖2

H1(K )
< ∞} ,

H(div,T ) = {σ ∈ L2(�;M) | ‖σ‖2
H(div,T ) = ∑

K∈T ‖σ |K ‖2
H(div,K )

< ∞} .

(2.8)

Notice H1(�) ⊆ H1(T ) and H(div, �) ⊆ H(div, T ) because in general H1(T ) and H(div, T ) may have elements whose 
gradient and divergence over � are singular distributions (due to the presence of singularities at the boundaries of the 
elements K ∈ T ), yet the restriction of the gradient and divergence to every K ∈ T is a regular distribution in L2(K ; M) and 
L2(K ) respectively. The L2 mesh inner product associated to T is,

(u, v)T =
∑
K∈T

(u|K , v|K )K . (2.9)

Note that (·, ·)T is applicable even to singular distributions whose restriction to every K ∈ T is a regular distribution. 
Thus, writing (u, u)� = (u, u)T is only valid when u ∈ L2(�) (or L2(�; U)). Similarly, ‖u‖2

H1(T )
= (u, u)T + (∇u, ∇u)T =

(u, u)� + (∇u, ∇u)� = ‖u‖2
H1(�)

is valid when u ∈ H1(�), but not when u ∈ H1(T ) because ∇u may not lie in L2(�; M).

Functions in broken spaces essentially have information isolated within each element of the mesh since there is tech-
nically no notion of a shared trace along adjacent elements. Hence, broken spaces are usually accompanied by interface 
spaces that are intended to somehow share information along adjacent elements of the mesh. Thus, interface spaces are 
also mesh-dependent. To define them, first consider the mesh boundary trace operators

trgrad : H1(T ) →
∏

K∈T
H1/2(∂ K ) = H1/2


 (∂T ) , trgradu =
∏

K∈T
trK

gradu|K ,

trdiv : H(div,T ) →
∏

K∈T
H−1/2(∂ K ) = H−1/2


 (∂T ) , trdivσ =
∏

K∈T
trK

divσ |K ,
(2.10)

where H1/2

 (∂T ) and H−1/2


 (∂T ) are endowed with the standard Hilbert norm for product spaces and are dual to each 
other,

〈·, ·〉∂T =
∑
K∈T

〈·, ·〉∂ K , ‖û‖2
H1/2


 (∂T )
=

∑
K∈T

‖ûK ‖2
H1/2(∂ K )

, ‖σ̂n‖2
H−1/2


 (∂T )
=

∑
K∈T

‖σ̂n,K ‖2
H−1/2(∂ K )

. (2.11)

The following equalities hold for all û ∈ H1/2
(∂T ) and σ̂n ∈ H−1/2

(∂T ) (see (2.6) and [9]),
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‖û‖
H1/2


 (∂T )
= inf

u∈tr−1
grad{û}

‖u‖H1(T ) = sup
σ∈H(div,T )\{0}

|〈û, trdivσ 〉∂T |
‖σ‖H(div,T )

,

‖σ̂n‖H−1/2

 (∂T )

= inf
σ∈tr−1

div{σ̂n}
‖σ‖H(div,T ) = sup

u∈H1(T )\{0}
|〈σ̂n, trgradu〉∂T |

‖u‖H1(T )

.

(2.12)

Now, the actual interface spaces that are of interest are only closed subspaces of H1/2

 (∂T ) and H−1/2


 (∂T ),

H1/2
�u

(∂T ) = trgrad(H1
�u

(�)) and H−1/2
�σ

(∂T ) = trdiv(H�σ (div,�)) , (2.13)

and they inherit the corresponding norms from H1/2

 (∂T ) and H−1/2


 (∂T ), respectively.

2.3. A family of variational formulations

A linear variational formulation is a problem of the form,{
Find u ∈ U ,

b(u,v) = �(v) , for all v ∈ V ,
(2.14)

where U and V are trial and test Hilbert spaces over a fixed field F ∈ {R, C}, b : U × V → F is a continuous bilinear form if 
F =R or sesquilinear form if F = C, and � ∈ V ′ is a continuous linear form if F = R or antilinear form if F = C.

The most common way of constructing variational formulations which embody an underlying equation is by formally 
multiplying the equation by a test function and integrating. One can then choose whether or not to formally integrate by 
parts; a process which, once the trial and test spaces are chosen appropriately, technically leads to different variational 
formulations of the same original equation. Applying the simplest form of this process to the first order system of linear 
elasticity in (2.1) leads to four different variational formulations, which naturally involve the space H(div, K ; S) = {σ : K →
S | σ ∈ H(div, K )} [30]. This space has a strongly enforced symmetry of the second order tensors in the definition of the 
space itself. However, H(div, K ; S) is notoriously difficult to discretize as a high order space with mathematically desirable 
properties [1,2,28]. Thus, one common approach is to use H(div, K ) instead and impose the necessary symmetries weakly 
through auxiliary variables, such as in [30], where the resulting bilinear forms of the four variational formulations are,

US = H�σ (div,�) × H1
�u

(�) , V S = L2(�;S) × L2(�) × L2(�;A) ,

bS((σ , u), (τ , v, w)) = (σ , τ )� − (C : ∇u, τ )� − (divσ , v)� + (σ , w)� ,
(2.15)

UU = L2(�;S) × L2(�) × L2(�;A) , V U = H�σ (div,�) × H1
�u

(�) ,

bU((σ , u,ω), (τ , v)) = (S : σ ,τ )� + (ω, τ )� + (u,divτ )� + (σ ,∇v)� ,
(2.16)

UD = L2(�;S) × H1
�u

(�) , V D = L2(�;S) × H1
�u

(�) ,

bD ((σ , u), (τ , v)) = (σ , τ )� − (C : ∇u, τ )� + (σ ,∇v)� ,
(2.17)

UM = H�σ (div,�) × L2(�) × L2(�;A) , V M = H�σ (div,�) × L2(�) × L2(�;A) ,

bM((σ , u,ω), (τ , v, w)) = (S : σ ,τ )� + (ω, τ )� + (u,divτ )� − (divσ , v)� + (σ , w)� .
(2.18)

Here, S stands for strong, U stands for ultraweak, D stands for dual-mixed and M stands for mixed. Moreover, taking 
the second order form of the equation as a starting point (instead of the first order system), one can also obtain the more 
well-known primal variational formulation, P ,

UP = H1
�u

(�) , V P = H1
�u

(�) ,

bP (u, v) = (C : ∇u,∇v)� .
(2.19)

With homogeneous boundary conditions, u�u = 0 and σ�σ
n = 0, the linear forms, �F , always take the form �F (v) = ( f , v)� , 

where v is a component of v ∈ V F with F being one of the formulations defined above. With nonhomogeneous boundary 
conditions, �F will have terms involving extensions of the boundary conditions, u�u and σ�σ

n , to ∂� and �. For example, 
�U((τ , v)) = ( f , v)� + 〈ǔ�u , tr�divτ 〉∂� + 〈σ̌ �σ

n , tr�grad v〉∂� , where ǔ�u and σ̌ �σ
n are some extension to ∂� of u�u and σ�σ

n re-

spectively. As these expressions suggest, it is assumed that f ∈ L2(�), u�u ∈ tr�grad(H1(�))|�u and σ�σ
n ∈ tr�div(H(div, �))|�σ . 

Moreover, whenever necessary, C and S are assumed to act on M (as opposed to merely S) via the trivial extensions C|A = 0
and S|A = 0 (see [30]).

In [30] it was proved that, provided �u �= ∅, all the previously defined variational formulations (along with those making 
use of H(div, K ; S)) are simultaneously well-posed in the sense of Hadamard. That is, for the problem (2.14) with the 
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forms and spaces coming from one of (2.15)–(2.19), there exists a unique solution uF ∈ UF satisfying the stability estimate 
‖uF ‖UF ≤ 1

γ F ‖�‖(V F )′ for some γ F > 0. Since all variational formulations originate in the same equations, by testing with 
smooth functions it is made clear that the unique solutions agree among all formulations.

It should be noted that the list of variational formulations for the equations of linear elasticity proposed here is by no 
means exhaustive. Indeed, alternative versions of (2.15) and (2.17) containing the compliance tensor (via use of (2.2)) are 
possible to construct, while in [31] energy functionals are used to propose up to fourteen different variational formulations 
for these equations.

2.4. Broken variational formulations

For some numerical methods, mesh-dependent broken spaces can bring advantages. In particular, consider the case 
where only the test spaces are broken. It is in this setting that broken variational formulations arise and, as it will be seen, 
this is fundamental in order to localize certain computations in the DPG methodology.

Consider a mesh, T , of �, containing elements K ∈ T . Instead of following the original approach of formally multiplying 
by a test function, integrating over �, and integrating by parts if desired, the idea in this case is to integrate over each 
K ∈ T and then sum the contributions. This differs from the former scenario in that the test functions can now be broken, 
so that they may have trace discontinuities along the boundaries of adjacent elements in the mesh. Thus, when integration 
by parts is performed, some mesh boundary terms seize to cancel and have to be explicitly considered. Apart from these 
terms, the resulting formulations are the same as before, where unbroken test functions were being used. However, if they 
are to retain as much mathematical structure from the original unbroken variational formulations, one finds that the new 
mesh boundary terms must have a life of their own and become additional independent variables. That is, the price of using 
broken test functions is that one sometimes needs to define new mesh-dependent interface variables along the boundary of 
the mesh (see [18,9,30] for more details).

Broken variational formulations are precisely those formulations with broken test spaces constructed as described above. 
They are clearly related to the original unbroken variational formulations, which do not require the test spaces to be broken. 
In fact, the bilinear forms of broken variational formulations can be decoupled into two bilinear forms as,

b(u,v) = b0(u0,v) + b̂(û,v) , (2.20)

where u = (u0, ̂u) ∈ U = U0 × Û and v ∈ V , with U0 being the space associated to the original unbroken formulation, 
Û being a space of interface variables, and V being the broken test space directly associated to the test space V 0 ⊆ V
coming from the original unbroken formulation. When the test space is restricted from V to V 0 the variational formulation 
collapses to the original unbroken formulation. More precisely, b0|U0×V 0 is the bilinear form from the unbroken formulation 
and b̂|Û×V 0

= 0, while �|V 0 is the linear form from the unbroken formulation. In this sense, a broken variational formulation 
can be interpreted as an extension to broken test spaces of an unbroken variational formulation. It can be shown that 
the well-posedness of broken variational formulations depends on the well-posedness of the original unbroken variational 
formulation and that of b̂ (see [9]). Moreover, the unique solution u0 ∈ U0 to the unbroken formulation is the U0 component 
of the unique solution (u0, ̂u) ∈ U0 × Û to the broken variational formulation.

The broken variational formulations associated to (2.15)–(2.19) are

UST
0 = US , ÛST = ∅ , V ST = L2(T ;S) × L2(T ) × L2(T ;S) ,

bST
0 ((σ , u), (τ , v, w)) = (σ , τ )T − (C : ∇u, τ )T − (divσ , v)T + (σ , w)T ,

(2.21)

UUT
0 = UU , ÛUT = H1/2

�u
(∂T ) × H−1/2

�σ
(∂T ) , V UT = H(div,T ) × H1(T ) ,

bUT
0 ((σ , u,ω), (τ , v)) = (S : σ ,τ )T + (ω, τ )T + (u,divτ )T + (σ ,∇v)T ,

b̂UT ((û, σ̂n), (τ , v)) = −〈û, trdivτ 〉∂T − 〈σ̂n, trgrad v〉∂T ,

(2.22)

UDT
0 = UD , ÛDT = H−1/2

�σ
(∂T ) , V DT = L2(T ;S) × H1(T ) ,

bDT
0 ((σ , u), (τ , v)) = (σ , τ )T − (C : ∇u, τ )T + (σ ,∇v)T ,

b̂DT (σ̂n, (τ , v)) = −〈σ̂n, trgrad v〉∂T ,

(2.23)

UMT
0 = UM , ÛMT = H1/2

�u
(∂T ) , V MT = H(div,T ) × L2(T ) × L2(T ;A) ,

bMT
0 ((σ , u,ω), (τ , v, w)) = (S : σ ,τ )T + (ω, τ )T + (u,divτ )T − (divσ , v)T + (σ , w)T ,

b̂MT (û, (τ , v, w)) = −〈û, tr τ 〉 ,

(2.24)
div ∂T
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UPT
0 = UP , ÛPT = H−1/2

�σ
(∂T ) , V PT = H1(T ) ,

bPT
0 (u, v) = (C : ∇u,∇v)T ,

b̂PT (σ̂n, v) = −〈σ̂n, trgrad v〉∂T ,

(2.25)

where UFT = UFT
0 × ÛFT with F as a placeholder for one of the preceding formulations, and where bFT : UFT × V FT → R

is defined in terms of bFT
0 and b̂FT by (2.20). As before, the linear forms �FT always have the term ( f , v)T and additionally 

may include terms involving extensions of the boundary conditions u�u and σ�σ
n , to � and the boundary of the mesh (by 

use of trgrad and trdiv on an extension to �). For example, �UT ((τ , v)) = ( f , v)T +〈ŭ�u , trdivτ 〉∂T +〈σ̆ �σ
n , trgrad v〉∂T , where 

ŭ�u and σ̆ �σ
n are some extension to trgrad(H1(�)) and trdiv(H(div, �)) of u�u and σ�σ

n respectively. As expected, bFT and 
�FT can be viewed as extensions to the original forms bF and �F , because they collapse to the latter when testing against 
unbroken test functions in V F ⊆ V FT . That is, bFT

0 |UF ×V F = bF , b̂FT |ÛFT ×V F = 0 and �FT |V F = �F .
As long as �u �= ∅, the broken variational formulations in (2.21)–(2.25) were shown to be mutually well-posed in [30]

by using fundamental results proved in [9, Theorem 3.1] along with the proof of mutual well-posedness of the original 
formulations in (2.15)–(2.19) (proved in [30]) and the identities in (2.12) (proved in [9]). The constant associated to the 
stability estimate from the well-posedness is independent from the choice of the mesh.

3. Coupled variational formulations

As mentioned initially, there are multiple reasons that explain why it is desirable to solve the equations of linear elasticity 
with different variational formulations on distinct subdomains of the initial domain. The challenge in attaining this goal is 
that one must find a way of communicating solution information across the shared boundaries of the subdomains. For the 
purpose of illustration, simply consider a domain � partitioned into two disjoint subdomains, �U and �P , with a common 
interface, �I , such that �U ∪ �P = � and �U ∩ �P = � I . As suggested by the notation, suppose that the equations of 
linear elasticity are to be solved in �U via the ultraweak variational formulation in (2.16), and in �P via the primal 
variational formulation in (2.19). If a solution is to exist, then it should be compatible in some sense at the common 
interface �I . This immediately poses a theoretical concern because the displacement variable in the ultraweak variational 
formulation lies in L2(�)|�U and so it does not even have a notion of trace at �I . Thus, it is not compatible with the primal 
displacement variable which lies in H1

�u
(�)|�P . A similar issue also arises with the test spaces, which are obviously different 

on each subdomain. Even though the finite-dimensional trial and test subspaces of any naive discretization generally do have 
well-defined traces, these difficulties are reasonably expected to be inherited by the discretization, meaning any discrete 
convergence or stability analysis will probably be laborious, if at all possible. Hence, the goal is to resolve the compatibility 
concerns at the infinite-dimensional level by developing a globally well-posed variational problem. Once this is done, there 
will be a clearer hope of producing stable and convergent discretizations.

The claim is that by using broken variational formulations, the theoretical compatibility issues are naturally dealt with. 
To see this, suppose instead that the equations are to be solved in �U with the ultraweak broken variational formulation 
in (2.22) and in �P with the primal broken variational formulation in (2.25). The mesh associated to the broken formu-
lations, T , is obviously assumed to be consistent with the subdomain partitioning, meaning that it is a refinement of the 
subdomain mesh, T0 = {�U, �P }, and as such, there exist submeshes T U and T P of �U and �P respectively, such that 
T = T U ∪ T P . In this scenario, the displacement variable in the ultraweak domain still lies in L2(�)|�U , but the difference 
is that now there is an extra interface displacement variable, ûU ∈ H1/2

�u
(∂T )|T U . This variable is very convenient, as it is 

theoretically compatible at �I with the well-defined trace of the displacement variable of the primal variational formulation, 
uP ∈ H1

�u
(�)|�P . Similarly, with regard to the stress, there exist two new interface traction variables, σ̂U

n ∈ H−1/2
�σ

(∂T )|T U

and σ̂P
n ∈ H−1/2

�σ
(∂T )|T P , which are naturally compatible at �I . Meanwhile, the use of broken test spaces relinquishes any 

compatibility requirements at the level of test spaces. Notice the compatibility is not limited to the broken ultraweak and 
primal formulations. Indeed, a close observation of the broken variational formulations in (2.21)–(2.25) shows that there is 
always either an explicit interface variable or sufficient regularity to have well-defined traces of the displacement and stress.

The next task is to more rigorously define the actual coupled variational formulations and analyze their well-posedness. 
Continuing with the basic example, let UPT |�P be the restriction of the trial space to �P meaning that typical field 
variables in UPT

0 = UP have their domain restricted to �P , while the interface variables in ÛPT are restricted to those 
components associated to elements in T P . Therefore, the space is UPT |�P = H1

�u
(�)|�P × H−1/2

�σ
(∂T )|T P , with the re-

stricted component norms being ‖ · ‖H1(�P ) and ‖ · ‖
H−1/2


 (∂T P )
respectively. The same applies to UUT |�U and the broken 

test spaces V UT |�U and V PT |�P . Then, the trial and test spaces associated to the coupled formulations are

UC =
{
uC = (uU,uP )

∣∣∣uU = (σU, uU,ωU, ûU, σ̂U
n ) ∈ UUT |�U , uP = (uP , σ̂P

n ) ∈ UPT |�P ,

ûU|�I = uP |�I , σ̂U
n |�I = −σ̂P

n |�I

}
,

C UT PT

(3.1)
V = V |�U × V |�P .
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Hence, the trial space is the subspace of UUT |�U × UPT |�P which satisfies transmission conditions for both displacement 
and stress at �I (see Remark 3.1 for more details). On the other hand, the broken test space is oblivious to any transmission 
conditions. Lastly, the bilinear and linear forms of the coupled variational formulation are

bC(uC ,vC) = bUT |�U(uU,vU) + bPT |�P (uP ,vP ) and �C(vC)= �UT |�U(vU) + �PT |�P (vP ) , (3.2)

where the restricted forms bUT |�U and bPT |�P are those formulations in (2.22) and (2.25) but with the inner products and 
duality pairings only acting over those elements in T U and T P respectively. The same applies to the linear forms �UT |�U

and �PT |�P . Evidently, by carefully identifying the trial spaces to enforce the compatibility conditions at the interdomain 
boundaries, coupled variational formulations can be rigorously generalized to any finite partition of the domain into subdo-
mains, wherein each subdomain is endowed with a broken variational formulation among those found in (2.21)–(2.25).

Remark 3.1. There is an abuse of notation when specifying the transmission conditions that enforce the compatibility at 
the interdomain boundaries in (3.1). More precisely, ûU|�I = uP |�I and σ̂U

n |�I = −σ̂P
n |�I denote that there exist global 

extensions ũ ∈ H1
�u

(�) and σ̃ ∈ H�σ (div, �) such that trgradũ|T U = ûU , ũ|�P = uP , trdivσ̃ |T U = σ̂U
n and trdivσ̃ |T P = σ̂P

n . 
In fact, these global extensions for the displacement and stress, ũ and σ̃ , are fundamental in the numerical implementation, 
where they are considered global variables in the context of a multi-physics domain, whereas the remaining variables only 
have local support in a particular subdomain. Moreover, the concept of the extensions is also important for specifying the 
problem boundary conditions, u�u and σ�σ

n . Indeed, by definition there exist extensions, ũ�u ∈ H1(�) and σ̃ �σ ∈ H(div, �), 
whose appropriate restrictions (e.g. trgradũ�u |T U and ũ�u |�P for the displacement) play a role in the linear forms �UT |�U

and �PT |�P .

It remains to show that the coupled variational formulations are well-posed. The technique is similar in spirit to the one 
utilized in proving well-posedness of broken variational formulations as outlined by [9, Theorem 3.1], where the first step 
is always to test with unbroken test functions to cancel the boundary terms. The main idea here, however, is to collapse 
everything to the well-posed ultraweak formulation by testing with more regular test functions and integrating by parts 
when necessary. This is interesting since the ultraweak formulation is effectively being used as a tool for a proof, due to 
its attractive property of having all the weight of the derivatives on the test functions. Before presenting the proof, a useful 
and necessary lemma already established in [30, Appendix A] is restated.

Lemma 3.1. Let T be an open partition of a domain �, and �u and �σ be relatively open subsets in ∂� satisfying �u ∪ �σ = ∂� and 
�u ∩ �σ = ∅.

(i) Let v ∈ H1(T ). Then v ∈ H1
�u

(�) if and only if 〈σ̂n, trgrad v〉∂T = 0 for all σ̂n ∈ H−1/2
�σ

(∂T ).

(ii) Let τ ∈ H(div, T ). Then τ ∈ H�σ (div, �) if and only if 〈û, trdivτ 〉∂T = 0 for all û ∈ H1/2
�u

(∂T ).

Theorem 3.1. Let � be a domain partitioned into a finite number of subdomains, wherein each subdomain is endowed with a broken 
variational formulation of linear elasticity among those found in (2.21)–(2.25). Provided �u �= ∅, the resulting coupled variational 
formulation is well-posed.

Proof. For the sake of consistency and simplicity the main body of the proof applies to the two-subdomain example de-
scribed throughout this section, which involves the ultraweak and primal formulations. Then, a few observations will clarify 
the more general case.

The goal is to prove that there exists a γ C > 0 such that for every uC = (uU, uP ) ∈ UC ,

γ C‖uC‖UC ≤ sup
vC∈V C

|bC(uC ,vC)|
‖vC‖V C

= ‖uC‖E ,

where ‖uC‖E = ‖BCuC‖(V C )′ with BC : UC → (V C)′ defined by 〈BCuC , vC〉(V C )′×V C = bC(uC , vC). Notice that in the previous 
expression and in what follows, the zero is omitted tacitly from all suprema.

As usual, the approach is to prove this bound for each of the components in uC = (uU, uP ), where uU = (uU
0 , ûU), 

uU
0 = (σU, uU, ωU) ∈ UU|�U , ûU = (ûU, σ̂U

n ) ∈ ÛUT |�U , uP = (uP
0 , ̂uP ), uP

0 = uP ∈ UP |�P and ûP = σ̂P
n ∈ ÛPT |�P . The 

first step is to find the bounds for the field variables uU
0 and uP

0 by somehow avoiding the terms involving the interface 
variables. The main idea to achieve this is to collapse all formulations to the ultraweak formulation via careful testing and 
integration by parts, yielding a global ultraweak formulation. This formulation has all the weight of the derivatives on the 
test function, so it makes sense to consider the global ultraweak test functions v� = (τ , v) ∈ V U = H�σ (div, �) × H1

�u
(�).

From now on, given any tensor, let the subscripts S and A denote its symmetric and antisymmetric parts. Let ω(uP ) =
(∇uP )A , ε(uP ) = (∇uP )S , and σ(uP ) = C : ∇uP , so that ε(uP ) = S : σ(uP ). Thus, (∇uP , τ )T P = (S : σ(uP ), τ )T P +
(ω(uP ), τ )T P , and it follows
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(C : ∇uP ,∇v)T P = (S : σ(uP ), τ )T P + (ω(uP ), τ )T P − (∇uP , τ )T P + (C : ∇uP ,∇v)T P

= (S : σ(uP ), τ )T P + (ω(uP ), τ )T P + (uP ,divτ )T P + (σ (uP ),∇v)T P

− 〈trgraduP , trdivτ 〉∂T P ,

where integration by parts was valid due to the high regularity of both uP and τ . Therefore,

bPT |�P (uP ,vP ) = bU|�P (uUP ,v�) − 〈trgraduP , trdivτ 〉∂T P − 〈σ̂P
n , trgrad v〉∂T P ,

where uP = (uP , σ̂P
n ), uUP = (σ (uP ), uP , ω(uP )), v� = (τ , v) and vP = v . Trivially, it holds that

bUT |�U(uU,vU) = bU|�U(uUU ,v�) − 〈ûU, trdivτ 〉∂T U − 〈σ̂U
n , trgrad v〉∂T U ,

where uU = (uU
0 , (ûU, σ̂U

n )), uUU = uU
0 = (σU, uU, ωU), v� = vU = (τ , v). Adding the previous two expressions and using 

the transmission conditions for the displacement and stress (see Remark 3.1) along with Lemma 3.1, it follows that the 
interface terms vanish, resulting in

bC(uC ,vC�) = bU(u�,v�) ,

where uC = ((σU, uU, ωU, ̂uU, σ̂U
n ), (uP , σ̂P

n )) ∈ UC , u� = (σ�, u�, ω�) is defined by u�|�U = (σU, uU, ωU) and u�|�P =
(σ (uP ), uP , ω(uP )), v� = (τ , v) and vC� = ((τ , v)|�U , v|�P ). Thus, when testing appropriately, the coupled formulation is 
essentially a global ultraweak formulation.

The global ultraweak variational formulation is known to be well-posed when �u �= ∅ (see [30, Theorem 2.1]), so that 
there exists γ U such that

γ U‖u�‖UU ≤ sup
v�∈V U

|bU(u�,v�)|
‖v�‖V U

= sup
v�∈V U

|bC(uC ,vC�)|
‖v�‖V U

≤ sup
v�∈V U

|bC(uC ,vC�)|
‖vC�‖V C

≤ ‖uC‖E ,

where it is used that ‖vC�‖V C ≤ ‖v�‖V U . Naturally, ‖(σU, uU, ωU)‖UU|
�U

≤ ‖u�‖UU . Meanwhile, since ‖ε(uP )‖L2(�P ;S) ≤
‖S‖‖σ(uP )‖L2(�P ;S) , it follows that ‖uP ‖H1(�P ) = ‖(ε(uP ), uP , ω(uP ))‖UU|

�P
≤ CS‖u�‖UU , where CS = max{1, ‖S‖}. 

Thus, there exist constants CU > 0 and CP > 0, such that

‖uU
0 ‖UU|

�U
≤ CU‖uC‖E and ‖uP

0 ‖UP |
�P

≤ CP ‖uC‖E ,

for all uU
0 = (σU, uU, ωU) and uP

0 = uP .
The last step involves finding the bounds for the interface variables, ûU = (ûU, σ̂U

n ) and ûP = σ̂P
n . Consider σ̂P

n

and let MP
0 be a continuity bound satisfying 

∣∣bPT
0 |�P (uP

0 , vP )
∣∣ ≤ MP

0 ‖uP
0 ‖UP |

�P
‖vP ‖V PT |

�P
for all uP

0 ∈ UP |�P and 
vP ∈ V PT |�P . Then, using the identities in (2.12), it follows

‖σ̂P
n ‖

H−1/2

 (∂T P )

= sup
v∈H1(T P )

|〈σ̂P
n , trgrad v〉∂T P |
‖v‖H1(T P )

≤ sup
vP ∈V PT |

�P

∣∣bPT |�P (uP ,vP ) − bPT
0 |�P (uP

0 ,vP )
∣∣

‖vP ‖V PT |
�P

≤ ‖uC‖E + MP
0 ‖uP

0 ‖UP |
�P

≤ (
1 + MP

0 CP
)‖uC‖E .

Similar calculations hold for ûU and σ̂U
n . Summing the contributions from uU

0 , ûU , uP
0 and ûP , yields the desired constant 

CC = 1
γ C > 0 satisfying ‖uC‖UC ≤ CC‖uC‖E for every uC = ((uU

0 , ̂uU), (uP
0 , ̂uP )) ∈ UC .

The more general case follows analogously, but some technicalities, mostly arising form the weak imposition of symme-
try, are worth mentioning. To observe the changes, it suffices to consider the two-subdomain case involving the strong and 
ultraweak formulations. In this case, a similar procedure as before yields

bC(uC ,vC�) = bU(u�,v�) + (σ S
A

,∇v)�S ,

where uC = ((σ S, uS), (σU, uU, ωU, ̂uU, σ̂U
n )) ∈ UC , u� = (σ�, u�, ω�) is defined by u�|�S = (σ S

S
, uS, ω(uS)) and 

u�|�U = (σU, uU, ωU), v� = (τ , v) and vC� = ((S : τ , v, 0)|�S , (τ , v)|�U ). Thus, in order to obtain the bound of 
‖uS

0 ‖US |
�S

= ‖(σ S, uS)‖H(div,�S )×H1(�S ) in terms of ‖uC‖E , it is enough to bound ‖σ S
A

‖L2(�S ;A) , ‖ divσ S‖L2(�S ) and 
‖ε(uS)‖L2(�S ;S) in terms of ‖uC‖E . These bounds are easily obtained through a careful choice of test functions in �S . 
With these facts, the astute reader can deduce the proof for any other relevant and general scenario. �
Remark 3.2. As mentioned before, in this work, the variational formulations of linear elasticity avoid the strong imposition 
of tensor symmetry in some of the spaces. This, among other reasons, adds a layer of complexity to the formulations and 
the corresponding proofs, which typically need a few extra calculations. However, these difficulties are not present in many 
other important equations. Indeed, a simpler version of this proof can easily be applied to coupled formulations of Pois-
son’s equation, time-harmonic Maxwell’s equations (see [9] for multiple formulations) and the diffusion–convection–reaction 
equation (see [15] for multiple formulations), among others.
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Remark 3.3. The stability constant in the proof of the theorem, γ C , depends on the distribution of the variational formula-
tions and the shape of the subdomains. The constant will remain robust with respect to heterogeneous material properties 
as long as each formulation is robust when viewed independently. Thus, the stability constant will remain bounded above 
as long as any near or fully incompressible elastic behavior is limited to subdomains associated to robustly well-posed 
variational formulations (i.e. broken ultraweak and mixed formulations).

4. The DPG methodology

The DPG methodology is a minimum residual finite element method. Minimum residual methods are posed in the most 
general sense by considering an abstract linear variational formulation as in (2.14), and noting that it can be restated as an 
operator equation,{

Find u ∈ U ,

Bu = � ,
(4.1)

where B : U → V ′ is a linear continuous operator defined by 〈Bu, v〉V ′×V = b(u, v). Then, once a discrete trial space Uh ⊆ U
is chosen, the method simply seeks the minimizer of the residual,

uh = arg min
u∈Uh

‖Bu− �‖2
V ′ . (4.2)

This minimization problem can be recast in several equivalent ways. Amongst them are those that seek uh ∈ Uh such that(
Buh, Bδu

)
V ′ = (

�, Bδu
)

V ′ , (4.3a)〈
Buh, R−1

V Bδu
〉
V ′×V = 〈

�, R−1
V Bδu

〉
V ′×V , (4.3b)〈

δu, B† R−1
V Buh

〉
U×U ′ = 〈

δu, B† R−1
V �

〉
U×U ′ , (4.3c)

for all δu ∈ Uh . Here R V : V → V ′ is the Riesz map of V , which is defined by 〈R V v, δv〉V ′×V = (v, δv)V for all v, δv ∈ V , and 
which is known to be an isometric isomorphism. Meanwhile, B† : V → U ′ is the (conjugate) transpose of B , which is defined 
by 〈u, B†v〉U×U ′ = b(u, v) = 〈Bu, v〉V ′×V . With the same notation, the minimum residual value over Uh can be expressed as,

‖Buh − �‖2
V ′ = 〈

Buh − �, R−1
V (Buh − �)

〉
V ′×V = 〈

uh − u, B† R−1
V (Buh − �)

〉
U×U ′ , (4.4)

where u ∈ U is the exact solution satisfying Bu = �. Letting δv = R−1
V Bδu ∈ R−1

V BUh = V opt, one can reinterpret (4.3b) as a 
fully discrete variational formulation with bilinear and linear forms b|Uh×V opt and �|V opt . This formulation has the paramount 
property that, despite being posed over finite-dimensional spaces (dim(Uh) = dim(V opt) < ∞) it shares the same stability 
properties as the original variational formulation, which is the best one can hope for [18]. These are the reasons why the 
space V opt is called the optimal test space, and why these minimum residual methods are sometimes referred to as the
optimal Petrov–Galerkin methods.

Unfortunately, any attempt at solving the variational systems inevitably encounters the exact inversion of the Riesz map 
of the test space, R−1

V , which is typically impossible to manage numerically due to the infinite-dimensional nature of V . 
Thus, the idea is to consider an inversion of the Riesz map over a large, yet still finite-dimensional subspace of V , called the 
enriched test space, V enr ⊆ V , which satisfies that dim(V enr) ≥ dim(Uh). In this case, the approximate optimal test space 
V opt

h = R−1
V enr BUh aims to be as close as possible to the actual optimal test space, V opt. The larger dim(V enr) is, the closer 

V opt
h is from V opt. In practice, it is more convenient to solve the discrete operator equation in (4.3c),

B† R−1
V enr Buh = B† R−1

V enr� , (4.5)

where numerically speaking, (B)i j = b(u j, vi), (�)i = �(vi), and (R V enr )i j = (vi, v j)V , with (u j)
dim(Uh)

j=1 and (vi)
dim(V enr)
i=1 be-

ing bases for Uh and V enr respectively, and (uh) j being the vector of coefficients of the solution uh with respect to the 
(u j)

dim(Uh)

j=1 basis. Notice it is not necessary to find a basis for the approximate optimal test space, V opt
h , since this is im-

plicitly calculated within (4.5) from a basis of the enriched test space V enr, (vi)
dim(V enr)
i=1 . Typically, Petrov–Galerkin methods 

require that one produce an explicit basis for the “exotic” discrete test space being proposed (in this case being V opt
h ), but 

this method is distinguished from those in that it essentially calculates such a basis automatically from a “standard” (yet 
large) basis of a more commonplace discretization of the test space (i.e. that of V enr). Moreover, notice the stiffness matrix 
associated to the problem, B† R−1

V enr B = (R−1/2
V enr B)†(R−1/2

V enr B), is a symmetric (or Hermitian) positive definite matrix, which is 
extremely convenient. In fact, the unique Cholesky decomposition, R V enr = LL†, where L is a lower triangular matrix with 
positive diagonal entries, implies that L acts similar to a square root of R V enr , with R−1

V enr = L−†L−1 and

B† R−1
enr B = (L−1 B)†(L−1 B) . (4.6)
V
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The key here is that L−1 B is computed using forward substitution, and then it is simply premultiplied with its own (con-
jugate) transpose to produce the stiffness matrix in (4.6). Computationally, this can be made more efficient than other 
alternatives, such as computing R−1

V enr B = L−†L−1 B and then premultiplying by B†. Lastly, the discrete minimum residual 
can be computed by use of the expression

‖Buh − �‖2
(V enr)′ = (Buh − �)† R−1

V enr(Buh − �) = (L−1(Buh − �))†(L−1(Buh − �)) . (4.7)

Regrettably, the inversion of the Riesz map of V enr still represents a global problem over the whole domain, and this 
increases the numerical cost of the method greatly, to the point that it appears impractical. In this sense, the use of broken 
test spaces comes to the rescue. Indeed, by tackling broken variational formulations that make use of broken test spaces, 
the computation of the inverse of the Riesz map is decoupled and can be performed locally at each element. In fact, the 
equations in (4.5) can be solved locally and then assembled into a global stiffness matrix, with the local stiffness matrix 
being constructed efficiently by making use of the decomposition in (4.6). The same argument applies to the residual in 
(4.7), which can now be computed at each element, and can be used to drive an adaptivity scheme since globally it is 
expected to decrease as Uh is refined. The cost of using broken test spaces is that broken variational formulations have new 
interface variables within the trial space which adds to the number of degrees of freedom, but, fortunately, they only act 
on the boundary of the elements of the mesh. The optimal Petrov–Galerkin methods coming from this minimum residual 
approach, coupled with the use of broken test spaces, is referred to as the DPG methodology.

Remark 4.1. Usually variational formulations make use of the typical Hilbert spaces described in Section 2.2 along with 
the H(curl, K ) spaces and their variants. The basic underlying spaces are related to each other through an exact sequence, 
which in three dimensions is

H1(K )
∇−−→ H(curl, K )

∇×−−→ H(div, K )
∇·−−→ L2(K ) .

Fortunately, for the typical element shapes (i.e. tetrahedra, hexahedra, triangular prisms and pyramids), it is possible to find 
discrete analogues of these spaces that satisfy the same exact sequence property and a family of interpolation operators that 
commute with the sequence above [20,23,13]. Moreover, the discrete sequence of spaces can be made to have an associated 
polynomial order, p, so that it more closely approximates the infinite-dimensional sequence as p grows. Lastly, the traces of 
the discrete sequence of spaces form a sequence themselves and serve as discretizations to the trace Hilbert spaces defined 
in Section 2.2 [23]. For those reasons, in practice, the discretizations of the trial and test spaces are drawn from these 
discrete sequences of spaces. In fact, the trial spaces, Uh , are derived from a sequence of order p, while the larger test 
spaces, V enr, are taken from an enriched sequence of order p + dp, where dp represents an enrichment parameter. For the 
trial spaces, one must be careful when choosing shape functions that form bases for the discrete spaces of a given element, 
since they must be compatible at the faces with shape functions coming from neighboring elements (possibly of different 
shapes). Fortunately, some of those carefully constructed bases can be found in the literature, and for the computations used 
in this work, the shape functions spanning the exact sequence spaces were chosen from [23]. Regarding dp, this parameter 
should be large enough such that the approximate test space, V opt

h , is close enough to the actual optimal test space, V opt, 
to ensure that the underlying numerical method is stable. Theoretically, this is always possible, but might involve a very 
large parameter dp, making the local computations of the method considerably less efficient. Thankfully, a parameter of 
1 ≤ dp ≤ 3 is usually sufficient in practice [26,9], and in fact in this work a value of dp = 1 was sufficient to ensure 
numerical stability. Finally, for all trial variables derived from a sequence of order p (including interface variables), standard 
norm interpolation estimates of the form Chp are guaranteed, where C is a constant and h represents the mesh size. This 
implies convergence rates of the same order given numerical stability.

Remark 4.2. When part of the test space is some version of L2 with its standard norm, the inverse of that component of 
the Riesz map is actually known exactly and its computation can be avoided altogether. This allows one to obtain a more 
precise approximate optimal test space. The details on improving the implementation of these scenarios can be found in 
[30, Section 4.3, Remark 4.6]. Indeed, when the full test space is a version of L2 one can manage to exactly reproduce the 
optimal test space, and this is generally referred to in the literature as a first order system least squares (FOSLS) formulation.

Remark 4.3. It must be noted that, in theory, the solution converges optimally in the problem-dependent energy norm, 
‖ · ‖E = ‖B(·)‖V ′ , since ‖uh − u‖E = ‖Buh − �‖V ′ is precisely the residual that is being minimized. Thus, the behavior of 
the convergence is in some sense dependent on the norm of the test space ‖ · ‖V . In practice, the choice of the test norm 
can have profound repercussions in the effectiveness with which V opt

h approximates V opt, as well as in the number of 
refinements required to achieve a desired error bound of a particular variable. However, in this work, for the purpose of 
simplicity, the norms of the broken test spaces simply come from the standard norms in (2.8). It would be interesting to 
investigate the advantages of using more unusual Hilbert norms for the same test spaces.

5. Results and discussion

In this section, two illustrative examples involving coupled variational formulations as introduced in Section 3 were 
solved using the DPG methodology detailed in Section 4. First, a smooth manufactured solution on a cube with uniform and 
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Fig. 1. Illustration of the geometry and arrangement of subdomains used for a coupled formulation with which the code was verified via manufactured 
solutions.

contrived material data involving four distinct variational formulations was considered. Then, a more physically motivated 
and challenging example was tackled: a sheathed hose with large material and layer-thickness contrast, and with one layer 
composed of a fully incompressible material. In both of these scenarios, exact solutions were derived, so that convergence 
was accurately displayed based on the chosen measure of error.

It should be emphasized to the reader that despite all variables and equations having been nondimensionalized, the 
complications of multiple scales in the formulations and associated norms are not alleviated. This issue may drastically 
affect practical computations, but since the examples are given only for an illustration of feasibility, a detailed study of the 
scaling was overlooked in this work. Indeed, the formulations used as building blocks for the coupled formulations were 
taken directly from (2.21)–(2.25), and the norms used were the standard norms in (2.8). The convergence analysis presented 
here is limited to uniform mesh refinements. In fact, the traditional DPG-style residual-derived adaptive mesh refinements 
(see (4.7)) are out of place here, since the use of the standard norms introduces a subdomain bias in the residual estimates. 
For this reason, in the future, a more careful analysis involving the choice of norms is required to anticipate refinement 
patterns which adequately adapt to solution features.

All computations were performed with the finite element software hp3d which has support for local h and p refinements 
[14,20], high order exact sequence shape functions for elements of various shapes [23], sophisticated multi-physics support 
(facilitating the global assembly necessary to make the trial space identification for coupled formulations as suggested by 
Remark 3.1), projection-based interpolation of the entire exact sequence [21] (to enforce nonhomogeneous boundary condi-
tions), and the ability to handle isoparametric geometries with curvilinear inherited interior refinements à la local transfinite 
interpolation. This last feature, allowed to produce uniform refinements of the very thin outer layer of the sheathed hose 
described in the second example. In both examples only hexahedral elements were utilized, with the discrete trial and test 
spaces taken as described in Remark 4.1, where a value of dp = 1 was used for all computations. Locally, the discretizations 
were identical to those discussed in [30, Section 5], and in the global assembly of the coupled formulations, continuity 
between neighboring subdomains of variables in H1, H(div), H1/2 and H−1/2 was enforced as discussed in Remark 3.1.

5.1. Cube domain

As alluded previously, a smooth manufactured solution was taken for the displacement. It was a simple sinusoidal vector 
field,

ui(x1, x2, x3) = sin(πx1) sin(πx2) sin(πx3) , i = 1,2,3, (5.1)

on the cubic domain � = (0, 2)3. The material was considered to be isotropic and homogeneous with nondimensionalized 
Lamé parameters λ = μ = 1. Then, partitioning the domain into eight equally sized unit cube subdomains, a configuration 
was formed for which four distinct broken formulations interact with each other. More specifically, the strong (S), ultraweak 
(U), mixed (M) and primal (P ) broken formulations (see (2.21)–(2.25)) were organized such that there is at least one 
face that is a common interface between each of the possible pairs of formulations, as shown in Fig. 1. The strong and 
mixed formulations were solved more efficiently as indicated in Remark 4.2. Finally, the displacement boundary data was 
prescribed along the whole boundary of �.

To analyze convergence, only the L2(�) error of the displacement was considered and as Fig. 2 demonstrates, p-th order 
(or better) convergence rates were witnessed for p-order schemes for 1 ≤ p ≤ 5. This is consistent with the theoretical 
expectations as dictated by Remark 4.1.



F. Fuentes et al. / Journal of Computational Physics 348 (2017) 715–731 727
Fig. 2. Displacement error as a function of the mesh size under uniform hexahedral refinements in the cubic domain � = (0, 2)3 with a sinusoidal manu-
factured solution.

Fig. 3. Diagram of the sheathed hose problem with the configuration of variational formulations per subdomain and a schematic of the boundary conditions 
used.

5.2. Sheathed hose

As a second example, a rubber hose (hollow cylinder) sheathed by a layer of steel was considered as illustrated in Fig. 3. 
This is a more physically-relevant example, because similar configurations are used in an array of applications including 
high-performance racing engine hoses and high-pressure hydraulic oil hoses (see SAE hydraulic hose standards), which have 
a steel braided outer sleeve. A variation of the example may also be pertinent to stents inside an artery.

To simulate balanced axial stresses which would appear in an infinite tube, the axial faces were confined by vanishing 
normal direction (axial) displacement boundary conditions and zero traction boundary conditions in the tangential direc-
tions as depicted in Fig. 3. Moreover, normal pressure distributions were placed on the inner rubber surface, pin(θ, z) at 
R in, and on the outer steel surface, pout(θ, z) at Rout, where θ represents the azimuthal direction and z represents the axial 
direction. Lastly, to have a supported structure with a fixed origin, three noncollinear points of one of the axial faces had 
their azimuthal displacement set to zero.

The thickness of the outer steel layer, Rout − Rmid, was assumed to be much smaller than the thickness of the rubber 
layer, Rmid − R in. This implied the use of very thin elements provided each layer was discretized by the same number of 
elements in the radial direction, so that shear locking could have been a concern. Additionally, the rubber was taken to 



728 F. Fuentes et al. / Journal of Computational Physics 348 (2017) 715–731
be the demanding case of a fully incompressible material, so that volumetric locking also had to be avoided. In principle, 
this makes the problem particularly challenging to solve, and therefore constitutes an ideal testing ground for the method 
being analyzed. Fortunately, the use of coupled variational formulations was extremely convenient, because, at least with 
regard to volumetric locking, all one needed to do was to choose a robustly well-posed variational formulation for the 
rubber subdomain coupled with a more efficient formulation in the steel subdomain, where robustness with respect to the 
material properties was not an issue. In fact, as shown in Fig. 3, the broken ultraweak formulation (U) was chosen for the 
rubber, while the broken primal formulation (P ) was chosen for the steel.

For reference, the steel had a Young’s modulus of ES = 200 GPa and a Poisson’s ratio of νS = 0.285, and the rubber had a 
Young’s modulus of ER = 0.01 GPa and a Poisson’s ratio of νR = 0.5. Then, the Lamé parameters were easily calculated using 
the formulas λ = Eν

(1+ν)(1−2ν)
and μ = E

2(1+ν)
. Meanwhile, the radii used were R in = 0.5 m, Rmid = 0.99 m and Rout = 1.0 m.

5.2.1. Uniform pressure distribution
For code verification, a one-dimensional problem was essentially solved in three dimensions. Indeed, uniform pressure 

distributions were assumed to hold inside and outside, with values pin = 1 MPa and pout = 0 MPa respectively, so that they 
were independent of the azimuthal and axial directions, along with all the mechanics of the problem (i.e. ∂u

∂θ
= 0 and 

∂u
∂z = 0). The remaining boundary conditions at the axial faces also implied that uθ = 0 and uz = 0. Thus, the exact solution 
was derived from the ansatz that all nonvanishing physical variables were functions only of the radial direction, r. With 
these assumptions, the linear elasticity problem with no external volumetric forces reduces to the scalar equation

1

r

d

dr
(rσrr) − 1

r
σθθ = 0 , (5.2)

with boundary conditions, (σ · n̂(R in))r = −σrr(R in) = pin and (σ · n̂(Rout))r = σrr(Rout) = −pout. For the steel, the nonzero 
stress components are

σrr = (2μS + λS)
dur

dr
+ λS

ur

r
, σθθ = (2μS + λS)

ur

r
+ λS

dur

dr
, and σzz = λS

( dur

dr
+ ur

r

)
, (5.3)

while for the rubber there is the additional incompressibility equation div(u) = dur
dr + ur

r = 0 and the stress components are

σrr = 2μR
dur

dr
− p0 , σθθ = 2μR

ur

r
− p0 , and σzz = −p0 , (5.4)

for some constant p0 ∈R.
This boundary value problem has the general solution

ur(r) =
{

Ar−1 if R in ≤ r ≤ Rmid ,

Br + Cr−1 if Rmid ≤ r ≤ Rout ,
(5.5)

where the range R in ≤ r ≤ Rmid represents the rubber and the range Rmid ≤ r ≤ Rout represents the steel. Upon matching 
displacements and tractions at the interface, Rmid, and applying the boundary conditions, the constants A, B , C and p0 in 
their general form are determined to be,

A = 1

2d

(
− pin

(
μS R2

mid + (λS + μS)R2
out

) + pout(λS + 2μS)R2
out

)
R2

mid R2
in ,

B = 1

2d

(
− pinμS R2

in R2
mid − pout

(
(μR − μS)R2

in − μR R2
mid

)
R2

out

)
,

C = 1

2d

(
− pin(λS + μS)R2

in + pout
(
(λS + μR + μS)R2

in − μR R2
mid

))
R2

mid R2
out ,

p0 = 1

d

(
pin

(
(μR − μS)(λS + μS)R2

out + μS(λS + μR + μS)R2
mid

)
R2

in − poutμR(λS + 2μS)R2
out R2

mid

)
,

d = (
(μR − μS)(λS + μS)R2

out + μS(λS + μR + μS)R2
mid

)
R2

in − μR
(
μS R2

mid + (λS + μS)R2
out

)
R2

mid .

(5.6)

Instead of showing convergence of the displacement error as in the previous example, here the convergence of the 
stress was presented. For this, the L2(�) error of the variable σh was reported, where σh is the L2(�U) ultraweak stress 
solution variable inside the rubber and σh = C : ∇uh inside the steel, with uh being the H1(�P ) primal displacement 
solution variable. Order p convergence rates were expected for order p discretizations as stipulated by Remark 4.1, because 
‖σ − σh‖L2(�) ≤ ‖σ − σh‖L2(�U) + ‖C‖‖u − uh‖H1(�P ) . This was corroborated numerically under uniform refinements for 
2 ≤ p ≤ 4 as observed in Fig. 4.
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Fig. 4. Stress error (in Pa) as a function of the number of uniform refinements, Nref . The value of p = 1 was not shown because the approximating 
isoparametric geometry was too inaccurate for the initial meshes.

Fig. 5. Stress component σθθ (in MPa) from computed solution with p = 2 and nonuniform internal pressure loading after three uniform refinements of the 
eight-element initial mesh. Note the discontinuity across the material interface.

5.2.2. Nonuniform pressure distribution
Lastly, a nonuniform internal pressure distribution of pin(θ) = cos2(θ) MPa was prescribed on the inside, while the exter-

nal pressure was uniformly kept at pout = 0 MPa. After a few uniform refinements the solution is displayed in Fig. 5 in each 
separate layer. Note that the discontinuity of the stress component, σθθ , which is useful in some applications, was amicably 
reproduced.

5.3. Discussion

An important point to emphasize about solving coupled formulations with the DPG methodology is that depending on 
the subdomain formulation, the mode of convergence, which is given by the minimization of the residual (see (4.2)), is 
different because the residual is directly related to the bilinear form along with its associated trial and broken test spaces 
and their corresponding norms. Hence, there is a potential subdomain bias in the convergence of the solution variables 
depending on the variational formulations associated to each subdomain. This bias is even more stark when having a 
multi-material domain, which expectedly introduces different scales throughout the domain. If the focus is to be centered 
around optimality in solution estimation, as research in the DPG methodology often has [10,17,19], then this subdomain 
bias in the convergence is a crucial aspect to ponder. Indeed, it directly affects the (local) residual that is used as an a 
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posteriori error estimator to drive adaptivity (see (4.7)). The bias itself is not necessarily undesirable, since it may align 
with preferences by the end user, but it may be important to understand and modify so that it further aligns with those 
preferences. For example, in the sheathed hose one might want to prioritize the values of stress in the steel over those in 
the rubber, or the values of strain in the rubber over those in the steel. Thus, the ideal scenario is to be able to control the 
bias in accordance with a desired objective. With this in mind, the lucid approach is to attempt to design objective-biased
test norms that satisfy this very purpose. In this work, the use of the standard test norms in (2.8) introduced a natural yet 
unoptimized subdomain bias, but designing these objective-biased norms would most certainly constitute an improvement 
to the scope of the present work.

Another remark to make is that the method used is akin to domain-decomposition methods and may even serve as an 
alternative. In fact, many steps of the current method can be made parallel too, and the resulting connectivities along the 
interdomain boundaries are of a similar nature as those of other domain-decomposition methods. Conceptually, compared 
to domain-decomposition methods, the use of the DPG methodology in the current method has the advantage of providing 
a solid ground of theory which practically guarantees stability and convergence of the solution with successive refinements, 
but has the disadvantage of possibly coming at a slightly higher computational cost. In the future, it would be interesting 
to more rigorously investigate these connections with domain-decomposition methods. Lastly, the interface variables in 
the broken formulations are not only natural to couple distinct formulations, but also suggest a natural way to couple 
with entirely different finite element methods or with boundary element methods. The latter has already been further 
investigated in the context of elliptic transmission problems [24,25].

6. Conclusions

Coupled variational formulations for linear elasticity were constructed using a closely related family of broken variational 
formulations first presented in [30], where each subdomain of a partitioned domain was solved with a distinct formulation 
from this family. The broken variational formulations that are commonplace in the context of the DPG methodology proved 
to be ideal in the theory and practice of the coupled formulations due to the presence of interface variables which served 
as a perfect vessel to transmit the solution information along the shared interdomain boundaries. Indeed, the coupled 
formulations were proved to be well-posed and were successfully implemented and solved using the DPG methodology. 
Expected convergence rates for various values of p were observed for different variables in several well-crafted examples.

The coupled formulations are useful in cases where one might want to exploit the properties of a particular formulation 
in a certain part of the domain. For example, it is useful to have a robust formulation when a part of the domain is 
composed of a nearly incompressible material, and certain formulations are more convenient when singular behavior of the 
solution is expected. In this work, an example of a sheathed hose with high material contrast was used to illustrate the 
former point. This included the derivation of a nontrivial and physically-relevant exact solution which can be used as a 
benchmark by other researchers. Regarding the near singular behavior in the latter point, it would be interesting to study 
some examples with Maxwell’s equations in the future. The mode of convergence is different depending on which variational 
formulation is being used, so to obtain a desired convergence behavior or to have a better control of a residual-based 
adaptivity strategy, it would be compelling to explore more exotic test norms eventually. Additionally, from both a theoretical 
and practical standpoint, the approach presented in this work can be extended with the help of the existing literature to 
many other equations such as Poisson’s equation, Maxwell’s equations [9], the diffusion–convection–reaction equation [15], 
and more. It should also be noted that the implementation of these coupled formulations can be useful as an alternative to 
other domain-decomposition methods.

Finally, the DPG methodology was fundamental in achieving a successful implementation, in large part because of its 
versatility in displaying stability with a variety of distinct variational formulations, including those that have different trial 
and test spaces. In this work, a novel and particularly productive decoupling of the stiffness matrix and residual computation 
was described (see (4.6) and (4.7)), allowing for a considerably more efficient computational implementation of some of the 
linear algebra operations that accompany the DPG methodology.
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