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We study the problem of reconstructing a function on a manifold satisfying some mild 
conditions, given data of the values and some derivatives of the function at arbitrary points 
on the manifold. While the problem of finding a polynomial of two variables with total 
degree ≤ n given the values of the polynomial and some of its derivatives at exactly the 
same number of points as the dimension of the polynomial space is sometimes impossible, 
we show that such a problem always has a solution in a very general situation if the degree 
of the polynomials is sufficiently large. We give estimates on how large the degree should 
be, and give explicit constructions for such a polynomial even in a far more general case. 
As the number of sampling points at which the data is available increases, our polynomials 
converge to the target function on the set where the sampling points are dense. Numerical 
examples in single and double precision show that this method is stable, efficient, and of 
high-order.

© 2018 Elsevier Inc. All rights reserved.

1. Introduction

The subject of Lagrange interpolation of univariate functions is a very old one. Thus, one starts with an (infinite) inter-
polation matrix X whose n-th column consists of n real numbers xk,n , k = 1, · · · , n. It is well known that for any matrix Z
whose n-th column consists of n real numbers zk,n , k = 1, · · · , n, there exists a sequence of polynomials Ln(X, Z) of degree 
≤ n − 1 such that Ln(X, Z; xk,n) = zk,n , k = 1, · · · , n. In the case when each zk,n = f (xk,n) for some continuous function f , 
then it is customary to denote Ln(X, Z) by Ln(X, f ). It is also well known that for any X ⊂ [−1, 1], there exists a continu-
ous function f : [−1, 1] → R such that the sequence Ln(X, f ) does not converge in the uniform norm [1]. This situation is 
similar to the theory of trigonometric Fourier series, where the Fourier projections of a function do not always converge to 
the function in the uniform norm, but one can construct summability operators to obtain convergence [2].

Several interpolatory analogues of such summability operators are studied in the literature. For example, if xk,n =
cos((2k − 1)π/(2n)), k = 1, · · · , n, f : [−1, 1] → R is continuous, and one constructs a sequence of polynomials Fn( f ) of 
degree ≤ 2n − 1 such that Fn(xk,n) = f (xk,n), and F ′

n(xk,n) = 0, then the sequence Fn( f ) → f uniformly on [−1, 1] [1].
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In 1906, Birkhoff initiated a study of interpolation in a more general setting, known now as Birkhoff interpolation [3]. 
For each column of the matrix X , one considers an incidence matrix E whose entries are in {0, 1}. If the number of 1’s in 
E is N , one seeks a polynomial B N of degree ≤ N − 1 such that B( j)

N (xk,n) = y j;k,n if the (k, j)-th entry in E is 1. Clearly, 
such a polynomial may or may not exist. The conditions under which it exists and is unique is the topic of a great deal 
of research [4]. As expected, the problems are much harder in the multivariate setting [5,6]. For example, it is not always 
possible to find a bivariate polynomial P of total degree 2 (with 6 parameters) such that P and its derivatives up to order 
2 take given values (also 6 conditions).

A great deal of research on this subject is focused on forming a “square” system and determining whether or not the 
system is solvable for most point distributions. Since there is not always an obvious choice of interpolation space, the space 
can be constructed in multiple ways. For example, monomial bases [7–9], Newton-type bases [10,7], and cardinal bases [11]
have been studied by various authors. Obtaining a unique solution, though, does not ensure convergence to the underlying 
function when the data become dense. Although some of the previously cited articles have numerical examples, not all of 
them computed the maximum difference between the test function and its approximation in a suitable domain, and we 
do not know of any general provably convergent technique for the Birkhoff problem on scattered data points in arbitrary 
domains.

If we do not require that the dimension of the polynomial space match exactly the number of 1’s in the incidence 
matrix, then it is possible to guarantee not just existence, but also give explicit algorithms and prove the convergence of 
the resulting polynomials. In the case of interpolation based on the values of the polynomials alone, this has been observed 
in a series of papers [12–14]. The purpose of this paper is to generalize these results for Birkhoff-like interpolation for the 
so called diffusion polynomials.

One of our motivations is to study numerical solutions of a system of linear partial differential equations. Given differ-
ential operators Lk on a manifold X (and its boundary), the collocation method involves finding a “polynomial” (i.e., an 
element of a suitably chosen finite dimensional space) P for which the values of Lk(P ) are known at some grid points. We 
view this question as a generalized Birkhoff interpolation problem, except that we do not require the dimension of the space 
to be exactly equal to the conditions. On general manifolds, one does not always have standard grids such as equidistant 
grid on a Euclidean space. Therefore mesh-free methods require a solution of such interpolation problems on scattered data; 
i.e., when one cannot prescribe the location of the grid points in advance. There are many efforts to reconstruct a function 
from scattered data; see [15] for one example. The papers [16–18] present work relating to function approximation on 
the sphere. We show the feasibility of the solution of such interpolation problems provided the dimension of the space is 
sufficiently high, inversely proportional to the minimal separation among the grid points. We will prove that such solutions 
can be constructed as minimizers of an optimization problem, and prove that these solutions will converge to the target 
function at limit points of the grid points. An application of these ideas is already demonstrated in [19].

The main results are presented in Section 2, while the overall assumptions are discussed in Section 3. Preparatory results 
are developed in Sections 4–6 and are used to prove the main theorems in Section 7. Finally, numerical simulations are 
given in Section 8. We show that the standard divergence phenomenon is overcome in both one and two dimensions. 
We also numerically demonstrate the high-order convergence of our method. Furthermore we present results using both 
single and double precision to show that the high ill-conditioning associated with high order methods can be successfully 
overcome using our efficient numerical techniques.

2. Main results

We wish to study the problem of interpolation of derivative information in a somewhat abstract manner, to accommo-
date several examples. The most elementary among these is interpolation by multivariate trigonometric polynomials. Other 
examples include the problem of interpolation by spherical polynomials, or by linear combinations of the eigenfunctions of 
some elliptic differential operator on a smooth manifold.

Let X be a metric measure space with a probability measure μ∗ and metric ρ . In this paper, a measure will mean a 
complete, sigma-finite, Borel measure, signed or positive. For a measure ν , |ν| denotes its total variation measure. If ν is a 
measure, and f : X →R is ν-measurable, we define

‖ f ‖ν;p =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

⎛⎝∫
X

| f (x)|pd|ν|(x)

⎞⎠1/p

, if 1 ≤ p < ∞,

|ν| − ess sup
x∈X

| f (x)|, if p = ∞.

The symbol Lp(ν) will denote the space of all f such that ‖ f ‖ν;p < ∞, where two functions are considered equal if they are 
equal |ν|-almost everywhere. If ν = μ∗ , we will often omit the mention of the measure from the notation, if we feel that 
this should not cause any confusion; e.g., ‖ f ‖p = ‖ f ‖μ∗;p , Lp = Lp(μ∗). The space of uniformly continuous and bounded 
functions on X will be denoted by U BC . For 1 ≤ p ≤ ∞, we define the dual exponent p′ by 1/p + 1/p′ = 1 as usual.

Let {λk} be increasing sequence of nonnegative numbers with λ0 = 0, and {φk} be an orthonormal set (of real valued 
functions) in L2 ∩ U BC . We define the space
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�n = span {φk : λk < n}, n > 0, �n = {0}, n ≤ 0.

We will write

�∞ =
⋃
n≥0

�n.

The elements of �∞ have been referred to as diffusion polynomials in [20], and we will use the same terminology. If 
P ∈ �n , we will refer to n as the degree of P , or more precisely that P is of degree < n. From the definition, we do not
require λk to be integers. The Lp closure of the �∞ will be denoted by X p .

Example 2.1 (The trigonometric case). Let q ≥ 1 be an integer. The space X is the torus (quotient group) Tq = R
q/(2πZ

q), ρ is 
the arc-length, and μ∗ is the normalized Lebesgue measure. We take {λk} to be an enumeration of multi-integers in Z

q
+

such that m comes before j if either |m|2 ≤ |j|2 and if |m|2 = |j|2, then m comes before j in the alphabetical ordering. If the 
multi-integer corresponding to λk is k, the corresponding φk ’s are cos(k·◦), sin(k · ◦). In this case, X p = Lp if 1 ≤ p < ∞, 
and X∞ is the set of all continuous functions on Tq .

Example 2.2 (The manifold case). Let X be a compact Riemannian manifold, ρ be the geodesic distance, μ∗ be the Riemann 
measure. We take λk to be the square roots of eigenvalues of a self-adjoint, second order, regular elliptic differential operator 
on X, and φk to be the corresponding eigenfunction. The precise nature of the space X p will depend upon the manifold and 
the elliptic operator.

Example 2.3 (The 2-sphere). If X is the 2 dimensional Euclidean sphere S2, we may choose each φk to be one of the or-
thonormalized spherical harmonics and λk = k, the degree of this polynomial. This emphasizes in particular, that λk ’s do 
not have to be the eigenvalues of any predetermined differential/integral operator. Indeed, in our abstract setting of metric 
measure spaces, there is no notion of a differentiability structure.

In the absence of any concrete structure, we will need to make several assumptions on the system � = (X, ρ, μ∗, {λk},
{φk}). These are formulated precisely in Section 3. For the clarity of exposition, we will now assume that these are all 
satisfied. In particular, the symbol q used in the following discussion is defined in (3.4).

Next, we define the smoothness classes needed in order to state our theorems. In the trigonometric case, the Sobolev 
space W p,β is defined as the space of all functions f : Tq →C for which (|k|22 +1)β/2 f̂ (k) = f̂ (β)(k) for some f (β) ∈ Lp(Tq). 
In our abstract case, the role of |k|2 is played by λk . However, we would like to introduce a greater flexibility in the 
definition of the Sobolev class.

If f ∈ L1, we define

f̂ (k) :=
∫
X

f (y)φk(y)dμ∗(y), k = 0,1, · · · . (2.1)

To include such multipliers as (λ2
k + 1)β/2 or (λk + 1)β , we use a mask of type β , defined below in Definition 2.1. In the 

sequel, S will be a fixed integer.

Definition 2.1. Let β ∈ R. A function b : R → R will be called a mask of type β if b is an even, S + 1 times continuously 
differentiable function (for some integer S > q) such that for t > 0, b(t) = (1 + t)−β Fb(log t) for some Fb : R → R such that 
|Fb

(k)(t)| ≤ c(b), t ∈ R, k = 0, 1, · · · , S + 1, and Fb(t) ≥ c1(b), t ∈R.

If β ∈ R, b is a mask of type β , and f ∈ Lp , we say that a function f ∈ W p,b if there exists f (b) ∈ Lp such that

b(λk) f̂ (b)(k) = f̂ (k), k = 0,1, · · · . (2.2)

We will write

‖ f ‖W p,b = ‖ f (b)‖p . (2.3)

In [21], we have shown that if β > q/p, and b is a mask of type β , then for every y ∈X, there exists ψy := G(b; ◦, y) ∈ X p′

such that 〈ψy, φk〉 = b(λk)φk(y), k = 0, 1, · · · . Moreover,

sup ‖G(b; ◦, y)‖p′ ≤ c. (2.4)

y∈X
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It is then easy to check by comparison of coefficients that if f ∈ W p,b then for almost all x ∈ X:

f (x) =
∫
X

G(b; x, y) f (b)(y)dμ∗(y). (2.5)

As a prelude to our main theorem, we formulate first a Golomb–Weinberger-type theorem in our general setting. The 
theorem gives an explicit expression for a solution of the interpolation problem:

Given linear operators Lk, k = 1, · · · , R, each defined on W2,b, such that point evaluations are well-defined on the range of each Lk, 
points y� ∈ X, � = 1, · · · , M, and data fk,� ∈C, find a function g ∈ W2,b such that Lk(g)(y�) = fk,� , k = 1, · · · , R, � = 1, · · · , M.

The Golomb–Weinberger-type theorem gives a solution as a linear combination of the kernel defined in (2.6) below. Let 
b be a mask of type β > q/2. Then b2 is a mask of type 2β > q. We define

G(x, y) =
∞∑
j=0

b(λ j)
2φ j(x)φ j(y). (2.6)

Clearly, G, treated either as a function of x or y, is a function in W2,b .

Theorem 2.1. Let R, M ≥ 1 be integers, each Lk, k = 1, · · · , R, be a linear operator defined on W2,b such that point evaluations are 
well defined on the range of Lk. Let y� ∈ X, � = 1, · · · , M, and { fk,�}k=1,··· ,R, �=1,··· ,M ⊂ C. We assume that there exist φk, j ∈ W2,b, 
k = 1, · · · , R, j = 1, · · · , M, such that the following condition holds: For i = 1, · · · , R, � = 1, · · · , M,

Li(φk, j)(y�) =
{

1, if i = k, j = �,
0, otherwise.

(2.7)

Then the problem

minimize ‖g(b)‖2 subject to Lk(g)(y�) = fk,�, k = 1, · · · , R, � = 1, · · · , M, (2.8)

has a solution of the form

P (x) =
R∑

k=1

M∑
j=1

ak, j Lk,1G(y j, x), x ∈X, (2.9)

where, the expression Lk,1G(y j, x) means that the operator Lk is applied to the 1-st variable in G, and the resulting function is 
evaluated at (y j, x).

In the trigonometric case, when b(t) = (t2 + 1)−β/2, the kernel G takes the form∑
k∈Z

(|k|22 + 1)−β exp(ik · x).

A straightforward computation of this series may be slow for small values of β , and in any case, introduces a truncation er-
ror. Therefore, we are interested in solving the interpolation problem directly using the diffusion polynomials (trigonometric 
polynomials in the trigonometric case). Toward this goal, we first introduce some further terminology.

Constant convention: In the sequel, c, c1, · · · will denote generic positive constants independent of any obvious variables such as the 
degree n, or the target function, etc. Their values may be different at different occurrences, even within the same formula. The symbol 
A ∼ B means that c1 A ≤ B ≤ c2 A.

We will consider an interpolation matrix, by which we mean a sequence {Yn}∞n=1 of subsets

Yn = {y j,n}Mn
j=1, n = 1,2, · · · .

This is not a matrix in the usual sense of the word, but the terminology captures the spirit of a similar notion in the theory 
of classical polynomial interpolation. For any subset C ⊆ X, we define its minimal separation by

η(C) = min
x,y∈C, x�=y

ρ(x, y). (2.10)

We will write

ηn = η(Yn), n = 1, · · · . (2.11)
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Our main theorem is the following.

Theorem 2.2. We assume each of the conditions listed in Section 3, where some of the notation used here is explained. Let 1 ≤ p ≤ ∞, 
β > max1≤k≤R qk + q/p, b be a mask of type β , f ∈ W p,b. Then there exists an integer N∗ with N∗ ∼ η−1

n and a mapping P∗ = P∗
n :

W p,b → �N∗ such that for every f ∈ W p,b,

Lk(P∗( f ))(y j,n) = Lk( f )(y j,n), j = 1, · · · , Mn, k = 1, · · · , R, (2.12)

and

‖ f − P∗( f )‖W p,b ≤ c inf{‖ f − T ‖W p,b : T ∈ �N∗ }. (2.13)

In particular, there exists P = Pn : W p,b → �N∗ such that

‖P( f )‖W p.b = min{‖P‖W p,b : Lk(P )(y�,n) = Lk( f )(y�,n), � = 1, · · · , Mn, k = 1, · · · , R}. (2.14)

We observe that the sets Yn do not necessarily become dense in X as n → ∞. In this case, it is clearly impossible to 
give a construction of the operators P∗

n based entirely on Yn that satisfies the global convergence implied by (2.14). The 
second part of Theorem 2.2 helps us to find an interpolatory diffusion polynomial whose W p,b norm is under control on X. 
Therefore, we do not expect that the sequence Pn( f ) to converge to f on X. However, the sequence converges at limit 
points of Yn ’s.

Theorem 2.3. With the set up as in Theorem 2.2, if x0 ∈ X is a limit point of the family {Yn}, then f (x0) is a limit point of {Pn( f )(y) :
y ∈ Yn, n = 1, 2, · · · }.

Theorem 2.3 follows from a much general principle “feasibility implies convergence”, which is formulated more precisely 
in Theorem 7.1 below.

3. Assumptions

3.1. The space

Let X be a non-empty set, ρ be a metric defined on X, and μ∗ be a complete, positive, Borel measure with μ∗(X) = 1. 
We fix a non-decreasing sequence {λk}∞k=0 of nonnegative numbers such that λ0 = 0, and λk ↑ ∞ as k → ∞. Also, we 
fix a system of continuous, bounded, and integrable functions {φk}∞k=0, orthonormal with respect to μ∗; namely, for all 
nonnegative integers j, k,∫

X

φk(x)φ j(x)dμ∗(x) =
{

1, if j = k,
0, otherwise.

(3.1)

We will assume that φ0(x) = 1 for all x ∈X.
In our context, the role of polynomials will be played by diffusion polynomials, which are finite linear combinations 

of {φ j}. In particular, an element of

�n := span{φ j : λ j < n}
will be called a diffusion polynomial of degree < n.

We will formulate our assumptions in terms of a formal heat kernel. The heat kernel on X is defined formally by

Kt(x, y) =
∞∑

k=0

exp(−λ2
kt)φk(x)φk(y), x, y ∈X, t > 0. (3.2)

Although Kt satisfies the semigroup property, and in light of the fact that λ0 = 0, φ0(x) ≡ 1, we have formally∫
X

Kt(x, y)dμ∗(y) = 1, x ∈X, (3.3)

yet Kt may not be the heat kernel in the classical sense. In particular, we need not assume Kt to be nonnegative.

Definition 3.1. The system � = (X, ρ, μ∗, {λk}∞k=0, {φk}∞k=0) is called a data-defined space if each of the following conditions 
are satisfied.
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1. For each x ∈X and r > 0, the ball B(x, r) is compact.
2. There exist q > 0 and κ2 > 0 such that the following power growth bound condition holds:

μ∗(B(x, r)) = μ∗ ({y ∈ X : ρ(x, y) < r}) ≤ κ2rq, x ∈X, r > 0. (3.4)

3. The series defining Kt(x, y) converges for every t ∈ (0, 1 and x, y ∈ X. Further, with q as above, there exist κ3, κ4 > 0
such that the following Gaussian upper bound holds:

|Kt(x, y)| ≤ κ3t−q/2 exp

(
−κ4

ρ(x, y)2

t

)
, x, y ∈ X, 0 < t ≤ 1. (3.5)

There is a great deal of discussion in the literature on the validity of the conditions in the above definition and their 
relationship with many other objects related to the quasi-metric space in question, (cf. for example, [22–25]). In particular, it 
is shown in [22, Section 5.5] that all the conditions defining a data-defined space are satisfied in the case of any complete, 
connected Riemannian manifold with non-negative Ricci curvature. It is shown in [26] that our assumption on the heat 
kernel is valid in the case when X is a complete Riemannian manifold with bounded geometry, and {−λ2

j }, respectively 
{φ j}, are eigenvalues, respectively eigenfunctions, for a uniformly elliptic second order differential operator satisfying certain 
technical conditions.

The bounds on the heat kernel are closely connected with the measures of the balls B(x, r). For example, using (3.5), 
Proposition 4.2 below, and the fact that∫

X

|Kt(x, y)|dμ∗(y) ≥
∫
X

Kt(x, y)dμ∗(y) = 1, x ∈X,

it is not difficult to deduce as in [25] that

μ∗(B(x, r)) ≥ crq, 0 < r ≤ 1. (3.6)

In many of the examples cited above, the kernel Kt also satisfies a lower bound to match the upper bound in (3.5). In this 
case, Grigoryán [25] has also shown that (3.4) is satisfied for 0 < r < 1.

We remark that the estimates (3.4) and (3.6) together imply that μ∗ satisfies the homogeneity condition

μ∗(B(x, R)) ≤ c1(R/r)qμ∗(B(x, r)), x ∈ X, r ∈ (0,1], R > 0, (3.7)

where c1 > 0 is a suitable constant.

3.2. The operators Lk

In this sub-section, we state our assumptions on the linear operators Lk . For a bivariate function F : X ×X →R, we will 
denote

Lk,1 F (x, y) := Lk F (x, y) := (Lk(F (◦, y))(x), Lk,2 F (x, y) := (Lk(F (x,◦))(y).

We fix n, letting η = ηn be the minimum separation between the M = Mn points in Yn .

1. We assume that each Lk is closed linear operator; i.e., if fm → f in Lp , and Lk( fm) → g in Lp , then f is in the domain 
of Lk and Lk( f ) = g .

2. We assume that each Lk is local; i.e., if f (x) = 0 for almost all x in an open subset U of X, then Lk( f )(x) = 0 for almost 
all x ∈ U .

3. There exists qk ≥ 0 such that

|Lk,1 Kt(x, y)| ≤ ct−(q+qk)/2 exp

(
−c1

ρ(x, y)2

t

)
, x, y ∈X, 0 < t ≤ 1. (3.8)

4. For each k = 1, · · · , R , j = 1, · · · , M , there exists φk, j ∈ W p,b such that each of the following conditions holds:
4.1. For i = 1, · · · ,

Li(φk, j) = 0, i �= k, i = 1, · · · , R. (3.9)

4.2. For i = 1, · · · , � = 1, · · · , M ,

Li(φk, j)(y�) =
{

1, if i = k, j = �,
0, otherwise.

(3.10)
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4.3. φk, j , φ
(b)

k, j are both supported on a neighborhood of y j with diameter ≤ η/3.
4.4. We have

‖φ(b)

k, j ‖∞ ≤ cηqk−β. (3.11)

We remark that for any x ∈ X, there is at most one j such that ρ(x, y j) ≤ η/3, and hence,

φk,�(x) = 0, � �= j, j = 1, · · · , M. (3.12)

In the case when X is the torus, and each Lk is a mixed partial derivative D j for some multi-integer j, the construction 
of functions φk, j is given in [27]. The bounds (3.11) are established there in the case when β is an even integer. If X is 
a manifold (sphere in particular), and η is less than its inradius, (λ2

k , φk) are the eigenfunctions of the Laplace–Beltrami 
operator, and β is an even integer, then the same construction works via exponential coordinates. A slightly more general 
scenario involving other second order partial differential operators holds also in view of our results in [28]. When the 
operators Lk are given by

Lk( f , x) =
∑

|j|≤qk

ak,j(x)D j f (x), (3.13)

then one needs to make some assumptions on the matrices (ak,j(y�))�=1,··· ,M,|j|≤qk so that the constructions given in [27]
can be used to construct the desired φk, j .

4. Preparatory results

The proof of Theorem 2.2 is much more involved than those of the other theorems. The goal of this section is to prove 
a number of auxiliary results which will lead to the proof of Theorem 2.2.

4.1. Regular measures

We start by introducing the concept of what we have called d-regular measures, and some of their properties.

Definition 4.1. Let ν be any measure on X with |ν|(X) < ∞, d > 0. We say that ν is d-regular if

ν(B(x,d)) ≤ cdq, x ∈ X. (4.1)

The infimum of all constants c which work in (4.1) will be denoted by ‖ |ν‖ |R,d .

For example, (3.4) implies that μ∗ is d-regular for every d > 0, and ‖ |μ∗‖ |R,d ≤ c for all d > 0 with c independent of d. 
In the sequel, when thinking of μ∗ as a regular measure, we will pass to a limit, and use d = 0. In the following lemma, we 
give another example.

Lemma 4.1. Let C = {y1, · · · , yM} ⊂ X, 0 < η < 2 be the minimal separation amongst the y j ’s (cf. (2.10)), τ be the measure that 
associates the mass ηq with each y j . Then ν is η-regular, and ‖ |τ‖ |R,η ≤ c, where c is a constant independent of η.

Proof. Let x0 ∈ X, and by relabeling if necessary, let C ∩ B(x0, η) = {y1, · · · , y J }. Then the caps B(y j, η/2) are mutually 
disjoint, and their union is contained in B(x0, 3η/2). We recall from (3.6) that ηq ≤ c1μ

∗(B(y j, η/2)) and from (3.4) that 
μ∗(B(x0, 3η/2)) ≤ c2η

q . Therefore, we deduce that

τ (B(x0, η)) = Jηq ≤ c1

J∑
j=1

μ∗(B(y j, η/2)) = c1μ
∗ (∪ J

j=1B(y j, η/2)
)

≤ c1μ
∗(B(x0,3η/2)) ≤ c1c2η

q. �

The following proposition [29, Theorem 5.5(a), Proposition 5.6] lists some equivalent conditions for a measure to be a 
regular measure.

Proposition 4.1. Let N, d > 0, ν be a signed or positive finite Borel measure.

(a) If ν is d-regular, then for each r > 0 and x ∈ X,

|ν|(B(x, r)) ≤ c‖|ν‖|R,d μ∗(B(x, r + d)) ≤ c1‖|ν‖|R,d(r + d)q. (4.2)

Conversely, if for some A > 0, |ν|(B(x, r)) ≤ A(r + d)q for each r > 0 and x ∈X, then ν is d-regular, and ‖ |ν‖ |R,d ≤ 2q A.
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(b) For each γ > 1,

‖|ν‖|R,γ d ≤ c1(γ + 1)q‖|ν‖|R,d ≤ c1(γ + 1)qγ q‖|ν‖|R,γ d, (4.3)

where c1 is the constant appearing in (4.2).
(c) Let N ≥ 1. If ν is 1/N-regular, then ‖P‖ν;p ≤ c1‖ |ν‖ |1/p

R,1/N‖P‖μ∗;p for all P ∈ �N and 1 ≤ p < ∞. Conversely, if for some A > 0

and 1 ≤ p < ∞, ‖P‖ν;p ≤ A1/p‖P‖μ∗;p for all P ∈ �N , then ν is 1/N-regular, and ‖ |ν‖ |R,1/N ≤ c2 A.

Next, we recall a very general proposition [29, Proposition 6.5] helping us to estimate integrals of quantities such as the 
right hand side of (4.28).

Proposition 4.2. Let d > 0, and ν be a d-regular measure. If g1 : [0, ∞) → [0, ∞) is a nonincreasing function, then for any N > 0, 
r > 0, x ∈X,

Nq
∫

�(x,r)

g1(Nρ(x, y))d|ν|(y) ≤ 2q(κ1 + (d/r)q)q

1 − 2−q
‖|ν‖|R,d

∞∫
rN/2

g1(u)uq−1du. (4.4)

In particular, if S > q,

Nq
∫

�(x,r)

d|ν|(y)

max(1, (Nρ(x, y))S)
≤ c1(c + (d/r)q)q

max(1, (rN/2)S−q)
‖|ν‖|R,d, (4.5)

and

Nq
∫
X

d|ν|(y)

max(1, (Nρ(x, y))S)
≤ c1(c + (Nd)q)‖|ν‖|R,d. (4.6)

4.2. Localized kernels

Localized kernels form the main ingredient in our proofs. To obtain these kernels, we will use the following Tauberian 
theorem ([30, Theorem 4.3]) with different choices of the function H .

Theorem 4.1. Let μ∗ be an extended complex valued measure on [0, ∞), and μ∗({0}) = 0. We assume that there exist Q , r > 0, such 
that each of the following conditions are satisfied.

1.

‖|μ∗‖|Q := sup
u∈[0,∞)

|μ∗|([0, u))

(u + 2)Q
< ∞. (4.7)

2. There are constants c, C > 0, such that∣∣∣∣∣∣
∫
R

exp(−u2t)dμ∗(u)

∣∣∣∣∣∣≤ c1t−C exp(−r2/t)‖|μ∗‖|Q , 0 < t ≤ 1. (4.8)

Let H : [0, ∞) →R, S > Q + 1 be an integer, and suppose that there exists a measure H [S] such that

H(u) =
∞∫

0

(v2 − u2)S+dH [S](v), u ∈R, (4.9)

and

V Q ,S(H) = max

⎛⎝ ∞∫
0

(v + 2)Q v2Sd|H [S]|(v),

∞∫
0

(v + 2)Q v Sd|H [S]|(v)

⎞⎠< ∞. (4.10)

Then for n ≥ 1,∣∣∣∣∣∣
∞∫

0

H(u/n)dμ∗(u)

∣∣∣∣∣∣≤ c
nQ

max(1, (nr)S)
V Q ,S(H)‖|μ∗‖|Q . (4.11)
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We observe that if H is compactly supported, has S + 1 continuous derivatives, and is constant in a neighborhood of 0, 
then the Taylor formula used with u → H(

√
u) shows that the representation (4.9) holds with H [S] being the S-th derivative 

of u → H(
√

u), and we have

V Q ,S(H) ≤ c max
0≤k≤S+1

max
u∈R

|H (k)(u)| = c‖|H‖|S . (4.12)

The following proposition summarizes some general results which we will use in our proofs later. If {ψ j}, {ψ̃ j} are sequences 
of bounded functions on X, we define formally

�n({ψ j}, {ψ̃ j}, H; x, y) =
∞∑
j=0

H

(
λ j

n

)
ψ j(x)ψ̃ j(y). (4.13)

It is convenient to set

�0({ψ j}, {ψ̃ j}, H; x, y) =
∑

j:λ j=0

ψ j(x)ψ̃ j(y).

Proposition 4.3. Let {ψ j}, {ψ̃ j} be sequences of bounded functions on X, H be as in Theorem 4.1, and for x, y ∈X,∑
j:λ j<u

|ψ j(x)ψ̃ j(y)| ≤ cu Q , u ≥ 1, (4.14)

∞∑
j=0

exp(−λ2
j t)ψ j(x)ψ̃ j(y) ≤ c1t−C exp(−ρ(x, y)2/t), 0 < t ≤ 1. (4.15)

Then ∣∣∣�n({ψ j}, {ψ̃ j}, H; x, y)

∣∣∣≤ c
nQ

max(1, (nρ(x, y))S)
V Q ,S(H), n ≥ 1. (4.16)

Further, if d > 0 and ν is a d-regular measure, then for x ∈X, r > 0, n ≥ 1 and 1 ≤ p < ∞,∫
�(x,r)

|�n({ψ j}, {ψ̃ j}, H; x, y)|d|ν|(y) ≤ nQ −q c1(c + (d/r)q)q

max(1, (rN/2)S−q)
‖|ν‖|R,d V Q ,S(H), (4.17)

∫
X

|�n({ψ j}, {ψ̃ j}, H; x, y)|pd|ν|(y) ≤ c
(
c1 + (nd)q)

)
nQ p−q‖|ν‖|R,d V Q ,S(H)p . (4.18)

Proof. For each x, y ∈X, we apply Theorem 4.1 with the measure

μ∗
x,y([0, u)) =

∑
j:λ j<u

ψ j(x)ψ̃ j(y).

The estimate (4.14) (respectively, (4.15), (4.16)) is equivalent to (4.7) (respectively, (4.8), (4.11)). The estimates (4.17) and 
(4.18) follow from (4.16) and a straightforward application of (4.5) and (4.6) respectively. �

Corresponding to the formal kernel in (4.13), we have the formal operator:

σn(ν; {ψ j}, {ψ̃ j}, H; f , x) :=
∫
X

�n({ψ j}, {ψ̃ j}, H; x, y) f (y)dν(y), f ∈ L1, n > 0, x ∈X. (4.19)

It is convenient to define

σ0(ν; {ψ j}, {ψ̃ j}, H; f , x) :=
∫
X

�0({ψ j}, {ψ̃ j}, H; x, y) f (y)dν(y), f ∈ L1, x ∈X. (4.20)

The following proposition lists some norm estimates for these operators.
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Proposition 4.4. We assume the set up as in Proposition 4.3. Let ν1 be a d1-regular measure, ν2 be a d1-regular measure, and 1 ≤ p ≤
r ≤ ∞. Then for f ∈ Lp(ν1)

‖σn(ν1; {ψ j}, {ψ̃ j}, H; f )‖ν2;r ≤ c
(
(c1 + (nd1)

q)‖|ν1‖|R,d1

)1/p′

× (
(c1 + (nd2)

q)‖|ν2‖|R,d2

)1/r
N Q −q+q(1/p−1/r)‖ f ‖ν1;p . (4.21)

Proof. In this proof, we will abbreviate �n({ψ j}, {ψ̃ j}, H; x, y) by �n(x, y) and σN (ν1; {ψ j}, {ψ̃ j}, H; f ) by σn( f ). Without 
loss of generality, we may assume also that V S,Q (H) = 1, and ν j are positive measures. Using Hölder inequality and (4.18), 
we deduce that for x ∈ X,

|σn( f , x)| ≤
∫
X

|�n(x, y)|| f (y)|dν1(y) ≤ ‖�n(x,◦)‖ν1;p′ ‖ f ‖ν1;p

≤ c
(
c1 + (nd1)

q)‖|ν1‖|R,d1

)1/p′
nQ −q/p′ ‖ f ‖ν1;p;

i.e.,

‖σn( f )‖ν2;∞ ≤ c
(
(c1 + (nd1)

q)‖|ν1‖|R,d1

)1/p′
nQ −q/p′ ‖ f ‖ν1;p . (4.22)

This proves (4.21) when r = ∞.
In particular, with p = ∞,

‖σn( f )‖ν2;∞ ≤ c(c1 + (nd1)
q)‖|ν1‖|R,d1nQ −q‖ f ‖ν1;∞. (4.23)

Switching the roles of {ψ j} and {ψ̃ j} in (4.18) (used with ν2 in place of ν , r = 1), the estimate becomes∫
X

|�n(x, y)|dν2(x) ≤ c(c1 + (nd2)
q)‖|ν2‖|R,d2nQ −q.

Therefore,

‖σn( f )‖ν2;1 ≤
∫
X

∫
X

|�n(x, y)|| f (y)|dν1(y)dν2(x) =
∫
X

⎧⎨⎩
∫
X

|�n(x, y)|dν2(x)

⎫⎬⎭ | f (y)|dν1(y)

≤ c(c1 + (nd2)
q)‖|ν2‖|R,d2nQ −q‖ f ‖ν1;1. (4.24)

In view of the Riesz–Thorin interpolation theorem [31, Theorem 1.1.1], (4.23) and (4.24) lead to

‖σn( f )‖ν2;p ≤ c
(
(c1 + (nd1)

q)‖|ν1‖|R,d1

)1/p′ (
(c1 + (nd2)

q)‖|ν2‖|R,d2

)1/p
nQ −q‖ f ‖ν1;p, 1 ≤ p ≤ ∞. (4.25)

Hence, using (4.22), we obtain for 1 ≤ r < r < ∞,∫
X

|σn( f , x)|rdν2(x) =
∫
X

|σn( f , x)|r−p|σn( f , x)|pdν2(x) ≤ ‖σn( f )‖r−p
ν2;∞‖σn( f )‖p

ν2;p

≤ c
(
(c1 + (nd1)

q)‖|ν1‖|R,d1

)(r−p)/p′ (
(c1 + (nd1)

q)‖|ν1‖|R,d1

)p/p′(
(c1 + (nd2)

q)‖|ν2‖|R,d2

)
n(Q −q/p′)(r−p)+(Q −q)p‖ f ‖r

ν1;p .

This leads to (4.21) when r < ∞, and completes the proof. �
In the sequel, we fix an infinitely differentiable, even function h : R → R, nonincreasing on [0, ∞), such that h(t) = 1

if |t| ≤ 1/2, and h(t) = 0 if |t| ≥ 1. We will write g(t) = h(t) − h(2t). The following identities will be used often without 
reference: For integers n, k ≥ 0,

h

(
k

2n

)
= h(k) +

n∑
j=1

g

(
k

2 j

)
, h

(
k

2n

)
+

∞∑
j=n+1

g

(
k

2 j

)
= 1. (4.26)

We summarize the localization properties of three kernels which we will use in our proofs. Let b be a mask of type β ∈ R. 
In the sequel, if n > 0, we will write bn(t) = b(nt).
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Proposition 4.5. Let x, y ∈X, n, N ≥ 1, k = 1, · · · , R, d > 0, ν be a d-regular measure, 1 ≤ p ≤ r ≤ ∞. We have

|�n(h; x, y)| ≤ c
nq

max(1, (nρ(x, y))S)
, ‖�n(h; x,◦)‖ν;p ≤ c

(
(c1 + (nd)q)‖|ν‖|R,d

)1/p
nq/p′

. (4.27)

|Lk,1�n(h; x, y)| ≤ c
nq+qk

max(1, (nρ(x, y))S)
, ‖Lk,1�n(h; x,◦)‖ν;p ≤ c

(
(c1 + (nd)q)‖|ν‖|R,d

)1/p
nqk−q/p′

, (4.28)

and

|Lk,1�n(gbN ; x, y)| ≤ cN−β nq+qk

max(1, (nρ(x, y))S)
,

‖Lk,1�n(gbN ; x,◦)‖ν;p ≤ c
(
(c1 + (nd)q)‖|ν‖|R,d

)1/p
nqk−q/p′

N−β. (4.29)

Further, with the set up as in Proposition 4.4, and writing C1 = (c1 + (nd1)
q)‖ |ν1‖ |R,d1 and C2 = (c1 + (nd2)

q)‖ |ν2‖ |R,d2 , we have

‖σn(ν1;h; f )‖ν2;r ≤ cC1/p′
1 C1/r

2 nq(1/p−1/r)‖ f ‖ν1;p, (4.30)

‖Lkσn(ν1;h; f )‖ν2;r ≤ cC1/p′
1 C1/r

2 nqk+q(1/p−1/r)‖ f ‖ν1;p, (4.31)

and

‖Lkσn(ν1; gbN ; f )‖ν2;r ≤ cC1/p′
1 C1/r

2 nqk+q(1/p−1/r)N−β‖ f ‖ν1;p . (4.32)

Proof. In view of Proposition 4.3, the first estimate in (4.27) (respectively, (4.28)) follows from (4.12) and (3.5) (respec-
tively, (3.8)). The second estimate in (4.27) follows from (4.18) with the choices ψ̃ j = ψ j = φ j , H = h, by observing from (3.5)
that Q = q, and from (4.12) that V S,q(H) ≤ c. Proposition 4.4 yields (4.30) with the same choices.

The second estimate in (4.28) follows similarly, except with the choice ψ̃ j = Lkφ j and the observation that (3.8) implies 
that Q = q + qk . Proposition 4.4 yields (4.31) with the same choices.

It is easy to verify by induction that∣∣∣∣∣tk dk

dtk
((1 + t)βb(t))

∣∣∣∣∣=
∣∣∣∣∣tk dk

dtk
Fb(log t)

∣∣∣∣∣≤ c(b)c2, t > 0, k = 0, · · · , S,

and hence, for N ≥ 1,∣∣∣∣∣tk dk

dtk
((1/N + t)βbN(t))

∣∣∣∣∣≤ c(b)c2N−β, t > 0, k = 0, · · · , S + 1. (4.33)

Since b(t)−1 is a mask of type −β , we record that∣∣∣∣∣tk dk

dtk
((1/N + t)βbN(t))−1

∣∣∣∣∣≤ c(b)c2Nβ, t > 0, k = 0, · · · , S + 1. (4.34)

Finally, if g : R → R is any compactly supported, S times continuously differentiable function, such that g(t) = 0 on some 
neighborhood of 0 then (4.33), (4.34) imply

‖|gbN‖|S ≤ c(b, g)N−β, ‖|g/bN‖|S ≤ c(b, g)Nβ, N ≥ 1. (4.35)

In particular, (4.12), and (4.35) imply that V S,Q (gbN ) ≤ cN−β . The first estimate in (4.29) follows from Proposition 4.3. 
The second estimate follows similarly to the second estimate in (4.28). The estimate (4.32) follows from Proposition 4.4 as 
with (4.31). �
5. Integral representation

The objective of this section is to prove

Theorem 5.1. Let 1 ≤ p ≤ ∞, β > max1≤k≤m qk + q/p, and f ∈ W p,b. Then for every x ∈X,

Lk( f , x) =
∫
X

Lk,1G(x, y) f (b)(y)dμ∗(y). (5.1)

Moreover, for k = 1, · · · , R,

‖ f − σn(h; f )‖∞ ≤ cn−q(β−1/p)‖ f (b)‖p, ‖Lk f − Lkσn(h; f )‖∞ ≤ cn−q(β−qk−1/p)‖ f (b)‖p . (5.2)
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Our proof of Theorem 5.1 requires two inequalities: the Bernstein inequality and the Nikolskii inequality.
The Bernstein inequality is the following.

Lemma 5.1. Let 1 ≤ k ≤ R. Then

‖Lk(P )‖p ≤ cnqk‖P‖p, P ∈ �n, n ≥ 1. (5.3)

Proof. If P ∈ �n , then a straightforward calculation using the orthogonality of {φk} and the facts that h(t) = 1 if |t| ≤ 1/2
and P̂ (k) = 0 if k > n shows that for x ∈ X,

P (x) =
∫
X

�2n(h; x, y)P (y)dμ∗(y) = σ2n(μ
∗;h, P ), x ∈X. (5.4)

Therefore, Lk P = Lkσ2n(μ∗; h; P ). We now apply (4.31) with 2n in place of n, ν2 = ν1 = μ∗ (so that d1 = d2 = 0, ‖ |ν j‖ |d j = 1), 
and r = p. This leads to (5.3). �

The Nikolskii inequality is the following.

Lemma 5.2. If n > 0, P ∈ �n, 1 ≤ p < r ≤ ∞, then

‖P‖r ≤ cnq(1/p−1/r)‖P‖p . (5.5)

Proof. We apply (4.30) with 2n in place of n, ν2 = ν1 = μ∗ (so that d1 = d2 = 0, ‖ |ν j‖ |d j = 1), and P in place of f to obtain

‖σ2n(μ
∗;h; P )‖r ≤ cnq(1/p−1/r)‖P‖p .

The estimate (5.5) follows from (5.4). �
We are now ready to prove Theorem 5.1.

Proof of Theorem 5.1. In this proof only, let L denote any of the operators Lk , and A be the corresponding qk as defined 
in (5.3). We observe using (2.2) that

σ2 j (gb2 j ; f (b)) = σ2 j (g; f ).

In view of (4.35), we deduce that for integers j ≥ 1,

‖σ2 j (g; f )‖p = ‖σ2 j (gb2 j ; f (b))‖p ≤ c2− jβ‖ f (b)‖p . (5.6)

Since σ2 j (g; f ) ∈ �2 j , (5.5) implies that

‖σ2 j (g; f )‖∞ ≤ c2− j(β−1/p)‖ f (b)‖p . (5.7)

Hence, (5.3) shows that

‖Lσ2 j (g; f )‖∞ ≤ c2− j(β−A−1/p)‖ f (b)‖p . (5.8)

Using the second identity in (4.26), we deduce (5.2) easily from (5.7) and (5.8). In particular, since L is a closed operator, 
this shows that for x ∈ X,

L( f , x) =
∞∑
j=0

Lσ2 j (g; f , x) =
∞∑
j=0

Lσ2 j (gb2 j ; f (b), x),

with the convergence being uniform. This leads to (5.1). �
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6. An approximation result

The purpose of this section is to prove the following result, analogous to [12, Theorem 6.3].

Theorem 6.1. Let 1 ≤ p ≤ ∞, β > max1≤k≤R qk + q/p′ , and

�(x) =
R∑

k=1

M∑
j=1

ak, j Lk,1G(y j, x), x ∈X. (6.1)

There exists an integer N∗ ∼ η−1 such that for n ≥ N∗ ,

‖� − σn(h;�)‖p ≤ 1

2
‖�‖p . (6.2)

As in [12], the main problem is to relate ‖�‖p and the coefficients ck, j , via σ2m (g; �). The main technical problem is 
the following. The mapping y �→ σ2m (g; Lk,1G(y, x)) is not in �2m . So, we cannot use an analogue of [12, Proposition 6.3]
to obtain a full estimate of the form [12, Theorem 6.2(b)]. The following Proposition 6.1 (which we will call the coefficient 
inequalities) serves as a substitute.

In order to state the coefficient inequalities, we will use the following notations: ak = (ak,1, · · · , ak, j), and

�k(x) =
M∑

j=1

ak, j Lk,1G(y j, x), x ∈X, (6.3)

so that � =∑R
k=1 �k . For any sequence d,

‖d‖p :=
{ {∑∞

j=1 |d j|p
}1/p

, if 1 ≤ p < ∞,

sup1≤ j≤∞ |d j|, if p = ∞,

with a Euclidean vector extended to a sequence by padding with 0’s. The coefficient inequalities are given in the following 
proposition.

Proposition 6.1. Let 1 ≤ p ≤ ∞, and 1 ≤ k ≤ R.

(a) For integer m with 2mη ≥ 1, we have

‖σ2m (g;�k)‖p ≤ c2m(qk−β+q/p′)‖ak‖p . (6.4)

(b) We have

‖ak‖p ≤ cηqk−β+q/p′ ‖�‖p . (6.5)

(c) For integer m with 2mη ≥ 1, we have

‖σ2m (g;�)‖p ≤ c
R∑

k=1

(2mη)qk−β+q/p′ ‖�‖p, (6.6)

and

R∑
k=1

η−qk‖ak‖p ≤ cηq/p′−β‖�‖p . (6.7)

Proof. The proof of part (a) mimics that of [12, Theorem 6.2(a)]. We observe that for x ∈ X,

σ2m (g; Lk,1G(y j,◦), x) =
∑

i

g(λi/2m)b(λi)Lk(φi)(y j)φi(x) = Lk,1�2m (gb2m ; y j, x).

Using (4.29) with p = 1, ν = μ∗ (so that d = 0, ‖ |ν‖ |R,d = 1), we obtain

‖σ2m (g; Lk,1G(y j,◦)‖1 ≤ c2m(qk−β). (6.8)
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Therefore,

‖σ2m (g;�k)‖1 ≤
M∑

j=1

|ak, j|‖σ2m (g; Lk,1G(y j,◦))‖1 ≤ c2m(qk−β)‖ak‖1. (6.9)

Next, we use (4.29) again with 2m ≥ η−1 in place of n, p = 1 and ν to be the measure τ as defined in Lemma 4.1 (so that 
d = η, ‖ |τ‖ |R,η ≤ c) to deduce that∥∥∥∥∥∥

M∑
j=1

|σ2m (g; Lk,1G(y j,◦))|
∥∥∥∥∥∥∞

=
∣∣∣∣∣∣η−q

∫
X

|σ2m (g; Lk,1G(◦, y))|dτ (y)

∥∥∥∥∥∥
∞

≤ c2m(q+qk−β)(1 + (2mη)q)(2mη)−q ≤ c2m(q+qk−β). (6.10)

Therefore,

‖σ2m (g;�k)‖∞ ≤
M∑

j=1

|ak, j|‖σ2m (g; Lk,1G(y j,◦)‖∞

≤ ‖ak‖∞

∥∥∥∥∥∥
M∑

j=1

|σ2m (g; Lk,1G(y j,◦))|
∥∥∥∥∥∥∞

≤ c2m(q+qk−β)‖ak‖∞. (6.11)

The estimate (6.4) follows from (6.9) and (6.11) by an application of the Riesz–Thorin interpolation theorem [31, Theo-
rem 1.1.1] to the operator ak �→ �k .

To prove part (b), we fix k, and find d ∈ R
M such that

〈ak,d〉 = ‖ak‖p, ‖d‖p′ = 1. (6.12)

We then recall the functions φk, j defined in the assumptions on Lk , and set

F (x) =
M∑

j=1

d jφ
(b)

k, j (x), x ∈X.

We estimate ‖F‖p′ . We consider the case when 1 ≤ p′ < ∞, the case when p′ = ∞ is only simpler. Since each φ(b)

k, j is 

supported on a neighborhood of y j with diameter ≤ η/3, for any given x ∈X, there is at most one j′ such that φ(b)

k, j′ (x) �= 0. 
Then

|F (x)|p′ = |d j′ |p′ |φ(b)

k, j′(x)|p′
,

and thus, for any x ∈ X,

|F (x)|p′ =
M∑

j=1

|d j|p′ |φ(b)

k, j (x)|p′
. (6.13)

Since each φ(b)

k, j is supported on a neighborhood of y j with diameter ≤ η/3, (3.11) and (3.4) shows that∫
X

|φ(b)

k, j (x)|p′
dμ∗(x) ≤

∫
B(y j ,η/3)

|φ(b)

k, j (x)|p′
dμ∗(x) ≤ cη(qk−β)p′+q.

Consequently, (6.13) implies that

‖F‖p′ ≤ cηqk−β+q/p′
. (6.14)

Next, using Theorem 5.1 and (2.7) from the assumptions on Lk , we obtain that for any k′ = 1, · · · , R ,∫
X

Lk′,1G(y j′ , x)F (x)dμ∗(x) =
M∑

j=1

d j

∫
X

Lk′,1G(y j′ , x)φ(b)

k, j (x)dμ∗(x)

=
M∑

j=1

d j Lk′(φk, j)(y j′) =
{

d j′ , if k′ = k,

0, otherwise.
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Consequently, the definition (6.12) of d shows that∫
X

�(x)F (x)dμ∗(x) =
R∑

k′=1

M∑
j′=1

ak′, j′
∫
X

Lk′,1G(y j′ , x)F (x)dμ∗(x) =
M∑

j′=1

ak, j′d j′ = ‖ak‖p .

Together with (6.14), this shows that

‖ak‖p =
∫
X

�(x)F (x)dμ∗(x) ≤ ‖�‖p‖F‖p′ ≤ cηqk−β+q/p′ ‖�‖p .

This proves part (b).
Part (c) is a straightforward consequence of parts (a) and (b) and the fact that � =∑R

k=1 �k . �
Proof of Theorem 6.1. In this proof, let A = max1≤k≤R qk . In light of (4.26) and (6.6) we obtain for N ≥ η−1, β > A + q/p′
that

‖� − σ2N (h;�)‖p ≤
∑

m=N+1

‖σ2m (g;�)‖p ≤ c
R∑

k=1

∑
m=N+1

(2mη)qk−β+q/p′ ‖�‖p ≤ c1(2Nη)A−β+q/p′ ‖�‖p .

If n ≥ 2N+1, then

‖� − σn(h;�)‖p ≤ c inf
P∈�n/2

‖� − P‖p ≤ c inf
P∈�2N

‖� − P‖p ≤ c‖� − σ2N (h;�)‖p ≤ c2(2Nη)A−β+q/p′ ‖�‖p .

We may choose N so that 2N ∼ η−1 and the rightmost expression above is ≤ (1/2)‖�‖p . Then we have proved (6.2) with 
N∗ = 2N+1. �
7. Proofs of the main results

Proof of Theorem 2.1. We define the inner product

〈g1, g2〉 =
∞∑

k=0

ĝ1(k)ĝ2(k)

b(λk)
2

.

We wish to show first that there exist the coefficients ak, j such that

Li P (y�) = f i,�, � = 1, · · · , Mn, i = 1, · · · , R, (7.1)

and with this choice, P is the solution of the minimization problem (2.8).
We observe that

∑
k, j

∑
i,�

dk, jdi,�Li,2Lk,1G(y j, y�) =
∞∑

ν=0

b(λν)2

⎧⎨⎩∑
k, j

dk, j Lk(φν)(y j)

⎫⎬⎭
2

≥ 0.

If the infinite sum is equal to 0, then∑
k, j

dk, j Lk(φν)(y j) = 0, ν = 0,1, · · · .

Consequently, for every x ∈X,

0 =
∞∑

ν=0

b(λν)2
∑
k, j

dk, j Lk(φν)(y j)φν(x) =
∑
k, j

dk, j Lk,1G(y j, x).

Next, we observe by a straightforward calculation that for any f in the domain of the Lk ’s,

〈Lk,1G(y,◦), f 〉 = Lk( f )(y). (7.2)

So, for each i and �,

di,� = Li(φi,�)(y�) =
〈∑

k, j

dk, j Lk,1G(y j,◦),φi,�

〉
= 0.

Thus, the matrix of the system of equations (7.1) is positive definite, and hence, (2.9) has a unique solution given by P .
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Let g be another candidate for the minimization problem. Then

〈P , g − P 〉 =
∑
k, j

ak, j〈Lk,1G(y j,◦), g − P 〉 =
∑
k, j

ak, j(Lk(g)(y j) − Lk(P )(y j))

=
∑
k, j

ak, j(Lk( f )(y j) − Lk( f )(y j)) = 0.

Hence,

‖g(b)‖2
2 = 〈g, g〉 = 〈g − P , g − P 〉 + 〈P , P 〉 ≥ ‖P (b)‖2

2.

This proves that P is the solution of the minimization problem. �
Proof of Theorem 2.2. This proof is almost verbatim the same as the proof of [12, Theorem 5.1]. We will point out only the 
differences. We will omit the notation n in our proof as in the other paper. Let a ∈ R

RM be a row-major ordering of the 
matrix (ak, j)k=1,··· ,R, j=1,··· ,M . We define

‖|a‖|∗RM :=
∥∥∥∥∥∥

R∑
k=1

M∑
j=1

ak, j Lk,1G(y j,◦)
∥∥∥∥∥∥

p′
. (7.3)

In view of (6.7) this is a norm on RRM . Let N∗ be chosen so that Theorem 6.1 holds with p′ in place of p, and D be the 
dimension of �N∗ . For d ∈R

D , we define

‖|d‖|D :=
∥∥∥∥∥∥
∑

λ j<N∗
b(λ j)

−1d jφ j

∥∥∥∥∥∥
p

. (7.4)

In place of F (−s) in the proof in [12], we need F (1/b) . In place of the matrix A in [12], we take the matrix appropriate 
for the interpolation problem which we are dealing with; i.e., a matrix indexed by (k, j) and m so that the ((k, j), m)-th 
entry is Lk(φm)(y j). The rest of the proof is the same as in [12] with obvious minor changes; e.g., X in place of [−π, π ]q , 
bivariate kernels in place of convolutions, etc. �

We will prove Theorem 2.3 in much greater generality for future reference in the form of Theorem 7.1 below.
Let X be a separable Banach space with norm ‖ ◦ ‖, X∗ be its dual space with dual norm ‖ ◦ ‖∗ . Let R ≥ 1 be an integer, 

and for each integer n ≥ 1, 1 ≤ k ≤ R , x∗
k,n ∈ X

∗ , with ‖x∗
k,n‖∗ ≤ 1. We assume that for each k, x∗

k,n → x∗
k in the weak-* 

topology. Necessarily, each x∗
k ∈ X

∗ and ‖x∗
k‖∗ ≤ 1.

Let Y be another normed linear space with norm | ◦ |Y , continuously embedded, and hence, identified with a subspace 
of X. We assume that the unit ball

B = {g ∈Y : |g|Y ≤ 1}
is compact in X. Let V 1 ⊆ · · · ⊆ Vn ⊆ Vn+1 ⊆ · · · be a sequence of subsets of Y.

Theorem 7.1. Let f ∈ Y, and we assume that there exists vn ∈ Vn such that

|vn|Y = min{|g|Y : g ∈ Vn, x∗
k,n(g) = x∗

k ( f ), k = 1, · · · , R} ≤ c| f |Y. (7.5)

Then x∗
k (vn) → x∗

k ( f ) as n → ∞.

This theorem easily follows from the following lemma. If δ > 0, and K ⊂ X is a compact set, we say that a subset A of K
is δ separated if

min
f1, f2∈A
f1 �= f2

‖ f1 − f2‖ ≥ δ.

Since K is compact, such a set is necessarily finite.

Lemma 7.1. Let X be a separable Banach space, {y∗
m}∞m=0 be a sequence in the unit ball of X∗ converging to y∗ ∈ X

∗ in the weak-* 
topology. If K ⊂ X is a compact set, then

lim
m→∞ sup

f ∈K
|y∗

m( f ) − y∗( f )| = 0.
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Fig. 1. Test functions f25(x,−0.96) and f25(x, y) from Eq. (8.1).

Proof. Let ε > 0. We consider the set A to be the maximal ε/3 separated subset of K . If

f0 ∈ K \
⋃
g∈A

{ f ∈X : ‖g − f ‖ ≤ ε/3},

then we may add f0 to A to obtain a larger ε/3 separated subset of K . Therefore,

K ⊆
⋃
g∈A

{ f ∈X : ‖g − f ‖ ≤ ε/3}. (7.6)

In view of the weak-* convergence, we obtain an integer N ≥ 1 such that

sup
m≥N, g∈A

|y∗
m(g) − y∗(g)| ≤ ε/3.

Let f ∈ K . In view of (4.22), we obtain g ∈ A such that

‖ f − g‖ ≤ ε/3.

Using the fact that ‖y∗
m‖∗ ≤ 1, ‖y∗‖∗ ≤ 1, we obtain for m ≥ N ,

|y∗
m( f ) − y∗( f )| ≤ |y∗

m( f ) − y∗
m(g)| + |y∗

m(g) − y∗(g)| + |y∗(g) − y∗( f )| ≤ ‖ f − g‖ + ε/3 + ‖ f − g‖ ≤ ε.

This completes the proof. �
Proof of Theorem 2.3. We apply Theorem 7.1 with the following choices. The space X is defined as follows. We consider 
the space of all functions f ∈ Lp for which Lk( f ) is well defined, with the norm

‖ f ‖ =
R∑

k=1

‖Lk( f )‖p .

Then X is the closure of the space of all diffusion polynomials in the sense of this norm. The functionals are defined by

x∗
k,n( f ) = dk Lk( f )(xn), x∗

k ( f ) = ck Lk( f )(x0),

where the constants are chosen to bring the linear functionals into the unit ball of X∗ . These will depend only on Lk and X, 
not on the individual points xn . �
8. Numerical simulations

In this section we present numerical simulations of Birkhoff interpolation. By noting the one-to-one correspondence
between even trigonometric polynomials and algebraic polynomials of the same degree, we focus on interpolation on [−1, 1]
and [−1, 1]2. To show that this method works for a general basis, we also include examples of interpolation on the sphere S2

using real spherical harmonics. Examples of both 1D and 2D interpolation are included, but we emphasize 2D interpolation 
due to its challenging nature. In two dimensions, we restrict ourselves to interpolating on subsets of [−1, 1]2 and S2. In 
particular, we look at interpolating the function (see Fig. 1)

f R(x, y) = 1

1 + R(x2 + y − 0.3)2
+ 1

1 + R(x + y − 0.4)2
+ 1

1 + R(x + y2 − 0.5)2

+ 1
2 2 2

, (8.1)

1 + R(x + y − 0.25)
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Fig. 2. Interpolation error of f25(x, −0.96) using MSN 1D Birkhoff interpolation for various s values. Function and derivative values are given at n equally 
spaced points. Error has been normalized by maximum function value. Single precision. (For interpretation of the colors in the figures, the reader is referred 
to the web version of this article.)

Fig. 3. Interpolation error of f25(x, −0.96) using MSN 1D Birkhoff interpolation for various s values. Function and derivative values are given at n equally 
spaced points. Error has been normalized by maximum function value.

with Runge functions on two parabolas, one line, and one circle in [−1, 1]2. Here, the R parameter controls the difficulty of 
the interpolation, with larger R values corresponding to more difficult interpolation problems. Most of the tests use R = 25, 
although some examples (Figs. 17 and 18) use R = 9 in order to show we can obtain small errors in 2D interpolation: error 
on the order of 10−8 using double precision. In one dimension, we interpolate f25(x, −0.96). On the sphere, we look at 
interpolating the function

g(x, y, z) = 1

1 + (cos 7x + cos 7y + cos 7z)2
, (8.2)

where we restrict g to S2. Unless stated otherwise, the examples are computed using double precision and the derivative 
information consists of directional derivatives along the coordinate axes. There does not appear to be any standard software 
packages for Birkhoff interpolation when the point distribution is arbitrary, so we are not able to compare our method with 
others.

For p = 2, MSN Birkhoff interpolation reduces to solving

min
V a= f

||Dsa||2, (8.3)

where Ds is a diagonal positive-definite matrix with condition number O (ns), V is a Chebyshev–Vandermonde matrix, a is 
the vector containing the Chebyshev interpolation coefficients, and f is the vector containing the function and derivative 
values. Here, s takes the role of β in the previous discussion. The Ds matrix allows us to control the sth derivative of our 
approximation. Solving this linear system takes great care and we present details below.

In the one dimensional case, we interpolate f25(x, −0.96) on [−1, 1] using both single precision and double precision 
on equally-spaced points. Results for function and derivative information at equally spaced points are presented in Figs. 2
and 3. We obtain similar results in Figs. 4 and 5 when we interlace the function and derivative information. In the 2D 
interpolation below, the point (−0.96, −0.96) was the point with the largest error on the 21 × 21 tensor grid for s = 8, and 
this is why we chose to the 1D function to be f25(x, −0.96). In both single and double precision the interpolation error 
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Fig. 4. Interpolation error of f25(x, −0.96) using MSN 1D Birkhoff interpolation for various s values. Function values are given at n equally spaced points 
while derivative values are given at n − 1 points in between. Error has been normalized by maximum function value. Single precision.

Fig. 5. Interpolation error of f25(x, −0.96) using MSN 1D Birkhoff interpolation for various s values. Function values are given at n equally spaced points 
while derivative values are given at n − 1 points in between. Error has been normalized by maximum function value.

Fig. 6. Interpolation error of f25(x, y) using MSN 2D Birkhoff interpolation for various s values. Function and derivative values are given on n × n tensor 
grid. Error has been normalized by the maximum function value. Single precision.

approaches machine epsilon with an appropriately chosen s-value and increasing points. The error is computed by taking 
the difference between the function and the approximation on 10n equally spaced points, normalized by the maximum 
function value. The mesh norm is

m =
⌈

2π

mini �= j
∣∣cos−1(xi) − cos−1(x j)

∣∣
⌉

, (8.4)

and the interpolation order is taken to be m.
We showcase the true power of MSN Birkhoff interpolation by using a variety of point distributions in two dimensions. 

In particular, the interpolation of f25(x, y) is performed on a tensor grid (Figs. 6 and 7), on a tensor grid intersected with 
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Fig. 7. Interpolation error of f25(x, y) using MSN 2D Birkhoff interpolation for various s values. Function and derivative values are given on n × n tensor 
grid. Error has been normalized by the maximum function value.

Fig. 8. Interpolation error of f25(x, y) using MSN 2D Birkhoff interpolation for various s values. Function and derivative values are given on n × n tensor 
grid that has been intersected with an annulus (inner radius 0.5 and outer radius 1). Error has been normalized by the maximum function value.

Fig. 9. Interpolation error of f25(x, y) using MSN 2D Birkhoff interpolation for various s values. Function and derivative values are given on an (n, 8n)

annular grid: inner radius 0.5, outer radius 1, n equally spaced points in the radial direction, and 8n equally spaced points in the angular direction. Error 
has been normalized by the maximum function value.

an annulus (Fig. 8), and on an annular grid (Fig. 9). The maximum error is computed by taking the maximum difference 
on a 10n × 10n grid for an n × n interpolation grid. When we interpolate with function and derivative values interlaced, 
we also see convergence, whether the directional derivatives are parallel to the coordinate axes (Figs. 10 and 11) or not 
(Figs. 12 and 13). Furthermore, MSN Birkhoff interpolation can use a variety of bases. Figs. 14 and Fig. 15 show results for 
interpolation on S2 using real spherical harmonics. Additionally, we present results in Fig. 16 for when points are clustered 
near the north and south poles, requiring interpolation points to have polar angle θ ∈ [0, π3 ] ∪ [ 2π

3 , π ]. We see a general 
trend of decreasing error in these regions. By interpolating f9(x, y) on tensor grids on [−1, 1]2 (Figs. 17 and 18), we see that 
for easier 2D problems we still find that the error decreases as we increase the interpolation points. The interpolation order 
for two-dimensional problems is computed similar to the one-dimensional case. An archived version of this paper includes 
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Fig. 10. Interpolation error of f25(x, y) using MSN 2D Birkhoff interpolation for various s values. Function values are given at n × n tensor grid while 
derivative values are given at (n − 1) × (n − 1) tensor grid in between. Error has been normalized by maximum function value. Single precision.

Fig. 11. Interpolation error of f25(x, y) using MSN 2D Birkhoff interpolation for various s values. Function values are given at n × n tensor grid, while 
derivative values are given at (n − 1) × (n − 1) tensor grid in between. Error has been normalized by maximum function value.

Fig. 12. Interpolation error of f25(x, y) using MSN 2D Birkhoff interpolation for various s values. Function values are given at n × n tensor grid, while 
derivative values are given at (n − 1) × (n − 1) tensor grid in between. Directional derivatives are not parallel to the coordinate axes and are in the 
directions 

(
1√
2
, 1√

2

)
and 

(
1√
2
,− 1√

2

)
. Error has been normalized by maximum function value. Single precision.

the same data presented here in table form to allow for other people to easily compare their results with ours [32]. The 
difficulty in obtaining low interpolation error is due to the long run time required for the dense matrix computations. Future 
work will be devoted to investigating and implementing fast algorithms arising from the structured equations.

Larger s values give greater derivative control and, by looking at the error plots, generally more accurate results; however, 
large s values lead to high condition numbers, so care must be taken to arrive at an accurate solution. We use a variant of 
the complete orthogonal decomposition of [33] because the ill-conditioning in our method results primarily from a diagonal 
matrix. From Eq. (8.3), this is equivalent to solving
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Fig. 13. Interpolation error of f25(x, y) using MSN 2D Birkhoff interpolation for various s values. Function values are given at n × n tensor grid, while 
derivative values are given at (n − 1) × (n − 1) tensor grid in between. Directional derivatives are not parallel to the coordinate axes and are in the 
directions 

(
1√
2
, 1√

2

)
and 

(
1√
2
,− 1√

2

)
. Error has been normalized by maximum function value.

Fig. 14. Interpolation error of g(x, y, z) using MSN 2D Birkhoff interpolation for various s values on S2. Function and derivative values are given on a 
scattered grid with minimum separation approximately π/d, where d is the Theta Divisions. Error has been normalized by the maximum function value.
Single precision.

Fig. 15. Interpolation error of g(x, yz) using MSN 2D Birkhoff interpolation for various s values on S2. Function and derivative values are given on a 
scattered grid with minimum separation approximately π/d, where d is the Theta Divisions. Error has been normalized by the maximum function value.

min
V D−1

s x= f
||x||2 (8.5)

and setting a = D−1
s x. Thus, the main computational cost is an L Q factorization of V D−1

s . Large s values may render 
standard pivoted L Q algorithms (especially those based on Q R Factorization with Column Pivoting) useless. Thus, the best 
algorithm may be to implement a Rank-Revealing L Q factorization based on [34]; we implement a poor man’s version that 
is sufficient for our work here.
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Fig. 16. Interpolation error of g(x, y, z) using MSN 2D Birkhoff interpolation for various s values on S2. Function and derivative values are given on a 
scattered grid with minimum separation approximately π/d, where d is the Theta Divisions, with the restriction that the polar angle θ ∈ [0, π3 ] ∪ [ 2π

3 , π ]. 
Error has been normalized by the maximum function value.

Fig. 17. Interpolation error of f9(x, y) using MSN 2D Birkhoff interpolation for various s values. Function and derivative values are given on n × n tensor 
grid. Error has been normalized by the maximum function value. Single precision.

Fig. 18. Interpolation error of f9(x, y) using MSN 2D Birkhoff interpolation for various s values. Function and derivative values are given on n × n tensor 
grid. Error has been normalized by the maximum function value.

Specifically, we use the following algorithm:

1. Compute V = P1L1 Q 1 using an L Q factorization based on QRCP.
2. Determine permutation � such that Q 1 D−1

s � has decreasing column norms.
3. Compute the singular value decomposition: Q 1 D−1

s � = U�V ∗; only U is used.
4. Compute U∗ Q 1 D−1

s � = P2L2 Q 2.
5. Solve L1z = P∗

1 f .
6. Solve L2 y = P∗

2 U∗z.
7. Set a = D−1

s �Q ∗ y.
2
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The main cost of the algorithm is 2 pivoted L Q factorizations and 1 SVD, and this algorithm is used for both 1D and 2D 
problems. We now look at the important feature: in Step 3, we compute the SVD of Q 1 D−1

s �, so that U∗ Q 1 D−1
s � ≈ �V ∗

to machine precision. This ensures that our L Q factorization in Step 4 is accurate. In essence, U is a preconditioner for 
numerical stability. This algorithm appears to give results independent of s, so our results depend only on the condition 
number in V , not V D−1

s , and is similar to what was used in [12,19]. Now, the underlying condition number of V does 
appear to be the limiting factor in the accuracy of the approximations; the 1D results (Figs. 2–5) seem to show this as well 
as Figs. 6 and 17 in the 2D case, both of which use single precision and which appear to have the “U”-error shape that is 
expected when rounding errors start to dominate computations.

We have not shown this method to be numerically stable; however, all of the numerical examples are solved using the 
same algorithm in both single and double precision. The one-dimensional data indicate that we approach machine epsilon 
in both single and double precision, while the two-dimensional data show that increasing data points generally leads to 
decreased error.

9. Conclusions

We proved a general Birkhoff interpolation result: with minimal restrictions it is possible to interpolate function and 
derivative information with diffusion polynomials of degree N∗ ∼ η−1, where η is the minimum separation distance be-
tween points. This extends previous work related to function interpolation [12] and is needed for numerical approximations 
arising in the solution of partial differential equations [19]. One and two dimensional numerical examples were presented 
to demonstrate the abilities of this method with indifference to interpolation location.
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