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Highlights

• An arbitrarily high-order well-balanced finite volume scheme for Euler equations with gravity is presented.
• The presented scheme can handle arbitrary gravitational potentials and equations of state.
• The discrete preserved state is not imposed a priori.
• Several numerical experiments demonstrate that the scheme preserves the hydrostatic equilibrium to machine precision and resolves

general flows with high-order of accuracy. Furthermore, the scheme is robust.
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Abstract

A high-order well-balanced scheme for the Euler equations with gravitation is presented. The scheme is

able to preserve a spatially high-order accurate discrete representation of isentropic hydrostatic equilibria.

It is based on a novel local hydrostatic reconstruction, which, in combination with any standard high-order

accurate reconstruction procedure, achieves genuine high-order accuracy for smooth solutions close or away

from equilibrium. The resulting scheme is very simple and can be implemented into any existing finite vol-

ume code with minimal effort. Moreover, the scheme is not tied to any particular form of the equation of

state, which is crucial for example in astrophysical applications. Several numerical experiments were per-

formed with a third-order accurate reconstruction. They demonstrate the robustness and high-order accuracy

of the scheme nearby and out of hydrostatic equilibrium.
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1. Introduction

A multitude of interesting physical phenomena are modeled by the Euler equations with gravitational

source terms. Applications range from the study of atmospheric phenomena, such as numerical weather

prediction and climate modeling, to the numerical simulation of the climate of exoplanets, convection in

stars and core-collapse supernova explosions. The Euler equations with gravitational source terms express

the conservation of mass, momentum and energy:

∂ρ

∂t
+ ∇ · (ρv) = 0 (1.1)

∂ρv
∂t
+ ∇ · (ρv ⊗ v) + ∇p = −ρ∇φ (1.2)

∂E
∂t
+ ∇ · (v (E + p)) = −ρv∇φ. (1.3)

Here ρ is the mass density, v the velocity and

E = ρe +
ρ

2
v2 (1.4)

∗Corresponding author

Email address: luc.grosheintz@sam.math.ethz.ch (L. Grosheintz-Laval )

Preprint submitted to Elsevier November 13, 2018



the total fluid energy density being the sum of internal and kinetic energy densities. The pressure p is related

to the density and specific internal energy through an equation of state p = p(ρ, e).

The source terms on the right-hand side of the momentum and energy equations model the effect of the

gravitational forces on the fluid. They are dictated by the variation of the gravitational potential φ, which

can either be a given function or, in the case of self-gravity, be determined by the Poisson equation

∇2φ = 4πGρ, (1.5)

where G is the gravitational constant.

In many physically relevant applications, such as the ones named above, (parts of) the flow of interest

may be realized close to hydrostatic equilibrium

∇p = −ρ∇φ. (1.6)

As a matter of fact, the numerical simulation of near equilibrium flows is challenging for standard finite

volume methods. The reason for this is that these methods may in general not satisfy a discrete equivalent of

the equilibrium. Thus such states are not preserved exactly but are solely approximated with an error propor-

tional to the truncation error of the scheme. So if the interest relies in the simulation of small perturbations

on top of a hydrostatic equilibrium, the numerical resolution has to be increased to the point that the trun-

cation errors do not obscure these small perturbations. This may result in prohibitively high computational

costs, especially in several space dimensions.

A design principle to overcome the challenge was introduced by Greenberg and Leroux [1] leading to

the concept of so-called well-balanced schemes. In these schemes, a discrete equivalent of the equilibrium is

exactly satisfied. Therefore, they possess the ability to maintain discrete equilibrium states down to machine

precision and are capable of resolving small equilibrium perturbations effectively. Many well-balanced

schemes have been designed, especially for the shallow water equations with non-trivial bottom topography,

see e.g. [2, 3, 4] and references therein. An extensive review on well-balanced schemes for many different

applications is also given in the book by Gosse [5].

Well-balanced schemes for the Euler equations with gravitation have received a considerable amount of

attention in the recent literature. First, LeVeque and Bale [6] have applied the quasi-steady wave-propagation

algorithm [2] to the Euler equations with gravity. Few years later, Botta et al. [7] designed a well-balanced

finite volume scheme for numerical weather prediction applications. More recently, several well-balanced

finite volume [8, 9, 10, 11, 12, 13, 14, 15, 16, 17] , finite difference [18, 19] and discontinuous Galerkin

[20, 21, 22] schemes have been presented. Magnetohydrostatic steady state preserving well-balanced finite

volume schemes were devised in [23]. To the best of our knowledge, many of the mentioned schemes are at

most second-order accurate and only [18, 20, 21, 19, 22, 24] go to higher orders.

In fact, equation (1.6) only specifies a mechanical equilibrium. In order to fully characterize the equilib-

rium a thermal variable, such as the specific entropy s or the temperature T , needs to be supplemented. As a

concrete astrophysically relevant example of a stationary state we consider the case of constant entropy. The

relevant thermodynamic relation for isentropic hydrostatic equilibrium is

dh = Tds +
dp
ρ
, (1.7)

where h is the specific enthalpy

h = e +
p
ρ
, (1.8)
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T the temperature and s the specific entropy. Then we can write (1.6) for the isentropic case (ds = 0) as

1

ρ
∇p = ∇h = −∇φ. (1.9)

The last equation can then be trivially integrated to obtain

h + φ = const. (1.10)

In [9] this equilibrium was used to build a second-order accurate well-balanced finite volume scheme. Along

the same lines, well-balanced schemes for isothermal hydrostatic equilibrium can be constructed [15]. In

the latter case, the relevant thermodynamic potential is the Gibbs free energy. More generally, the presented

approach can be applied to barotropic fluids characterized by the fact that the density is a funcion of pressure

only. In that case, the expression

Θ =

∫
dp
ρ

is integrable and the hydrostatic equilibrium takes the form

Θ + φ = const.

We note that the isentropic and the isothermal as well as the polytropic equilibrium [11, 22] fall into this

category. However, in the following we focus on the isentropic case. Many interesting physical phenomena

involve steady convection that takes place near the isentropic state. For example athmospheric convection

on Earth and exoplanets [25], convection in stars and neutron stars [26, 27].

In this paper, we extend the well-balanced finite volume schemes [9] beyond second-order accuracy. The

scheme possesses the following novel features:

• An arbitrarily high-order accurate local hydrostatic profile is constructed based on the equilibrium

(1.10).

• An arbitrarly high-order equilibrium preserving reconstruction is designed on the basis of any standard

high-order reconstruction procedure.

• A well-balanced source term discretization is built from the equilibrium preserving reconstruction.

Furthermore, the scheme has the following properties:

• It is well-balanced for any consistent numerical flux, which allows a straightforward implementation

within any standard finite volume method.

• It is well-balanced for multi-dimensional hydrostatic equilibria.

• It is not tied to any particular equation of state such as the ideal gas law. This is important, especially

for astrophysical applications.

The resulting scheme is high-order accurate for flows far and close to an equilibrium state. It is well-balanced

in that it preserves exactly (down to machine precision) a high-order approximation of equilibria of the form

Eq. (1.10).

The rest of the paper is structured as follows: the well-balanced finite volume scheme is presented in

section 2. Extensive numerical results are presented in section 3 and conclusions are provided in section 4.
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2. Numerical Method

2.1. One-dimensional scheme

We first consider the Euler equations with gravitation (1.1–3) in one space dimension and write them in

the following compact form
∂u
∂t
+
∂ f
∂x
= s (2.1)

with

u =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
ρ
ρvx

E

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦ , f =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
ρvx

ρv2
x + p

(E + p)vx

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦ and s = −
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

0

ρ
ρvx

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
∂φ

∂x
, (2.2)

where u, f and s are the vectors of conserved variables, fluxes and source terms. An equation of state (EoS)

p = p(ρ, e) relates the pressure to the density ρ and specific internal energy e (or any other thermodynamic

quantity such as specific entropy s or temperature T ). For example, a simple EoS is provided by the ideal

gas law

p = ρe(γ − 1), (2.3)

where γ is the ratio of specific heats. We stress that the well-balanced scheme derived below is not tied to

any particular form of EoS, which is crucial especially in astrophysical applications.

In the next section we will briefly describe a standard high-order finite-volume discretization and it’s core

components in order to fix the notation. The following sections will then describe our novel well-balanced

scheme in detail.

2.1.1. Finite-volume discretization
For the numerical approximation of (2.1), the spatial domain of interest is discretized by a number of

cells or finite volumes Ii = [xi−1/2, xi+1/2]. Here xi±1/2 denotes the left and right cell interface, respectively,

and xi = (xi−1/2 + xi+1/2)/2 the cell center of Ii. For ease of presentation, we assume a regular cell size

Δx = xi+1/2 − xi−1/2. Nevertheless, varying cell sizes can easily be accommodated for.

A one-dimensional semi-discrete finite volume scheme is then given by

dUi

dt
= L(U) = − 1

Δx
(
Fi+1/2 − Fi−1/2

)
+ Si, (2.4)

where Ui = Ui(t) denotes the approximate cell average of the conserved variables in cell Ii at time t. It

approximates the exact cell average ui = ui(t) of the true solution u(t, x) at time t:

Ui(t) ≈ ui(t) =
1

Δx

∫
Ii

u(t, x) dx. (2.5)

In the following, a quantity with an overbar indicates a cell average while a quantity without indicates a

point value. By Si(t) is denoted the approximate cell average of the true source terms at time t:

Si(t) ≈ si(t) =
1

Δx

∫
Ii

s(u,
∂φ

∂x
) dx. (2.6)

Note that we have suppressed the time dependence of the gravitational potential since we are mainly con-

cerned with flows close to hydrostatic equilibrium and for ease of notation.
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Numerical flux. The numerical flux is obtained by solving (approximately) the Riemann problem at cell

interfaces

Fi+1/2 = F (Ui+1/2−,Ui+1/2+), (2.7)

where the point values Ui+1/2∓ are the cell interface extrapolated conserved variables and F is a consistent,

i.e. F (u, u) = f (u), and Lipschitz continuous numerical flux function.

Below, we will make use of the HLLC approximate Riemann solver with simple wave speed estimates

from [28, 29], but our well-balanced scheme is independent of this particular choice.

Reconstruction. The purpose of a reconstruction procedure R is to compute accurate point values of the

approximate solution Ui(t, x) within each cell from the cell averages U. We denote such a reconstruction

procedure, which recovers a r-th order accurate point value of a quantity c at location x within cell Ii from

the cell averages c, by

ci(x) = R(x; {ck}k∈S i ). (2.8)

Here S i is the stencil for the reconstruction procedure for cell Ii, i.e. S i is a finite set of neighbors of Ii.

The values of the conserved variables extrapolated to the interface are then given by

Ui+1/2− = Ui(t, xi+1/2) = R
(
xi+1/2; {Uk}k∈S i

)
and Ui+1/2+ = Ui+1(t, xi+1/2) = R

(
xi+1/2; {Uk}k∈S i+1

)
.

Many such reconstruction procedures have been developed and a non-exhaustive list includes the Total

Variation Diminishing (TVD) methods (see e.g. [30, 31]), the Piecewise-Parabolic Method (PPM) [32],

Essentially Non-Oscillatory (ENO) (see e.g. [33]), Weighted ENO (WENO) (see e.g. [34] and references

therein) and Central WENO (CWENO) methods (see e.g. [35] and references therein).

In the scheme derived below we will use a CWENO type reconstruction procedure. This choice is

motivated by the fact that CWENO provides an entire reconstruction polynomial defined everywhere in

a cell, which is convenient for the evaluation of the gravitational source terms. However, our scheme is

independent of this particular choice. The only requirement is that the reconstruction can compute point

values at all quadrature points in the interior and on the boundary of the computational cell. Therefore, the

scheme can also be applied to WENO type reconstructions, if one takes care to treat the possibly appearing

negative weights properly (we refer to [34] and references therein for details).

Source term discretization. The approximate cell average of the source term Si is obtained by numerical

integration. Let Qi denote a q-th order accurate quadrature rule over cell Ii. Then the cell average of the

source term is approximated by

Si =
1

Δx
Qi

(
s(U,

∂φ

∂x
)

)
=

1

Δx

Nq∑
α=1

ωα s
(
Ui(t, xi,α),

∂φ

∂x
(xi,α)

)
, (2.9)

where the xi,α ∈ Ii and ωα denote the Nq quadrature nodes and weights of Qi, respectively. For example,

the two-point Gauss-Legendre quadrature rule can be used, which is the choice we will make below. The

latter choice will be sufficient to achieve the third-order accuracy seeked in Section 3. The point values of

the conserved variables at the quadrature nodes Ui(t, xi,α) are obtained by the reconstruction procedure:

Ui(t, xi,α) = R
(
xi,α; {Uk}k∈S i

)
. (2.10)

If the gravitational potential is known analytically, it can be evaluated directly at the quadrature nodes. If

the gravitational potential is only known at discrete points, then an interpolation of φ and finite difference of

∇φ can be used instead. Both the interpolation and the finite difference need to be at least as accurate as the

chosen design order.
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Temporal discretization. The temporal domain of interest [0,T ] is discretized into time steps Δt = tn+1 − tn,

where the superscript n labels the different time levels. For the temporal integration, the high-order strong

stability-preserving Runge-Kutta (SSP-RK) schemes [36] can be used. In particular, we use the third-order

SSP-RK method for the numerical results presented in this paper

U
(1)

i = U
n
i + ΔtL(U

n
)

U
(2)

i =
3

4
U

n
i +

1

4

(
U

(1)

i + ΔtL(U
(1)

)
)

U
n+1

i =
1

3
U

n
i +

2

3

(
U

(2)

i + ΔtL(U
(2)

)
)
,

(2.11)

where L denotes the spatial discretization operator from (2.4). Furthermore, the time step Δt is required to

fulfill the CFL condition for finite volume methods [36, 37] with a CFL number specified in the numerical

experiments.

This concludes the description of a standard high-order finite volume scheme for the Euler equations. We

refer to the excellent books available in the literature for detailed derivations, e.g. [38, 39, 40, 2]. However,

a standard reconstruction procedure and source term discretization will in general not preserve a discrete

equivalent of hydrostatic equilibrium. In order to achieve this, we need the ingredients presented in the

following two sections 2.1.2 and 2.1.3.

2.1.2. Local hydrostatic reconstruction
The local hydrostatic reconstruction consists of two parts. First, within each cell a high-order accurate

equilibrium profile that is consistent with the cell-averaged conserved variables is determined. Second, the

cell’s equilibrium profile is extrapolated to neighboring cells to perform a high-order accurate reconstruction

of the equilibrium perturbation.

We begin by describing how the local high-order accurate equilibrium profile is determined. Within the

i-th cell Ii, we define a subcell equilibrium reconstruction of the specific enthalpy heq,i(x) by assuming (1.10)

as

heq,i(x) = h0,i + φi − φ(x). (2.12)

Here h0,i = heq,i(xi) and φi = φ(xi) are point values of the specific enthalpy and the gravitational potential

at the cell center, respectively. In the following, we assume that the gravitational potential can be evaluated

anywhere, either because it is a given function or obtained by a suitable interpolation.

In combination with the (assumed constant) equilibrium entropy s0,i in cell Ii, the equilibrium density

ρeq,i(x) and internal energy density ρeeq,i(x) profiles can be computed through the EoS:

ρeq,i(x) = ρ(heq,i(x), s0,i) and ρeeq,i(x) = ρe(heq,i(x), s0,i).

The computational complexity of this computation depends strongly on the functional form of the EoS. For

the ideal gas case, explicit expressions are given in Appendix A.

We note that the equilibrium specific enthalpy h0,i and entropy s0,i are not specified so far. In order to

fix h0,i and s0,i, we demand that the equilibrium density and internal energy density profiles agree up to the

desired order of accuracy with their respective cell average in cell Ii. Hence, we seek h0,i and s0,i such that

ρi =
1

Δx
Qi( ρeq,i) =

1

Δx

Nq∑
α=1

ωα ρ(heq,i(xi,α), s0,i)

ρei =
1

Δx
Qi(ρeeq,i) =

1

Δx

Nq∑
α=1

ωα ρe(heq,i(xi,α), s0,i),

(2.13)
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where Qi denotes the previously introduced q-th order accurate quadrature rule over cell Ii. In the above

expression, an estimate of the cell average of the internal energy density ρei is needed. We simply estimate

it directly from the cell-averaged conserved variables by

ρei = Ei − 1

2

ρv2
x,i

ρi
, (2.14)

which is exact at equilibrium (vx ≡ 0).

Note that, in general, (2.13) represents a nonlinear system of two equations in the equilibrium specific

enthalpy at cell center h0,i and the (constant) specific entropy s0,i. This system must be solved iteratively, e.g.

with Newton’s method. In practice, the iterative process is started from the specific entropy and enthalpy

computed from the cell-averaged conserved variables Ui. The cost of this iterative process is mitigated by

the fact that it is local to each cell and the initial guess is a spatially second order accurate estimate, i.e.

a very small two-by-two system of equations must be solved, independently, in every cell starting from a

good initial guess. For the ideal gas law, the system can be reduced to a single nonlinear equation for which

existence and uniqueness of the solution can be guaranteed under very weak requirements. This is shown in

Appendix A.

Once h0,i and s0,i have been fixed, we have the following high-order accurate representation of the equi-

librium in cell Ii:

Ueq,i(x) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
ρeq,i(x)

0

ρeeq,i(x)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦ . (2.15)

Next we develop the high-order equilibrium preserving reconstruction procedure. The idea is to decom-

pose the solution into an equilibrium and a (possibly large) perturbation part. Within cell Ii, the equilibrium

part is simply given by the previously derived equilibrium profile Ueq,i(x). The perturbation part is obtained

by applying the standard reconstruction R procedure on the equilibrium perturbation cell averages

δUi(x) = R
(
x; {Uk − Qk(Ueq,i)}k∈S i

)
, (2.16)

which results in a min(q, r)-th order accurate representation of the equilibrium perturbation in cell Ii. Note

that the equilibrium perturbation cell average in cell Ik is obtained by taking the difference between the

actual cell average Uk in cell Ik and the cell average of the equilibrium profile Ueq,i(x) in cell Ik. The latter is

evaluated by applying the Ik cell’s quadrature rule Qk to Ueq,i(x).

The full equilibrium preserving reconstruction W is then obtained by simply adding the equilibrium

profile to the perturbation

Ui(x) =W(x; {Uk}k∈S i ) = Ueq,i(x) + δUi(x). (2.17)

We observe that, by construction, this reconstruction will preserve any equilibrium of the form (1.10), since

the perturbation δUi(x) vanishes under these conditions.

The reason this is high-order is that any function can be written as some other function plus the
difference, i.e. f = g + ( f − g). Clearly, this difference δ f = f − g can be reconstructed from the cell-
averages of the difference, i.e. δ f (x) ≈ R(x; { f̄k − ḡk}k∈S ). Therefore, the well-balanced reconstruction
procedure (2.17) is high-order accurate, for any smooth function Ueq,i(x) (which takes the role of g in
the previous argument).

7



2.1.3. Well-balanced source term discretization
For the momentum source discretization, we use the previous splitting of the cell Ii’s density ρi(x) into

equilibrium ρeq,i(x) and perturbation δρi(x) as

S ρv,i(x) = −ρi(x)
∂φ

∂x
(x) = −

(
ρeq,i(x) + δρi(x)

) ∂φ
∂x

(x) = −ρeq,i(x)
∂φ

∂x
(x) − δρi(x)

∂φ

∂x
(x),

which is clearly a pointwise min(q, r)-th order accurate approximation of the true source term. However, a

straightforward numerical integration will not result in a well-balanced scheme. Instead, we use the fact that

for the equilibrium profiles we have
∂peq,i

∂x
= −ρeq,i

∂φ

∂x
by construction. As a result, the equilibrium part of the momentum source term can be trivially integrated

and numerical integration is only applied to the perturbation part:

S ρv,i =
peq,i(xi+1/2) − peq,i(xi−1/2)

Δx
− 1

Δx
Qi

(
δρi
∂φ

∂x

)
. (2.18)

We remark that a similar approach of splitting the source term into an equilibrium and perturbation
part was devised by Li and Xing [22] in a discontinuous Galerkin context. Since we are only concerned

with stationary equilibria, the energy source term S E,i discretization is left unchanged from (2.9).

We summarize the developed high-order well-balanced finite volume scheme in the following theorem:

Theorem 2.1 Consider the scheme (2.4) with a consistent and Lipschitz continuous numerical flux F , a r-th
order accurate spatial reconstruction procedure R, a q-th order accurate quadrature rule Q, the hydrostatic
reconstructionW (2.17) and the gravitational source term S (2.9) (with (2.18)).

This scheme has the following properties:

(i) The scheme is consistent with (2.1) and it is min(q, r)-th order accurate in space (for smooth solutions).
(ii) The scheme is well-balanced and preserves the discrete hydrostatic equilibrium given by (1.10) and

vx = 0 exactly.

Proof (i) The consistency and formal order of accuracy of the scheme is straightforward.

(ii) Let the hydrostatic equilibrium (1.10) be characterized by the constant specific entropy s and specific

enthalpy profile heq(x). The equilibrium conserved variables are then given by ueq(x) = [ρ(heq(x), s), 0, ρe(heq(x), s)]T

and let Ui(0) = 1
ΔxQi

(
ueq

)
be the discrete initial conditions. Then the iterative process for solving (2.13)

will, in each cell, find the local equilibrium h0,i = heq(xi) and s0,i = s. We prove this fact for ideal gases

in Appendix A. Therefore, in every cell δUi(x) = R(x; {0}k∈S i ) = 0. Hence, we have Ui+1/2− = Ui+1/2+

and by consistency of the numerical flux Fi+1/2 = f (Ui+1/2−) = [0, peq(xi+1/2), 0]T . Likewise, by definition

(2.18) the cell-averaged source term becomes Si =
1
Δx [0, peq(xi+1/2)− peq(xi−1/2), 0]T . By plugging the above

expressions for the numerical flux and source term into the semi-discrete finite volume scheme (2.4) we get

dUi

dt
= L(U) = − 1

Δx
(
Fi+1/2 − Fi−1/2

)
+ Si = 0

Thus the scheme is well-balanced as claimed. �

Remark 2.2 The presented scheme reduces to the second-order accurate scheme presented in [9] by setting
the quadrature rule Q to the midpoint rule and the reconstruction procedure R to piecewise linear.
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2.2. Extension to several space dimensions
We now describe the extension of our well-balanced scheme for hydrostatic equilibrium to the multi-

dimensional case. For ease of presentation, we describe it for two dimensions and the extension to three

dimensions is straightforward. As in the one-dimensional case, we briefly introduce a standard high-order

finite volume scheme and then detail the well-balanced scheme.

The two-dimensional Euler equations with gravity in Cartesian coordinates are given by

∂u
∂t
+
∂ f
∂x
+
∂g
∂y
= s (2.19)

with

u =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
ρ
ρvx

ρvy

E

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ , f =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
ρvx

ρv2
x + p
ρvyvx

(E + p)vx

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ , g =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
ρvy

ρvxvy

ρv2
y + p

(E + p)vy

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ and s = sx + sy =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
0

−ρ
0

−ρvx

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
∂φ

∂x
+

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
0

0

−ρ
−ρvy

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
∂φ

∂y
, (2.20)

where u is the vector of conserved variables, f and g the fluxes in x- and y-direction, and s the gravitational

source terms.

We consider a rectangular spatial domain Ω = [xmin, xmax] × [ymin, ymax] discretized uniformly (for ease

of presentation) by Nx and Ny cells or finite volumes in x- and y-direction, respectively. The cells are labeled

by Ii, j = Ii × I j = [xi−1/2, xi+1/2] × [y j−1/2, y j+1/2] and the constant cell sizes by Δx = xi+1/2 − xi−1/2 and

Δy = y j+1/2 − y j−1/2. We denote the cell centers by xi = (xi−1/2 + xi+1/2)/2 and y j = (y j−1/2 + y j+1/2)/2.

Integrals of some quantity c over the cell faces are approximated by q-th order accurate quadrature rules as

Qi±1/2, j(c) =

Nq∑
β=1

ωβ c(xi±1/2, y j,β) ≈
∫

I j

c(xi±1/2, y) dy

Qi, j±1/2(c) =

Nq∑
α=1

ωα c(xi,α, y j±1/2) ≈
∫

Ii

c(x, yi±1/2) dx,

(2.21)

where the xi,α ∈ Ii, y j,β ∈ I j and ωα, ωβ denote the Nq quadrature nodes and weights, respectively. Likewise,

integrals over the cells are approximated by

Qi, j(c) =

Nq∑
α=1

Nq∑
β=1

ωαωβ c(xi,α, y j,β) ≈
∫

Ii, j

c(x, y) dx dy. (2.22)

A semi-discrete finite volume scheme for the numerical approximation of (2.19) then takes the following

form
dUi, j

dt
= L(U) = − 1

Δx

(
Fi+1/2, j − Fi−1/2, j

)
− 1

Δy

(
Gi, j+1/2 − Gi, j−1/2

)
+ Si, j, (2.23)

where Ui, j denotes the approximate cell averages of the conserved variables, Fi±1/2, j and Gi, j±1/2 the facial

averages of the fluxes through the cell boundary and Si, j the cell averages of the source term. The fluxes are

obtained by applying the above quadrature rules along the cell boundary to the numerical flux formulas F
and G in respective direction:

Fi+1/2, j =
1

Δy
Qi+1/2, j

(
F (Ui, j,Ui+1, j)

)

Gi, j+1/2 =
1

Δx
Qi, j+1/2

(
G(Ui, j,Ui, j+1)

)
,

(2.24)
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where Ui, j = Ui, j(x, y) is a suitable reconstruction to be defined in detail at a later point. Similarly, the source

term is obtained by quadrature over the cell

Si, j =
1

ΔxΔy
Qi, j(s(U,∇φ)). (2.25)

In the evaluation of the quadrature rules, a r-th reconstruction procedure R is used to obtain pointwise

representations of the solution from the cell-averaged conserved variables:

Ui, j(x, y) = R
(
x, y;
{
Uk,l

}
(k,l)∈S i, j

)
. (2.26)

Here S i, j is the stencil of the reconstruction for cell Ii, j. Many such reconstruction procedures have been

developed in the literature and we refer to the references previously mentioned in section 2.1.1.

As in the one-dimensional case, we need two ingredients to construct our well-balanced scheme. The

first is a high-order equilibrium preserving reconstruction and the second is a well-balanced discretization

of the momentum source terms.

Let us begin with the description of the first ingredient and consider cell Ii, j. Then the high-order equi-

librium preserving reconstructionW takes the following form

Ui, j(x, y) =W
(
x, y;
{
Uk,l

}
(k,l)∈S i, j

)
= Ueq,i, j(x, y) + δUi, j(x, y), (2.27)

which again separates the solution into an equilibrium Ueq,i, j and a (possibly large) perturbation δUi, j.

The equilibrium profile is built from (1.10), which is indeed also valid in more than one dimensions.

Hence, we construct the local equilibrium profile in cell Ii, j by

heq,i, j(x, y) = h0,i, j + φi, j − φ(x, y), (2.28)

where h0,i, j = heq,i, j(xi, y j) and φi, j = φ(xi, y j) are the point values of the specific enthalpy and the gravita-

tional potential at cell center, respectively. Given the (constant) equilibrium entropy s0,i, j, the equilibrium

profiles of density ρeq,i, j and internal energy density ρeeq,i, j can be computed through the EoS.

The equilibrium enthalpy at cell center h0,i, j and the (constant) entropy s0,i, j are again fixed by demanding

agreement with the local cell averages up to the desired order of accuracy:

ρi, j =
1

ΔxΔy
Qi, j(ρeq,i, j)

ρei, j =
1

ΔxΔy
Qi, j(ρeeq,i, j).

(2.29)

Here ρei, j is the cell average of the internal energy density, which we estimate simply from the cell-averaged

conserved variables by

ρei, j = Ei, j − 1

2ρi, j

(
ρv2

x,i, j + ρv
2
y,i, j

)
, (2.30)

The latter estimate is again exact at equilibrium. As in the one-dimensional case, these equations represent,

in general, a nonlinear system of two equations in the equilibrium specific enthalpy at cell center h0,i, j and

the (constant) specific entropy s0,i, j. Their resolution proceeds as in the one-dimensional case. In the end,

we have the following equilibrium profile

Ueq,i, j(x, y) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
ρeq,i, j(x, y)

0

0

ρeeq,i, j(x, y)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ . (2.31)
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The perturbation part is reconstructed as in the one-dimensional case by

δUi, j(x, y) = R
(
x, y;
{
Uk,l − Qk,l(Ueq,i, j)

}
(k,l)∈S i, j

)
. (2.32)

This simply extrapolates the cell’s local equilibrium profile, computes equilibrium cell averages by numer-

ical integration, and uses the standard reconstruction procedure to obtain a high-order representation of the

perturbation.

We observe that the reconstruction procedure (2.27) preserves the equilibrium by construction, since

δUi, j vanishes, and it is min(q, r)-th order accurate in and away from equilibrium (for sufficiently smooth

solutions).

As in the one-dimensional case, only the momentum source terms need to be modified. The well-

balanced momentum source terms are simply obtained on a dimension-by-dimension basis

S ρvx,i, j =
1

Δx

(
Qi+1/2, j(peq,i, j) − Qi−1/2, j(peq,i, j)

)
− 1

ΔxΔy
Qi, j

(
δρi, j
∂φ

∂x

)

S ρvy,i, j =
1

Δy

(
Qi, j+1/2(peq,i, j) − Qi, j−1/2(peq,i, j)

)
− 1

ΔxΔy
Qi, j

(
δρi, j
∂φ

∂y

)
.

(2.33)

This completes the description of the two-dimensional well-balanced scheme for hydrostatic equilibrium

and its properties are summarized in the corollary below:

Corollary 2.3 Consider the scheme (2.23) with consistent and Lipschitz continuous numerical fluxes F and
G, a r-th order accurate spatial reconstruction procedure R, a q-th order accurate quadrature rule Q, the
hydrostatic reconstructionW (2.27) and the gravitational source term S (2.25) (with (2.33)).

This scheme has the following properties:

(i) The scheme is consistent with (2.19) and it is min(q, r)-th order accurate in space (for smooth solu-
tions).

(ii) The scheme is well-balanced and preserves the discrete hydrostatic equilibrium given by (1.10) and
vx = vy = 0 exactly.

Proof The proof follows directly by applying theorem 2.1 dimension-by-dimension. �

3. Numerical Experiments

In this section we assess the performance of our well-balanced scheme on a series of numerical exper-

iments. For comparison, we also present results obtained with a standard (unbalanced) base scheme. The

fully-discrete finite volume base scheme consists of

• the temporally third-order accurate SSP-RK scheme for time integration (see [36]),

• the spatially third-order accurate CWENO3 [41] reconstruction procedure R,

• the spatially fourth-order accurate two-point Gauss-Legendre quadrature rule for Q.

Overall, the chosen component results in a scheme that is third-order accurate in space and time. This

scheme is conditionally stable under the usual CFL condition. We use a CFL number of CCFL = 0.85. In the

following, we will refer to this scheme as the unbalanced scheme. The well-balanced scheme is built with the
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same base components, but uses the well-balanced reconstruction procedure and source term computation

as outlined in the previous section.

Below, all the initial conditions will be given in functional form u0(x). The discrete initial conditions are

obtained simply by quadrature, i.e.

U
0

i = Qi(u0), U
0

i, j = Qi, j(u0) (3.1)

in the one- and two-dimensional case, respectively. It is important to notice that the well-balancing only

requires that the initial conditions are obtained by the exact same quadrature rule used in the numerical

scheme. Therefore, showing that the initial conditions are well-balanced will immediately imply that the

preserved discrete state is a high-order accurate approximation of the exact equilibrium, simply because the

discrete initial conditions are nothing else than a high-order quadrature of the exact equilibrium.

We will be using three distinct notions of “error”. The first error is the usual L1-error

err1(q) :=
∑

i

Δx |qi − qre f ,i|, (3.2)

where q is any scalar variable of interest, e.g. q = ρ, p, v, . . . . Furthermore, qre f ,i is computed by down-

sampling a high-resolution reference solution or, where available, a highly accurate quadrature of an analytic

solution. A subtlety is that even in a well-balanced scheme the err1 of a discrete preserved state is not, in

general, zero. This is simply because U0
i is a high-order approximation of the exact cell-average of the initial

conditions and is therefore in general not exact. However, the important fact is that the err1 does not grow

in time for the well-balanced scheme.

To answer the question of how big the error of a perturbation δq from equilibrium is, we define the

L1-error of δq as

err1(δq) :=
∑

i

Δx |(qi − Qi(qeq)) − δqre f ,i| (3.3)

where qeq is the background equilibrium profile and δqre f ,i is the cell-average of the perturbation in a ref-

erence solution. This measures the error of the perturbation from numerical equilibrium. This is subtly

different than the error of the perturbation from the exact equilibrium. The difference is that err1(δq) conve-

niently uses the quadrature rule used in the finite volume method to compute the average of the equilibrium

profile, i.e. Qi, jqeq. Therefore, for equilibria, a well-balanced scheme should have zero err1(δq), but may

have non-zero err1(q).

When computing the err1(δq) for hydrostatic equilibria, the reference solutionQi, j(qeq) is known exactly,

it’s simply the initial condition. Therefore, err1(δq) can be computed at a greatly reduced computational cost

by

erreq,1(q) :=
∑

i

Δx|qi − Qi(qeq)| (3.4)

In order to be clear about how the errors were computed we will make the distinction throughout the numer-

ical experiments. Moreover, the above error measures readily generalize to the two-dimensional case.

To characterize a time scale on which a model reacts to perturbations of its equilibrium, we define the

sound crossing time τsound

τsound = 2

∫
c−1

s dx, (3.5)
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where cs denotes the speed of sound and the integral has to be taken over the extent of the stationary state of

interest. The sound crossing time is basically the time in which a sound wave travels back and forth through

the equilibrium.

We begin by several simple one- and two-dimensional numerical experiments employing the ideal gas

EoS. The interested reader may readily reproduce these experiments in order to check his or her implementa-

tion. Finally, we demonstrate the performance of the scheme on a problem involving a complex multiphysics

EoS.

3.1. One-dimensional Tests

We consider an isentropic hydrostatic atmosphere in a constant gravitational field. The gravitational

potential is a linear function φ(x) = gx where g is the constant gravitational acceleration. The initial density

and pressure profiles are then given by

ρ0(x) =

(
1

K
γ − 1

γ
(h0 − gx)

)1/γ−1

, p0(x) = Kρ0(x)γ + A exp

(
− (x − 1/2)2

0.052

)
. (3.6)

with the constants g = 3.15, γ = 1.4, h0 = 3.75 and K = 1. The atmosphere’s pressure is perturbed by a

Gaussian bump of amplitude A. The velocity is set to zero everywhere.

The computational domain is set to [0, L] with L = 1 and uniformly discretized by N cells, i.e. we set the

cell size Δx = L/N, the cell interfaces xi+1/2 = iΔx and the cell centers xi = (xi−1/2+ xi+1/2)/2 for i = 1, ...,N.

The following resolutions are used N = 32, 64, 128, 256, 512, 1024.

The boundary conditions are treated as follows. We extrapolate the local equilibrium from the last

physical cell into the left and right ghost cells by

Ui = Qi(Ueq,1) for i < 1

Ui = Qi(Ueq,N) for i > N.
(3.7)

3.1.1. Well-balanced property
We first verify the well-balanced property of our scheme. For this we evolve the isentropic atmosphere

in hydrostatic equilibrium without pressure perturbation, A = 0, up to time t = 10. This corresponds to

roughly 6 sound crossing time (τsound = 1.6). The numerical errors for the density at final time are shown

in Table 1. The table clearly shows that the well-balanced scheme maintains the discrete stationary state to

machine precision. Since the initial conditions are the two-point Gauss-Legendre quadrature of the exact

equilibrium, this furthermore shows that the preserved state is a fourth order accurate approximation of the

exact equilibrium. The unbalanced scheme produces large errors and is unable to maintain the hydrostatic

equilibrium accurately.

3.1.2. Small pressure perturbation propagation
Next we add a small pressure perturbation to the isentropic atmosphere in order to examine the schemes

ability to propagate small waves. The amplitude of the pressure perturbation is set to A = 10−7, which

generates one smooth wave propagating upwards and one downwards through atmosphere. As the waves

propagate, they are modified by the density and pressure stratification of the atmosphere. We evolve the

setup until time t = 0.2, shortly before the waves reach the boundaries.

The errors of the density perturbation err1(δρ) are shown in Table 2. The density perturbation is the

density at the final time minus the density of the unperturbed atmosphere. These errors were obtained on the

basis of a reference solution computed by the unbalanced scheme with a high resolution N = 32 768. We
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N Cweno3 Cweno3 wb

erreq,1(ρ) rate erreq,1(ρ) rate

32 8.73 × 10−4 – 9.85 × 10−16 –

64 1.38 × 10−4 2.66 3.96 × 10−15 -2.01

128 1.21 × 10−5 3.51 1.83 × 10−15 1.11

256 1.21 × 10−6 3.33 3.18 × 10−15 -0.80

512 1.25 × 10−7 3.27 4.49 × 10−15 -0.50

1024 1.31 × 10−8 3.25 8.34 × 10−15 -0.89

Table 1: Convergence data for the one-dimensional test Section 3.1.1 without perturbation. We show erreq,1(ρ) at t = 10.0. On
the left we show the error for the unbalanced scheme and on the right hand side we shows the errors for the well-balanced
scheme.

observe that the errors of the well-balanced scheme are roughly four orders of magnitude smaller than the

unbalanced scheme. The convergence rate of both the unbalanced and well-balanced reach the expected rate

of three.

In Figure 1 the profile of the velocity and the pressure perturbation are shown at the final time for both

the unbalanced (blue crosses) and well-balanced (red circle) schemes. The well-balanced solution is shown

for N = 64. Even at this relatively low resolution the well-balanced scheme resolves the perturbation well.

The errors of the unbalanced scheme for N = 64 are too large to be shown on the same plot. Instead we plot

the solution of the unbalanced scheme at N = 256. Even at this increased resolution the perturbation is not

approximated well and spurious drifts have developed during this short period of time.

N Cweno3 Cweno3 wb

err1(δρ) rate err1(δρ) rate

32 5.84 × 10−6 – 3.02 × 10−9 –

64 6.19 × 10−7 3.24 8.12 × 10−10 1.89

128 1.79 × 10−7 1.79 1.34 × 10−10 2.60

256 3.37 × 10−8 2.41 1.84 × 10−11 2.86

512 4.90 × 10−9 2.78 2.40 × 10−12 2.94

1024 6.24 × 10−10 2.97 3.02 × 10−13 2.99

Table 2: Convergence data for the one-dimensional test Section 3.1.2 with the small perturbation A = 10−7. We show the error
of the density perturbation err1(δρ) at t = 0.2. On the left we show the errors for the unbalanced scheme. The errors of the
perturbation for the well-balanced scheme are given in the right hand side column.

3.1.3. Large pressure perturbation propagation
For the purpose of testing that the well-balanced reconstruction does not destroy the robustness of the

shock-capturing base scheme, we increase the pressure perturbation by several orders of magnitude to A =
10. This generates two strong waves quickly steepening into shock waves. The setup is evolved until time

t = 0.06.

The plots of the velocity and pressure are shown in Figure 2. The two schemes are virtually indistinguish-

able by eye. In particular, the well-balanced scheme does not show any oscillations and performs equally
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Figure 1: Snapshot of the smooth test case, see Section 3.1.2. The simulation is performed with N = 256 and N = 64 cells for the
unbalanced and well-balanced scheme respectively. It is run up to time t = 0.2. On the left we show the velocity, on the right the
pressure perturbation. The error in the unbalanced scheme at N = 64 would be too big to be shown on the plot. The reference
solution, plotted in black, is obtained by a high-resolution N = 32 768 simulation using the unbalanced scheme.

well as the underlying unbalanced scheme. The well-balancing has not adversely affected the performance

of the scheme away from equilibrium.

Figure 2: Snapshot of one-dimensional test with large perturbation A = 10, see Section 3.1.3. The simulation is performed with
N = 64 cells and run up to time t = 0.06. On the left the velocity is shown, on the right the pressure. The reference solution,
plotted in black, is obtained by a high-resolution N = 32 768 simulation using the unbalanced scheme.
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3.2. Two-dimensional polytrope

The following numerical experiment is a two-dimensional version of the one in [9]. This experiment

simulates a so-called polytrope, which is a static configuration of an adiabatic gaseous sphere held together

by self-gravitation. These model stars are constructed in spherical symmetry from hydrostatic equilibrium,

Poisson’s equation and the polytropic relation p = Kργ, which can be combined into the so-called Lane-

Emden equation (see e.g. [42]). The latter equation can be solved analytically for three values of the ratio of

specific heats (γ = 6/5, 2,∞).

As in [9] we use γ = 2. Then the density and pressure profiles are given by

ρ0(r) = ρC
sin(αr)

αr
, p0(r) = Kρ0(r)γ (3.8)

where r is the radial coordinate, ρC is the central density of the polytrope and

α =

√
4πG
2K
. (3.9)

The gravitational potential is given by

φ(r) = −2KρC
sin(αr)

αr
. (3.10)

In the following we set K = G = ρC = 1. Note that the polytrope (obviously) fulfills the equilibrium (1.10)

for any r ≥ 0.

We then discretize the problem on the computational domain [−0.5, 0.5]2 by N2 uniform cells for N =
32, 64, 128, 256, 512, 1024. The conserved variables are initialized by numerical integration of the conserved

variables u0(x, y) = [ρ0(r), 0, 0, p0(r)/(γ − 1)]T where the radial coordinate is given by r2 = x2 + y2. Note

that the velocity is set to zero in the whole domain.

The boundary conditions are applied along the coordinates axes as in Section 3.1. In the corner bound-

aries (needed by the reconstruction procedure), we extrapolate the equilibrium from the relevant corner cell

in the computational domain. For example, the ghost cell (i, j) in the upper right corner is set as follows

Ui, j = Qi, j(Ueq,N,N). (3.11)

The gravitational potential is simply given by the above analytical expression.

3.2.1. Well-balanced property
We begin by evolving the polytrope with the well-balanced and unbalanced scheme until time t = 30

which corresponds to roughly 35 sound-crossing times (τsound ≈ 0.85). The errors are shown in Table 3. The
unbalanced scheme converges at the expected rate, but even with 10242 cells, it has not reached round
off. The well-balanced scheme is again shown to be in fact well-balanced. Like in the one-dimensional
test, this implies that the preserved discrete state is fourth order accurate. This shows that the scheme
also works in two-dimensions, even in cases where the gravity is non-constant and not grid-aligned.

3.2.2. Perturbed polytrope
Next we add a perturbation to the equilibrium pressure of the polytrope as

p(r) =
(
1 + A exp(−r2/0.052)

)
p0(r) (3.12)
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Figure 3: Scatter plots of the two-dimensional polytrope, see Section 3.2.1 at time t = 0.2. The panel on the left shows the velocity
for A = 10−8. The panel on the right the corresponding plot for A = 10−4. The resolution is generally N = 1282, however, for the
smallest perturbation, the errors of the unbalanced scheme at N = 128 exceed the limits of the plot. Therefore, for A = 10−8,
we plot the unbalanced scheme at N = 10242. The reference solution was computed with a one-dimensional finite volume code
assuming cylindrical symmetry on N = 32 768 cells.

Figure 4: Scatter plots of the two-dimensional polytrope, see Section 3.2.1. The simulation is performed with N = 1282 cells and
run up to time t = 0.2. The panel on the left shows the velocity for A = 10−2, the one on the right for A = 10. The reference
solution was computed with a one-dimensional finite volume code assuming cylindrical symmetry on N = 32 768 cells.
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N Cweno3 Cweno3 wb

erreq,1(ρ) rate erreq,1(ρ) rate

32 1.57 × 10−3 – 2.72 × 10−11 –

64 1.85 × 10−4 3.09 4.33 × 10−13 5.97

128 2.22 × 10−5 3.06 5.29 × 10−14 3.03

256 2.66 × 10−6 3.06 1.06 × 10−13 -1.00

512 3.07 × 10−7 3.12 2.04 × 10−13 -0.95

1024 3.31 × 10−8 3.21 3.94 × 10−13 -0.95

Table 3: Convergence data for the polytrope at rest, see Section 3.2.1. We show erreq,1(ρ) for the unbalanced scheme (left) and
the well-balanced scheme (right).

with three different amplitudes A = 10−8, 10−4, 10−2, 10. The setup is evolved up to time t = 0.2 shortly

before the excited waves reach the boundary of the computational domain.

The reference solution was computed with a one-dimensional second-order accurate finite volume scheme

(assuming cylindrical symmetry) and resolution N = 32 768.

For perturbations of size A = 10−8 the well-balanced scheme clearly outperforms the unbalanced scheme

(by at least four orders of magnitude). Scatter plots of the velocity and pressure perturbation are shown in

Figure 3. At N = 1282 the well-balanced scheme resolves the perturbation well and with no discernible

scatter. Which is not trivial, since the radially symmetric solution is approximated on a uniform Cartesian

grid which does not respect the radial symmetry.

At the next larger perturbation, A = 10−4 the well-balanced scheme still outperforms the unbalanced

scheme by a factor 10. Unlike the unbalanced scheme, the well-balanced scheme shows no scatter, as can

be seen in Figure 3. Furthermore, once the perturbation has traveled away from the center of the domain,

the solution returns back to equilibrium in the well-balanced scheme, but not in the unbalanced one. Both

schemes converge at the expected rate.

The second largest perturbation, A = 10−2, was chosen such that the perturbation is very well approxi-

mated by the unbalanced scheme, yet small enough to remain smooth. The aim is to show that away from

equilibrium the well-balancing does not have a negative impact on the quality of the solution. This is con-

firmed in Figure 4 and Table 4.

For A = 10 both schemes perform equally well, both converge at first order and the errors differ by

approximately one percent. Therefore, well-balancing has not affected the quality of the solution away from

equilibrium. The scatter plot of the velocity and pressure is shown in Figure 4. Neither scheme shows any

sign of spurious oscillations.

3.2.3. Blast waves
In order to further verify that our well-balanced scheme does not deteriorate the robustness and shock-

capturing properties of the base scheme, we add to the polytrope several localized high pressure regions. To

this end, we add the following pressure perturbation to the equilibrium polytrope

δp(x) = 100

6∑
i=1

1B(xi,r)(x), (3.13)
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A = 10−8 Cweno3 Cweno3 wb

N err1(δρ) rate err1(δρ) rate

32 5.74 × 10−5 – 5.01 × 10−11 –

64 6.20 × 10−6 3.21 1.58 × 10−11 1.67

128 5.34 × 10−7 3.54 2.74 × 10−12 2.52

256 4.69 × 10−8 3.51 3.71 × 10−13 2.89

512 4.84 × 10−9 3.28 5.34 × 10−14 2.80

1024 5.67 × 10−10 3.09 1.99 × 10−14 1.42

A = 10−4 Cweno3 Cweno3 wb

N err1(δρ) rate err1(δρ) rate

32 5.76 × 10−5 – 5.00 × 10−7 –

64 6.27 × 10−6 3.20 1.58 × 10−7 1.66

128 5.46 × 10−7 3.52 2.74 × 10−8 2.52

256 4.70 × 10−8 3.54 3.69 × 10−9 2.89

512 4.84 × 10−9 3.28 4.68 × 10−10 2.98

1024 5.67 × 10−10 3.09 5.87 × 10−11 2.99

A = 10−2 Cweno3 Cweno3 wb

N err1(δρ) rate err1(δρ) rate

32 8.43 × 10−5 – 5.50 × 10−5 –

64 2.15 × 10−5 1.97 1.79 × 10−5 1.62

128 3.27 × 10−6 2.72 2.84 × 10−6 2.65

256 4.04 × 10−7 3.02 3.72 × 10−7 2.93

512 4.95 × 10−8 3.03 4.68 × 10−8 2.99

1024 6.14 × 10−9 3.01 5.87 × 10−9 3.00

A = 10 Cweno3 Cweno3 wb

N err1(δρ) rate err1(δρ) rate

32 2.88 × 10−2 – 2.98 × 10−2 –

64 1.42 × 10−2 1.02 1.46 × 10−2 1.03

128 6.36 × 10−3 1.16 6.46 × 10−3 1.17

256 3.02 × 10−3 1.08 3.05 × 10−3 1.08

512 1.51 × 10−3 1.00 1.51 × 10−3 1.01

1024 7.69 × 10−4 0.97 7.69 × 10−4 0.97

Table 4: Convergence data for the polytrope with perturbation. We show err1(δρ) at t = 0.2 for the unbalanced (left) and well-
balanced scheme (right) for different values of the amplitude A (indicated in the table). For the fourth table (A = 10) the smooth
perturbation turns into a discontinuity and only first order convergence can be expected.
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where Bx,R = {x′ ∈ R2 : ‖x′ − x‖ < R} denotes the open ball of radius R centered on x and 1B the indicator

function for the set B, i.e.

1B(x) =

⎧⎪⎪⎨⎪⎪⎩
1 if x ∈ B,
0 otherwise.

We setup six ”high pressure balls” with radii R = 0.05 and centers

x1 = [−0.25, 0.3]T , x2 = [−0.15, 0.1]T , x3 = [0.025, 0.3]T , x4 = [0.025, 0.225]T ,

x5 = x6 = [0.1,−0.1]T .

The velocity is set to zero everywhere. The initial conditions are shown in the upper panel of Figure 5.

We evolve the setup until time t = 0.02 with the well-balanced and unbalanced scheme at resolution

N = 1282 We show a snapshot at t = 0.02 in Figure 5. Even under these much more extreme conditions

with non-trivial wave interactions, the well-balanced scheme is stable and by eye indistinguishable from the

unbalanced scheme.

3.3. White Dwarf

The final numerical experiment assesses the performance of our well-balanced scheme on a astrophys-

ically relevant problem involving a complex multiphysics EoS. We simulate the equilibrium and some per-

turbations of a model white dwarf. A white dwarf is the final evolutionary state of a star not massive enough

to go through the final nuclear burning stages and become a neutron star or a black hole (see e.g. [27]).

This numerical experiment is a two-dimensional version of the one presented in [9]. Likewise, we use

the publicly available Helmholtz EoS (see [43] for a detailed description and [44]). This EoS includes

contributions of (photon) radiation, nuclei, electrons and positrons and is well adapted to large range of

stellar environments. The radiation is treated as a blackbody in local thermal equilibrium and the nuclei

are modeled by the ideal gas law. For computational efficiency, the electrons and positrons are treated in a

tabular manner with a thermodynamically consistent interpolation procedure.

The publicly available EoS interface provides all relevant thermodynamic quantities given as input
the temperature T , the density ρ and the composition (Xi, Ai, Zi). Here Xi is the mass fraction, Ai the
mass number and Zi the atomic number of isotope i. As we evolve the Euler equations in conservative
form, we therefore need to compute the temperature T corresponding to a given density ρ and specific
internal energy e. For the equilibrium profile reconstruction, we need in addition the ability to recover
the temperature T and the density ρ given the specific enthalpy h and entropy s. This is implemented
with the help of root finding algorithms combining the Newton method for speed and the bisection
method for robustness. We refer to Press et al. [45] for details.

The white dwarf model is fully characterized by specifying the central density, the chemical composition

and the thermodynamic equilibrium. We set the central density ρ = 2 × 109 g/cm3 and temperature T =
5 × 108 K. We assume a constant specific entropy and set the composition to half carbon 12C and half

oxygen 12O. Then the model can be constructed by simple numerical integration of the self-gravitating

hydrostatic equilibrium equations in spherical symmetry. We refer to [9] for the detailed procedure.

The one-dimensional white dwarf profile is then mapped onto the two-dimensional computational do-

main [−L, L]2 with L = 1 × 108 cm. The velocity is set to zero. The same hydrostatic extrapolation boundary

conditions are used as in Section 3.2.
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Figure 5: Snapshot of the two dimensional blast waves, see Section 3.2.3. The upper image shows the initial total energy (on a
linear scale). The remaining three plots show the total energy at t = 0.02 (on a logarithmic scale) for the unbalanced (bottom,
left) and well-balanced (bottom, right) scheme.
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3.3.1. Well-balanced property
We evolve the hydrostatic equilibrium without perturbation on a grid with N = 1282 cells until time

t = 1 s. The unbalanced scheme has erreq,1(ρ)/‖ρ‖∞ = 1.60 × 10−5 and erreq,1(E)/‖E‖∞ = 8.5 × 10−6. The

well-balanced scheme is confirmed to be exact up to machine precision, with errors of erreq,1(ρ)/‖ρ‖∞ =
2.80 × 10−15 and erreq,1(E)/‖E‖∞ = 2.27 × 10−15. Where ‖ρ‖∞ = 2 × 109 g/cm3 is the density and ‖E‖∞ =
3.28 × 1027 erg/cm3 total energy at the center of the white dwarf. This shows that equation (2.29) can be

solved numerically and the solution is effectively unique. If the iterative procedure were to find a different

equilibrium in any cell, it would be very unlikely that the resulting scheme would be well-balanced.

3.3.2. Wave propagation
Next we add a small Gaussian pressure perturbation at the origin, i.e.

p0(x) = (1 + A exp(−|x|2/2b2)) peq(x), (3.14)

with A = 10−3 and b = 1 × 107 cm. The size of the initial perturbation was chosen such that the main feature

of the perturbation is resolved similarly well in both solvers. The solution is evolved to t = 7.32 × 10−2 s

on N = 1282. A scatter plot of the solution is shown in Figure 6. The scatter in the well-balanced scheme

is significantly reduced compared to the unbalanced scheme. Unlike the unbalanced solution, the well-

balanced solution remains constant ahead of the perturbation and returns to rest after the perturbation has

passed.

The reference solution is computed using a one-dimensional, cylindrically symmetric, well-balanced

finite volume code with a resolution of N = 8192.

Figure 6: Snapshots of the two-dimensional white-dwarf, see Section 3.3.2 with a small perturbation. The simulation is per-
formed with N = 1282 cells and run up to time t = 7.32 × 10−2 s. The radial velocity is shown on the left, the pressure perturba-
tion on the right. The units in the plot are CGS.

4. Conclusion

We presented a novel well-balanced, high-order finite volume scheme for Euler equations with gravity.

We are able to well-balance a large class of astrophysically relevant hydrostatic equilibria without imposing

the exact equilibrium apriori. Rather, we only assume some thermodynamic information about the equilib-

rium, e.g. constant entropy, and solve for the equilibrium in every time step. Since the equilibrium defined
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by (1.6) is only a mechanical equilibrium, it seems natural that some additional information about the ther-

modynamic nature of the equilibrium must always be imposed.

The important features of the proposed scheme are:

• Its independence of a particular form of equation of state. This scheme can handle arbitrary equations

of state including tabulated ones, as shown in the final numerical experiment.

• Its independence of a particular gravitational potential. The only requirement is that the gravitation

potential and its gradient can be evaluated at apriori known locations in the computation domain. In

fact the gravitation source term does not need to be constant in time. Therefore this scheme can also be

applied to simulations which include self-gravity. Such simulations may benefit from well-balancing

if the initial conditions are at rest and perturbed by some other means, such as a heating source term.

• Its modular nature. The scheme clearly describes how any reconstruction procedure can be made well-

balanced. Therefore, the proposed scheme can be extended to arbitrary orders in a straightforward

manner.

• Its local nature. The well-balancing is local to each cell. In particular it does not change the stencil

required to update the cell.

The numerical experiments have shown that the scheme is high-order accurate for flows both near and

far away from hydrostatic equilibrium. In fact, the numerical results suggest that the scheme is no worse on

large perturbations than the equivalent unbalanced scheme. We have also shown that the schemes are stable

in the presence of shocks. Furthermore, the smooth tests show that the well-balanced scheme preserves

radial symmetry much better than the unbalanced scheme. Furthermore, the well-balanced solutions do not

cause any changes in the part of the domain the perturbation has not reached yet. Additionally, the well-

balanced scheme returns to rest after the perturbation has passed over some region in the domain, while

the unbalanced scheme does neither. These tests were performed under a variety of conditions, i.e. in one

dimension for constant gravity, in two dimensions for non-grid aligned gravity with both the ideal gas law

and a complex multiphysics equation of state.

Our scheme only affects the reconstruction procedure and the numerical source term. Therefore, large

parts of an existing finite volume code would remain unaffected by adding our well-balancing. By reusing

the existing unbalanced reconstruction procedure for the perturbation the cost of implementing our scheme

is further reduced. These very localized and modular changes ensure that our method can be used to well-

balance a variety of existing finite volume schemes with minimal effort.
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Appendix A. Equilibrium reconstruction for the ideal gas law

In the ideal gas case, it can be shown that a unique equilibrium exists which matches the cell-averages,

i.e. satisfies (2.13) (in one dimension) and (2.33) (in two dimensions).

In a first step the system is reduced to a single nonlinear equation in one unknown. To this end, we write

the ideal gas law in the polytropic form

p = p(K, ρ) = Kργ, (A.1)
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where K = K(s) is a function of entropy s alone and γ is the ratio of specific heats. Then the equilibrium

density and internal energy density can be expressed as functions of the constant K0,i and the enthalpy at cell

center h0,i:

ρeq,i(x) =

(
1

K0,i

γ − 1

γ
heq,i(x)

) 1
γ−1

ρeeq,i(x) =
1

γ − 1

(
1

K0,i

) 1
γ−1
(
γ − 1

γ
heq,i(x)

) γ
γ−1

.

(A.2)

By plugging the latter into (2.13), one obtains a single equation for h0,i

ρei =
ρi

γ − 1

∑Nq

j=1
wj

(
γ−1

γ

(
h0,i + φi − φ(x j)
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wj
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γ

(
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)) 1
γ−1

=: f (h0,i) (A.3)

and the constant K0,i is simply given by

K0,i =

⎡⎢⎢⎢⎢⎢⎢⎣ 1
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. (A.4)

To show that (A.3) has a unique solution we show that it is monotone. Therefore, we differentiate f and find

f ′(h0,i) =
ρi

γ − 1

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝1 −
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) 1
γ−1

)2
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ . (A.5)

Clearly, the second term is positive, and if it were less than γ the derivative of f would be positive, every-

where, and therefore f would be a strictly monotone function. If within every cell φ does not vary too much,

this turns out to be true and can be proven as follows.

Let

hmax,i = h0,i + max
x∈[xi−1/2,xi+1/2]

φi − φ(x) (A.6)

hmin,i = h0,i + min
x∈[xi−1/2,xi+1/2]

φi − φ(x) (A.7)

then for 1 < γ ≤ 2 we find
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≤
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wjh
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min,i

. (A.9)

Therefore, under the condition that

hmax,i

hmin,i
< γ1/2 (A.10)
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f has a unique solution. By a very similar estimate we find that for γ > 2 a unique solution exists provided

hmax,i

hmin,i
< γ

γ−1
γ . (A.11)

These conditions limit the amount the gravitational potential φ can vary within a cell. Note that this implies

a condition on the numerical resolution and puts a requirement on the cell width.

29


