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Constraint energy minimizing generalized
multiscale finite element method for nonlinear

poroelasticity and elasticity

Shubin Fua, Eric Chungb, Tina Maic,d,∗

Abstract. In this paper, we apply the constraint energy minimizing generalized multi-
scale finite element method (CEM-GMsFEM) to first solving a nonlinear poroelasticity
problem. The arising system consists of a nonlinear pressure equation and a nonlinear
stress equation in strain-limiting setting, where strains keep bounded while stresses can
grow arbitrarily large. After time-discretization of the system, to tackle the nonlinearity,
we linearize the resulting equations by Picard iteration. To handle the linearized equa-
tions, we employ the CEM-GMsFEM and obtain appropriate offline multiscale basis
functions for the pressure and the displacement. More specifically, first, auxiliary multi-
scale basis functions are generated by solving local spectral problems, via the GMsFEM.
Then, multiscale spaces are constructed in oversampled regions, by solving a constraint
energy minimizing (CEM) problem. After that, this strategy (with the CEM-GMsFEM)
is also applied to a static case of the above nonlinear poroelasticity problem, that is,
elasticity problem, where the residual based online multiscale basis functions are gen-
erated by an adaptive enrichment procedure, to further reduce the error. Convergence
of the two cases is demonstrated by several numerical simulations, which give accurate
solutions, with converging coarse-mesh sizes as well as few basis functions (degrees of
freedom) and oversampling layers.
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1. Introduction

For elastic porous media which incompressible viscous fluid flows through, modeling
and simulating its deformation are helpful in developing a variety of applications, such as
geomechanics or environmental safety. Given a linear porous medium, Biot [3] suggested
a poroelasticity model, which combines a Darcy flow of the fluid with the behavior of the
surrounding linear elastic solid. In this paper, we investigate a nonlinear poroelasticity
model, where the nonlinear stress equation involves quasi-static strain-limiting elasticity
([39, 38]); whereas, the nonlinear pressure equation is a Darcy-type parabolic equation.

To overcome the challenge from the nonlinearity of the poroelasticity, after time-
discretization, we use linearization in Picard iteration (with a desired termination cri-
terion) for each time step until the terminal time. To tackle the difficulties from multiple
scales and high contrast, we apply the constraint energy minimizing generalized multi-
scale finite element method (CEM-GMsFEM [14, 15]) to the linearized equations at the
current iteration. This CEM-GMsFEM is developed from the GMsFEM ([22]).
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The nonlinear elasticity in the stress equation is motivated by a recent direction of
investigating nonlinear responses of materials, thanks to the new developed implicit con-
stitutive theory (see [45, 46, 48, 47]). As Rajagopal remarks, the theory gives a cornerstone
to developing nonlinear and infinitesimal strain theories for elastic-like (non-dissipative)
material behavior. This setting is different from traditional Cauchy and Green approaches
for presenting elasticity which, under the assumption of infinitesimal strains, derive classi-
cal linear models. In addition, it is noteworthy that the implicit constitutive theory yields
a stable theoretical base for modeling fluid and solid mechanics diversely, in engineering,
chemistry and physics.

Here, in the stress equation, we focus on the strain-limiting theory (as a special sub-
class of the implicit constitutive theory), where the linearized strain keeps bounded even
when the stress becomes extremely large. Note that it is thus helpful to use the strain-
limiting theory to characterize the behavior of fracture, brittle materials near crack tips
or notches, or concentrated loads inside the material body (or on its boundary). Either
situation leads to stress intensity despite the small gradient of the displacement (and
hence infinitesimal strain). Within our nonlinear poroelasticity model, the solid part is
science-non-fiction and physically valid. This solid part can undergo infinite stresses and
does not damage (as the strains are bounded).

Regarding the multiple scales, instead of direct numerical simulations on fine grid,
model reduction techniques are applied, to lessen the computational burden. These tech-
niques consist of upscaling and multiscale methods. On coarse grid, upscaling meth-
ods mean upscaling the material properties based on homogenization, whereas multiscale
methods need precomputed multiscale basis functions.

Within the structure of multiscale methods, in [7], the GMsFEM was used to handle
nonlinear problems in poroelasticity. Then, the idea of CEM-GMsFEM was adopted,
for linear poroelasticity in [29] (thanks to [6]), to create multiscale basis functions (with
locally minimal energy) for the pressure and the displacement. In this paper, for the case
of poroelasticity, to deal with the nonlinearity, after the time-discretization, we employ
the Picard iteration procedure; and at each iteration, the CEM-GMsFEM is applied as
in [29]. The primary component of the CEM-GMsFEM is the construction of local basis
functions for each coarse element (by using the GMsFEM to create the auxiliary multiscale
basis functions) then for each oversampled domain (by employing the CEM to obtain the
set multiscale basis functions). Convergence analysis within a Picard iteration is shown
to support the proposed method.

As an interesting case of the considered nonlinear poroelasticity, a static strain-limiting
nonlinear elasticity model (as in [30]) is also investigated by similar strategy and via the
CEM-GMsFEM. To take into consideration the influence of source and global informa-
tion, as in the linear elasticity case ([31]), we use more efficient residual based online basis
functions (via adaptive enrichment procedure [13]), which are not used in the poroelas-
ticity case (where only offline multiscale basis functions are applied). The online basis of
the CEM-GMsFEM [15] will be computed in an oversampled domain, which is different
from the original online approach [13]. We will also provide a proof of global convergence
of the Picard iteration procedure in Appendix A.
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Numerical simulations are shown to support the proposed method. At the end of the
Picard iteration process, the CEM-GMsFEM solution is compared with the reference
fine-grid solution (at the last time step for the dynamic case). In the static nonlinear
elasticity case, we observe that when the sequence of coarse-mesh sizes converges, the
sequence of CEM-GMsFEM solutions also accurately converges. The effects of number of
oversampling layers and number of offline multiscale basis functions are as expected. That
is, increasing their numbers (until some certain limits) will increase the CEM-GMsFEM
solution accuracy. The errors further reduce when we adaptively add residual based online
basis. For the nonlinear poroelasticity case, similar conclusions about the CEM-GMsFEM
solution (for both pressure and displacement) are obtained with respect to the convergence
of coarse-grid sizes as well as the oversampling layers. Regarding the number of offline
multiscale basis functions, adding them will improve the displacement accuracy, but will
not change the pressure accuracy.

We would like to note that there are some connections between the current work and
the field of computational homogenization (especially, the two-scale simulations) in the
community of computational mechanics. We will discuss some possibilities that this work
about CEM-GMsFEM as well as the arising nonlocal multi-continuum (NLMC) type
approaches ([11]) can connect with them in this paper.

The next section contains the formulation of our considering strain-limiting nonlinear
poroelasticity problem. Section 3 is for some preliminaries about the CEM-GMsFEM, in-
cluding fine-scale discretization and Picard iteration for linearization. Section 4 is devoted
to general idea of the CEM-GMsFEM, for the current nonlinear poroelasticity problem.
Section 5 is about computing multiscale spaces, by using the CEM-GMsFEM in our
context. Section 6 discusses an interesting static nonlinear elasticity case of the above
nonlinear poroelasticity case. Numerical results for both cases are provided in Section 7.
Some discussions that this work can be applied to microscopic boundary value problems
and to the two-scale simulations (in computational homogenization) are presented in Sec-
tion 8. The last Section 9 is for conclusions. In Appendix A, we present a proof of global
convergence of the Picard iteration process, by using fixed-point theorem.

2. Formulation of the nonlinear poroelasticity problem

2.1. Input problem and classical formulation. Let Ω be a bounded, Lipschitz, simply
connected, open, convex domain of Rd (d = 2, 3), and T > 0 be a fixed time. For the sake
of simplicity, the case d = 2 is considered here. We refer the readers to our previous paper
[30] for more details about the strain-limiting nonlinear elasticity model. In the context of
the strain-limiting theory used in [30], we now consider a nonlinear poroelasticity system
(which arises from [7, 29]), where the unknowns are displacement u : Ω × [0, T ] and
pressure p : Ω× [0, T ] satisfying

−div(κ(x, |Du|)Du) +∇(αp) = 0 in Ω× (0, T ] ,(2.1)

∂

∂t

(
α divu+

1

M
p

)
− div (K(x,Du, p)∇p) = f in Ω× (0, T ] .(2.2)
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Here, |Du| represents the Frobenius norm of the 2 × 2 matrix Du =
1

2
(∇u + ∇uT)

as symmetric infinitesimal strain tensor. The permeability K(x,Du, p) can depend on
p and Du in non-trivially nonlinear manner (even though our considering materials are
isotropic) while its norm is assumed to be bounded, and

(2.3) κ(x, |D(u)|) = 1

1− β(x)|D(u)| ,

in which u(·, t) ∈ W 1,2
0 (Ω). Within this setting, κ(x, |D(u)|)D(u) ∈ L1(Ω) and D(u) ∈

L∞(Ω), as in [2]. The boundary and initial conditions are as follows:

u = 0 on ∂Ω× (0, T ] ,(2.4)

p = 0 on ∂Ω× (0, T ] ,(2.5)

p(·, 0) = p0 in Ω ,(2.6)

where p0 = 0 in the numerical simulations (Section 7). Note that provided p(·, 0) = p0 ∈
H1

0 (Ω), then (2.1) can be used to define an appropriate initial value u0 := u(·, 0) ∈ H1
0(Ω)

(this defining will be specified in Section 3).
To simplify the problem, only homogeneous Dirichlet boundary condition is consid-

ered here. (Other types of boundary conditions can be set simply.) The heterogeneities
([29]) are mainly originated from the heterogeneity of the materials (that is, the consti-
tute relations between Du and the Cauchy stress tensor T for different materials), the
permeability K, and the Biot-Willis fluid-solid coupling coefficient α (where κ,K, α may
be highly oscillatory). We denote by ν the fluid viscosity and by M the Biot modulus,
which are assumed to be constant. Furthermore, f is a fluid source term (see Theorem
5.1 for its space) representing production or injection processes.

Remark 2.1. A similar nonlinear poroelasticity problem can be found in [4]. For sim-
plicity in our numerical simulations, K(x,Du, p) can depend only and nonlinearly on
p as well as can be a scalar-valued function. For example, K(p) = exp(p) (as in Sec-
tion 5 in [7]). One could consider more general nonlinear form ([7]) of K(x,Du, p),

where Du =
1

2
(∇u + ∇uT) is symmetric infinitesimal strain, and use our current Pi-

card linearization technique (as in Section 3) to handle the system (2.1)–(2.2). Note that
our chosen κ(x, |Du|) and K(x,Du, p) in (2.1)-(2.2) satisfy the principle of material
frame-indifference (because Du is symmetric) and p is a scalar-valued function.

For the stress equation (2.1), in our case of nonlinear elastic stress-strain constitutive
relation, the stress tensor T : Ω → R2×2 and the traditional linearized strain tensor are
as follows:

(2.7) T =
D(u)

1− β(x)|D(u)| , E = D(u) = Du = ∇su =
1

2
(∇u+∇uT) .

These tensors satisfy our investigating strain-limiting model of the following form ([39]):

(2.8) E =
T

1 + β(x)|T | .
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Equivalently,

(2.9) T =
E

1− β(x)|E| ,

provided that |E| < 1

β(x)
(which will be explained as follows).

We note that the strain-limiting parameter function β(x) depends on the position
variable x = (x1, x2). From (2.8), it is straightforward that

(2.10) |E| = |T |
1 + β(x)|T | <

1

β(x)
,

which implies that |E| has an upper-bound
1

β(x)
. Hence, taking large enough β(x) en-

sures that the limiting-strain owns a small upper-bound, as desired. Nevertheless, it is
not allowed that β(x) → ∞. Toward the analysis of our problem, β(x) is assumed to be
smooth and possess compact range 0 < m1 ≤ β(x) ≤ m2 , for some positive constants
m1,m2 . Here, we choose β(x) so that the strong ellipticity condition holds (see [39]), that
is, β(x) is sufficiently large, to restrain from bifurcations in numerical simulations.

2.2. Function spaces. We refer the readers to [18, 30] for the preliminaries. Latin indices
are in the set {1, 2}. Functions are denoted by italic capitals (e.g., f), vector fields in R2

and 2 × 2 matrix fields over Ω are denoted by bold letters (e.g., v and T ). The space
of functions, vector fields in R2, and 2 × 2 matrix fields defined over Ω are respectively
represented by italic capitals (e.g., L2(Ω)), boldface Roman capitals (e.g., V ), and special
Roman capitals (e.g., S).

Our considering spaces are V := H1
0(Ω) = W 1,2

0 (Ω) and Q := H1
0 (Ω) . The dual norm

to ‖ · ‖H1
0(Ω) is ‖ · ‖H−1(Ω). Here, |v| denotes the Euclidean norm of the 2-component

vector-valued function v; and |∇v| represents the Frobenius norm of the 2×2 matrix ∇v.
For every 1 ≤ r < ∞, we use Lr(0, T ;X) to denote the Bochner space with the norm

‖w‖Lr(0,T ;X) :=

(∫ T

0

‖w‖rXdt

)1/r

< +∞ ,

‖w‖L∞(0,T ;X) := sup
0≤t≤T

‖w‖X < +∞ ,

where (X, ‖ · ‖X) is a Banach space. Also, we define

H1(0, T ;X) := {v ∈ L2(0, T ;X) : ∂tv ∈ L2(0, T ;X)} .
Thanks to the notation in [8], we will express

S as T and D(u) = Du as E = E(u) .

Based on [8], we derive the following results, which were also stated in [9] (p. 19) and
proved in our recent GMsFEM paper [30].

Lemma 2.2. Let

(2.11) Z :=

{
ζ ∈ R2×2

∣∣∣∣ 0 ≤ |ζ| < 1

m2

}
.
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For any ξ ∈ Z such that 0 ≤ |ξ| < 1

m2

, consider the mapping

ξ ∈ Z 	→ F (ξ) :=
ξ

1− β(x)|ξ| ∈ R2×2 .

Then, for each ξ1, ξ2 ∈ Z, we have

|F (ξ1)− F (ξ2)| ≤
|ξ1 − ξ2|

(1− β(x)(|ξ1|+ |ξ2|))2
,(2.12)

(F (ξ1)− F (ξ2)) · (ξ1 − ξ2) ≥ |ξ1 − ξ2|2 .(2.13)

Remark 2.3. The condition (2.13) also means that F (ξ) is a monotone operator in ξ.

Remark 2.4. Without confusion, we will use the condition ξ ∈ L∞(Ω) with the meaning

that ξ ∈ Z ′ =

{
ζ ∈ L∞(Ω)

∣∣∣∣ 0 ≤ |ζ| < 1

m2

}
.

Let

(2.14) U = {w ∈ H1(Ω) | Dw ∈ Z ′} ,
with the given Z ′ in Remark 2.4.

Remark 2.5. Without confusion, we will use the condition u,v ∈ H1
0(Ω) or H1(Ω)

(context-dependently) with the meaning that u,v ∈ U .

3. Fine-scale discretization and Picard iteration for linearization

We now derive the variational formulation corresponding to the system (2.1)–(2.2).
First, we multiply Eqs. (2.1) and (2.2) with test functions from V and Q, respectively.
Then, using the Green’s formula and the boundary conditions (2.4)–(2.6), we get the
following variational problem: Find u(·, t) ∈ V and p(·, t) ∈ Q such that

a(u,v)− d(v, p) = 0 ,(3.1)

d(∂tu, q) + c(∂tp, q) + b(p, q) = (f, q) ,(3.2)

for all v ∈ V and q ∈ Q, and the initial pressure is

(3.3) p(·, 0) = p0 ∈ Q .

We define the following nonlinear forms

(3.4) a(u,v) =

∫
Ω

κ(x, |Du|)Du ·Dv dx ,

(3.5) b(p, q) =

∫
Ω

K(x,Du, p)∇p · ∇q dx ,

and bilinear and linear forms

c(p, q) =

∫
Ω

1

M
pq dx ,

d(u, q) =

∫
Ω

α(divu)q dx , (f, q) =

∫
Ω

f q dx .
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Here, (3.1) can be used to define a relevant initial value u0 := u(·, 0) ∈ V , provided
p(·, 0) = p0 ∈ Q.

To discretize the variational problem (3.1)–(3.2), let Th (fine grid) be a conforming
partition for the computational domain Ω, with local grid sizes hP := diam(P ) ∀P ∈ Th,
and h := max

P∈Th
hP . We assume that h is very small so that the fine-scale solution (uh, ph)

(to be discussed in the following paragraph) is sufficiently near the exact solution. Next,
let V h and Qh be the first-order Galerkin (standard) finite element basis spaces with
respect to the fine grid Th, that is,

V h := {v ∈ V : v|P is a polynomial of degree ≤ 1 ∀P ∈ Th} ,
Qh := {q ∈ Q : q|P is a polynomial of degree ≤ 1 ∀P ∈ Th} .

Nonlinear Solve: We will first derive the time-discretization of the above system
(3.1)–(3.2), then the nonlinearity will be handled.

Given an initial pair (u0, p0) ∈ V × Q. In this section, for simplicity in notation, we
will omit the subscript h on the fine grid. To reach the first goal, we will apply the
standard fully implicit (backward Euler) finite-difference scheme (or coupled scheme) for
the time-discretization. It is provided by

a(us+1,v)− d(v, ps+1) = 0 ,(3.6)

d

(
us+1 − us

τ
, q

)
+ c

(
ps+1 − ps

τ
, q

)
+ b(ps+1, q) = (fs+1, q) ,(3.7)

with us = u(x, ts), ps = p(x, ts), fs = f(ts), where ts = sτ, s = 0, 1, · · · , S, Sτ = T , and
τ > 0. Note that (us, ps) represents (us,h, ps,h) .
After the time-discretization by the fully coupled scheme (3.6)–(3.7), we will handle

the nonlinearity in space by using a linearization based on Picard iteration. Indeed, given
(un, pn) (which, at the (s + 1)th time step, represents (un

s+1,h, p
n
s+1,h)) from the previous

nth Picard iteration step, the nonlinear forms (3.4) and (3.5) at the (n + 1)th Picard
iteration can be respectively linearized as follows:

a(un+1,v) ≈ an(u
n+1,v) :=

∫
Ω

κ(x, |Dun|)Dun+1 ·Dv dx ,

b(pn+1, q) ≈ bn(p
n+1, q) :=

∫
Ω

K(x,Dun, pn)∇pn+1 · ∇q dx ,

where

(3.8) an(v1,v2) =

∫
Ω

κ(x, |Dun|)Dv1 ·Dv2 dx ,

(3.9) bn(q1, q2) =

∫
Ω

K(x,Dun, pn)∇q1 · ∇q2 dx .

At the nth Picard iteration, the space V h is equipped with the norm

‖v‖2V h
= an(v,v) ∀ v ∈ V h ,

and the space Qh is equipped with the norm

‖q‖2Qh
= bn(q, q) ∀ q ∈ Qh .
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Provided (us, qs) ∈ V h × Qh , we fix the time-step at (s + 1) and take data from the
previous Picard iteration (un

s+1, p
n
s+1) (where we guess a starting point (u0

s+1, p
0
s+1) ∈

V h ×Qh). For n = 0, 1, 2, · · · , we wish to find (un+1
s+1 , p

n+1
s+1 ) (that is, (u

n+1
s+1,h, p

n+1
s+1,h)) such

that

an(u
n+1
s+1 ,v)− d(v, pn+1

s+1 ) = 0 ,(3.10)

d

(
un+1

s+1 − us

τ
, q

)
+ c

(
pn+1
s+1 − ps

τ
, q

)
+ bn(p

n+1
s+1 , q) = (fs+1, q) .(3.11)

On the fine grid, the initial value p0,h ∈ Qh is set to be the L2 projection of p0 ∈ Q.
Thus, the initial value u0,h for the displacement is the solution of the equation

(3.12) an(u0,h,v) = d(v, p0,h) ,

for all v ∈ V h.
We denote by rth the Picard iteration where the desired convergence criterion is

reached, at the (s + 1)th time step. The terminal (ur
s+1,h, p

r
s+1,h) now can be set as

previous time data, and can be written as (us+1,h, ps+1,h).
Then, we come back to the algorithm time-stepping (3.6)–(3.7) for s = 0, 1, · · · , S; and

within each fixed time, we continue the Picard linearization procedure in (3.10)–(3.11),
until the terminal time T = Sτ .

Remark 3.1. Theoretically, as in [29], combining Korn’s first inequality ([41]) and the
Poincaré inequality as well as recalling Remark 2.4, we obtain

cT‖v‖21 ≤ an(v,v) =: ‖v‖2an ≤ CT‖v‖21 ,
for all v ∈ V , where cT and CT are positive constants. Similarly, there exist two positive
constants cκ and Cκ such that

cκ‖q‖21 ≤ bn(q, q) =: ‖q‖2bn ≤ Cκ‖q‖21 ,
for all q ∈ Q. The existence and uniqueness of solution (u, p) for (3.10)–(3.11) in this
linear case can be found in [52].

We note that this traditional way will give us a reference fine-scale solution. The
purpose of this paper is to construct a dimension reduction system thanks to (3.10)–
(3.11). In this spirit, we introduce the reduced finite-dimensional multiscale spaces V ms ⊆
V , Qms ⊆ Q, for approximating the solution (u, p) on some coarse grid (to lessen the
computational cost).

4. CEM-GMsFEM for nonlinear poroelasticity problem

4.1. Overview. We will present the construction of auxiliary spaces and multiscale spaces,
in the fluid (or pressure) calculation and in the mechanics (or displacement) computa-
tion, for the nonlinearly coupled formulation (3.1)–(3.2). From the linearized formulation
(3.10)–(3.11), we may view the nonlinearity as constant at each Picard iteration (af-
ter time-discretization), to design a suitable CEM-GMsFEM. In this manner, multiscale
spaces are able to be constructed with respect to this nonlinearity.

Standard notation. Let T H be a conforming partition of the domain Ω such that
Th is a refinement of T H . We call H := max

K∈T H
diam(K) the coarse-mesh size and T H the



10 Shubin Fu, Eric Chung, Tina Mai

coarse grid. Each element of T H is called a coarse grid block (element or patch). We
denote by Nv the total number of interior vertices of T H and N the total number of coarse
blocks (elements). Let {xi}Nv

i=1 be the set of vertices (nodes) in T H and

wi =
⋃
j

{
Kj ∈ T H

∣∣ xi ∈ Kj

}

be the coarse neighborhood of the node xi. Our main goal is to find a multiscale solu-
tion (ums, pms) which is a better approximation of the fine-scale solution (uh, ph) than
within GMsFEM ([7]). This is the reason why the CEM-GMsFEM is used to obtain the
multiscale solution (ums, pms).
To construct the multiscale spaces, we need two stages. First, auxiliary spaces are

created thanks to the GMsFEM. Second, using these auxiliary spaces, multiscale spaces
are constructed and consist of basis functions whose energy are locally minimized in some
subdomains. After all, these energy-minimized basis functions can be used to obtain a
multiscale solution.

4.2. General idea of the CEM-GMsFEM for nonlinear poroelasticity. For details
of the GMsFEM and CEM-GMsFEM, we refer the readers to [30, 22, 23, 17, 13, 10, 42]
and [14, 15], respectively. In this paper, we follow the procedure in Section 3, provided
(us,ms, ps,ms) in the multiscale space V ms × Qms (⊂ V × Q) (to be discussed later). At
the fixed time (s + 1) and current (n + 1)th Picard iteration, we will use the continuous
Galerkin (CG) formulation, with a similar form to the fine-scale problem (3.10)–(3.11).
More specifically, given the nth Picard iteration solution (un

s+1,ms, p
n
s+1,ms), we wish to find

solution (un+1
s+1,ms, p

n+1
s+1,ms) in V ms ×Qms such that

an(u
n+1
s+1,ms,v)− d(v, pn+1

s+1,ms) = 0 ,(4.1)

d

(
un+1

s+1,ms − us,ms

τ
, q

)
+ c

(
pn+1
s+1,ms − ps,ms

τ
, q

)
+ bn(p

n+1
s+1,ms, q) = (fs+1, q) ,(4.2)

for all (v, q) ∈ V ms ×Qms, with initial condition p0,ms ∈ Qms defined by

b(p0,h − p0,ms, q) = 0

for all q ∈ Qms . The initial value u0,ms for the displacement satisfies

(4.3) an(u0,ms,v) = d(v, p0,ms) ,

for all v ∈ V ms.
One notices that the key ingredient of the CEM-GMsFEM is the construction of local

basis functions for each coarse element (by applying the GMsFEM to create the auxiliary
multiscale basis functions) then for each oversampled domain (by employing the CEM to
obtain the multiscale basis functions, which span the multiscale spaces).

5. Construction of multiscale spaces

This section is devoted to constructing multiscale basis functions, at the coarse neigh-
borhood wi , with the fixed time (s + 1), and the nth Picard iteration (n ≥ 0, given
un

ms := un
s+1,ms ∈ V ms , p

n
ms := pns+1,ms ∈ Qms, where the spaces will be explained below).
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Figure 1. Illustration of the coarse grid T H , the fine grid Th, and the
oversampled domain Ki,1.

5.1. Auxiliary multiscale basis functions. We construct auxiliary multiscale basis
functions by solving spectral problems on each coarse block Ki, making use of the spaces
V (Ki) := V |Ki

, and Q(Ki) := Q|Ki
. More specifically, we consider the following local

eigenvalue problems: find (λi
j,v

i
j) ∈ R× V (Ki) such that

(5.1) ain(v
i
j,v) = λi

js
i
n(v

i
j,v) ∀v ∈ V (Ki) ,

and find (ζ ij, q
i
j) ∈ R×Q(Ki) such that

(5.2) bin(q
i
j, q) = ζ ijr

i
n(q

i
j, q) ∀q ∈ Q(Ki) ,

where

ain(u,v) :=

∫
Ki

(κ(x, |Dun
ms|)Du) ·Dv dx , sin(u,v) :=

∫
Ki

κ̃n
su · v dx ,

bin(p, q) :=

∫
Ki

K(x,Dun
ms, p

n
ms)∇p · ∇q dx , rin(p, q) =

∫
Ki

κ̃n
r pq dx ,

in which

κ̃n
s = κ(x, |Dun

ms|)
Nv∑
k=1

|∇χs
k|2 , κ̃n

r = K(x,Dun
ms, p

n
ms)

Nv∑
k=1

|∇χr
k|2 .

Here, χs
k, χ

r
k are partition of unity functions ([1]) defined on each neighborhood (that

is, for each coarse node) of the coarse mesh (see [30], for instance). More explicitly, for

l = s, r, the function χl
k satisfies H|∇χl

k| = O(1), 0 ≤ χl
k ≤ 1, and

Nv∑
k=1

χl
k = 1.

Assume that the eigenvalues {λi
j} as well as {ζ ij} are ordered ascendingly, and the

eigenfunctions satisfy the normalization condition sin(v
i
j,v

i
j) = 1 as well as rin(q

i
j, q

i
j) = 1.

Next, we pick Jv
i ∈ N+ and define the local auxiliary space V aux(Ki) := span{vi

j : 1 ≤ j ≤
Jv
i }. In the same way, we choose Jq

i ∈ N+ and define Qaux(Ki) := span{qij : 1 ≤ j ≤ Jq
i }.

Thanks to these local spaces, we define the global auxiliary spaces V aux and Qaux by

V aux :=
N⊕
i=1

V aux(Ki) ⊆ V and Qaux :=
N⊕
i=1

Qaux(Ki) ⊆ Q .
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The inner products of the global auxiliary multiscale spaces are defined by

sn(u,v) :=
N∑
i=1

sin(u,v) , ‖v‖sn :=
√

sn(v,v) ∀u,v ∈ V aux ,

rn(p, q) :=
N∑
i=1

rin(p, q) , ‖q‖rn :=
√

rn(q, q) ∀p, q ∈ Qaux .

Moreover, defining projection operators πv
n : V → V aux and πq

n : Q → Qaux such that
for all v ∈ V , q ∈ Q, we have

πv
n(v) :=

N∑
i=1

Jv
i∑

j=1

sin(v,v
i
j)v

i
j , πq

n(q) :=
N∑
i=1

Jq
i∑

j=1

rin(q, q
i
j)q

i
j .

5.2. Multiscale spaces. Now, we construct the multiscale spaces toward the practical
simulations. For each coarse block Ki , we define the oversampled subdomain Ki,m ⊂ Ω
by expanding Ki by m layers, that is,

Ki,0 := Ki, Ki,m :=
⋃{

K ∈ T H : K ∩Ki,m−1 �= ∅
}
, m = 1, 2, · · · .

See Figure 1 for illustration of the coarse grid T H , the fine grid Th, and the oversampled
region Ki,1 . We define

V (Ki,m) := H1
0(Ki,m) , Q(Ki,m) := H1

0 (Ki,m) .

After that, for every pair of auxiliary functions vi
j ∈ V aux and qij ∈ Qaux, we solve

the following minimization problems: find multiscale basis function ψi,m
j ∈ V (Ki,m) such

that

(5.3) ψi,m
j = argmin{an(ψ,ψ) + sn(π

v
n(ψ)− vi

j, π
v
n(ψ)− vi

j) : ψ ∈ V (Ki,m)}

and find φi,m
j ∈ Q(Ki,m) such that

(5.4) φi,m
j = argmin{bn(φ, φ) + rn(π

q
n(φ)− qij, π

q
n(φ)− qij) : φ ∈ Q(Ki,m)} .

We note here that the problem (5.3) is equivalent to the local variational problem

an
(
ψi,m

j ,v
)
+ sn

(
πv
n(ψ

i,m
j ), πv

n(v)
)
= sn

(
vi
j, π

v
n(v)

)
, ∀v ∈ V (Ki,m) ,

while the problem (5.4) is equivalent to

bn
(
φi,m
j , q

)
+ rn

(
πq
n(φ

i,m
j ), πq

n(v)
)
= rn

(
qij, π

q
n(q)

)
, ∀q ∈ Q (Ki,m) .

Last, for fixed parameters m, Jv
i , J

q
i , the multiscale spaces V ms and Qms are defined

through

V ms := span{ψi,m
j : 1 ≤ j ≤ Jv

i , 1 ≤ i ≤ N} ,
and

Qms := span{φi,m
j : 1 ≤ j ≤ Jq

i , 1 ≤ i ≤ N} .
See Figure 2 for illustration of multiscale basis functions.
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Figure 2. First multiscale basis functions of V ms and Qms, respectively,
for m = 5 and H =

√
2/40.

Similarly, we can interpret the multiscale basis functions ψi,m
j ∈ V ms and φi,m

j ∈ Qms

as approximations to global multiscale basis functions ψi
j ∈ V and φi

j ∈ Q by

(5.5) ψi
j = argmin{an(ψ,ψ) + sn(π

v
n(ψ)− vi

j, π
v
n(ψ)− vi

j) : ψ ∈ V }
and

(5.6) φi
j = argmin{bn(φ, φ) + rn(π

q
n(φ)− qij, π

q
n(φ)− qij) : φ ∈ Q} .

These basis functions are globally supported in the domain Ω, but exponentially decay
(as shown in [14]) outside some local (oversampled) subdomain. This feature takes a
crucial part in the convergence analysis of the CEM-GMsFEM and proves the use of local
multiscale basis functions in V ms and Qms ([29]).

5.3. Multiscale method. In the previous Subsections 5.1 and 5.2, the spaces V and
Q are continuous. Toward computations, we need some finite dimensional analogues of
the multiscale spaces V ms and Qms. Thus, in our numerical simulations, we solve the
considered problem using the fine mesh defined in Ki,m , via an appropriate finite element
method ([15]).

Given us,ms and ps,ms , fixing the time-step at (s+ 1), we thus have the following fully
discrete scheme for the Picard iteration procedure: choose a starting guess of uold

s+1,ms ,

compute the multiscale space V old
s+1,ms; then find (unew

s+1,ms, p
new
s+1,ms) ∈ V old

s+1,ms × Qold
s+1,ms

such that

aold(u
new
s+1,ms,v)− d(v, pnews+1,ms) = 0 ,(5.7)

d

(
unew

s+1,ms − us,ms

τ
, q

)
+ c

(
pnews+1,ms − ps,ms

τ
, q

)
+ bold(p

new
s+1,ms, q) = (fs+1, q) ,(5.8)

for all (v, q) ∈ V old
s+1,ms ×Qold

s+1,ms with initial condition p0,ms ∈ Qold
ms defined by

bold(p0,h − p0,ms, q) = 0 ,

for all q ∈ Qold
s+1,ms. The initial value u0,ms for the displacement is the solution of the

equation from (3.1):

(5.9) aold(u0,ms,v) = d(v, p0,ms) ,
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for all v ∈ V old
s+1,ms. Again, we use rth to denote the Picard iteration where the desired

convergence criterion is reached. The terminal (ur
s+1,ms, p

r
s+1,ms) can be set as previous

time data, and can be written as (us+1,ms, ps+1,ms).
We then return to the algorithm time-discretization (3.6)–(3.7) for s = 0, 1, · · · , S; and

we continue the iterative Picard linearization (5.7)–(5.8) until the terminal time T = Sτ .

Finally, we derive some convergence result of the CEM-GMsFEM for this dynamic case.
At the time step s (1 ≤ s ≤ S) defined in (3.6)–(3.7), within the nth Picard iteration
(n ≥ 1), the following result and its proof are obtained directly from [29].

Theorem 5.1. Assume sufficiently large parameters m, Jv
i , J

q
i , a source function f ∈

L∞(0, T ;L2(Ω))∩H1(0, T ;H−1(Ω)) as well as initial data p0,h ∈ Qh and u0,h ∈ V h defined
in (3.12). Then, the error between the multiscale solution (un

s,ms, p
n
s,ms) ∈ V ms × Qms of

(5.7)–(5.8) and the fine-scale solution (un
s,h, p

n
s,h) ∈ V h ×Qh of (3.10)–(3.11) satisfies

‖un
s,h − un

s,ms‖1 + ‖pns,h − pns,ms‖1 � HWs + t−1/2
s H‖p0,h‖1

for s = 1, 2, · · · , S. Here, Ws only depends on the data and is defined through

Ws := ‖p0,h‖1 + ‖f‖L2(0,ts;L2(Ω)) + ‖f‖L∞(0,ts;L2(Ω)) + ‖∂tf‖L2(0,ts;H−1(Ω)) .

6. CEM-GMsFEM for nonlinear elasticity problem

We now consider a static case of the above nonlinear poroelasticity case (from Section
4), namely nonlinear elasticity problem.

6.1. Formulation of the problem.

6.1.1. Input problem and classical formulation. We refer the readers to our previous paper
[30] for more details. Here, we briefly introduce the formulation. Let our computational
domain be Ω ∈ R2 (as in Section 2), which is a strain-limiting nonlinear elastic composite
material.

The material is assumed to be at a static state ([8]) after the action of body forces
f : Ω → R2 and traction forces G : ∂ΩT → R2. We denote the boundary of the set Ω
by ∂Ω, which is Lipschitz continuous, having two parts ∂ΩT and ∂ΩD, with the given
displacement u : Ω → R2 on ∂ΩD. We are investigating the strain-limiting model ([30])
in either physical form (2.8) or its equivalent mathematical form (2.7), that is

(6.1) T =
D(u)

1− β(x)|D(u)| .

6.1.2. Function spaces. We refer the readers to [30, 18] for the preliminaries, and to
Section 2 for function spaces. Let

(6.2) f ∈ H1
∗(Ω) =

{
g ∈ H1(Ω)

∣∣∣∣
∫
Ω

g dx = 0

}
⊂ L2(Ω) � H−1(Ω)
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be bounded in L2(Ω). The problem we are considering is as follows: Find u ∈ H1(Ω)
and T ∈ L1(Ω) such that

−div(T ) = f in Ω ,

Du =
T

1 + β(x)|T | in Ω ,

u = 0 on ∂ΩD ,

Tn = G on ∂ΩT ,

(6.3)

where n denotes the outer unit normal vector to the boundary of Ω.
Thanks to [9], we note that our model represents a class of train-limiting elastic bodies,

mechanically. Then, our strain-limiting model (as a special case of implicit models)
for elastic bodies (thus non-dissipative ones) can be placed within a thermodynamic
framework, which is addressed in [5, 49, 50].

Assuming that ∂ΩT = ∅, we consider an interesting static case of the problem (2.1)–
(2.2), that is, we investigate the following displacement problem of (6.3): Find u ∈ H1

0(Ω)
such that

−div

(
D(u)

1− β(x)|D(u)|

)
= f in Ω ,(6.4)

u = 0 on ∂Ω .(6.5)

Given κ from (2.3), we denote

(6.6) a(x,D(u)) = κ(x, |D(u)|)D(u) ,

in which u(x) ∈ W 1,2
0 (Ω). Within this setting, a(x, ξ) ∈ L1(Ω), ξ ∈ L∞(Ω), as in [30, 2].

6.1.3. Existence and uniqueness. For u ∈ V = H1
0(Ω), we multiply Eq. (6.4) by v ∈ V

and integrate the resulting equation with respect to x over Ω. Integrating the first term
by parts and using the condition v = 0 on ∂Ω, we obtain

(6.7)

∫
Ω

a(x,Du) ·Dv dx =

∫
Ω

f · v dx , ∀v ∈ V .

By the weak (often called generalized) formulation of the boundary value problem (6.4)–
(6.5), we interpret the problem as follows:
(6.8)
Find (u,Du) ∈ V × L∞(Ω), that is, find u ∈ V such that (6.7) holds for each v ∈ V .

We refer the readers to our previous paper [30] and references therein for the existing
results about the existence and uniqueness of the weak solution u ∈ H1

0(Ω) to (6.8), or
(u,T ) ∈ H1

0(Ω)× L1(Ω) (or H1
0(Ω)× L2(Ω)) to (6.3) with ∂ΩT = ∅.

6.2. Fine-scale discretization and Picard iteration for linearization. The solution
u ∈ V to (6.4) satisfies

(6.9) q(u,v) = (f ,v), ∀v ∈ V ,
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where

q(u,v) =

∫
Ω

a(x,Du) ·Dv dx, (f ,v) =

∫
Ω

f · v dx .(6.10)

Here, (·, ·) represents the standard inner product.
Starting with an initial guess u0 = 0, to solve Eq. (6.4), we will linearize it by the

Picard iteration, that is, we solve

−div(κ(x, |D(un)|)D(un+1)) = f in Ω ,(6.11)

un+1 = 0 on ∂Ω ,(6.12)

where superscripts involving n (≥ 0) denote respective iteration levels.
To discretize (6.11)–(6.12), we use the notion of fine grid Th and coarse grid T H as well

as their related definitions from Section 3 and Subsection 4.1, respectively.
On the fine grid Th, we will approximate the solution of (6.9), denoted by uh (or u for

simplicity). Toward describing the details of the Picard iteration algorithm, we define the
bilinear form a(·, ·; ·):

(6.13) a(u,v; |Dw|) =
∫
Ω

κ(x, |Dw|)(Du ·Dv)dx

and the functional J(·):

(6.14) J(v) =

∫
Ω

f · vdx .

Given un
h, the next approximation un+1

h is the solution of the linear elliptic equation

(6.15) a(un+1
h ,v; |D(un

h)|) = J(v), ∀v ∈ V h .

This is an approximation of the linear equation

(6.16) − div(κ(x, |D(un
h)|)D(un+1

h )) = f .

This equation is solved by a standard Galerkin finite element method (more specifically,
standard conforming piecewise linear finite element method). The obtained fine-scale
solution uh is used as a reference solution (namely, the FEM solution) for comparison
purposes (see [13] or next paragraphs).

At the (n + 1)th Picard iteration, we can solve Eq. (6.15) in its matrix form, for
the multiscale solution un+1

ms ∈ V ms by using the CEM-GMsFEM (to be discussed in
Subsections 6.4 and 6.5), with multiscale basis functions for V ms computed in each coarse
region wi, i = 1, · · · , Nv.
Each of uh and ums is computed in a separate Picard iteration procedure, whose ter-

mination criterion is that the relative L2 difference is less than δ0, which can be found in
Subsection 6.5 and Section 7 (δ0 = 10−5).
We wish to emphasize that our main goal is to find a multiscale solution ums which is a

better approximation of the fine-scale solution uh than within the GMsFEM ([30]). This
is the reason why the CEM-GMsFEM is used to obtain the multiscale solution ums.
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6.3. CEM-GMsFEM for nonlinear elasticity problem.

6.3.1. Overview. We will construct the offline and online spaces. As in [30], we will focus
on the effects of the nonlinearities. From the linearized equation (6.16), we can define
offline multiscale basis functions (following the framework of the CEM-GMsFEM) and
construct online multiscale basis functions (based on an adaptive enrichment algorithm).

Given un (which can represent either un
h or un

ms, context-dependently). At the consid-
ering (n+ 1)th Picard iteration, we will get the fine-scale solution un+1

h ∈ V h by solving
the variational problem

(6.17) an(u
n+1
h ,v) = (f ,v), ∀v ∈ V h ,

where

(6.18) an(w,v) =

∫
Ω

κ(x, |Dun|)(Dw ·Dv)dx .

At the nth Picard iteration, the space V h is equipped with the energy norm ‖v‖2V h
=

an(v,v).

6.3.2. General idea of the CEM-GMsFEM for nonlinear elasticity problem. The general
idea here is as in the dynamic case (Subsection 4.2). In this static case, at the current nth
Picard iteration, we will use the continuous Galerkin (CG) formulation, with a similar
form to the fine-scale problem (6.17). More specifically, at the mth inner iteration, we
will construct the multiscale space V m

ms(⊂ V ). That is, we seek um
ms ∈ V m

ms such that

(6.19) an(u
m
ms,v) = (f ,v), ∀v ∈ V m

ms .

We remark that um
ms from the above problem is in a continuous space. In numerical

simulations, at the current nth Picard iteration, we will use the first-order finite elements
on the fine grid Th to compute the multiscale basis functions. Each multiscale basis
function then can be treated as a column vector Φi. Let P = [Φ1, · · · ,ΦNms] be the
matrix that is formed by all Nms multiscale basis functions (at the mth inner iteration).
Hence, the multiscale solution satisfies um

ms = (P TAn
hP )−1(P Tbh) in V m

ms. Projecting the
coarse solution um

ms onto V h, we obtain uf
ms = Pum

ms .
Our results show that the combination of offline and online multiscale basis functions

(via adaptive enrichment) within the CEM-GMsFEM will give a faster convergence of the
sequence of multiscale solutions {um

ms}m≥1 to the fine-scale solution uh than within the
GMsFEM in [30].

6.4. Construction of CEM-GMsFEM offline multiscale basis functions. The
readers who have already gone through Sections 5 for the dynamic case may skip this
Subsection 6.4, which are similar to Subsections 5.1 and 5.2.

Toward clarity for the static case, we still present here this Subsection 6.4 regarding the
construction of the offline multiscale basis functions, at the nth Picard iteration (n ≥ 0).
There are two stages. The first stage is to construct the auxiliary multiscale basis functions
in the framework of the GMsFEM. The second stage is to construct the offline multiscale
basis functions by solving some constraint energy minimizing (CEM) problems in the
oversampled region.
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6.4.1. Auxiliary multiscale basis functions. In each coarse block Ki, the auxiliary multi-
scale basis functions are constructed by solving a spectral problem. More specifically, for
each coarse block Ki, we let V (Ki) be the restriction of V on Ki. Then, we solve the
local spectral problem: Find (λi

j,φ
i
j) ∈ R× V (Ki) (j = 1, 2, · · · ) such that

(6.20) ain(φ
i
j,w) = λi

js
i
n(φ

i
j,w) , ∀w ∈ V (Ki) ,

where

(6.21) ain(v,w) =

∫
Ki

κ(x, |Dun
ms|)Dv ·Dw dx ,

and

(6.22) sin(v,w) =

∫
Ki

κ̃nv ·w dx ,

in which,

κ̃n = κ(x, |Dun
ms|)

Nv∑
k=1

|∇χk|2 ,

and {χk} is a set of partition of unity functions (see [1]) with respect to the coarse grid.
Our hypothesis is that the eigenfunctions satisfy the normalized condition

sin(φ
i
j,φ

i
j) = 1 .

We still denote by λi
j the eigenvalues of (6.20) arranged in nondecreasing order. Then,

using the first Li corresponding eigenfunctions, we will construct our local auxiliary mul-
tiscale space V i

aux, where

V i
aux = span{φi

j : 1 ≤ j ≤ Li} .

Also, let Λ be the minimum of the first discarded eigenvalues, that is

(6.23) Λ = min
1≤i≤N

λi
Li+1 ,

where λi
Li+1 = O(1) by construction ([15]). In global setting, the auxiliary space V aux is

determined by the sum of all local auxiliary spaces V i
aux = V aux(Ki):

V aux =
N⊕
i=1

V i
aux .

Given a local auxiliary multiscale space V i
aux, the bilinear form sin in (6.22) leads to an

inner product with norm

‖v‖sin =
√

sin(v,v) .

We thus define

sn(v,w) =
N∑
i=1

sin(v,w) , ‖v‖sn =
√

sn(v,v) , ∀v ∈ V aux .
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In the continuous space V , given a function φi
j ∈ V aux, we introduce the notion of

φi
j-orthogonality: a function ψ ∈ V is called φi

j-orthogonal if

sn(ψ,φi
j) = 1 , sn(ψ,φi′

j′) = 0 if j′ �= j or i′ �= i .

We now define a projection operator πi
n from space V (Ki) to V i

aux as follows:

πi
n(u) =

Li∑
j=1

sin(u,φ
i
j)φ

i
j , ∀u ∈ V (Ki) .

Furthermore, we let πn : V → V aux be the projection with respect to the inner product
sn(u,w). Then, we define the operator πn by

πn(u) =
N∑
i=1

Li∑
j=1

sin(u,φ
i
j)φ

i
j , ∀u ∈ V .

Note that πn =
N∑
i=1

πi
n. The kernel of the operator πn restricted to V is denoted by

Ṽ = {w ∈ V |πn(w) = 0} .

6.4.2. Offline multiscale basis functions. After building the auxiliary space, we can con-
struct offline multiscale basis functions for the iteration n (≥ 0). Given a coarse block
Ki, we define an oversampled domain Ki,k ⊂ Ω by expanding Ki by k coarse-grid lay-
ers (k ≥ 1 is an integer). For each φi

j ∈ V aux, we define the multiscale basis function

ψi,ms
j ∈ V (Ki,k) by

(6.24) ψi,ms
j = argmin{an(ψ,ψ) |ψ ∈ V (Ki,k) ,ψ is φi

j-orthogonal} ,

where V (Ki,k) = H1
0(Ki,k). Using Lagrange Multiplier, we can rewrite the problem (6.24)

as follows: Find ψi,ms
j ∈ V (Ki,k) and ν ∈ V i

aux such that

an(ψ
i,ms
j ,p) + sn(p,ν) = 0 ∀p ∈ V (Ki,k) ,

sn(ψ
i,ms
j − φi

j, q) = 0 ∀q ∈ V aux(Ki,k) ,
(6.25)

where V aux(Ki,k) is the union of all local auxiliary spaces for Kr ⊂ Ki,k.
This continuous problem can be solved numerically within the fine-scale mesh V h, at

the current nth Picard iteration. In particular, let Mn
h be the matrix such that Mn

ij,h =
sn(pj,pi) , where pj,pi are from {p1, · · · ,pc}, an orthonormal basis for V h . Let A

n
h be

the matrix such that An
ij,h = a(pj,pi; |Dun

ms|) , where the bilinear form a(·, ·; ·) is defined
in (6.13). Restricting An

h and the above Mn
h on Ki,k, we respectively obtain Ai

h and M i
h ,

where the superscript n is omitted. Then, let P i be the matrix that consists of all the
discrete auxiliary basis functions for the space V aux(Ki,k).

The problem (6.25) can be recast as the following matrix form:

(6.26)

(
Ai

h M i
hP

i

(M i
hP

i)T 0

)(
ψi

h

νi
h

)
=

(
0
I i

)
,
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where P i
j is the jth column of P i, ψi

j,h is the discretization of ψi,ms
j , I i is a sparse matrix

whose nonzero elements (all are 1) are in the diagonal of the matrix, and the nonzero
elements’ positions depend on the index order of Ki in Ki,k ([31]).

Thanks to [14], for each φi
j ∈ V aux, from the φi

j-orthogonality in (6.24), we obtain
a relaxed version of the multiscale basis functions. That is, we solve the following un-
constrainted minimization problem: Find multiscale basis function ψi,ms

j ∈ V (Ki,k) such
that

(6.27) ψi,ms
j = argmin{an(ψ,ψ) + sn(πn(ψ)− φi

j, πn(ψ)− φi
j) |ψ ∈ V (Ki,k)} ,

which is equivalent to the following variational formulation

(6.28) an(ψ
i,ms
j ,v) + sn(πn(ψ

i,ms
j ), πn(v)) = sn(φ

i
j, πn(v)) , ∀v ∈ V (Ki,k) .

With the same notation as above, Eq. (6.28) has the following matrix formulation:

(6.29) (Ai
h +M i

h(P
i P i,T)M i,T

h )ψi
j,h = P i

jM
i,T
h .

For each auxiliary multiscale basis function φi
j ∈ V aux, one can obtain a multiscale basis

function ψi,ms
j . Finally, the span of these multiscale basis functions forms the multiscale

finite element space

V ms := span{ψi,ms
j : 1 ≤ j ≤ Li, 1 ≤ i ≤ N} .

This method is thus called CEM-GMsFEM because the construction of the multiscale
basis includes solving spectral problems and energy minimization problems. The (local)
multiscale basis functions ψi,ms

j ∈ V (Ki,k) are used to approximate the related global

multiscale basis functions ψi
j ∈ V , which is defined in the same manner ([14]), that is to

say,

(6.30) ψi
j = argmin{an(ψ,ψ) |ψ ∈ V ,ψ is φi

j-orthogonal}

for the constraint case, and

(6.31) ψi
j = argmin{an(ψ,ψ) + sn(πn(ψ)− φi

j, πn(ψ)− φi
j) |ψ ∈ V }

for the relaxed case, which is equivalent to the following global problem (see [14]): Find
ψi

j ∈ V such that

an(ψ
i
j,v) + sn(πn(ψ

i
j), πn(v)) = sn(φ

i
j, πn(v)) , ∀v ∈ V .

The global multiscale finite element space is now defined by

V glo = span{ψi
j | 1 ≤ j ≤ Li , 1 ≤ i ≤ N} .

These global basis functions have an exponential decay property ([14]), which motivates
the definitions of the multiscale basis functions ψi,ms

j (6.24) having local supports ([15]).
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6.5. Online multiscale basis functions and adaptive enrichment. Now, we will
introduce an online enrichment process for this CEM-GMsFEM, at the nth Picard iter-
ation. First, the construction of online multiscale basis functions is shown. Second, an
adaptive enrichment method based on an error estimate is presented.

The online basis functions, in online stage, are constructed iteratively using the residual
of previous multiscale solution, which contains the source and global information of the
media.

At the current nth Picard iteration, we are given a coarse neighborhood wi, an inner
adaptive iteration mth, and an approximation space V m

ms. Recall that the GMsFEM
solution um

ms ∈ V m
ms (⊂ V ) can be obtained by solving (6.19):

an(u
m
ms,v) = (f ,v) , ∀v ∈ V m

ms .

A residual functional r : V → R is then defined by

(6.32) r(v) = an(u
m
ms,v)−

∫
Ω

f · v dx , ∀v ∈ V ,

whose discretization in matrix form is

bh −An
h(P ((P TAn

hP )−1(P Tbh))) .

Given a coarse neighborhood wi, for all v ∈ V , we define the local residual functional
ri : V → R by

ri(v) = r(χiv) ,

which gives a measure of the error u− um
ms in wi.

Let w+
i be an extending of wi by a few coarse blocks. Using the local residual ri, we

can construct online basis function βi
ms whose support is an oversampled region w+

i . In
particular, the online basis function βi

ms ∈ H1
0(w

+
i ) is obtained by solving the following

equation:

(6.33) an(β
i
ms,v) + sn(πn(β

i
ms), πn(v)) = ri(v) , ∀v ∈ H1

0(w
+
i ) .

Solving Eq. (6.33) is similar to solving Eq. (6.28). The online multiscale basis function
is also a localization result of the corresponding global online basis function βi

glo ∈ V
defined by

(6.34) an(β
i
glo,v) + sn(πn(β

i
glo), πn(v)) = ri(v) , ∀v ∈ V .

In practice, one can perform the above construction based on an adaptive criterion. After
constructing the online basis functions, we can enrich the offline multiscale space by adding
the online basis:

V m+1
ms = V m

ms + span1≤i≤Nv
{βi

ms} .

Within this new multiscale finite element space, we can compute new multiscale solution
by solving Eq. (6.19). Before presenting the online adaptive enrichment algorithm, we
first define the an-norm ‖ · ‖an , where ‖w‖2an = an(w,w).
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6.5.1. Online adaptive enrichment algorithm. Assume that we are at the nth Picard step.
First, we choose an initial space when the inner iteration m = 0, that is, V 0

ms, which is
obtained by using the offline multiscale basis functions constructed in Subsection 6.4.

For each inner iterationm = 0, 1, · · · , we assume that V m
ms is given. Then, the following

procedure allows us to find the new multiscale finite element space V m+1
ms .

Step 1: Find the multiscale solution in the current space V m
ms. That is, find um

ms ∈ V m
ms

such that

(6.35) an(u
m
ms,v) = (f ,v) , ∀v ∈ V m

ms .

Step 2: Construct the local online basis functions. For each 1 ≤ i ≤ Nv and coarse
neighborhood wi, we find online basis function βi

ms ∈ H1
0(w

+
i ) satisfying

an(β
i
ms,v) + sn(πn(β

i
ms), πn(v)) = rmi (v) , ∀v ∈ H1

0(w
+
i ) ,

where rmi (v) = an(u
m
ms, χiv)−

∫
Ω

f · (χiv) .

Step 3: Enrich the multiscale finite element space by

V m+1
ms = V m

ms + span1≤i≤Nv
{βi

ms} .

Step 4: If the dimension of V m+1
ms is as large as desired, then stop. Otherwise, set

m ← m+ 1 and go back to Step 1.

For Picard iteration procedure, in the numerical Section 7, the multiscale finite element
space V (n+1)

ms is not needed to be updated at every Picard iteration step (n + 1)th. We

choose the initial basis function space when n = 0, that is, V (0)
ms (obtained from the

Online adaptive enrichment algorithm 6.5.1 with n = 0) for all Picard iteration steps. Our
obtained numerical results are already good with this initial basis. Whereas, updating
basis at every Picard iteration is not cheap.

6.5.2. CEM-GMsFEM for nonlinear elasticity. We sum up the main steps (as in [30])
of using the CEM-GMsFEM to solve the problem (6.4)–(6.5): select a Picard iteration
stop tolerance value δ0 ∈ R+ (where δ0 = 10−5 and will be presented in Section 7); we

also choose a starting guess of uold
ms , and compute κold(x) =

1

1− β(x)|(Duold
ms )|

and the

multiscale space V old
ms = V (0)

ms (obtained from the Online adaptive enrichment algorithm
6.5.1 with n = 0); then we repeat the following steps:
Step 1: Solve for unew

ms ∈ V old
ms from the equation (as (6.19)) as follows:

(6.36) aold(u
new
ms ,v) = (f ,v) ∀v ∈ V old

ms .

If
‖unew

ms − uold
ms‖V h

‖uold
ms‖V h

> δ0, let u
old
ms = unew

ms and go to Step 2.

Step 2: Calculate κnew(x) =
1

1− β(x)|(Dunew
ms )|

and let κold(x) = κnew(x) .

Then go to Step 1.
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7. Numerical results

In this section, we will present several numerical experiments to show the performance
of our method. In the simulations, we consider two choices of β(x), which are depicted in
Figure 3. For both test models, the blue region represents β(x) = 1 and the red regions
represent β(x) = 104. In addition, the precision of the two test models are 200 × 200,
the computational domain is [0,1]×[0,1]. In all tables shown below, m represents the
number of oversampling layers, J is the number of local basis functions, H denotes the
coarse-grid size. If J = x + y, then x means the number of offline multiscale basis
functions, y represents the number of online basis functions. We take the source term

f = (f, f) =
(
10−4

√
x2 + y2 + 1, 10−4

√
x2 + y2 + 1

)
, where f is for (6.4) and f is for

(2.2), and δ0 = 10−5 (for either elasticity or poroelasticity).
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Figure 3. Models.

7.1. Static nonlinear elasticity case. We first consider the static nonlinear elasticity
problem. The CEM-GMsFEM solution will be compared with the fine-grid solution. At
the (n + 1)th Picard iteration, to quantify the accuracy of our multiscale solutions, we
use the following relative weighted L2 error and energy error:

euL2 =
||(ums − uh)||L2(Ω)

||uh||L2(Ω)

, eua =

√
an(ums − uh,ums − uh)

an(uh,uh)
,

where the reference solution uh is computed via (6.17) on the fine grid, the multiscale
solution ums is obtained from (6.36), and the bilinear form an is defined in (6.18).
First, we study the convergence behavior of the CEM-GMsFEM solution with respect to

the coarse-grid size. We set the number of oversampling layers tom = 3�log(H)/log(
√
2/10)�

and J = 4 to form the basis spaces. The results for two test models are shown in Tables
1 and 2, respectively. We can see clearly for both test cases that the sequence of CEM-
GMsFEM solutions converges as the sequence of coarse-mesh sizes H converges, and it is
very accurate. We also study the effects of oversampling layers and number of basis func-
tions. The results are plotted in Figure 4 and Figure 5. It can be observed that increasing
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J H m euL2 eua
4

√
2/10 3 1.365e-02 6.873e-02

4
√
2/20 4 5.864e-03 4.680e-02

4
√
2/40 5 2.650e-03 3.174e-02

Table 1. Numerical results with varying coarse-grid size H for Test model 1.

J H m euL2 eua
4

√
2/10 3 6.986e-04 1.405e-02

4
√
2/20 4 2.794e-04 1.051e-02

4
√
2/40 5 1.319e-04 7.564e-03

Table 2. Numerical results with varying coarse-grid size H for Test model 2.

J H m euL2 eua
6+0

√
2/20 3 7.367e-03 6.262e-02

4+1
√
2/20 3 4.871e-03 4.186e-02

4+2
√
2/20 3 4.441e-03 4.018e-02

Table 3. Numerical results with varying coarse-grid size H for Test model 1.

J H m euL2 eua
6+0

√
2/20 3 2.401e-03 4.469e-02

4+1
√
2/20 3 4.295e-05 1.503e-03

4+2
√
2/20 3 1.656e-05 6.991e-04

Table 4. Numerical results with varying coarse-grid size H for Test model 2.

the number of basis functions and oversampling layers will increase the accuracy of the
CEM-GMsFEM solution as expected. Once J or m exceeds some certain numbers, the
error will no longer decrease. The performance of using online basis is also investigated,
and the results are presented in Table 3 as well as Table 4. As we can see, the error
when 4+2 basis functions are used is less than the error when 6 offline multiscale basis
functions are used. Hence, we can conclude that residual based online basis functions are
more efficient than offline multiscale basis functions.

7.2. Nonlinear poroelasticity case. In this section, we present the numerical results
of our method for solving the nonlinear poroelasticity problems. We set α = .9, M = 106.
The computational time T := Sτ = 1, and the time step size is chosen as τ := 1/20. The
initial pressure is zero.

We will compare the CEM-GMsFEM solution with the fine-grid solution at the last
time step S (so that Sτ = T ). At the (n+1)th Picard iteration, to quantify the accuracy
of our multiscale solutions, we use the following relative weighted L2 errors and energy
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Figure 4. Relative energy error (Test model 1) for H =
√
2/20 and fixed

J (left), fixed m (right).

errors:

euL2 =
||(ums − uh)||L2(Ω)

||uh||L2(Ω)

, eua =

√
an(ums − uh,ums − uh)

an(uh,uh)
,

epL2 =
||(pms − ph)||L2(Ω)

||ph||L2(Ω)

, epb =

√
bn(pms − ph, pms − ph)

bn(ph, ph)
,

where the reference solution (uh, ph) is computed via (3.10)–(3.11) on the fine grid, the
multiscale solution (ums, pms) is defined in (4.1)–(4.2), and the bilinear forms an and bn
are defined in (3.8) and (3.9), respectively.

We also first study the behavior of CEM-GMsFEM solution as H becomes smaller.
The results are presented in Table 5 and Table 6. As expected, the accuracy of the
CEM-GMsFEM solution here improves for both the pressure and displacement as H
converges. Figure 6 and Figure 7 display the influence of the number of basis functions
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Figure 5. Relative energy error (Test model 2) for H =
√
2/20 and fixed

J (left), fixed m (right).

J H m euL2 eua epL2 epb
4

√
2/10 3 4.22e-03 3.05e-02 8.18e-04 1.82e-02

4
√
2/20 4 2.09e-03 1.17e-02 5.08e-04 1.64e-02

4
√
2/40 5 2.06e-03 6.09e-03 2.82e-04 1.30e-02

Table 5. Numerical results with varying coarse-grid size H for Test model 1.

and oversampling layers. Adding basis and oversampling layers will improve the accuracy
of the displacement. We also find that more oversampling layers yield more accurate
pressure solution. However, the accuracy of the pressure field is almost independent of
the number of basis functions.
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Figure 6. Relative energy error (Test model 1) for H =
√
2/20 and fixed

J (left), fixed m (right).

J H m euL2 eua epL2 epb
4

√
2/10 3 3.98e-03 3.05e-02 8.17e-04 1.82e-02

4
√
2/20 4 8.24e-04 1.08e-02 5.07e-04 1.64e-02

4
√
2/40 5 2.59e-04 4.32e-03 2.79e-04 1.30e-02

Table 6. Numerical results with varying coarse-grid size H for Test model 2.

8. Discussion

Although the essence of the current work is quite different from the field of compu-
tational homogenization in the area of computational mechanics, this work has some
possibilities to bridge these two areas in the future.

In computational homogenization for computational mechanics, the two-scale simu-
lations (including the popular concurrent FE2 method using nested solution scheme
[33, 27, 32, 26]) are computationally expensive and remain challenging. In nonlinear
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Figure 7. Relative energy error (Test model 2) for H =
√
2/20 and fixed

J (left), fixed m (right).

elasticity problems, the macroscopic nonlinear boundary value problem (BVP) is solved
by a standard finite element method (FEM) and a gradient-based method such as the
Newton method. During the process of solving this macro-BVP, the macro-strains and
macro-stresses as well as macroscopic tangents (see [54] with current configuration, or
[40] with reference configuration, for instance) must be supplied at the quadrature points
in all of the elements (in the FEM). These quantities (macroscopic strains, stresses and
tangents) are obtained by solving a number of microscopic BPVs which are defined on
the representative volume elements (RVEs).

One of the first approaches (used in computational mechanics) was the variational
multiscale method ([36]). In this approach, the solution of the multiscale problem is
split into resolved (coarse) and unresolved parts. The aim is to obtain the resolved part
(via the unresolved part of the solution) and then approximate the unresolved part of
the solution, in the framework of linear equations. Typically, the approximation of the
unresolved part of the solution requires some type of localization. The localization leads
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to methods similar to the multiscale finite element method (MsFEM [24]), which requires
scale separation.

Also for multiscale computational homogenization, a recent review ([32]) listed what
have been striven for and challenges in the future. In particular, the two-scale simulations
within the theory of first-order computational homogenization for multiphysics coupled
materials are highly expensive ([51, 34]). Even though efforts have been made to speed
up the two-scale simulations by accelerating the solution procedure for micro-BVPs, the
difficult tasks are only partially resolved (see [51, 34], for instance). Therefore, some
reduced-order models have been suggested (see [55, 28], for instance). Furthermore, in
industries, many practitioners only need to solve microscopic BVPs and extract the prop-
erties of materials at the macroscale. Analytical (not computational) homogenization
methods alone have been able to achieve these goals by deriving the upper and lower
bounds for such macroscopic properties.

In this spirit, our proposed computational method can work as a multiscale reduced-
order model for accelerating the procedure of solving the microscopic BVPs that give
physically relevant macroscopic quantities. For example, from an early work on GMsFEM
[22] or a recent work regarding constraint energy minimizing GMsFEM (CEM-GMsFEM)
[53], one can consider additive two-level domain decomposition methods to find the fine-
grid solution. The CEM-GMsFEM can also be used to approximate the fine-grid solution
by projecting the coarse solution onto the finite element basis space with respect to the
fine grid (see Subsection 6.3.2). As in [19], in this case, the macroscopic infinitesimal
strains E are prescribed on the boundary of Ω in the microscopic problem.
That is, E are interpreted as a sort of microscopic boundary conditions (BCs) and act
as input parameters as well as play the role of body forces f in this work. The idea
of using macroscopic inputs (such as those macro-strains E or other macro-quantities)
as microscopic BCs can also be found in local–global approaches such as multiscale finite
volume element method (MsFVEM) [20], where with those macroscopic inputs, one can
iterate until convergence.

For later use, our considering microscopic BVP is specifically described below. Thanks
to [25], on the whole domain Ω, the microscopic displacement u of the body is given by
the solution of the system (arising from (6.4)–(6.5)):

−div

(
D(u)

1− β(x)|D(u)|

)
= f in Ω ,(8.1)

u = EX on ∂Ω .(8.2)

Here, a material point is identified by its position vector X in the reference configuration
or by its current position x in the deformed configuration Ω. Our current (deformed)
configuration Ω is assumed to be at a static state ([8]) after the action of body forces
f : Ω → R2. These body forces f are assumed to not depend on the heterogeneity of the
elastic material (see [25], for instance). We also note that one can formulate microscopic
BVPs on RVEs, whose sizes are smaller than the volume of Ω (for instance, each small
RVE can be inside some coarse-grid block of Ω, the microstructure can be periodic with
only one RVE ([56]), and boundary conditions can be periodic [25]). The macroscopic

BVP is identical to (8.1)–(8.2), provided macro quantities replace micro ones with (·) and
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the prescribed boundary condition is u(X) = û(X) (see [25, 56], for instance, where
[56] used a non-concurrent multiscale homogenization method [54]). However, the CEM-
GMsFEM does not require coarse-scale equations, only the microscopic BVP is needed.

Starting from the microscopic BVP (8.1)–(8.2), we note from [35] that originally, the
multiscale finite element method (MsFEM) can be considered as a comparable tool for
local numerical upscaling given in the paper [21]. The upscaling operator in [21] plays the
main role in two-scale simulations. In light of this remark, we can use the CEM-GMsFEM
to obtain coarse-grid homogenized solution. However, this will require re-interpretation
of basis functions such that the degrees of freedom have physical meanings. As in
the current version of our paper, the degrees of freedom do not have physical meanings
(even the CEM-GMsFEM identifies the degrees of freedom which can not be localized and
then constructs multiscale basis functions with support in the oversampled regions). For
this reason, we need to develop nonlocal multi-continuum (NLMC) type approaches ([11],
which is based on [16, 12, 37]), for either linear(ized) ([16, 11]) or nonlinear ([12, 37])
problems. That is our future goal. In addition, the NLMC approaches can effectively
handle not only the multiple scales and high contrast features but also periodic (or local
periodic) structures, scale separation and very small fine-grid sizes (which are even smaller
than the microscopic scale) in the media. For example, given some media which can
possess four scales ε � h � HRVE � H (where ε is very small). Then, we can use NLMC
approaches directly from ε to H ([11]), or apply homogenization from ε to h ([44, 43])
then utilize the (CEM)-GMsFEM or NLMC approaches from h to H, or use some other
possible schemes where homogenization can be helpful. With these regards, we can overlap
(more closely) with two-scale simulations in computational homogenization in the extent
of computational mechanics.

9. Conclusions

In this paper, we have proposed a framework of constraint energy minimizing general-
ized multiscale finite element method (CEM-GMsFEM) for solving problems of heteroge-
neous nonlinear poroelasticity (mainly) and elasticity. In the case of nonlinear poroelas-
ticity, the nonlinear stress equation involves strain-limiting elasticity and the nonlinear
pressure equation is a Darcy-type parabolic equation. Therefore, the key idea here is
temporally discretizing the system by the implicit backward Euler scheme, then spatially
linearizing it by Picard iteration (with desired convergence criterion) at each time step
until the terminal time. In each Picard iteration, the CEM-GMsFEM is applied, to con-
struct multiscale basis functions for both displacement and pressure systematically, with
locally minimal energy, via using the techniques of oversampling, which leads to improved
accuracy in the simulations. Convergence analysis for each Picard iteration and numerical
results has been shown to demonstrate the performance of the proposed method. For the
case of static nonlinear elasticity in the strain-limiting setting, the same strategy of Picard
iteration combining with the CEM-GMsFEM is employed. In addition to constructing
the offline multiscale basis as in the poroelasticity case, we adaptively generate the resid-
ual based online basis, via solving a local problem in an oversampled domain with the
residual as source. Numerical tests prove the accuracy of our proposed method. A proof
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of global convergence of the Picard iteration procedure is supplemented in Appendix A.
Finally, we discussed some potentials that our work on CEM-GMsFEM and the related
nonlocal multi-continuum (NLMC) type approaches ([11]) will be able to contribute to
the field of computational homogenization in the context of computational mechanics.
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Appendix A. Comments on global convergence using Picard iteration
algorithm, for nonlinear elasticity

We will prove the global convergence of the Picard iteration procedure for our problem
(6.11) – (6.12) by using fixed-point theorem, which mainly requires finding a suitable
subset U of the considering Banach space H1

0(Ω), in which we are looking for solution u.
In this paper, we will only introduce the key idea of the proof, where we can assume a

Banach subspace U of H1
0(Ω) for u. We want to find an operator F : un 	→ un+1 such

that un+1 = F (un), ‖F ′‖∗ < 1 ,F ′ = DF (un)[w] ∈ F ′ , for any w ∈ H1
0(Ω), for some

suitable Banach space F ′ ⊂ H1
0(H

1
0(Ω)) and some corresponding norm ‖·‖∗. Without loss

of generality, we can choose F ′ = H1
0(U) so that ‖F ′‖1 ≥ ‖F ′‖∗ . Note that a mapping

may be a contraction for some norm, but may not be a contraction for different norm.
Thus, identifying the right norm is important.

We denote K(un) := κ(x, |Dun|) = 1

1− β(x)|Dun| . Given un, the next approxima-

tion un+1 is the solution of the system

−div(K(un)D(un+1)) = f in Ω ,(A.1)

un+1 = 0 on ∂Ω .(A.2)

Now, for any w ∈ H1
0(Ω) and very small ε > 0,

F (un + εw) = F (un) +DF (un)[εw] + o(|εw|)
= un+1 +DF (un)[εw] + o(|εw|) .

Given un + εw, let z = εDF (un)[w], where DF (un) is a second order tensor. Then, the
next solution F (un + εw) is found via the solution un+1 of the system

−div(K(un + εw)D(un+1 + z)) = f in Ω ,(A.3)

un+1 = 0 on ∂Ω .(A.4)

Subtracting (A.1) from (A.3), and dividing the result by ε, we obtain

−div

(
K(un + εw)−K(un)

ε
Dun+1

)
= div

(
K(un + εw)

Dz

ε

)
.(A.5)
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Now, multiplying both sides of (A.5) by F ′ = DF (un)[w], then letting ε → 0, we get∫
Ω

−div((DK(un)[w])Dun+1) · F ′ dx =

∫
Ω

div(K(un)DF ′) · F ′ dx .(A.6)

Integrating by parts both sides of (A.6), we obtain∫
Ω

(DK(un)[w])(Dun+1) · (DF ′) dx = −
∫
Ω

K(un)|DF ′|2 dx .(A.7)

We assume that K ′ = DK(un)[w] ∈ K′, for some suitable Banach space K′, with some
corresponding norm ‖ · ‖. We have, ‖K ′‖ ≤ ‖K ′‖∞. Also, from (2.10), we note that

K(un) =
1

1− β(x)|Dun| > 1 .(A.8)

Taking absolute values both sides of (A.7), then using inequality (A.8) for the right hand
side, and applying the Cauchy-Schwarz inequality to the left hand side of the result, we
get

‖DK(un)[w]‖∞‖Dun+1‖L2(Ω)‖DF ′‖L2(Ω) ≥ ‖DF ′‖2L2(Ω) .(A.9)

That is,

‖DK(un)[w]‖∞‖Dun+1‖L2(Ω) ≥ ‖DF ′‖L2(Ω) .(A.10)

Since ‖f‖L2(Ω) ≥ ‖Dun+1‖L2(Ω) (for the left hand side of (A.10)), and ‖DF ′‖L2(Ω) ≥ ‖F ′‖1
(for the right hand side of (A.10)), it follows from (A.10) that

‖K ′‖∞‖f‖L2 > ‖F ′‖1 .

We can choose f at the beginning such that ‖f‖L2 can dominate ‖K ′‖∞ in the way that
1 > ‖K ′‖∞‖f‖L2 (> ‖F ′‖1), and we are done.
To find the expression ofK ′ = DK(un)[w] ∈ K′, we process (by definition of the Fréchet

derivative) as follows. In preparation, let φ(A) = |A|. Then, by Taylor expansion, we get

|Dun +D(εw)| = φ(Dun +D(εw))

= |Dun + εD(w)|
= |Dun|+D(Dun)(|Dun|)[D(εw)] + o(ε(Dw))

= |Dun|+ (Dun) · (D(εw))

|Dun| + o(εDw) ,

(A.11)

where, in the last equality, we use the result

DA(|A|)[W ] = DA(A ·A)1/2[W ] =
1

2
(A ·A)−1/2DA(A ·A)[W ] =

W ·A
|A| .

By the Riesz Representation Theorem, for DK(un)[w], there exists a unique element,
namely Gradient of K(·) at un, denoted by ∇K(un) ∈ H1

0(Ω) such that

DK(un)[w] = ∇K(un) ·w , ∀w ∈ H1
0(Ω) .(A.12)
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To find ∇K(un), we compute as follows:

K ′ = DK(un)[w]

= lim
ε→0

K(un + εw)−K(un)

ε

= lim
ε→0

1

1− β(x)|D(un + εw)| −
1

1− β(x)|Dun|
ε

= lim
ε→0

β(x)(|D(un + εw)| − |Dun|)
ε(1− β(x)|D(un + εw)|)(1− β(x)|Dun|)

= lim
ε→0

β(x)ε
(Dun) · (Dw)

|Dun| + o(εDw)

ε(1− β(x)|D(un + εw)|)(1− β(x)|Dun|)

=
β(x)(Dun) · (Dw)

|Dun|(1− β(x)|Dun|)2 ,

where the last expression comes from (A.11). Integrating the last expression by parts, we
get ∫

Ω

β(x)(Dun) · (Dw)

|Dun|(1− β(x)|Dun|)2 dx =

∫
Ω

β(x)div

(
Dun

|Dun|(1− β(x)|Dun|)2

)
·w dx ,

in which

∇K(un) = β(x)div

(
Dun

|Dun|(1− β(x)|Dun|)2

)
,(A.13)

as expected. From (A.12), we can assume that ∇K(un) ∈ H, for some Banach subspace
H of H1

0(Ω), with norm ‖ · ‖H. It holds that ‖∇K(un)‖1 ≤ ‖∇K(un)‖H. Currently, we
have not known the exact Banach subspace H even we know Dun ∈ L∞(Ω). The reason
lies in the denominator of (A.13): From (2.11), there is an upper bound of |Dun|; but
we do not know whether it has a maximum. (If there is a un such that the maximum
of |Dun| is attained, then we do not know whether such un satisfies the boundary value
problem (6.4) – (6.5).)
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