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The quasi-neutral hybrid particle-in-cell algorithm with kinetic ions and fluid electrons 
is a popular model to study multi-scale problems in laboratory, space, and astrophysical 
plasmas. Here, it is shown that the different spatial discretizations of ions as finite-spatial-
size particles and electrons as a grid-based fluid can lead to significant numerical wave 
dispersion errors in the long wavelength limit (kdi � 1, where k is the wavenumber and 
di is the ion skin-depth). The problem occurs when high-order particle-grid interpolations, 
or grid-based smoothing, spreads the electric field experienced by the ions across multiple 
spatial cells and leads to inexact cancellation of electric field terms in the total (ion +
electron) momentum equation. Practical requirements on the mesh spacing �x/di are 
suggested to bound these errors from above. The accuracy impact of not respecting these 
resolution constraints is shown for a non-linear shock problem.

© 2020 Elsevier Inc. All rights reserved.

1. Introduction

Particle-in-cell (PIC) methods [1,2] are widely used to model kinetic plasma physics problems as they avoid the need 
to solve for the plasma distribution function on a 6D (3D-3V) grid, and they can be highly optimized to run on modern 
computer architectures with multiple levels of parallelism [3]. However, care must be taken as PIC simulations can poten-
tially suffer from a number of algorithmic issues that are not commonly found in purely grid-based codes. Issues relate to 
statistical noise from the use of a finite number of macro-particles [4], and the numerical heating of these particles due to 
lack of discrete conservation properties [1,5]. To partially mitigate such effects, macro-particles are given finite spatial size to 
smooth the particle-grid interaction, and grid-based filtering can be applied to hydrodynamic moments and electromagnetic 
fields [1]. In PIC codes, these techniques are mostly beneficial in terms of stability and accuracy, provided that the physical 
signal of interest at a wavenumber k is not attenuated too much by this smoothing. The latter is ensured if the signal of 
interest is well resolved by the spatial grid: k�x � 1, where �x is the cell size.

The hybrid-PIC scheme differs from the fully kinetic PIC method in that the electrons are treated as a grid-based fluid [6–
9]. This is done to enable the study of problems in which the coupling between macroscopic and ion kinetic scales is 
important [10–14], without the need to resolve stiff electron scales. However, algorithmic limitations in the hybrid-PIC 
approach have been less well studied than for fully kinetic PIC.

In this note, it is demonstrated that using high-order shape functions and/or grid-based smoothing can lead to a decrease 
in simulation accuracy if, in addition, the ion skin-depth is not adequately resolved. In this case, significant wave dispersion 
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errors can occur in the long wavelength limit (kdi � 1), even if the wave itself is well resolved by the numerical grid 
with k�x � 1. The cause of the errors is the inexact cancellation of electric field terms when combining the ion and 
electron momentum equations to give a total momentum equation, as the electric field experienced by the ions is smoothed 
across multiple spatial cells. The numerical errors are avoided when using Nearest Grid Point (NGP) interpolation without 
smoothing. In this case, the electric field cancellation is exact, and the hybrid-PIC method is asymptotic preserving.

2. Hybrid-PIC algorithm

2.1. Continuum model

We consider the cold plasma kinetic-ion and fluid-electron quasi-neutral hybrid model. The kinetic ions are described by 
the distribution function f i = f i(t, x, v), which satisfies the Vlasov equation

∂t f i + v · ∇ f i + e

m
(E + v × B) · ∇v f i = 0, (1)

where e and m are the ion charge and mass. E(x, t) is the electric field, which is given in the non-relativistic quasi-neutral 
limit via Ohm’s law

E = −ui × B + (∇ × B) × B

μ0en
, (2)

and the magnetic field B is solved using Faraday’s equation

∂t B = −∇ × E. (3)

The system of equations is closed with the ion density (equal to the electron density by quasi-neutrality), n, and ion velocity, 
ui , which are calculated as moments of the distribution function

n =
∫

f id
3 v, ui = 1

n

∫
f i vd3 v. (4)

Before discussing how the cancellation problem arises in the discrete hybrid-PIC model, we review how the electric field 
terms cancel in the total momentum equation of the continuum model. Here, we use an equivalent moment description for 
the ions, which is closed due to the cold plasma assumption. The equations are also cast into dimensionless form where 
variables χ are normalized by characteristic values χ0, such that the dimensionless variables χ/χ0 → χ . The characteristic 
values are taken to be the magnetic field strength B0, density n0, ion mass m and charge e, Alfvén speed v0 = v A =
B0/

√
mμ0n0, electric field E0 = v0 B0, length scale L0, and time scale t0 = L0/v0.

The normalized ion momentum equation is

∂t (nui) + ∇ · (nui ui) = n

d̂i

(E + ui × B) , (5)

where d̂i = di/L0, di = v A/�ci is the ion skin-depth, and �ci = eB0/m is the gyrofrequency. The normalized form of Ohm’s 
law (2) is

E = −ui × B + d̂i

n
(∇ × B) × B. (6)

The total momentum equation is found by substituting the electric field from Eq. (6) into Eq. (5):

∂t (nui) + ∇ · (nui ui) = (∇ × B) × B. (7)

Here, both the convective electric field terms of the form ui × B and the factors of d̂i/n exactly cancel, so that the total 
momentum equation has no explicit dependence on the normalized ion skin-depth, d̂i . However, as discussed below, this 
property of the continuum equations does not necessarily hold after spatial discretization.

Taking the long wavelength limit, d̂i → 0, leaves Eq. (7) unchanged, and Ohm’s law is given by the ideal magnetohydro-
dynamic form E = −ui × B . However, it can be anticipated that if terms of the form ui × B do not exactly cancel, there 
will be residual terms in the total momentum equation that will be proportional to (1/d̂i). Taking d̂i → 0 in this case will 
cause these residual terms to become singularly large. In the rest of this note, this cancellation problem is demonstrated 
analytically using the semi-discrete equations, and also numerically in both linear and non-linear examples.
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2.2. Semi-discrete formulation

The above set of equations is spatially discretized using a PIC method for the ions, and a cell-centered finite difference 
method for the electron fluid. For simplicity, we treat only one spatial direction along the x-axis. The Vlasov equation (1) is 
solved by sampling the ion distribution function with macro-particle markers of weight w p as f i(t, x, v) ≈ ∑

p w p Sm(x −
xp(t))δ(v − v p(t)). Here, the finite-size particle shape functions Sm are m-th order B-splines, which have compact support 
and form a partition of unity [1], and δ is the Dirac delta function. The markers are advanced using the normalized equations 
of motion

dxp

dt
= v p · x̂, (8)

dv p

dt
= 1

d̂i

(
E p + v p × B p

)
. (9)

Grid-based quantities χg are defined at cell centers with cell index g , and derivatives are computed using second-order 
finite differences. Ohm’s law (6) and Faraday’s equation (3) are discretized as

E g = −ug × B g + d̂i

ng

(∇g × B g
) × B g, (10)

∂t B g = −∇g × E g, (11)

where the 1D discrete curl operator is defined as ∇g × F g = [− ŷ
(

F z,g+1 − F z,g−1
) + ẑ

(
F y,g+1 − F y,g−1

)]
/(2�x).

The fluid moments gathered onto the grid cells are given by

ng = 1

�x
SMg

(∑
p

w p Sm(xg − xp)

)
, ug = 1

ng�x
SMg

(∑
p

w p Sm(xg − xp)v p

)
. (12)

Here SMg(χg) = (χg−1 + 2χg +χg+1)/4 is a binomial smoothing operator that acts on grid quantities. This kind of operator 
is often used in hybrid-PIC codes to reduce noise.

The electromagnetic fields are scattered from the grid cells to the particle positions as

E p =
∑

g

Sm(xg − xp)SMg
(

E g
)
, B p =

∑
g

Sm(xg − xp)SMg
(

B g
)
. (13)

2.3. Semi-discrete dispersion relation

In the following, a linear dispersion relation is calculated from the semi-discrete equations which demonstrates the 
source of the discrete cancellation errors. The predicted errors in the dispersion relation are then verified against numerical 
simulations. To simplify the analysis, we restrict the discussion to transverse electromagnetic waves propagating parallel to 
a uniform background magnetic field (B0 = B0x̂ with B0 = const.) in a uniform (n0 = const.), stationary (E0 = u0 = 0), and 
cold plasma. The ion particle phase-space coordinates (xp, v p) exist in continuous space. With the above assumptions, a cold 
ion momentum equation can be defined in the continuum [1]. Linearizing this equation about the specified equilibrium, and 
using the continuous space Fourier transform (Appendix A), gives

−iωδ̃u = 1

d̂i

[
δ̃E + δ̃u × B0

]
, (14)

where δ̃χ are the Fourier mode amplitudes of the linear perturbations, existing in continuous space.
Equations (10)-(11) are defined on a spatial grid. Using the discrete Fourier transform (Appendix A) gives

δ̃E g = −δ̃ug × B0 + d̂i(iκ × ˜δB g) × B0, (15)

−iωδ̃B g = −iκ × δ̃E g, (16)

where κ = x̂[k sin (k�x)]/(k�x) is the modification to the wavenumber from the finite-difference approximation of the nabla 
operator (Appendix A).

The transformed continuum electric field relates to the transformed discrete (grid) electric field as

δ̃E = SM(k�x)Sm(−k�x)δ̃E g, (17)

where SM(k�x) = cos2 (k�x/2), see Appendix A.
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Fig. 1. Semi-discrete dispersion relation from Eq. (20) shown as dashed curves for zeroth-order Nearest Grid Point (NGP, blue), first-order Cloud-In-Cell (CIC, 
green), second-order Quadratic-Spline (QS, red) without smoothing, and Quadratic-Spline with Binomial smoothing (QS+Smooth, magenta) applied to fields 
and moments. Circles are phase velocities measured from 1D electromagnetic hybrid simulations. Here, the wave is well resolved with fixed resolution 
k�x = π/32 in each case, while kdi is varied (bottom axis). The resolution �x/di (top axis) varies inversely proportional to kdi in this case. Only NGP 
recovers the correct limits ω/kv A → 1 as kdi → 0. (For interpretation of the colors in the figures, the reader is referred to the web version of this article.)

When sampling a quantity defined in the continuum onto a discrete mesh, it is necessary to account for aliasing effects. 
Following Chapter 8 of Ref. [1], the transformed discrete ion velocity moment relates to the transformed continuum moment 
as

δ̃ug = SM(k�x)
∑

q

Sm(kq�x)δ̃u(kq), (18)

where the sum is taken over the aliases q ∈ Z where kq = k − 2πq/�x. Eq. (14) can be written in terms of transformed 
grid-based quantities using Eqs. (17)-(18), as

−iωδ̃ug = 1

d̂i

|SM(k�x)|2
∑

q

∣∣Sm(kq�x)
∣∣2

δ̃E g + 1

d̂i

δ̃ug × B0, (19)

where the periodicity in 2πq has been used for SM(kq�x) = SM(k�x) and δ̃E g(kq) = δ̃E g(k).

3. Hybrid cancellation problem

The resulting dispersion relation is found from Eqs. (15), (16), (19) as

ω = ±v Aκ

⎛⎜⎝
√√√√1 + 1

4

[
diκ − 1 − |SM(k�x)|2 ∑

q

∣∣Sm(kq�x)
∣∣2

diκ

]2

± 1

2

[
diκ − 1 − |SM(k�x)|2 ∑

q

∣∣Sm(kq�x)
∣∣2

diκ

]⎞⎟⎠ . (20)

It is instructive to compare this semi-discrete dispersion relation with the physical result (�x → 0), given by

ωph = ±v Ak

(√
1 + 1

4
d2

i k2 ± 1

2
dik

)
. (21)

In addition to the standard finite-difference modification of the wavenumber k → κ(k) (Appendix A), there are additional 
unphysical terms resulting from the Fourier representations of the shape functions and the smoothing operators. At this 
stage, the hybrid cancellation problem can be discerned: the presence of diκ in the denominator of these unphysical terms 
may cause them to become arbitrarily large as dik → 0.

To quantify these errors, it is necessary to compute the shape function terms 
∑

q

∣∣Sm(kq�x)
∣∣2

, which involves analytically 
calculating the sum over aliases. Following Ref. [1],
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Nearest Grid Point (NGP, m = 0) :
∑

q

∣∣S0(kq�x)
∣∣2 = 1, (22)

Cloud In Cell (CIC, m = 1) :
∑

q

∣∣S1(kq�x)
∣∣2 = 1

3

[
1 + 2 cos2

(
1

2
k�x

)]
, (23)

Quadratic Spline (QS, m = 2) :
∑

q

∣∣S2(kq�x)
∣∣2 = 1

15

[
2 + 11 cos2

(
1

2
k�x

)
+ 2 cos4

(
1

2
k�x

)]
. (24)

The predicted dispersion relation from Eq. (20) is plotted as dashed lines in Fig. 1 for both left and right-hand polarized 
waves for the cases of NGP (blue), CIC (green), QS (red) without smoothing, and the case of QS with one pass of binomial 
smoothing (magenta) applied symmetrically to the field and moment quantities. The overplotted circles show the measured 
phase velocities from corresponding simulations using a 1D explicit electromagnetic hybrid algorithm, which verify the 
analytic result. Here, a small time-step is used to give negligible temporal truncation error and the wavelength of the 
perturbation is well resolved with 64 grid cells in each case, such that the spatial truncation errors are fixed (k�x = π/32). 
The top horizontal axis gives the absolute size of the spatial cells in terms of the ion skin-depth, where �x/di ∝ 1/kdi for 
fixed k�x.

For the short-wavelength limit (dik 	 1), good agreement is found with Eq. (21) in each case for the right-hand polarized 
whistler (ω ∝ k2) and the left-hand polarized ion cyclotron wave (ω → �ci ). However, the correct long-wavelength limit 
(ω/kv A → 1 as kdi → 0) is only recovered for the case of NGP without smoothing, for which the numerator is exactly zero 
for the unphysical terms in Eq. (20). For higher order shape functions, the phase-speed of the right (left) hand polarized 
waves is reduced (increased). This error increases as the width of the particle shape function is increased, and is further 
increased by the application of smoothing. The incorrect MHD-limit can be reached due to the inexact cancellation of the 
electric fields when combining the ion (19) and electron (15) momentum equations to find a total momentum equation, 
which is due to the convolutional smoothing of the shape function and grid smoothing operators in Eq. (19). The hybrid-PIC 
scheme is only spatially asymptotic preserving when di/�x → 0 for NGP.

4. Discussion

For linear problems, it is useful to estimate how large a value of (�x/di) can be taken for a given desired accuracy. To 
second order in the assumed small parameter (k�x) � 1, κ ≈ k[1 − (k�x)2/6], and

1 − |S M(k�x)|2 ∑
q

∣∣Sm(kq�x)
∣∣2

diκ
≈ C(k�x)

(
�x

di

)
, (25)

where the constant C depends on the order of the shape function and the amount of smoothing: C = 0 for NGP, C = 1/6
for CIC, C = 1/4 for QS, and C = 3/4 for QS with one pass of smoothing to the fields and moments.

The relative dispersion error due to the second-order finite-difference approximation, εFD = |ω − ωph|/ωph , can be 
computed by assuming C = 0. For kdi � 1, εF D ≈ (k�x)2/6. This can be compared with the estimated dispersion error 
contribution solely from the cancellation problem, εCP. Assuming C 
= 0, and then taking (k�x)2 � (k�x)(�x/di) ∼ O(1), 
gives εC P ≈ C(k�x)(�x/di)/2. The cancellation error dominates the finite-difference error and determines the resolution 
requirements for kdi � 1. The minimum mesh-spacing requirement to achieve a desired error ε for a specific wavenumber 
(kdi) � 1 is therefore given by

�x

di
�

√
2ε

C(kdi)
. (26)

While the above results have been derived for parallel propagating waves with a uniform background density, simi-
lar dispersion errors due to the cancellation problem can be found for the case of fast magnetosonic waves propagating 
perpendicular to a background magnetic field. In Fig. 2, we give a dramatic non-linear numerical example of how such 
dispersion errors can lead to incorrect physics results. For this simulation, a cloud of debris ions with number density 
nd = (20nb/

√
π) exp (−x2/(15di)

2) and velocity vd = 5v Ab x̂ is released into a uniform background plasma with mag-
netic field B0 = B0 ẑ, density nb , Alfvén speed v Ab = B0/

√
mbnbμ0, cyclotron frequency �ci = qb B0/mb and skin-depth 

di = v Ab/�ci . The ratio of debris ion charge and mass to background values is qd/qb = 1 and md/mb = 3 respectively. The 
super-Alfvénic expansion of the debris ions excludes the background magnetic field to create a magnetic cavity, and couples 
with the background ions to create a perpendicular fast magnetosonic shock [15]. For higher-order shape functions, we 
observe that numerical dispersion errors are able to support the formation of unphysical solitons that are generated during 
non-linear steepening when the shock is formed. When followed for long time-scales, these unphysical solitons can detach
and move ahead of the shock wave. Using either the NGP shape function or a sufficiently small �x/di � 1 can remove these 
artifacts.
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Fig. 2. a) Simulation with resolution �x/di = 1 using NGP shows formation of perpendicular shock and magnetic cavity caused by the super-Alfvénic ex-
pansion of debris ions into a uniform magnetized background plasma. b) The same simulation, but with QS shape function and smoothing, gives unphysical 
solitons due to the interplay of numerical dispersion errors and non-linear steepening. c) At higher resolution �x/di = 0.5, these solitons are reduced 
(although not completely removed at this resolution).

The form of cancellation errors in the dispersion relation of Eq. (20) appears similar to the cancellation problem found 
in electromagnetic gyrokinetic algorithms (see e.g. [16–18]). However, it is worth noting two differences. Firstly, the cancel-
lation problem in hybrid-PIC is less restrictive than that in gyrokinetics, as it causes dispersion errors at the ion skin-depth 
scale rather than the electron skin-depth (di/de = √

mi/me 	 1). Secondly, the cancellation problem occurs in gyrokinetics 
due to the choice of the parallel canonical momentum, p‖ , as a dependent variable, rather than v‖ . The p‖ formulation 
is typically chosen for semi-implicit gyrokinetic schemes as the v‖ formulation contains an implicit coupling. In fact, the 
gyrokinetic cancellation problem can be avoided entirely by solving the v‖ formulation implicitly [19]. The hybrid-PIC can-
cellation problem is due to the different spatial discretization of ions (particles) and electrons (grid-based) and does not 
depend on the choice of time integration scheme. A possible alternate solution to the cancellation problem, which will be 
explored in future work, is to solve for the full (ion + electron) momentum equation on a spatial grid (e.g. [20]), and to use 
a particle kinetic ion discretization for only part of the ion distribution function (similar to a δF method).
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Appendix A. Fourier transforms of relevant quantities

For a 1D periodic spatial domain of size Lx , with x ∈ [0, Lx] and k = 2πn/Lx for integer n, the continuum Fourier trans-
form pair is given by

χ̃ (k, t) =
Lx∫

0

χ(x, t)e−ikxdx, χ(x, t) = 1

Lx

∑
k

χ̃ (k, t)eikx. (A.1)

On a uniform spatial grid of Nx cells, with Xg the cell positions, the discrete Fourier transform is defined as

F̃ g(k, t) =
Nx−1∑
g=0

F g(Xg, t)e−ikXg �x, F g(Xg, t) = 1

Lx

∑
k

F̃ g(k, t)eikXg , (A.2)

where the allowed k = 2πn/Lx for n ∈ [−Nx/2 + 1, Nx/2].
As an example, the Fourier transform of the smoothing operator is

˜SM(F g) =
Ng−1∑
g=0

F ge−ikXg �x

(
eik�x + 2 + e−ik�x

4

)
= F̃ g cos2 (k�x/2), (A.3)

and of the central differencing operator is

˜F g+1 − F g−1

2�x
=

Ng−1∑
g=0

F ge−ikXg �x

(
eik�x − e−ik�x

2�x

)
= F̃ g ik

sin (k�x)

(k�x)
. (A.4)

As time is taken to be continuous, the time dependence is assumed of the form eiωt for variables defined both in the 
continuum and on the discrete spatial grid.
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