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Highlights

• The proposed formulation is able to learn physics from data in a way consistent with the laws of thermodynamics.
• No need of a priori imposition of any conservation equation.
• The formulation is completely general for any scale of description of the system.
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Abstract8

We develop a method to learn physical systems from data that employs feed-9

forward neural networks and whose predictions comply with the first and sec-10

ond principles of thermodynamics. The method employs a minimum amount11

of data by enforcing the metriplectic structure of dissipative Hamiltonian sys-12

tems in the form of the so-called General Equation for the Non-Equilibrium13

Reversible-Irreversible Coupling, GENERIC [M. Grmela and H.C Oettinger14

(1997). Dynamics and thermodynamics of complex fluids. I. Development15

of a general formalism. Phys. Rev. E. 56 (6): 6620–6632]. The method16

does not need to enforce any kind of balance equation, and thus no previous17

knowledge on the nature of the system is needed. Conservation of energy18

and dissipation of entropy in the prediction of previously unseen situations19

arise as a natural by-product of the structure of the method.20
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Examples of the performance of the method are shown that comprise

conservative as well as dissipative systems, discrete as well as continuous

ones.

Keywords: Scientific machine learning, neural networks, structure21

preservation, GENERIC.22

1. Introduction23

With the irruption of the so-called fourth paradigm of science [19] a grow-24

ing interest is detected on the machine learning of scientific laws. A plethora25

of methods have been developed that are able to produce more or less accu-26

rate predictions about the response of physical systems in previously unseen27

situations by employing techniques ranging from classical regression to the28

most sophisticated deep learning methods.29

For instance, recent works in solid mechanics have substituted the con-30

stitutive equations with experimental data [1, 27], while conserving the tra-31

ditional approach on physical laws with high epistemic value (i.e., balance32

equations, equilibrium). Similar approaches have applied this concept to the33

unveiling (or correction) of plasticity models [23], while others created the34

new concept of constitutive manifold [22, 24]. Other approaches are designed35

to unveil an explicit, closed form expression for the physical law governing36

the phenomenon at hand [3].37

An interest is observed in the incorporation of the already existing sci-38

entific knowledge to these data-driven procedures. This interest is two-fold.39

Indeed, we prefer not to get rid of centuries of scientific knowledge and rely40

exclusively on powerful machine learning strategies. Existing theories have41

proved to be useful in the prediction of physical phenomena and are still42

in the position of helping to produce very accurate predictions. This is the43
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procedure followed in the so-called data-driven computational mechanics ap-44

proach mentioned before. On the other hand, these theories help to keep the45

consumption of data to a minimum. Data are expensive to produce and to46

maintain. Already existing scientific knowledge could alleviate the amount47

of data needed to produce a successful prediction.48

The mentioned works on data-driven computational mechanics usually49

rely on traditional machine learning algorithms, which are very precise and50

tested but usually computationally expensive. With the recent advances in51

data processing, computing resources and machine learning, neural networks52

have become a powerful tool to analyze traditionally hard problems such as53

image classification [28, 47], speech recognition [14, 20] or data compress-54

ing [44, 48]. These new machine learning methods outperform many of the55

traditional ones, both in modelling capacity and computational time (once56

trained, certain neural networks can easily handle real time requirements).57

Recent work in the machine learning community [31, 33, 36] have shown that58

neural networks are also versatile in constraint optimizations.59

This is the approach followed by several authors in the context of phys-60

ical simulations, which aim to solve a set of partial differential equations61

(PDEs) in complex dynamical systems. Physical problems must satisfy in-62

herently certain conditions dictated by physics, often formulated as conser-63

vation laws, and can be imposed to a neural network using extra loss terms64

in the constrained optimization process [34].65

Similar constraints are imposed in the so-called physically-informed neu-66

ral networks approach [42, 50]. This family of methods employs neural net-67

works to solve highly nonlinear partial differential equations (PDEs) resulting68

in very accurate and numerically stable results. However, they rely on prior69

knowledge of the governing equations of the problem.70
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The authors have introduced the so-called thermodynamically consistent71

data-driven computational mechanics [8, 11, 12]. Unlike other existing works,72

this approach does not impose any particular balance equation to solve for.73

Instead, it relies on the imposition of the right thermodynamic structure of74

the resulting predictions, as dictated by the so-called GENERIC formalism75

[17]. As will be seen, this ensures conservation of energy and the right amount76

of entropy dissipation, thus giving rise to predictions satisfying the first and77

second principles of thermodynamics. These techniques, however, employ78

regression to unveil the thermodynamic structure of the problem at the sam-79

pling points. For previously unseen situations, they employ interpolation on80

the matrix manifold describing the system.81

Recent work in symplectic networks [25] have by-passed those drawbacks82

by exploiting the mathematical properties of Hamiltonian systems, so no83

prior knowledge of the system is required. However, this technique only84

operates on conservative systems with no entropy generation.85

The aim of this work is the development of a new structure-preserving86

neural network architecture capable of predicting the time evolution of a87

system based on experimental observations on the system, with no prior88

knowledge of its governing equations, to be valid for both conservative and89

dissipative systems. The key idea is to merge the proven computational power90

of neural networks in highly nonlinear physics with thermodynamic consis-91

tent data-driven algorithms. The resulting methodology, as will be seen,92

is a powerful neural network architecture, conceptually very simple—based93

on standard feedforward methodologies—that exploits the right thermody-94

namic structure of the system as unveiled from experimental data, and that95

produces interpretable results [35].96

The outline of the paper is as follows. A brief description of the prob-97
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lem setup is presented in Section 2. Next, in Section 3, the methodology98

is presented of both the GENERIC formalism and the feed-forward neural99

networks used to solve the stated problem. This technique is used in dif-100

ferent physical systems of increasing complexity: a double thermo-elastic101

pendulum (Section 4) and a Couette flow in a viscoelastic fluid (Section 5).102

The paper is completed with a discussion in Section 6.103

2. Problem Statement104

Weinan E seems to be the first author in interpreting the process of105

learning physical systems as the solution of a dynamical system [6]. Consider106

a system whose governing variables will be hereafter denoted by z ∈ M ⊆107

Rn, withM the state space of these variables, which is assumed to have the108

structure of a differentiable manifold in Rn.109

The problem of learning a given physical phenomenon can thus be seen110

as the one of finding an expression for the time evolution of their governing111

variables z,112

ż =
dz

dt
= F (x, z, t), x ∈ Ω ∈ RD, t ∈ I = (0, T ], z(0) = z0, (1)

where x and t refer to the space and time coordinates within a domain with113

D = 2, 3 dimensions. F (x, z, t) is the function that gives, after a prescribed114

time horizon T , the flow map z0 → z(z0, T ).115

While this problem can be seen as a general supervised learning problem116

(we fix both z0 and z), when we have additional information about the117

physics being represented by the sought function F , it is legitimate to try118

to include it in the search procedure. W. E seems to have been the first in119

suggesting to impose a Hamiltonian structure on F if we know that energy120

is conserved, for instance [6]. Very recently, two different approaches follow121

this same rationale [2, 25].122
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For conservative systems, therefore, imposing a Hamiltonian structure123

seems a very appealing way to obtain thermodynamics-aware results. How-124

ever, when the system is dissipative, this method does not provide with valid125

results. Given the importante of dissipative phenomena (viscous solids, fluid126

dynamics, ...) we explore the right thermodynamic structure to impose to127

the search methodology.128

The goal of this paper is to develop a new method of solving Eq. (1) using129

state of the art deep learning tools, in order to predict the time evolution of130

the state variables of a given system. The solution is forced to fulfill the basic131

thermodynamic requirements of energy conservation and entropy inequality132

restrictions via the GENERIC formalism, presented in the next section.133

3. Methodology134

In this section we develop the appropriate thermodynamic structure for135

dissipative systems. Classical systems modeling can be done at a variety of136

scales. We could think of the most detailed (yet often impractical) scale of137

molecular dynamics, where energy conservation applies and the Hamiltonian138

paradigm can be imposed. However, the number of degrees of freedom and,139

noteworthy, the time scale, renders this approach of little interest for many140

applications. On the other side of the spectrum lies thermodynamics, where141

only conserved, invariant, quantities are described and thus there is no need142

for conservation principles. At any other (mesoscopic) scale, unresolved de-143

grees of freedom give rise to the appearance of fluctuation in the results (or144

its equivalent, dissipation). At these scales, traditional modeling procedures145

imply expressing physical insights in the form of governing equations [15].146

These equations are then validated from experimental observations.147

Alternatively, thermodynamics can be thought of as a meta-physics, in148
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the sense that it is actually a theory of theories [16]. It provides us with the149

right theoretic framework in which basic principles are met. And, in particu-150

lar for any of these intermediate or mesoscopic scales, a so-called metriplectic151

structure emerges. The term metriplectic comes for the combination of sym-152

plectic and Riemannian (metric) geometry and emphasizes the fact that there153

are conservative as well as dissipative contributions to the general evolution154

of such a system. Once such a geometric structure is found for the system,155

we are in the position of fixing the framework in which our neural networks156

can look for the adequate prediction of the future states of the system. The157

particular metriplectic structure that we employ for such a task is known, as158

stated before, as GENERIC.159

3.1. The GENERIC Formalism160

The “General Equation for Non-Equilibrium Reversible-Irreversible Cou-161

pling”, GENERIC, formalism [17, 38] establishes a mathematical framework162

in order to model the dynamics of a system. Furthermore, it is compatible163

with classical equilibrium thermodynamics [37], preserving the symmetries164

of the system as stated in Noether’s theorem. It has served as the basis for165

the development of several consistent numerical integration algorithms that166

exploit these desirable properties [13, 43].167

The GENERIC structure for the evolution in Eq. (1) is obtained after

finding two algebraic or differential operators

L : T ∗M→ TM, M : T ∗M→ TM,

where T ∗M and TM represent, respectively, the cotangent and tangent bun-168

dles of M. As in general Hamiltonian systems, there will be an energy po-169

tential, which we will denote hereafter by E(z). In order to take into account170

the dissipative effects, a second potential (the so-called Massieu potential)171

7



is introduced in the formulation. It is, of course, the entropy potential of172

the GENERIC formulation, S(z). With all these ingredients, we arrive at a173

description of the dynamics of the system of the type174

dz

dt
= L

∂E

∂z
+M

∂S

∂z
. (2)

As shown in Eq. (2), the time evolution of the system described by the175

nonlinear operator F (x, z, t) presented in Eq. (1) is now split in two separated176

terms:177

• Reversible Term: It accounts for all the reversible (non-dissipative)178

phenomena of the system. In the context of classical mechanics, this179

term is equivalent to Hamilton’s equations of motion that relates the180

particle position and momentum. The operator L(z) is the Pois-181

son matrix—it defines a Poisson bracket—and is required to be skew-182

symmetric (a cosymplectic matrix).183

• Non-Reversible Term: The rest of the non-reversible (dissipative)184

phenomena of the system are modeled here. The operator M (z) is185

the friction matrix and is required to be symmetric and positive semi-186

definite.187

The GENERIC formulation of the problem is completed with the follow-188

ing so-called degeneracy conditions189

L
∂S

∂z
= M

∂E

∂z
= 0. (3)

The first condition express esthe reversible nature of the L contribution

to the dynamics whereas the second requirement expresses the conservation

of the total energy by the M contribution. This means no other thing

that the energy potential does not contribute to the production of entropy
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and, conversely, that the entropy functional does not contribute to reversible

dynamics. This mutual degeneracy requirement in addition to the already

mentioned L and M matrix requirements ensure that:

∂E

∂t
=
∂E

∂z
· ∂z
∂t

=
∂E

∂z

(
L
∂E

∂z
+M

∂S

∂z

)
= 0,

which expresses the conservation of energy in an isolated system, also known

as the first law of thermodynamics. Applying the same reasoning to the

entropy S:

∂S

∂t
=
∂S

∂z
· ∂z
∂t

=
∂S

∂z

(
L
∂E

∂z
+M

∂S

∂z

)
=
∂S

∂z
M

∂S

∂z
≥ 0,

which guarantees the entropy inequality, this is, the second law of thermo-190

dynamics.191

3.2. Proposed Integration Algorithm192

Once the learning procedure is accomplished, our neural network is ex-193

pected to integrate the system dynamics in time, given previously unseen194

initial conditions. In order to numerically solve the GENERIC equation, we195

formulate the discretized version of Eq. (2) following previous works [13]:196

zn+1 − zn
∆t

= L · DE
Dz

+ M · DS
Dz

. (4)

The time derivative of the original equation is discretized with a forward

Euler scheme in time increments ∆t, where zn+1 = zt+∆t. L and M are

the discretized versions of the Poisson and friction matrices. Last, DE
Dz

and

DS
Dz

represent the discrete gradients, which can be approximated in a finite

element sense as:
DE

Dz
' Az, DS

Dz
' Bz,

where A and B represent the discrete matrix form of the gradient operators.197
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Finally, manipulating algebraically Eq. (4) with Eq. (3.2) and including198

the degeneracy conditions of Eq. (3), the proposed integration scheme for199

predicting the dynamics of a physical system is the following200

zn+1 = zn + ∆t (L ·Azn + M ·Bzn) (5)

subject to:201

L ·Bzn = 0,

M ·Azn = 0,

ensuring the thermodynamical consistency of the resulting model.202

To sum up, the main objective of this work is to compute the form of203

the A(z) and B(z) gradient operator matrices, subject to the degeneracy204

conditions, in order to integrate the initial system state variables z0 over205

certain time steps ∆t of the time interval I. Usually, the form of matrices206

L and M is known in advance, given the vast literature in the field. If207

necessary, these terms can also be computed [13].208

3.3. Feed-Forward Neural Networks209

In the introduction we already mentioned the intrinsic power of neural210

networks in many fields. The main reason under the fact that neural net-211

works are able to learn and reproduce such a variety of problems is that they212

are considered to be universal approximators [4, 21], meaning that they are213

capable of approximating any measurable function to any desired degree of214

accuracy. The main limitation of this technique is the correct selection of215

the tuning parameters of the network, also called hyperparameters.216

Another universal approximator are polynomials, as they can approxi-217

mate any infinitely differentiable function as a Taylor power series expansion.218
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The main difference is that neural networks rely on composition of functions219

rather than sum of power series:220

ŷ = (f [L] ◦ f [L−1] ◦ ... ◦ f [l] ◦ ... ◦ f [2] ◦ f [1])(x). (6)

Eq. (6) shows that the desired output ŷ from a defined input x of a neural221

network is a composition of different functions f [l] as building blocks of the222

network in L total layers. The challenge is to select the best combination of223

functions in the correct order such that it approximates the solution of the224

studied problem.225

The simplest building block of artificial deep neural network architectures226

is the neuron or perceptron (Fig. 1, left). Several neurons are stacked in a227

multilayer perceptron (MLP), which is mathematically defined as follows228

x[l] = σ(w[l]x[l−1] + b[l]), (7)

where l is the index of the current layer, x[l−1] and x[l] are the layer input and229

output vector respectively, w[l] is the weight matrix of the last layer, b[l] is the230

bias vector of the last layer and σ is the activation function. If no activation231

function is applied, the MLP is equivalent to a linear operator. However,232

σ is chosen to be a nonlinear function in order to increase the capacity of233

modelling more complex problems, which are commonly nonlinear. In classi-234

fication problems, the traditional activation function is the logistic function235

(sigmoid) whereas in regression problems, Rectified Linear Unit (ReLU) [10]236

or hyperbolic tangent are commonly used.237

In this work, we use a deep neural network architecture known as feed-238

forward neural network [46]. It consists of a several layer of multilayer per-239

ceptrons with no cyclic connections, as shown in Fig. 1 (right).240

The input of the neural net is the vector state of a given time step zn, and241

the outputs are the concatenated GENERIC matrices Anet
n and Bnet

n : for a242
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Σ σj

+1

x
[l−1]
1

x
[l−1]
i

b
[l]
j

w
[l]
1,j

w
[l]
i,j

x
[l]
j

...
...

...

I1

...
INin

Input

layer

Hidden

layers (Nh)

Output

layer

Layer l

Neuron j

O1

...
ONout

Figure 1: Representation of a single neuron (left) as a part of a fully connected neural net

(right).

system with n state variables the number of inputs and outputs are Nin = n243

and Nout = 2n2. Then, using the GENERIC integration scheme, the state244

vector at the next time step znet
n+1 is obtained. This method is repeated for245

the whole simulation time T with a total of NT snapshots.246

The state variables of a general dynamical system may differ in several247

orders of magnitude from each other, due to their own physical nature or248

measurement units. Then, a pre-processing of the input data (scaling or249

normalization) can improve the model performance and stability.250

The number of hidden layers Nh depends on the complexity of the prob-251

lem. Increasing the net size raises the computational power of the net to252

model more complex phenomena. However, it slows the training process and253

could lead to data overfitting, limiting its generalization and extrapolation254

capacity. The size of the hidden layers is chosen to be the same as the output255

size of the net Nout.256

The cost function for our neural network is composed of three different257

terms:258

• Data loss: The main loss condition is the agreement between the259
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network output and the real data. It is computed as the squared error260

sum, computed between the predicted state vector znet
n+1 and the ground261

truth solution zGT
n+1 for each time step.262

Ldata
n = ‖zGT

n+1 − znet
n+1‖2

2. (8)

• Fulfillment of the degeneracy conditions: The cost function will263

also account for the degeneracy conditions in order to ensure the ther-264

modynamic consistency of the solution, implemented as the sum of the265

squared elements of the degeneracy vectors for each time step,266

Ldegen
n = ‖L ·Bnet

n z
net
n ‖2

2 + ‖M ·Anet
n z

net
n ‖2

2. (9)

This term acts as a regularization of the loss function and, at the same267

time, is the responsible of ensuring thermodynamic consistency. So to268

speak, it is the cornerstone of our method.269

• Regularization: In order to avoid overfitting, an extra L2 regulariza-270

tion term Lreg is added to the loss function, defined as the sum over271

the squared weight parameters of the network.272

Lreg =
L∑
l

n[l]∑
i

n[l+1]∑
j

(w
[l]
i,j)

2. (10)

The total cost function is computed as the sum squared error (SSE) of the273

data loss and degeneracy residual, in addition to the regularization term, at274

the end of the simulation time T for each train case. The regularization loss275

is highly dependent on the size of the network layers and has different scaling276

with respect to the other terms, so it is compensated with the regularization277

hyperparameter (weight decay) λr. An additional weight λd is added to the278

data loss term, which accounts for the relative scaling error with respect to279

the degeneracy conditions.280
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L =

NT∑
n=0

(λdLdata
n + Ldegen

n ) + λrLreg. (11)

The usual backpropagation algorithm [39] is then used to calculate the281

gradient of the loss function for each net parameter (weight and bias vectors),282

which are updated with the gradient descent technique [45]. The process is283

then repeated for a maximum number of epochs nepoch. The resulting training284

algorithm is sketched in Fig. 2.285

NN GENERIC SSE + Loss
zn Anet,Bnet znet

n+1 Ldata

φ = w, b ∆t, L,M zGT
n+1 Lreg

Net Update: φ← φ− η ∂L
∂φ

Ldegen

Figure 2: Sketch of a structure-preserving neural network training algorithm.

The proposed methodology is tested with two different databases of non-286

linear physical systems, split in a partition of train cases (Ntrain = 80% of287

the database) and test cases (Ntest = 20% of the database). The net perfor-288

mance is evaluated with the mean squared error (MSE) of the state variables289

prediction, associated with the data loss term, Eq. (8), over all the time290

snapshots,291

MSEdata (zi) =
1

NT

NT∑
n=0

(
zGT
i,n − znet

i,n

)2
. (12)

The same procedure is applied to the degeneracy constraint, associated with292
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the degeneracy loss term, Eq. (9), over all the time snapshots,293

MSEdegen (zi) =
1

NT

NT∑
n=0

(
L ·Bnet

i,nz
net
i,n + M ·Anet

i,nz
net
i,n

)
. (13)

Algorithm 1 Pseudocode for the train algorithm.

Load train database: zGT (train partition), ∆t, L, M;

Define network architecture: Nin, Nout = 2N2
in, Nh, σj;

Define hyperparamteres: η, λd, λr;

Initialize wi,j, bj;

for epoch← 1, nepoch do

for train case← 1, Ntrain do

Initialize state vector: znet
0 ← zGT

0 ;

Initialize losses: Ldata,Ldegen = 0;

for snapshot← 1, NT do

Forward propagation: [Anet
n , Bnet

n ]← Net(zGT
n ); . Eq. (7)

Time integration:

znet
n+1 ← znet

n + ∆t (L ·Anet
n z

net
n + M ·Bnet

n z
net
n ); . Eq. (4)

Update data loss: Ldata ← Ldata + Ldata
n ; . Eq. (8)

Update degeneracy loss: Ldegen ← Ldegen + Ldegen
n ; . Eq. (9)

end for

SSE loss function: L← λdLdata + Ldegen + λrLreg . Eq. (10),

Eq. (11)

Backward propagation;

Optimizer step;

end for

Learning rate scheduler;

end for

15



Algorithm 2 Pseudocode for the test algorithm.

Load test database: zGT (test partition), ∆t, L, M;

Load network parameters;

for test case← 1, Ntest do

Initialize state vector: znet
0 ← zGT

0 ;

for snapshot← 1, NT do

Forward propagation: [Anet
n , Bnet

n ]← Net(znet
n ); . Eq. (7)

Time step integration:

znet
n+1 ← znet

n + ∆t (L ·Anet
n z

net
n + M ·Bnet

n z
net
n ); . Eq. (4)

Update state vector: znet
n ← znet

n+1;

Update snapshot: n← n+ 1;

end for

Compute MSEdata, MSEdegen; . Eq. (12), Eq. (13)

end for

Compute MSE
data

, MSE
degen

; . Eq. (14)

As a general error magnitude of the algorithm, the average MSE of both294

the train (N = Ntrain) and test trajectories (N = Ntest) is also reported for295

both the data (m = data) and degeneracy (m = degen) constraints,296

MSE
m

(z) =
1

N

N∑
i=1

MSEm (zi). (14)

Algorithm 1 and Algorithm 2 show a pseudocode of our proposed algo-297

rithm to both the training and test processes. The proposed method is fully298

implemented in PyTorch [40] and trained in an Intel Core i7-8665U CPU.299
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4. Validation examples: Double Thermo-Elastic Pendulum300

4.1. Description301

The first example is a double thermo-elastic pendulum (Fig. 3) consisting302

of two masses m1 and m2 connected by two springs of variable lengths λ1303

and λ2 and natural lengths at rest λ0
1 and λ0

2.304

x

y

m1

λ1, C1

m2

λ2, C2

p1

p2

Figure 3: Double thermo-elastic pendulum.

The set of variables describing the double pendulum are here chosen to305

be306

S = {z = (q1, q2,p1,p2, s1, s2) ∈ (R2×R2×R2×R2×R×R), q1 6= 0, q1 6= q2}.

(15)

where qi, pi and si are the position, linear momentum and entropy of each307

mass i = 1, 2.308

The lengths of the springs λ1 and λ2 are defined solely in terms of the

positions as

λ1 =
√
q1 · q1, λ2 =

√
(q2 − q1) · (q2 − q1).

The total energy of the system can be expressed as the sum of the kinetic

energy of the two masses Ki and the internal energy of the springs ei for
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i = 1, 2,

E = E(z) =
∑
i

Ki(z) +
∑
i

ei(λi, si),

Ki =
1

2mi

|pi|2. (16)

The total entropy of the double pendulum is the sum of the entropies of309

the two masses si,310

S = S(z) = s1 + s2. (17)

This model includes thermal effects in the stretching of the springs due311

to the Gough-Joule effect. The absolute temperatures Ti at each spring is312

obtained through Eq. (18). These temperature changes induce a heat flux313

between both springs, being proportional to the temperature difference and314

a conductivity constant κ > 0,315

Ti =
∂ei
∂si

. (18)

In this case, there is a clear contribution of both conservative Hamiltonian316

mechanics (mass movement) and non-Hamiltonian dissipative effects (heat317

flux), resulting in a non-zero Poisson matrix (M 6= 0). Thus, the GENERIC318

matrices associated with this physical system are known to be [13]319

L =



0 0 1 0 0 0

0 0 0 1 0 0

−1 0 0 0 0 0

0 −1 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0


, M =



0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 1 −1/2

0 0 0 0 −1/2 1


. (19)
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4.2. Database and Hyperparameters320

The training database is generated with a thermodynamically consistent321

time-stepping algorithm[43] in MATLAB. The masses of the double pendu-322

lum are set to m1 = 1 kg and m2 = 2 kg, joint with springs of a natural323

length of λ0
1 = 2 m and λ0

2 = 1 m and thermal constant of C1 = 0.02 J324

and C2 = 0.2 J and conductivity constant of κ = 0.5. The simulation time325

of the movement is T = 60 s in time increments of ∆t = 0.3 s (NT = 200326

snapshots).327

The database consists of the state vector, Eq. (15), of 50 different trajec-328

tories with random initial conditions of position qi and linear momentum pi329

of both masses mi (i = 1, 2) around a mean position and linear momentum330

of q1 = [4.5, 4.5]> m, p1 = [2, 4.5]> kg·m/s, and q2 = [−0.5, 1.5]> m,331

p2 = [1.4, −0.2]> kg·m/s respectively. Although the initial conditions of the332

simulations are similar, it results in a wide variety of the mass trajectories333

due to the chaotic behavior of the system. This database is split randomly in334

40 train trajectories and 10 test trajectories. Thus, there is a total of 80.000335

training snapshots and 20.000 test snapshots.336

The net input and output size is Nin = 10 and Nout = 2N2
in = 200.337

The state vector is normalized based on the training set statistical mean338

and standard deviation. The number of hidden layers is Nh = 5 with ReLU339

activation functions and linear in the last layer. It is initialized according to340

the Kaiming method [18] with normal distribution and the optimizer used is341

Adam [26] with a weight decay of λr = 10−5 and data loss weight of λd = 102.342

A multistep learning rate scheduler is used, starting in η = 10−3 and decaying343

by a factor of γ = 0.1 in epochs 600 and 1200. The training process ends344

when a fixed number of epochs nepoch = 1800 is reached.345

The time evolution of the data Ldata and degeneracy Ldegen loss terms for346
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each training epoch are shown in Fig. 4.347
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Figure 4: Loss evolution of data and degeneracy constraints for each epoch of the structure-

preserving neural network training process of the double pendulum example.

4.3. Results348

Fig. 5 shows the time evolution of the state variables (position, momen-349

tum and entropy) of each mass given by the solver and the neural net.350

Table 1 shows the mean squared error of the data and degeneration loss351

terms for all the state variables of the double pendulum. The results are352

computed separately as the mean over all the train and test trajectories353

using Eq. (14).354

Fig. 6 and Fig. 7 show the time evolution of the internal and kinetic energy355

(Eq. (16)) and the entropy (Eq. (17)) respectively for the two pendulum356

masses (i = 1, 2). The total energy is conserved and the total entropy satisfies357

the entropy inequality, fulfilling the first and second laws of thermodynamics358

respectively. The mean error for both train and test trajectories is reported359

in Table 2.360
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Table 1: Mean squared error of the data loss (MSE
data

) and degeneracy loss (MSE
degen

)

for all the state variables of the double pendulum.

State Variables
MSE

data
MSE

degen

Train Test Train Test

q1 [m]
X 1.95 · 10−2 3.87 · 10−2 3.56 · 10−8 4.43 · 10−8

Y 2.72 · 10−2 8.21 · 10−2 4.74 · 10−8 5.77 · 10−8

q2 [m]
X 2.04 · 10−2 3.65 · 10−2 9.28 · 10−8 8.55 · 10−8

Y 2.72 · 10−2 3.73 · 10−2 3.55 · 10−8 5.01 · 10−8

p1 [kg·m/s]
X 6.43 · 10−4 1.33 · 10−4 4.00 · 10−8 7.08 · 10−8

Y 1.06 · 10−3 4.06 · 10−3 1.21 · 10−7 1.40 · 10−7

p2 [kg·m/s]
X 4.88 · 10−4 9.84 · 10−4 6.00 · 10−8 4.58 · 10−8

Y 8.47 · 10−4 1.79 · 10−4 9.76 · 10−8 1.20 · 10−7

s1 [J/K] 1.21 · 10−5 3.51 · 10−5 1.31 · 10−7 2.06 · 10−7

s2 [J/K] 1.22 · 10−5 3.18 · 10−5 2.40 · 10−7 2.95 · 10−7

Table 2: Mean squared error of the energy (MSE (E)) and entropy (MSE (s)) of the

double pendulum.

Variable Train Test

E [J] 7.99 · 10−3 8.86 · 10−3

S [J/K] 6.52 · 10−8 6.33 · 10−8
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Figure 5: Time evolution of the state variables in a test trajectory of a double themo-

elastic pendulum using a time-stepping solver (Ground Truth, GT) and the proposed

GENERIC integration scheme (SPNN). Since every variable has a vectorial character,

both components are depicted and labelled as X and Y , respectively.

5. Couette flow of an Oldroyd-B fluid361

5.1. Description362

The second example is a shear (Couette) flow of an Oldroyd-B fluid model.363

This is a constitutive model for viscoelastic fluids, consisting of linear elastic364

dumbbells (representing polymer chains) immersed in a solvent.365

The Oldroyd-B model arises in the modelling of flows of diluted polymeric366

solutions. This model can be obtained both from a purely macroscopic point367

of view as well as from a microscopic one, by modelling polymer chains as368

linear dumbbells diluted in a Newtonian substrate. Alternatively, it can also369

be obtained by considering the deviatoric part T of the stress tensor σ (the370
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Figure 6: Time evolution of the energy in a test trajectory of a double themo-elastic

pendulum using a time-stepping solver (Ground Truth, GT) and the proposed GENERIC

integration scheme (Net).

so-called extra-stress tensor), to be of the form371

T + λ1

∇
T= η0

(
γ̇ + λ2

∇
γ̇

)
, (20)

where the triangle denotes the non-linear Oldroyd’s upper-convected deriva-372

tive [41]. Coefficients η0, λ1 and λ2 are model parameters. It is standard to373

denote the strain rate tensor by γ̇ = (∇sv) = D.374

Finally, the stress in the solvent (denoted by a subscript s) and polymer
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Figure 7: Time evolution of the entropy in a test trajectory of a double themo-elastic

pendulum using a time-stepping solver (Ground Truth, GT) and the proposed GENERIC

integration scheme (SPNN).

(denoted by a subscript p) are given by

T = ηsγ̇ + τ ,

so that

τ + λ1
∇
τ= ηpγ̇,

which is the constitutive equation for the elastic stress.375

Pseudo-experimental data are obtained by the CONNFFESSIT technique

[29], based on the Fokker-Plank equation [30]. This equation is solved by

converting it in its corresponding Itô stochastic differential equation,

drx =

(
∂v

∂y
ry −

1

2We
rx

)
dt+

1√
We

dVt,

dry = − 1

2We
rydt+

1√
We

dWt, (21)

where v is the flow velocity, r = [rx, ry]
>, rx = rx(y, t) the position vec-376

tor and assuming a Couette flow so that ry = ry(t) depends only on time,377
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Figure 8: Couette flow in an Olroyd-B fluid.

We stands for the Weissenberg number and Vt, Wt are two independent one-378

dimensional Brownian motions. This equation is solved via Monte Carlo tech-379

niques, by replacing the mathematical expectation by the empirical mean.380

The model relies on the microscopic description of the state of the dumb-

bells. Thus, it is particularly useful to base the microscopic description on

the evolution of the conformation tensor c = 〈rr〉, this is, the second mo-

ment of the dumbbell end-to-end distance distribution function. This tensor

is in general not experimentally measurable and plays the role of an internal

variable. The expected xy stress component tensor will be given by

τ =
ε

We

1

K

K∑
k=1

rxry,

where K is the number of simulated dumbbells and ε = νp
νp

is the ratio of the381

polymer to solvent viscosities.382

The state variables selected for this problem are the position of the fluid

on each node of the mesh, see Fig. 8, its velocity v in the x direction, internal

energy e and the conformation tensor shear component τ ,

S = {z = (q,v, e, τ) ∈ (R2 × R× R× R)}.
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The GENERIC matrices associated with each node of this physical system

are the following

L =



0 0 1 0 0 0

0 0 0 0 0 0

−1 0 0 0 1 −1

0 0 −1 0 0 0

0 0 0 0 0 0


, M =



0 0 0 0 0

0 0 0 0 0

0 0 1 1 0

0 0 1 1 0

0 0 0 0 1


. (22)

In order to simulate a measurement of real captured data, Gaussian noise383

is added to the state vector, computed as a random variable following a384

normal distribution with zero mean and standard deviation proportional to385

the standard deviation of the database σz and noise level ν,386

zGT
noise = zGT + ν · σz · N (0, 1) (23)

The results of both the noise-free and the noisy database are compared387

with two different network architectures:388

• Unconstrained network: This architecture is the same as the proposed389

network but removing the degeneracy conditions of the energy and390

entropy, Eq. (9), in the loss function. These conditions ensure the391

thermodynamic consistency of the resulting integrator, so not including392

them affects negatively in the accuracy of the results, as will be seen.393

• Black-Box network: In this case, no GENERIC architecture is imposed,394

acting as a black-box integrator trained to directly predict the state395

vector time evolution zt+1 from the previous time step zt. This naive396

approach is shown to be inappropriate, as no physical restrictions are397

given to the model.398
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5.2. Database and Hyperparameters399

The training database for this Olroyd-B model is generated in MATLAB400

with a multiscale approach [30] in the dimensionless form. The fluid is dis-401

cretized in the vertical direction with N = 100 elements (101 nodes) in a402

total height of H = 1. A total of 10,000 dumbells were considered at each403

nodal location in the model. The lid velocity is set to V = 1, the viscolastic404

Weissenberg number We = 1 and Reynolds number of Re = 0.1. The sim-405

ulation time of the movement is T = 1 in time increments of ∆t = 0.0067406

(NT = 150 snapshots).407

The database consisted of the state vector (Eq. (5.1)) of the 100 nodes408

trajectories (excluding the node at h = H, for which a no-slip condition409

v = 0 has been imposed). This database is split in 80 train trajectories and410

20 test trajectories.411

The net input and output size is Nin = 5 and Nout = 2N2
in = 50. The412

number of hidden layers is Nh = 5 with ReLU activation functions and linear413

in the last layer. It is initialized according to the Kaiming method [18], with414

normal distribution and the optimizer used is Adam [26], with a weight decay415

of λr = 10−5 and data loss weight of λd = 103. A multistep learning rate416

scheduler is used, starting in η = 10−3 and decaying by a factor of γ = 0.1417

in epochs 500 and 1000. The training process ends when a fixed number of418

epochs nepoch = 1500 is reached. The same parameters are considered also419

for the noisy database network (ν = 1%) and the unconstrained network.420

The black-box network training parameters are analogous to the structure-421

preserving network, except for the output size Nout = Nin = 5. Several net-422

work architectures were tested, and the lowest error is achieved with Nh = 5423

hidden layers and 25 neurons each layer.424

The time evolution of the data Ldata and degeneracy Ldegen loss terms for425
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each training epoch are shown in Fig. 9.426
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Figure 9: Loss evolution of data and degeneracy constraints for each epoch of the neural

network training process of the Couette flow example.

5.3. Results427

Fig. 10 shows the time evolution of the state variables (position q, velocity428

v, internal energy e and conformation tensor shear component τ) given by429

the solver and the neural net. There is a good agreement between both plots.430

Moreover, the proposed scheme is able to predict the time evolution of the431

flow for several snapshots beyond the training simulation time T = 1, as432

shown in the same figure.433

Table 3 show the mean squared error of the data and degeneration loss434

terms for all the state variables of the Couette flow of an Olroyd-B fluid.435

The results are computed separately as the mean over all the train and test436

trajectories using Eq. (14).437

Fig. 11 shows a box plot of the data error (MSEdata) for the train and test438

sets in the four studied architectures. The results of the structure-preserving439

neural network outperform the other two approaches even with noisy training440
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Figure 10: Time evolution of the state variables in five test nodes of a Couette flow using

a solver (Ground Truth, GT) and the proposed GENERIC integration scheme (Net). The

dotted vertical line represent the simulation time T = 1 of the training dataset.

data. The error of the unconstrained neural network is greater than one order441

of magnitude than our approach, proving the importance of the degeneracy442

conditions in the GENERIC formulation. Last, the naive black-box approach443

shows the worst performance of the four networks, as no physical restriction444

is considered.445

With respect to our previous work[13], that employed a piece-wise linear446

regression approach, these examples show similar levels of accuracy, but a447

much greater level of robustness. For instance, this same example was in-448

cluded in the mentioned reference. However, in that case, the problem had449

to be solved with the help of a reduced order model with only six degrees of450

freedom, due to the computational burden of the approach. In our former451

approach, the GENERIC structure was identified by piece-wise linear regres-452
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Table 3: Mean squared error of the data loss (MSE
data

) and degeneracy loss (MSE
degen

)

for all the state variables of the Couette flow.

State Variables
MSE

data
MSE

degen

Train Test Train Test

q [-]
X 5.40 · 10−6 6.29 · 10−6 1.72 · 10−7 1.96 · 10−7

Y 0.00 0.00 0.00 0.00

v [-] 3.23 · 10−5 4.75 · 10−5 1.19 · 10−6 1.48 · 10−6

e [-] 7.85 · 10−6 6.60 · 10−6 7.06 · 10−7 9.11 · 10−7

τ [-] 2.36 · 10−5 1.26 · 10−5 1.07 · 10−6 1.31 · 10−6

SPNN

(Noise free)
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(Noisy)

Unconstr. Black Box
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Figure 11: Box plots for the data integration mean squared error (MSEdata) of the Couette

flow in both train and test cases.

sion for each of the few global modes of the approximation. So to speak, in453

that case, we learnt the characteristics of the flow. Here, on the contrary, the454

net is able to find an approximation for any velocity value at the 101 nodes455

of the mesh—say, fluid particles—without any difficulty. In this case, we are456
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learning the behavior of fluid particles. It will be interesting, however, to457

study to what extent the employ of variational autoencoders, as in Bertalan458

et al.[2], could help in solving more intricate models. Autoencoders help in459

determining the actual number of degrees of freedom needed to represent a460

given physical phenomenon.461

6. Conclusions462

In this work we have presented a new methodology to ensure thermody-463

namic consistency in the deep learning of physical phenomena. In contrast464

to existing methods, this methodology does not need to know in advance465

any information related to balance equations or the precise form of the PDE466

governing the phenomena at hand. The method is constructed on top of467

the right thermodynamic principles that ensure the fulfillment of the energy468

dissipation and entropy production. It is valid, therefore, for conservative as469

well as dissipative systems, thus overcoming previous approaches in the field.470

When compared with our previous works in the field (see Gonzalez et471

al. [13]), the present methodology showed to be more robust, allowing us to472

find approximations for systems with orders of magnitude more degrees of473

freedom. This new approach is also less computationally demanding. For the474

double pendulum case, the snapshot optimization of the GENERIC matrices475

proposed in [13] has a measured performance of 10 min per trajectory, which476

add up to 400 minutes considering the 40 studied trajectories, whereas our477

new neural-network approach trains in only 73.18 minutes. The computa-478

tional time of the other examples is shown in Table 4479

The reported results show good agreement between the network output480

and the synthetic ground truth solution, even with moderate noisy data. We481

have also shown the importance of including the degeneracy conditions of482
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Table 4: Computation training time of the proposed algorithm for the two reported ex-

amples in the noise free networks.

Example Epoch Time Total Time

Double Pendulum 2.44 s/epoch 73.18 min

Couette Flow 1.22 s/epoch 30.53 min

the GENERIC formulation to the neural network constraints, as it ensures483

the thermodynamical consistency of the integrator. The structure-preserving484

neural network outperforms other naive black-box approaches, since the phys-485

ical constraints act as an inductive bias, facilitating the learning process.486

However, the error can be reduced using several techniques:487

• Database: As a general method of increasing the precision of an Euler488

integration scheme, the time step ∆t can be decreased so the total489

number of snapshots is increased. On the contrary, the database will490

be larger, slowing the training process. The same way, the database can491

be enriched with a wider variety of cases, improving the net predictive492

capabilities.493

• Integration Scheme: A higher order Runge-Kutta integration scheme494

could be introduced in Eq. (4) in order to get higher solution accuracy[49].495

However, it requires several forward passes through the neural net496

for each time step, incrementing the complexity of the integration497

scheme and the training process. Additionally, GENERIC-based inte-498

gration schemes have showed very good performance even for first-order499

approaches.[43]500

• Net Architecture: To increase the computational power of the net,501

more and larger hidden layers Nh can be added. However, this could502
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lead to a more over-fitted solution which limit the prediction power and503

versatility of the net. It also increases the computational cost of both504

the training process and the testing of the net.505

• Training Hyperparameters: The neural networks trained in this506

work could be optimized using several hyperparameter tuning meth-507

ods such as random search, Bayesian optimization or gradient-based508

optimization to get a more efficient solution.509

Several open questions remain as a future work. A more exhaustive anal-510

ysis can be performed to evaluate the influence of noisy data to the integrator511

evolution, in order to add robustness to the method and even predict wider512

simulation times using incremental learning [5, 32].513
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