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A new domain decomposition method is introduced for the heterogeneous 2-D and 3-D
Helmholtz equations. Transmission conditions based on the perfectly matched layer
(PML) are derived that avoid artificial reflections and match incoming and outgoing waves
at the subdomain interfaces. We focus on a subdivision of the rectangular domain into
many thin subdomains along one of the axes, in combination with a certain ordering for
solving the subdomain problems and a GMRES outer iteration. When combined with mul-
tifrontal methods, the solver has near-linear cost in examples, due to very small iteration
numbers that are essentially independent of problem size and number of subdomains. It is
to our knowledge only the second method with this property next to the moving PML
sweeping method.

� 2013 Elsevier Inc. All rights reserved.
1. Introduction

In this paper we introduce a new domain decomposition method for the solution of the Helmholtz equation in two and
three dimensions. To be specific we consider in 2-D
�@2
xxuðx; yÞ � @2

yyuðx; yÞ � kðx; yÞ2uðx; yÞ ¼ f ðx; yÞ; ð1Þ
where kðx; yÞ ¼ x
cðx;yÞ, with cðx; yÞ the wave speed. The computational domain is assumed to be a rectangle that is truncated

using the perfectly matched layer [1]. We focus on solving the large linear systems resulting from discretization with stan-
dard 5 or 7 point finite differences.

We have two main findings. First, we have constructed new transmission conditions. These are designed to ensure that
ðiÞ the boundary conditions at the subdomain interfaces are non-reflecting;
ðiiÞ if Xj�1 and Xj are neighboring subdomains then the outgoing wave field from Xj�1

equals the incoming wave field in Xj at the joint boundary and vice versa:
ð2Þ
This is achieved in a simple and accurate way using PML boundary layers added to the subdomains and single layer poten-
tials. See [2] for a related approach in the finite element discretization of the time harmonic Maxwell equations.

Our most remarkable finding concerns the situation where the domain is split into many thin layers along one of the axes,
say J subdomains numbered from 1 to J. Following [3] we will also call these quasi 2-D subdomains. Generally, an increase in
the number of subdomains leads to an increase in the number of iterations required for convergence. Here we propose and
study a method where the number of iterations is essentially independent of the number of subdomains.
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A necessary condition for this is that information can travel over the entire domain (or at least an Oð1Þ part thereof) in one
iteration. To achieve this we use a multiplicative method, where the subdomains are first solved consecutively from j ¼ 1 to
j ¼ J, each time using information from the solution of the neighboring, previously solved subdomain, and then in the same
way from j ¼ J downto j ¼ 1 using the residual as right hand side. In this way information can travel all over the domain with
only two solves per subdomain. The procedure is used as a preconditioner for GMRES.

We studied numerically the convergence of the method for different choices of the grid distance h and the frequency x,
keeping xh constant, and different numbers of subdomains. In our examples the method converged rapidly, with generally
less than 10 iterations needed for reduction of the residual by 10�6. Moreover, the required number of iterations was essen-
tially independent of the size of the domain and the number of subdomains.

This is attractive in combination with the use of multifrontal methods for the subdomain solves. Indeed, as was argued by
Engquist and Ying [3], in 3-D the set of quasi 2-D subproblems can be solved by multifrontal methods in OðN log NÞ time,
with OðN4=3Þ cost for the factorization, versus OðN3=2Þ and OðN2Þ when the multifrontal method is applied directly to the
3-D system. The method therefore behaves near-linearly.1 It is the second such method we are aware of, in addition to the
moving PML sweeping method, for which such observations were made in [3].

Several things have to be kept in mind. First, we estimate, based on our examples, that the thickness of the PML layers
needs to increase with increasing N. A required growth of Oðlog NÞ is consistent with our data. This would lead to an addi-
tional factor Oðlog NÞ for the cost of the solves and Oððlog NÞ2Þ for the cost of the preparation. Secondly, the method is only
near-linear provided that solutions are required for a sufficiently large number of right hand sides to recoup the cost of the
factorization. Thirdly, because of the multiplicative way of domain decomposition, the method is not in itself parallel. In
Section 5 two solutions for this problem are discussed. Finally, numerical tests have shown that for cavities, the claimed re-
sults do not hold. (Indeed, the cavity problem is known to be especially difficult for iterative methods because of the many
near-zero eigenvalues.)

1.1. The method and its context

Next we discuss in more detail the ideas behind the method and some of the relevant literature.
To motivate our approach we recall the 1-D problem with k ¼ constant, see the review in [4] or [5–7]. Let �0; L½ be the

domain. The differential equation and the Robin boundary conditions read
1 mea
�@2
xxuðxÞ � k2uðxÞ ¼ f ðxÞ for 0 < x < L;

@xuþ iku ¼ 0 at x ¼ 0
�@xuþ iku ¼ 0 at x ¼ L:
The Robin boundary conditions are exact non-reflecting boundary conditions and ensure that there are no incoming waves at
the boundaries. We assume the domain is divided in J subdomains �bj�1; bj½ with
0 ¼ b0 < b1 < . . . < bJ ¼ L:
The original problem is then equivalent to J subdomain problems with continuity conditions at the interfaces as follows
�@2
xxuðjÞ � k2uðjÞ ¼ f ðjÞ for x 2�bj�1; bj½

@xuðjÞ þ ikuðjÞ ¼ @xuðj�1Þ þ ikuðj�1Þ at x ¼ bj�1

�@xuðjÞ þ ikuðjÞ ¼ �@xuðjþ1Þ þ ikuðjþ1Þ at x ¼ bj
(by convention uð0Þ ¼ 0 ¼ uðJþ1Þ). These continuity conditions satisfy the property (2). To obtain an iterative solution method,
the right hand side of the continuity conditions is taken from the previous iteration, i.e. a sequence v ðjÞn is constructed, where
n is the iteration number and j the subdomain index according to
�@2
xxv

ðjÞ
n � k2v ðjÞn ¼ f ðjÞ for x 2�bj�1; bj½ ð3Þ

@xv ðjÞn þ ikv ðjÞn ¼ @xv ðj�1Þ
n�1 þ ikv ðj�1Þ

n�1 ; at x ¼ bj�1 ð4Þ

�@xv ðjÞn þ ikv ðjÞn ¼ �@xv ðjþ1Þ
n�1 þ ikv ðjþ1Þ

n�1 at x ¼ bj: ð5Þ
This method is optimal in the sense that it converges in a finite number, namely J, of iterations. Indeed, recall that the solu-
tion for the problem �@2

xxuðxÞ � k2uðxÞ ¼ f ðxÞ with Robin boundary conditions @xuð0Þ þ ikuð0Þ ¼ h1, �@xuðLÞ þ ikuðLÞ ¼ h2 is
given by
uðxÞ ¼ i
2k

Z x

0
eikðx�sÞf ðsÞdsþ i

2k

Z L

x
e�ikðx�sÞf ðsÞdsþ eikx

2ik
h1 þ

e�ikðx�LÞ

2ik
h2 ð6Þ
ning linearly if log N factors are ignored
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It follows by induction, starting from v ðjÞ0 ¼ 0, that v ðjÞn satisfies
v ðjÞn ðxÞ ¼
i

2k

Z x

A
eikðx�sÞf ðsÞdsþ i

2k

Z B

x
e�ikðx�sÞf ðsÞds
where A ¼ bmaxð0;j�nÞ and B ¼ bminðJ;jþn�1Þ. After J steps, A ¼ 0 and B ¼ L for all j 2 f1; . . . ; Jg.
This work answers two questions about the iterative method (3)–(5). The first question concerns the generalization of the

transmission conditions to two and three dimensions. The Robin boundary conditions then no longer satisfies the properties
(2) (see the argument around (24) below). Several approaches have been proposed in the literature. First, the Robin boundary
conditions can still be used as transmission conditions [8]. Several authors have also considered optimized Robin transmis-
sion conditions [9,10]. A second possible approach involves operator valued Robin boundary conditions [11] and ideas about
numerical absorbing boundary conditions, e.g. [12]. Padé approximations for k in (27) (see below) can be used to obtain
numerical absorbing boundary and transmission conditions [13,14]. In this paper we use PML boundary layers [1] to achieve
(2). Earlier work using domain decomposition with PML’s is in [15] and in [2] (cf. the discussion in Section 5).

The second question concerns the case of large J. In one iteration of (3)–(5) information from one subdomain can only
travel to its neighbors. The method therefore requires at least OðJÞ iterations to converge, hence OðJ2Þ subdomain solves.
On the other hand, by using the multiplicative approach outlined below, solving the subdomains consecutively, first
j ¼ 1;2; . . . ; J, and then j ¼ J; J � 1; . . . ;1, information can travel over the full domain in just 2 solves per subdomain. Here
we will follow this multiplicative approach.

As mentioned, the case of a large number of thin layers, say k grid points thick, is of interest when the method is used in
combination with multifrontal methods for the subdomain solves.The computational cost of such a setup was analyzed by
Engquist and Ying [3], using results of George [16]. Consider a cube with n� n� n gridpoints, hence N ¼ n3. The cost of a LU
decomposition of a subdomain of the form n� n� k is Oðk3n3Þ, while the cost of a backsubstition is Oðk2n2 log nÞ. Assuming
k ¼ Oð1Þ, the total cost of the factorizations is OðN4=3Þ, while the total cost per iteration is OðN log NÞ. If the number of iter-
ations depends weakly on problem size, as we see in examples, then this method scales well. In the presence of PML layers
that have a thickness of wpml grid points, a value k � 4wpml is optimal for the thickness of the subdomains including PML
layers, i.e. minimizes the cost of applying one set of subdomain solves. The details of our method will be explained in
Section 2.

The papers [17,18] provide a review of solution methods for the Helmholtz equation. Some recent other work is given in
[19,20].

1.2. Results

Our first main result is a theoretical result, concerning the constant coefficient problem on a strip. Assuming that the PML
layers perfectly reproduce the behavior of the solution on the unbounded domain, the methods solves this problem in one
iteration, i.e. in one upward and one downward sequence of solves. We observe that the upward and downward sequence of
solves can in fact be performed simultaneously, if the point where the the sequences cross is handled carefully.

The second main result is the good convergence behavior in numerical examples that was already mentioned in the first
part of this introduction. In addition a comparison with a double sweep method with Robin transmission conditions was
made. For small J this can be attractive, but this method did not have near-linear cost like the PML-based method.

1.3. Contents

The paper is organized as follows. The next section explains in detail our method. Section 3 contains some theoretical
results. Then in Section 4 the numerical examples are discussed. We end the paper with a short discussion.

2. The method

2.1. Continuous formulation

In this section we formulate our method in 2-D. The domain is assumed to be a set of the form X ¼�0; L½��0;1½. It is
straightforward to generalize this to rectangular domains of different size, and to 3-D rectangular domains.

The Helmholtz operator will be referred to as A, given away from the PML boundary layers by
A ¼ �@2
xx � @

2
yy � kðx; yÞ2:
The operator in a PML layer at a boundary, say x ¼ constant, is obtained by replacing
@

@x
! 1

1þ i rxðxÞ
x

@

@x
where rx ¼ 0 in the interior of the domain, and positive inside the PML layers [21,22].
The domain is divided into J subdomains along the x-axis. The interface locations will be denoted by x ¼ bj, where
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0 ¼ b0 < . . . < bJ ¼ L
The ‘‘core’’ subdomains, without additional PML layers, will be denoted by DðjÞ ¼�bj�1; bj½��0;1½. With PML layers added the
notation XðjÞ will be used. The latter sets are obtained by padding the DðjÞ with PML layers of size Lpml at the internal bound-
aries, i.e.
XðjÞ ¼�bj�1 � LPMLð1� dj;1Þ; bj þ LPMLð1� dj;JÞ½��0;1½
On the domains XðjÞ, functions kðjÞðx; yÞ are defined that agree with k on DðjÞ, and are independent of x and equal to k at the
boundary of the core subdomain inside the added PML layers, i.e.
kðjÞðx; yÞ ¼
kðx; yÞ for bj�1 6 x 6 bj

kðbj�1; yÞ for x < bj�1ðif j > 1Þ
kðbj; yÞ for x > bjðif j < JÞ:

8><>:

On the domains XðjÞ operators AðjÞ are defined as Helmholtz operators with PML modifications, similar as A was defined on X.

Next we consider the approximation by domain decomposition of a solution u to the 2-D Helmholtz equation Au ¼ f . The
function f is assumed to be integrable, which allows the definition of f ðjÞ on XðjÞ by
f ðjÞ ¼ f ðxÞ if x 2 DðjÞ

0 otherwise

(

A first set of subdomain solutions v ðjÞ is obtained by solving the equations
AðjÞv ðjÞ ¼ f ðjÞ � 2dðx� bj�1Þ@xv ðj�1Þðbj�1; �Þ; ð7Þ
consecutively for j ¼ 1;2; . . . ; J. Here by convention v ð0Þ ¼ 0. A function v on X is then defined by
vðx; yÞ ¼ v ðjÞðx; yÞ with j s:t: bj�1 < x < bj: ð8Þ
The second term in the right hand side of (7) requires some explanation. While this is mostly done in the next section, a short
intuitive explanation goes as follows. The term v ðj�1Þðbj�1; �Þ exclusively contains forward going waves because of the pres-
ence of a PML non-reflecting layer immediately to its right in XðjÞ. The term �2dðx� bj�1Þ@xv ðj�1Þðbj�1; �Þ is meant to cause the
same forward going wave field in the field v ðjÞ. The form of this term can be explained by the properties of the single layer
potential. The solution to
Au ¼ hðyÞdðx� bj�1Þ

has the property that
lim
�!0

@xuðbj�1 þ �; yÞ � @xuðbj�1 � �; yÞ ¼ �hðyÞ;
if k is continuous at x ¼ bj�1. Assuming the medium kðjÞ is independent of x, the source hðyÞdðx� bj�1Þ generates waves prop-
agating both forwardly and backwardly in a symmetric fashion. The factor �2 is introduced so that the forward propagating
part equals v ðj�1Þðbj�1; yÞ. The backward propagating part is absorbed in the neighboring PML layer. Note that in this way, all
the subdomain sources f ðkÞ with k 6 j can contribute to the field v ðjÞ.

The downward sequence of subdomain solves takes as right hand side the restrictions to a subdomain of the residual
g ¼ f � Av
However, v is undefined and generally discontinuous at the boundaries x ¼ bj; j ¼ 1; . . . ; J � 1. While g is still well defined, it
only exists as a generalized function (distribution), with most singular term of the form d0ðx� bjÞhðyÞ.

The problem with this is not that g is unsuitable as a right hand side. Solutions to Helmholtz equations with distributional
right hand sides in general exist. And, as a Helmholtz equation is formally an elliptic equation, the solutions are smooth away
from the singular support of the right hand side. However, the restriction of g to the subdomains DðjÞ is not well defined.
Indeed, such a restriction is obtained by multiplying g by the indicator function IDðjÞ of DðjÞ, and this multiplication is in gen-
eral not well defined, because of the overlapping singular supports.

Therefore we introduce a second set of domain boundaries
0 ¼ ~b0 <
~b1 < . . . < ~b~J ¼ L:
with ~bj–bk for all 0 < j < ~J and 0 < k < J. Similarly as above we defined sets ~DðjÞ and ~XðjÞ, by ~DðjÞ ¼�~bj�1;
~bj½��0;1½, and

~XðjÞ ¼�~bj�1 � LPMLð1� dj;1Þ; ~bj þ LPMLð1� dj;JÞ½��0;1½, and we let ~AðjÞ be the Helmholtz operator with PML modification on ~XðjÞ.
The function gðjÞ on ~XðjÞ can now be defined by
gðjÞðx; yÞ ¼ I~DðjÞgðx; yÞ:
Next a series of functions wðjÞ on ~XðjÞ is determined for j ¼ ~J;~J � 1; . . . ;1 (computed in this order) from the equations
eAðjÞwðjÞ ¼ gðjÞ þ 2dðx� ~bðjÞÞ@xwðjþ1Þð~bj; �Þ; ð9Þ
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and a function w is defined by
wðx; yÞ ¼ wðjÞðx; yÞ
where j is such that ~bj�1 < x < ~bj. The function w is in general undefined for x ¼ ~bj;1 6 j 6 ~J � 1, where it is discontinuous,
but this is not a problem (we do not go into detail regarding the regularity of the solutions in this work.)

The approximate solution to the Helmholtz equation is given by v þw. We define P to be the map f # v þw. The map P
can be used as a left- or right preconditioner in an iterative solution method like GMRES.

2.2. Discrete formulation

Discretization is done using finite differences. We focus on a relatively simple scheme, using the standard second order
approximation to the Laplacian. Because the emphasis in this work is on the convergence of the iterative method for the dis-
crete system, and on a proof of principle, questions related to the use of higher order discretizations and the use of different
schemes such as finite elements are relegated to later work.

The grid distance is assumed to be equal in x and y directions and is denoted by h. The grid size is denoted by nx � ny. In 2-
D, the finite difference approximation to Au is given by
ðAuÞi;j ¼
1

h2 �ui�1;j þ 2ui;j � uiþ1;j
� �

þ 1

h2 �ui;j�1 þ 2ui;j � ui;jþ1
� �

� k2
i;jui;j
In 3-D we use
ðAuÞi;j;k ¼
1

h2 �ui�1;j;k þ 2ui;j;k � uiþ1;j;k
� �

þ 1

h2 �ui;j�1;k þ 2ui;j;k � ui;jþ1;k
� �

þ 1

h2 �ui;j;k�1 þ 2ui;j;k � ui;j;kþ1
� �

� k2
i;j;kui;j;k
In the PML layers we use the approximation
ax@xðax@xuðxi; yjÞÞ ¼ axðxiÞ
axðxiþ1=2Þ

uiþ1;j�ui;j

h � axðxi�1=2Þ
ui;j�ui�1;j

h

h

where axðxÞ ¼ 1
1þirx ðxÞ

x
. The subdomain boundaries are assumed to be at half grid points bj ¼ xbjþ1=2. The discrete equivalent to

the interval �bj�1; bj½ is therefore the set of points fxbj�1þ1; . . . ; xbj
g.

The use of two sets of subdomains, with two sets of LDLt factorizations of the AðjÞ is not very attractive. Fortunately it is not
needed. After the first set of discrete subdomain boundaries bj is chosen, the second set is defined by
~b0 ¼ b0
~bJ ¼ bJ

~bj ¼ bj þ 1 for j ¼ 1; . . . ; J � 1:
The domain for the operators AðjÞ is given by the grid
fxbj�1þ1; . . . ; x~bg � fy1; . . . ; yny
g extended with PML layers of thickness wpml

on the internal boundaries:
ð10Þ
Finally, we need to specify the derivative @x and the distribution dðx� bjÞ on the right hand side of (7) and (9) We approx-
imate derivative on a half-grid point by
@xuðxjþ1=2Þ �
1
h
ðujþ1 � ujÞ:
The d function is approximated by
dðxl � xjþ1=2Þ �
1

2h ifjl� ðjþ 1=2Þj ¼ 1=2
0 otherwise

(

We generally aim that all subdomains have approximately the same size in number of gridpoints. Since this size is given

by ðnx þ ðJ � 1Þð2wpml þ 1ÞÞny, we choose the bj such that
bj � wpml þ j
nx � 2wpml � 1

J
ð11Þ
2.3. Algorithm

In the previous sections the operators A and P where specified. Our plan is to use GMRES for one of the following two
equations, the right preconditioned system



Table 1
List of algorithms. Algorithms 1 and 5 form the top-level part of the program.

ALGORITHM 1: Preparation
given J;nx determine subdomain boundaries from (11)

create matrix of operators AðjÞ on subdomains given in (10)
perform LDLt decomposition

ALGORITHM 2: Transform to have data only at boundaries
solve ~uðjÞ and ~u from (14)
output / ¼ f � A~u

ALGORITHM 3: Apply AP to an input f
for j ¼ 2; . . . ; J, solve (7)
compute the residual g ¼ f � Av
for j ¼ J � 1; . . . ;1, solve (9)
compute the residual h ¼ g � Aw
output f � h

ALGORITHM 4: Apply P to an input w and add ~u
for j ¼ 2; . . . ; J, solve (7) with f ¼ w
compute the residual g ¼ w� Av
for j ¼ J � 1; . . . ;1, solve (9)
output v þwþ ~uðjÞ

ALGORITHM 5: Solve Au ¼ f
use Algorithm 2 to compute /
apply GMRES with AP given by Algorithm 3 to solve (15)
use Algorithm 4 to compute solution u from w
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APv ¼ f ; u ¼ Pv ð12Þ
or the left preconditioned system
PAu ¼ Pf ð13Þ
These appear to be systems of size nxny � nxny, but as is common in domain decomposition methods, a modification of the
problem to one involving only degrees of freedom near the boundary is possible at least for (13).

Indeed, the GMRES iteration of the right-preconditioned problem can straightforwardly be restricted to the 2ðJ � 1Þ layers
of grid points at xk;l; k ¼ bj þ 1 and k ¼ bj þ 2, for j ¼ 1; . . . ; J � 1. This is based on two observations. The first is that for any f,
the residual f � APf is only non-zero at grid points xk;l with k ¼ bj þ 1 or k ¼ bj þ 2, for some j;1 6 j 6 J � 1. The second is that
the right hand side f can easily be replaced by a right hand side / with the same property. Namely, let ~f ðjÞ be restriction of f to
the xk;l with k 2 f~bj�1 þ 1; . . . ; ~bjg, and ~uðjÞ be the solution to
AðjÞ~uðjÞ ¼ ~f ðjÞ ð14Þ
and set ~uk;l ¼ ~uðjÞk;l if k 2 f~bj�1 þ 1; . . . ; ~bjg. Then as new right hand side the residual can be used
/ ¼ f � A~u:
Then, after solving w from
Aw ¼ / ð15Þ
using the right-preconditioned equation in the reduced space, the solution of the original problem is obtained by taking
u ¼ wþ ~u:
This concludes our outline of the method. In Table 1 the main steps that can be used in a computer implementation are
outlined.

3. Theoretical results

3.1. Multiplicative domain decomposition with upward and downward sweeps in 1-D

Here we study our approach of using upward and downward sweeps of subdomain solves for the 1-D problem. We estab-
lish that the constant coefficient 1-D problem is solved in one step with this method. A similar result holds when the upward
and downward sequences of solves are done concurrently. Note that these results are different from those in [11], even
though similar ideas are used in the proofs.

For the upward sweep, consider v ðjÞ defined by
�@2
xxv

ðjÞ � k2v ðjÞ ¼ f ðjÞ for x 2�bj�1; bj½ ð16Þ
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@xv ðjÞ þ ikv ðjÞ ¼ @xv ðj�1Þ þ ikv ðj�1Þ
; at x ¼ bj�1 ð17Þ

�@xv ðjÞ þ ikv ðjÞ ¼ 0 at x ¼ bj: ð18Þ
Then by induction it follows that
v ðjÞðxÞ ¼ i
2k

Z x

0
eikðx�sÞf ðsÞdsþ i

2k

Z bj

x
e�ikðx�sÞf ðsÞds ð19Þ
for bj�1 < x < bj. Indeed, if (19) is satisfied with j replaced by j� 1, it follows that
@xv ðj�1Þðbj�1Þ þ ikv ðj�1Þðbj�1Þ ¼
Z bj�1

0
eikðbj�1�sÞf ðsÞds; ð20Þ
which together with (6) implies (19).
Next let UðjÞ satisfy
�@2
xxUðjÞ � k2UðjÞ ¼ f ðjÞ for x 2�bj�1; bj½ ð21Þ

@xUðjÞ þ ikUðjÞ ¼ @xv ðj�1Þ þ ikv ðj�1Þ
; at x ¼ bj�1 ð22Þ

�@xUðjÞ þ ikUðjÞ ¼ �@xUðjþ1Þ þ ikUðjþ1Þ at x ¼ bj; ð23Þ
obtained by setting UðJÞ ¼ v ðJÞ and solving UðjÞ for j ¼ J � 1; J � 2 . . . ;1 in that order. (This way of double sweeping is slightly
different from the one above.) Then by induction
�@xUðjþ1ÞðbjÞ þ ikUðjþ1ÞðbjÞ ¼
Z L

bj

e�ikðbj�sÞf ðsÞds
and for bj�1 < x < bj
UðjÞðxÞ ¼ i
2k

Z x

0
eikðx�sÞf ðsÞdsþ i

2k

Z L

x
e�ikðx�sÞf ðsÞds
i.e. the solution of the full problem.
Next we discuss the case of an upward and a downward sweep that proceed concurrently. More precisely described it is

the same method as in the introduction, but at iteration count n only the functions v ðnÞn and v ðJþ1�nÞ
n are updated. Using the

solution formula (6) again it can be verified that v JðxÞ, given by v ðjÞJ for bj�1 < x < bj, is the solution of the original problem.

3.2. PML based transmission on the strip

Here we consider the problem with k ¼ constant on the strip �0; L½��0;1½, with Dirichlet boundary conditions at y ¼ 0 and
y ¼ 1 and PML boundary layers at x ¼ 0 and x ¼ L. In this section we assume that a PML boundary layer behaves like a perfect
non-reflecting boundary condition.

The behavior of a perfect non-reflecting boundary is most easily described in the Fourier domain. After a Fourier trans-
form u ¼

P
l sinð2plÞûlðxÞ, l ¼ 1;2; . . ., and writing ûlðxÞ ¼ ûðx;gÞ;g ¼ 2pl, the Helmholtz equation becomes a family of ODE’s

that reads
�@2
xxûþ g2û� k2û ¼ f̂ ðx;gÞ ð24Þ
We assume that k–2pl for all integers l > 0. The non-reflecting boundary condition becomes
@xûþ kû ¼ h1 at x ¼ 0 ð25Þ

�@xûþ kû ¼ h2 at x ¼ L; ð26Þ
where k is given by
k ¼
i
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 � g2

q
if jgj < k

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g2 � k2

q
if jgj > k;

8><>: ð27Þ
and h1 and h2 are 0 for homogeneous non-reflecting boundary conditions and non-zero if incoming waves are to be modeled.
(In the spatial domain, after inverse Fourier transform in y, the factor k would become a pseudodifferential operator that is
non-local, explaining why in two and three dimension we can not obtain the properties (i) and (ii) of the introduction using
Robin boundary conditions.)

We have the following result:
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Theorem 1. In the situation just described, the map P satisfies AP f ¼ f .
Proof. The solution formula for (24)–(26) is given by
ûðx;gÞ ¼ �1
2k

Z x

0
ekðx�sÞ f̂ ðs;gÞdsþ�1

2k

Z L

x
e�kðx�sÞ f̂ ðs;gÞdsþ ekx

2k
h1 þ

e�kðx�LÞ

2k
h2
First we consider the fields v ðjÞ, in other words the forward sweep. Using induction, it easy to show that
v̂ ðjÞðx;gÞ ¼ �1
2k

Z x

0
ekðx�sÞ f̂ ðs;gÞdsþ�1

2k

Z bj

x
e�kðx�sÞ f̂ ðs;gÞds: ð28Þ
Indeed, assuming this is true with j� 1 substituted for j it follows that
@xv̂ ðj�1Þðbj�1;gÞ ¼
�1
2

Z x

0
ekðx�sÞ f̂ ðs;gÞds
The solution formula applied to right hand side f̂ ðjÞðx;gÞ � 2dðx� bj�1Þ@xv̂ ðj�1Þðbj�1;gÞ then gives (28).
Next we consider the backward sweep. The wðjÞ are solutions to Helmholtz equations with as right hand side the residual

f � Av derived from the v ðjÞ. From (28) it follows that
ð@x þ kÞv̂ð~bj;gÞ ¼ �
Z ~bj

0
ekðx�sÞ f̂ ðs;gÞds: ð29Þ
It follows that v̂ þ ŵðjÞ satisfies for ~bj�1 < x < ~bj the equations
�@2
xxðv̂ þ ŵðjÞÞ þ ðg2 � k2Þðv̂ þ ŵðjÞÞ ¼ f̂
while at the boundaries of the interval
ð@x þ kÞðv̂ þ ŵðjÞÞ ¼ �
Z ~bj�1

0
ekðx�sÞ f̂ ðs;gÞds at x ¼ ~bj�1 ð30Þ

ð�@x þ kÞðv̂ þ ŵðjÞð~bj � 0;gÞÞ ¼ ð�@x þ kÞðv̂ þ ŵðjþ1ÞÞ at x ¼ ~bj ð31Þ
Here ŵðjÞð~bj � 0;gÞ denotes the limit limx"~bj
ŵðjÞðx;gÞ. The first of these two equations follows easily from (29), while the sec-

ond follows from the transmission condition. Then by induction (31) can also be written as
ð�@x þ kÞðv̂ þ ŵðjÞð~bj � 0;gÞÞ ¼ �
Z L

~bj

e�kðx�sÞ f̂ ðs;gÞds at x ¼ ~bj
It follows that
v̂ðx;gÞ þ ŵðjÞðx;gÞ ¼ �1
2k

Z x

0
ekðx�sÞ f̂ ðs;gÞdsþ�1

2k

Z L

x
e�kðx�sÞ f̂ ðs;gÞds
for ~bj�1 < x < ~bj, which completes the proof. h
4. Numerical results

In this section we present examples in 2-D and in 3-D with constant and variable k. We will focus on the convergence of
the method, measured by the number of iterations for reduction of the residual by a factor 10�6. After studying the method in
its own right, we compare the method with a method that combines classical Robin transmission conditions with the double
sweeping method presented here.

In our 2-D example we will vary the size of the domain and the number of subdomains, keeping hx constant. We will see
that the number of iterations required is essentially independent of those parameters. In 3-D we take subdomains of con-
stant thickness of 10 grid points, excluding the PML layers. The number of subdomains is therefore dictated by the size of
the domain, and we study the convergence as a function of domain size. Again the number of iterations is approximately
constant. We also study the influence on the parameter wpml for constant coefficient media. In our 3-D examples a value
of wpml ¼ 4 generally produced a good convergence. Nevertheless the parameter wpml has some influence and some insight
in this is obtained from the third example. The 3-D examples were done with domain sizes up to ð400Þ3.

Because of the size of the problems, the implementation was done under MPI. For the solution of the linear systems on the
subdomain the parallel sparse multifrontal solver MUMPS [23] was used. In the version used to generate the 2-D examples
the sequential sparse multifrontal solver UMFPACK [24] was used. The examples were run on the LISA linux cluster of the
Stichting Academisch Rekencentrum Amsterdam (SARA).
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The final part of this section concerns a comparison of PML-based and Robin transmission conditions. This is done in 2-D
using a constant and a random medium. For these tests a Matlab implementation was used.
4.1. Example 1: Marmousi

Our first example is the Marmousi model, a synthetic model from reflection seismology. In this model the velocity cðx; yÞ
varies between 1500 and 5500 ms�1. The model and a solution to the Helmholtz equation are given in Fig. 1.

Our first set of computations shows the number of iterations required for convergence as a function of grid size h and the
number of subdomains J. It is summarized in Table 2. The grid size varies between h ¼ 1 and h ¼ 16 m, and the number of
subdomains between 3 and 300. The frequency x is chosen such that hx is constant. The thickness of the PML layer is given
by wpml ¼ 5 except for the case with 300 subdomains which we simulated twice, with wpml ¼ 5 and wpml ¼ 6.

What stands out is that the convergence is very fast, with between 4 and 9 iterations required for reduction of the residual
by 10�6. There is only a mild dependence on the grid size and on the number of subdomains. The dependence on wpml and the
somewhat larger number for 300 subdomains with wpml ¼ 5 will be discussed below.
4.2. Example 2: A random medium in 3-D

Our second example is random medium in 3-D. Plots of the medium and a solution are given in Fig. 2. The size of the
example varied between 1003 and 4003 (excluding PML layers on the sides). In all cases the medium was divided in layers
of thickness 10 (excluding again the PML layers). Experiments were performed with wpml ¼ 4 and 5. The thickness of the sub-
domain on which the computation took place was hence 19 and 21 grid points respectively. The results are summarized in
Table 3.

The result are similar to those of the Marmousi examples. The iterative method converged rapidly, in 6 to 8 iterations. In
these examples the value wpml ¼ 4 is sufficient.
c(x,y) for Marmousi (m/s)
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Fig. 1. Marmousi model and solution with x
2p ¼ 50.



Table 2
Convergence results for Example 1. Displayed is the number of iterations for reduction of the residual by 10�6 as a function of the size of the domain and the
number of subdomains.

Nx � Ny h (m) x
2p (Hz) Number of x-subdomains

3 10 30 100 300

600� 212 16 12.5 4 5 6
1175� 400 8 25 5 6 7
2325� 775 4 50 6 6 7 9
4625� 1525 2 100 6 6 7 8
9225� 3025 1 200 7 8 9 13 (8) (⁄)

(⁄) 13 was obtained for wpml ¼ 5;8 for wpml ¼ 6.

Fig. 2. (a) Random medium used in Example 2; (b) solution to the Helmholtz equation with a point source.
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4.3. Example 3: A constant medium in 3-D and varying wpml

In our third example we explore the dependence of the convergence on wpml. The main conclusion of the previous two
examples is that convergence is fast in all cases. Nevertheless, a increase in wpml reduces the number of iterations somewhat
in the larger examples.



Table 3
Convergence results for Example 2, a random medium in 3-D.

nx � ny � nz h x
2p J wpml

4 5

100� 100� 100 0.01 10 10 6 5
200� 200� 200 0.005 20 20 6 6
300� 300� 300 0.00333 30 30 7 6
400� 400� 400 0.0025 40 40 8 6

Table 4
Convergence results for Example 3. Displayed is the number of iterations for reduction of the residual by 10�6 as a function of domain size and wpml.

nx � ny � nz h x
2p J wpml

3 4 5 6

100� 100� 100 0.01 10 10 5 4 4 3
200� 200� 200 0.005 20 20 7 5 4 4
400� 400� 400 0.0025 40 40 10 7 5 5
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In this example the domain is the unit cube, and the velocity c ¼ 1. (A constant medium is attractive because it requires
less computational resources, due to the fact that for only one subdomain the LDLt decomposition has to be computed.) The
subdomain size varies between 1003 and 4003 (excluding the outer PML layers), while the thickness of the PML layers varies
between 3 and 6 gridpoints. The frequency x is chosen to correspond to 10 grid points per wavelength. The results are given
in Table 4.

While we have limited data, still the following pattern can be observed. For fixed wpml the number of iterations increases
with the grid size. However the number of iterations can be kept more or less constant if one can increases wpml at the same
time as the grid size. Here wpml goes roughly logarithmically with the grid size.

4.4. Comparison between Robin and PML-based transmission conditions

Motivated by our results so far, we study a double sweep method with Robin transmission conditions. This appears to be a
new combination even though Robin transmission conditions have been extensively studied. We will compare this with the
method above.

Similarly as above, we introduce overlapping subintervals of the x-axis, here denoted by �lðjÞ; rðjÞ½; j ¼ 1; . . . ; J, with
rðjÞ ¼ lðjþ1Þ þmoverlaph, moverlap denoting the overlap in gridpoints (i.e. lðjÞ ¼ bj and rðjÞ ¼ ~bðjþ1Þ). In 2-D, for a rectangular domain
�0; L½��0; Ly½, the right sweep with Robin transmission conditions amounts to solving the boundary value problems
x
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Fig. 3. Random medium used for the comparision of Robin and PML-based transmission conditions.



Table 5
Comparison of convergence between Robin and PML-based transmission conditions for a constant medium.

Nx � Ny h x
2p J PML Robin

100� 100 0.01 10 10 3 9
200� 200 0.005 20 20 4 13
400� 400 0.0025 40 40 4 20
800� 800 0.00125 80 80 5 42
1600� 1600 0.000625 160 160 7 103

Table 6
Comparison of convergence between Robin and PML-based transmission conditions for the random medium displayed in Fig. 3.

Nx � Ny h x
2p J PML Robin

100� 100 0.01 7.14 10 7 11
200� 200 0.005 14.29 20 6 14
400� 400 0.0025 28.57 40 6 20
800� 800 0.00125 57.14 80 7 34
1600� 1600 0.000625 114.3 160 8 74
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�@2
xxv ðjÞ � @

2
yyv ðjÞ � kðx; yÞ2v ðjÞ ¼ f ðjÞ for lðjÞ < x < rðjÞ;0 < y < Ly

@xv ðjÞ þ ikv ðjÞ ¼ @xv ðj�1Þ þ ikv ðj�1Þ at x ¼ lðjÞ;0 < y < Ly

�@xv ðjÞ þ ikv ðjÞ ¼ 0 at x ¼ rðjÞ;0 < y < Ly
for j ¼ 1; . . . ; J consecutively, where f ðjÞðx; yÞ ¼ f ðx; yÞ for lðjÞ < x < lðjþ1Þ and zero elsewhere and PML modifications are as-
sumed to be present near all the external boundaries. This results in an approximate solution given by vðx; yÞ ¼ v ðjÞðx; yÞ
for lðjÞ < x < lðjþ1Þ. The left sweep uses the residual g ¼ f � Au as right hand side and is otherwise a left–right reflection of
the right sweep. This algorithm was implemented in Matlab.

A choice in this algorithm was the overlap parameter moverlap. This parameter was set equal to 1, since a zero overlap re-
sulted in significantly worse convergence and larger overlaps did not significantly improve the convergence.

On the unit square tests were performed for a constant medium (c ¼ 1) and a random medium displayed in Fig. 3. We
chose Nx ranging from 100 to 1600 and Ny ¼ Nx. The layer thickness was set at 10 points. Because of the absence of PML lay-
ers, the subdomain solves are roughly 4 times cheaper when using Robin transmission conditions compared to PML based
conditions. Iteration numbers for reduction of the residual by 10�6 are given in Tables 5 and 6.

Two conclusions can be drawn. First the method looks very interesting, and certainly seems worthy of further study. On
the other hand the remarkable scaling of the PML-based transmission conditions is not reproduced. With the Robin trans-
mission conditions the iteration numbers grow roughly linearly in Nx, or as N1=2 in 2-D. In 3-D this would lead to iteration
numbers OðN1=3Þ.

We thank one of the anonymous reviewers for suggesting a comparison with Robin transmission conditions.

5. Discussion

A new domain decomposition method for the Helmholtz equation was presented. It has remarkably fast convergence,
even in the case of thin-layered subdomains. We have focussed on the use of this method with sparse direct solvers on
the subdomains.

The method is related to that of Schädle et al. in [2]. In this reference, the authors consider finite element methods for the
time harmonic Maxwell equations on unbounded domains truncated using the perfectly matched layer. A domain decom-
position method using PML-based interface conditions is derived using a single sweep in each iteration. While the transmis-
sion term is different from the one derived here, the difference is not very relevant since its contribution propagates from the
boundary bj directly into the PML layer, not entering the physical domain. Numerical results are given for a 2-D example,
using 2 or 3 subdomains, where in the second case the convergence is markedly worse, probably due to the use of a single
sweep. We conclude that using a double sweep preconditioner is essential to obtain the good convergence properties.

As pointed out in the introduction, the use of multiplicative domain decomposition implies that the method is by nature
sequential. There are basically two ways to obtain good parallel performance. One is the parallellization of the LDLt factor-
ization and backsubstitution steps. Such an approach is described in [25] for the sweeping preconditioner. This is mostly a
problem of parallel linear algebra, and not of domain decomposition (although the distribution of the unknowns is relevant
for both parts of the story). The second strategy is to divide the subdomains over groups of processing nodes and perform the
computation for multiple right hand sides in a pipelined fashion. Because of the setup time, the method is most relevant for
the case with multiple right hand sides anyway. (In other cases it probably makes more sense to opt e.g. for the shifted Lapla-
cian method).
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The solutions to the time harmonic Maxwell equations and the time harmonic linear elastic wave equation behave in
many respects the same as those of the Helmholtz equation. We expect that the techniques outlined in this paper are appli-
cable in those cases as well.
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