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Highlights

• Isotope-independent methods to perform cross section temperature interpolation are developed.
• A cross section is approximated as a linear combination of reference temperatures cross sections.
• The kernel of the operation is reconstructed as an L2 optimization problem.
• L2 norm is physically justified, yielding formulae for optimal interpolation coefficients.
• Optimal reference temperature grids are developed.
• Kernel reconstruction significantly outperforms previous temperature interpolation methods.
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Abstract

This article establishes a new family of methods to perform temperature interpolation of nuclear in-
teractions cross sections, reaction rates, or cross sections times the energy. One of these quantities at
temperature T is approximated as a linear combination of quantities at reference temperatures (Tj). The
problem is formalized in a cross section independent fashion by considering the kernels of the different
operators that convert cross section related quantities from a temperature T0 to a higher temperature T –
namely the Doppler broadening operation. Doppler broadening interpolation of nuclear cross sections is thus
here performed by reconstructing the kernel of the operation at a given temperature T by means of linear
combination of kernels at reference temperatures (Tj). The choice of the L2 metric yields optimal linear
interpolation coefficients in the form of the solutions of a linear algebraic system inversion. The optimization
of the choice of reference temperatures (Tj) is then undertaken so as to best reconstruct, in the L∞ sense,
the kernels over a given temperature range [Tmin, Tmax]. The performance of these kernel reconstruction
methods is then assessed in light of previous temperature interpolation methods by testing them upon iso-
tope 238U. Temperature-optimized free Doppler kernel reconstruction significantly outperforms all previous
interpolation-based methods, achieving 0.1% relative error on temperature interpolation of 238U total cross
section over the temperature range [300K, 3000K] with only 9 reference temperatures.

Keywords: Doppler broadening, nuclear cross sections, temperature interpolation, kernel reconstruction.

1. Introduction

Temperature effects play a crucial role in nuclear reactor physics. One such effect – Doppler broadening
– is for instance responsible for important feedback mechanisms that can ensure the stability of a critical
reactor.

In both deterministic and Monte Carlo neutron transport calculations, the temperature dependence of
nuclear cross sections is often dealt with by pre-tabulating N Doppler-broadened cross sections, σTj (E), at a
sequence of given temperatures, (Tj)j∈�1;N�, and then interpolating those values through some interpolation
scheme to find the cross section, σT (E), at the desired temperature T [1]. Such an interpolation is necessary
in practice due to the difficulty of calculating the exact Doppler broadening on-the-fly. So far, Doppler
broadening temperature interpolation has been traditionally performed by ad hoc methods that were not
the result of a rigorous optimization problem, and which were selected on best-performance criteria.
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In this article, a new family of linear interpolation methods is developed: kernel reconstruction methods.
They rest on the mathematical concept of minimizing the distance between the kernels of the linear operators
that transform a cross section, a reaction rate, or energy times the cross section, from one temperature to
another.

As a physical interpretation, these kernel reconstructions seek to recreate the velocity (or energy) dis-
tribution of the target particle at a given temperature, T , with a linear combination of the distributions at
the reference temperatures, (Tj). This idea had been introduced, though not systematically formalized, in
[2], for a particular case of reaction rates.

In section 2, this article presents the principle of linear kernel reconstruction methods for Doppler broad-
ening, and presents four natural kernel reconstruction methods: Doppler kernel reconstruction; Maxwellian
kernel reconstruction; Maxwellian-over-velocity kernel reconstruction; and Boltzmann kernel reconstruction.
In each case, the linear reconstruction can be performed as a free optimization problem or as a constrained
one, for a total of eight methods. For each method, the optimal coefficients – in the L2 norm sense – for
linear interpolation are exhibited as the solution to an inversion of a cross section independent system. Thus,
provided a set of reference temperatures (Tj) and a target temperature T to which to interpolate, the kernel
reconstruction methods provide optimally chosen interpolation coefficients.

Section 3 further temperature-optimizes these kernel reconstruction methods by finding the set of refer-
ence temperatures (Tj)j∈�1;N� that minimize the kernel reconstruction relative error over the entire temper-
ature range [Tmin, Tmax] on which the quantities are to be interpolated. An algorithm specifically devised
to solve the min-max problem of such a temperature-optimization is introduced. Each kernel reconstruc-
tion method is tested with its own optimized reference temperatures grid to assess kernel reconstruction
performance.

Finally, section 4 studies the performance of the kernel reconstruction methods, with their respective
optimal (Tj)j∈�1;N� reference temperature distributions, on nuclide 238U. Temperature-optimized constrained
Doppler kernel reconstruction is shown to have the best accuracy amongst all eight kernel reconstruction
methods. However, the free Doppler kernel reconstruction method was preferred due to its close accuracy
and higher algorithmic and computational performance. Free Doppler kernel is then compared to previous
Doppler broadening interpolation methods commonly in use in nuclear reactor physics calculations.

2. Kernel reconstruction linear combination temperature interpolation methods

This section defines and establishes the various kernel reconstruction methods to perform Doppler broad-
ening temperature interpolation by means of linear combination of reference cross sections, reaction rates,
or energy-times-cross sections.

2.1. Dopper broadening operation
Assuming Maxwell-Boltzmann’s free-gas model for the target nuclei distributions of velocities −→vt and

energies, the Doppler broadening effect of temperature on nuclear reaction rates in the resolved resonance
range can be modeled as follows [3]:

vσT (v) =

∫
vt|vr>0

vrσT0
(vr)MT (−→vt ) d−→vt (1)

where T is the temperature of the target nuclei; T0 a given reference temperature which will henceforth
be, without loss of generality, assumed to be zero; vr is the relative speed between the neutron hitting at
speed v the target that has a Maxwell-Boltzmann velocity distribution MT (−→vt ); and σT (v) designates the
interaction cross section at temperature T for incoming neutron speed v (respectively temperature T0 and
relative speed vr for σT0

(vr)). The assumption of isotropic velocity distribution yields the following Doppler
broadening of the reaction rates operator:

vσT (v) =
1

2

∫ 1

−1

dμ

∫
vt|vr>0

vrσT0(vr)MT (vt) dvt (2)
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where μ = −→vt · −→v and MT (vt) is the Maxwellian distribution of speeds vt of the target particle at
temperature T :

MT (vt) dvt = 4πv2t

(
s2

mn

2π

)3/2

e−s2( 1
2mnv

2
t )dvt (3)

mn designates the neutron mass, and s =
»

A
kb(T−T0)

, where A is the atomic mass ratio of the target
nuclei with respect to the incoming neutron, and kb is the Boltzmann constant.

Further developing the classical mechanics energy transformation

1

2
mv2r =

1

2
m
(
v2 − 2μvtv + v2t

)
(4)

yields Solbrig’s kernel for Doppler broadening as a function of z =
√
E, where E = 1

2mnv
2 is the kinetic

energy of the incoming neutron [3]:

z2σT (z) =

∫ ∞

0

x2σT0(x)KD(z, x)dx

where: KD(z, x) =
s√
π

î
e−s2(z−x)2 − e−s2(z+x)2

ó (5)

2.2. Kernel operators definitions
From the latter, it stems that Doppler broadening is a kernel linear operation that transforms a quantity

at temperature T0 to its value at temperature T . Depending on which of the following three quantities is
being transformed, four kernels K can be observed:

1. The E · σ(E) quantity relates to the KB

T kernel – here called the Boltzmann kernel since it is the
Boltzmann distribution of the target particles energies:

z2σT (z) =

∫
x2σT0(x)KB

T (z, x)dx (6)

2. The v · σ(v) quantity can relate to two kernels, according to how the integration is interpreted: KM

T –

here called the Maxwell kernel as it is the Maxwell velocity distribution of the target particles; or KM

v

T

– here called the Maxwell-over-velocity kernel since that is the ratio that springs from the integration.

vσT (v) =

∫
xσT0

(x)KM

T (v, x)dx (7)

vσT (v) =

∫
xσT0(x)K

M

v

T (v, x)dx (8)

3. The σ(z) quantity relates to the kernel KD

T – here called the Doppler kernel as it is the kernel of the
Doppler broadening operation acting on the cross section:

σT (z) =

∫
σT0

(x)KD

T (z, x)dx (9)

For clarity purposes, the integrals in the latter definitions are so-far willfully left vague, and formal
derivations are expressed to present the structure of the reasoning. The details of all derivations are relegated
to the appendixes for reproducibility purposes.
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2.3. Kernel reconstruction
Hereafter is presented the general method of kernel reconstruction, and the kernel reconstruction problem

is formally solved in the general case for both free and constrained reconstruction problems.

2.3.1. Temperature interpolation by linear combination of pre-tabulated cross sections
Let us consider the cross section temperature interpolation problem and search for solutions that are

linear combinations of the pre-tabulated values, such that we approximate the exact value of the cross
section, σ(exact)

T by:

σ
(exact)
T ≈ σ

(approx)
T =

N∑
j=1

cjσTj (10)

where the σTj
are assumed to be exactly known. Our goal is to formulate the problem so as to find the

optimal choice of (cj) coefficients to perform this linear interpolation.
The linearity of the kernel operators entails that the difference between the exact and the interpolated

quantity translates into an integral difference between kernels. In the case of the Doppler kernel, this means:Ä
σ
(exact)
T − σ

(approx)
T

ä
(z) =

∫
σT0(x)

[
KD

T −
∑
j

cjKD

Tj

]
(z, x)dx

(11)

which leads to the weak formulation:∫ Ä
σ
(exact)
T − σ

(approx)
T

ä
(z)dz =

∫∫
σT0

(x)

[
KD

T −
∑
j

cjKD

Tj

]
(z, x)dxdz

(12)

2.3.2. Free kernel reconstruction & algebraic solution
Regardless of the metrics chosen, the minimization of the latter expression will be cross section dependent.

However, in order to develop a cross section independent interpolation method, one can search for the (cj)

coefficients that minimize the distance between the kernels,
∥∥∥KD

T −
∑

j cjKD

Tj

∥∥∥. At this point, the choice of
the norm can be arbitrary. However, choosing the L2 norm will not only provide with a mathematically
convenient framework which yields algebraically closed formulas, but is moreover physically justified by the
general shape of nuclear cross sections, which yields a frequency separation argument presented in appendix
D. This entails the following L2 minimization problem:

Find the (cj) coefficients that minimize in the L2 sense the difference between
the exact Doppler kernel at temperature T and a linear combination of kernels at temperatures (Tj)

cj = argmin
cj

∥∥∥∥∥∥KD

T −
∑
j

cjKD

Tj

∥∥∥∥∥∥
L2

(13)

Solving this problem is here called L2 free Doppler kernel reconstruction, and the same approach on
v ·σT (v) and E ·σT (E) yields analog minimization problems and free kernel reconstructions for the Maxwell,
Maxwell-over-velocity and Boltzmann kernels.

An important characteristic of these kernel reconstruction schemes is that the choice of the L2 norm
provides an Hilbert space structure in which the latter optimization problems become algebraically solvable.
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Indeed, let (cj) be the coefficients we are searching for, and 〈f |g〉 denote the scalar product acting upon

our Hilbert functional space, then developing
∥∥∥KT −∑N

j=1 cjKTj

∥∥∥2
L2

= 〈KT |KT 〉− 2
∑

j∈�1;N� cj〈KTj
|KT 〉+∑

j,k ckcj〈KTj
|KTk

〉, and searching for the local minima ∀j ∈ �1;N� ∂
∂cj

∥∥∥KT −∑N
j=1 cjKTj

∥∥∥2
L2

= 0, yields
the following system:

∀j ∈ �1;N�,
∑
k �=j

ck〈KTj
|KTk

〉+ cj〈KTj
|KTj

〉 = 〈KTj
|KT 〉 (14)

Thus, if our problem has an interior solution, it must satisfy the above system, which can be written in
matrix form as follows:

G · C = Y (15)
where C is the array of coefficients we are searching for:

C = vect (〈KTi
|KT 〉) =

[
c1 , . . . , cN

]� (16)

G is the Gram matrix of the kernels:

G = mat
(〈KTi |KTj 〉

)
(17)

and Y is the target vector:

Y =
[ 〈KT1

|KT 〉 , . . . , 〈KTN
|KT 〉

]� (18)

2.3.3. Constrained kernel reconstruction & Algebraic solution
Both Boltzmann and Maxwell kernels are the respective densities of the Boltzmann and Maxwell prob-

ability distribution functions, which means that their L1 norm is equal to one.
When performing the kernel reconstruction, it can be advantageous to conserve this physical property,

which guarantees the volume of the kernel is unchanged. This implies making sure that the linear combina-
tion of Boltzmann or Maxwell distributions integrates to one so that it can still be considered a probability
density function for the target nuclei, or, equivalently, imposing that the linear interpolation coefficients cj
sum up to 1. This leads us to consider the L2 constrained kernel reconstruction problems:

Find the (cj) coefficients that minimize in the L2 sense the difference between
the exact kernel at temperature T and a linear combination of kernels at temperatures (Tj)

cj = argmin
cj

∥∥∥∥∥∥KT −
∑
j

cjKTj

∥∥∥∥∥∥
L2

under the unity constraint of conserving probability densities:
N∑
j=1

cj = 1

(19)

In the constrained kernel reconstruction case, injecting the condition
∑

j cj = 1 into
∥∥∥KT −∑N

j=1 cjKTj

∥∥∥
L2

yields the following system: ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

N−1∑
k �=j

ck〈K̃Tj
|fiKTk

〉+ cj〈K̃Tj
|K̃Tj

〉 = 〈K̃Tj
|›KT 〉

∀j ∈ �1;N − 1�, K̃Tj = KTj −KTN

N∑
j=1

cj = 1

(20)
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by noticing that

〈K̃Tj |fiKTk
〉 = 〈KTj |KTk

〉 − 〈KTj |KTN
〉 − 〈KTN

|KTk
〉+ 〈KTN

|KTN
〉 (21)

the constrained problem is thus reduced to inverting the following matrix system:

‹G · C = ‹Y (22)
where ⎡⎢⎢⎢⎣

g̃1,1 . . . ‡g1,N−1 0
...

. . .
...

...‡gN−1,1 . . . „�gN−1,N−1 0
1 . . . 1 1

⎤⎥⎥⎥⎦ (23)

and ‹Y =
î
〈fiKT1

|›KT 〉 , . . . , 〈‡KTN−1
|›KT 〉 , 1

ó�
(24)

The actual expressions of these Gram matrices will now depend on the particular kernel being recon-
structed and the scalar product considered.

2.4. Dopper kernel reconstruction
In the case of Doppler kernel reconstruction, the scalar products diverge. However, the algebraic solutions

can still be derived with the help of a continuity argument exposed in appendix A. This yields the following
temperature-dependent systems.

2.4.1. Free Doppler reconstruction system
The free Doppler kernel reconstruction system is:

D · C = Y (25)
with ⎡⎢⎢⎢⎢⎣

√
T1T1

(T1+T1
2 )

. . .
√
T1TN(

T1+TN
2

)
...

. . .
...√

T1TN(
T1+TN

2

) . . .
√
TNTN(

TN+TN
2

)

⎤⎥⎥⎥⎥⎦ ·
⎡⎢⎣ c1

...
cN

⎤⎥⎦ =

⎡⎢⎢⎢⎣
√
T1T

(T1+T

2 )
... √

TNT(
TN+T

2

)
⎤⎥⎥⎥⎦ (26)

2.4.2. Constrained Doppler reconstruction system
The constrained Doppler kernel reconstruction system is:

D̃ · C = Ã (27)
where ⎡⎢⎢⎢⎢⎣

d̃1,1 . . . ‡d1,N−1 0
...

. . .
...

...‡dN−1,1 . . . „�dN−1,N−1 0
1 . . . 1 1

⎤⎥⎥⎥⎥⎦ ·
⎡⎢⎢⎢⎣

c1
...

cN−1

cN

⎤⎥⎥⎥⎦ =

⎡⎢⎢⎢⎣
‹y1
...flyN−1

1

⎤⎥⎥⎥⎦ (28)

with ›dij = √
TiTjÄ

Ti+Tj

2

ä − √
TiTN(

Ti+TN

2

) − √
TNTjÄ

TN+Tj

2

ä + √
TNTN(

TN+TN

2

) (29)

and ‹yi = √
TiT(

Ti+T
2

) − √
TiTN(

Ti+TN

2

) − √
TNT(

TN+T
2

) +

√
TNTN(

TN+TN

2

) (30)
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2.4.3. Free Doppler reconstruction analytical solution
Further algebraic manipulations, developed in appendix A, have also enabled to exhibit the analytical

solution to the free Doppler kernel reconstruction system (i.e. equation (26)). The explicit formulae for the
solution coefficients are:

cj =

√
TjTÄ

Tj+T
2

ä∏
i�=j

Å
T − Ti

T + Ti

ãÅ
Tj + Ti

Tj − Ti

ã
(31)

2.5. Maxwell kernel reconstruction
In the case of Maxwell kernel reconstruction, the algebraic solutions stem from the Gauss integrals.

These are derived in appendix B, and yield the following temperature-dependent systems:

2.5.1. Free Maxwell reconstruction system
The free Mawell kernel reconstruction system is:

M · C = Y (32)

with ⎡⎢⎢⎣
T1T1

(T1+T1)
5/2 . . . T1TN

(T1+TN )5/2

...
. . .

...
TNT1

(TN+T1)
5/2 . . . TNTN

(TN+TN )5/2

⎤⎥⎥⎦ ·
⎡⎢⎣ c1

...
cN

⎤⎥⎦ =

⎡⎢⎢⎣
T1T

(T1+T )5/2

...
TNT

(TN+T )5/2

⎤⎥⎥⎦ (33)

2.5.2. Constrained Maxwell reconstruction system
The constrained Maxwell kernel reconstruction system is:

‹M · C = ‹Y (34)

where ⎡⎢⎢⎢⎣
fim1,1 . . . ·�m1,N−1 0

...
. . .

...
...·�mN−1,1 . . . ‰�mN−1,N−1 0

1 . . . 1 1

⎤⎥⎥⎥⎦ ·
⎡⎢⎢⎢⎣

c1
...

cN−1

cN

⎤⎥⎥⎥⎦ =

⎡⎢⎢⎢⎣
‹y1
...flyN−1

1

⎤⎥⎥⎥⎦ (35)

with
m̃ij =

TiTj

(Ti + Tj)
5/2

− TiTN

(Ti + TN )
5/2

− TNTj

(TN + Tj)
5/2

+
TNTN

(TN + TN )
5/2 (36)

and ‹yi = TiT

(Ti + T )
5/2

− TiTN

(Ti + TN )
5/2

− TNT

(TN + T )
5/2

+
TNTN

(TN + TN )
5/2 (37)

2.6. Maxwell-over-velocity kernel reconstruction
In the case of Maxwell-over-velocity kernel reconstruction, the algebraic solutions also stem from the

Gauss integrals, but are of a different order due to a different interpretation of the integral domains. Deriva-
tions are found in appendix B, and yield the following temperature-dependent systems:
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2.6.1. Free Maxwell-over-velocity reconstruction system
The free Maxwell-over-velocity kernel reconstruction system is:

M

v
· C = Y (38)

with ⎡⎢⎢⎣
1√

T1+T1
3 . . . 1√

T1+TN
3

...
. . .

...
1√

TN+T1
3 . . . 1√

TN+TN
3

⎤⎥⎥⎦ ·
⎡⎢⎣ c1

...
cN

⎤⎥⎦ =

⎡⎢⎢⎣
1√

T+T1
3

...
1√

T+TN
3

⎤⎥⎥⎦ (39)

It should be noted that this system is the Hadamard product 3rd power of the Boltzmann kernel recon-
struction problem that will be described below. This has the implication that the condition number of the
system is essentially risen to the 3rd power, significantly hindering the numerical stability of this system
over the Boltzmann reconstruction one.

2.6.2. Constrained Maxwell-over-velocity reconstruction system
The constrained Maxwell-over-velocity kernel reconstruction system is:

M̃

v
· C = ‹Y (40)

where ⎡⎢⎢⎢⎣
flmv1,1 . . . ‚�mv1,N−1 0

...
. . .

...
...‚�mvN−1,1 . . . Â�mvN−1,N−1 0

1 . . . 1 1

⎤⎥⎥⎥⎦ ·
⎡⎢⎢⎢⎣

c1
...

cN−1

cN

⎤⎥⎥⎥⎦ =

⎡⎢⎢⎢⎣
‹y1
...flyN−1

1

⎤⎥⎥⎥⎦ (41)

with fimvij =
1√

Ti + Tj
3 −

1√
Ti + TN

3 −
1√

TN + Tj
3 +

1√
TN + TN

3 (42)

and ‹yi = 1√
Ti + T

3 −
1√

Ti + TN
3 −

1√
TN + T

3 +
1√

TN + TN
3 (43)

2.7. Boltzmann kernel reconstruction
Boltzmann kernel reconstruction is rooted into Ferran’s convolution formalization of the Doppler broad-

ening operation [4]. Its Fourier analysis can help to physically justify the arbitrary choice of L2 norm
reconstruction using a frequency separation argument, as reported in appendix D. The algebraic solutions
for the Boltzmann kernel reconstruction are derived in appendix C, and yield the following temperature-
dependent systems:

2.7.1. Free Boltzmann reconstruction system
The free Boltzmann kernel reconstruction system is:

B · C = Y (44)

with ⎡⎢⎣
1√

T1+T1
. . . 1√

T1+TN

...
. . .

...
1√

TN+T1
. . . 1√

TN+TN

⎤⎥⎦ ·
⎡⎢⎣ c1

...
cN

⎤⎥⎦ =

⎡⎢⎣
1√

T+T1

...
1√

T+TN

⎤⎥⎦ (45)
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2.7.2. Constrained Boltzmann reconstruction system
The constrained Boltzmann kernel reconstruction system is:

B̃ · C = ‹Y (46)

where ⎡⎢⎢⎢⎢⎣
b̃1,1 . . . ‡b1,N−1 0
...

. . .
...

...‡bN−1,1 . . . „�bN−1,N−1 0
1 . . . 1 1

⎤⎥⎥⎥⎥⎦ ·
⎡⎢⎢⎢⎣

c1
...

cN−1

cN

⎤⎥⎥⎥⎦ =

⎡⎢⎢⎢⎣
‹y1
...flyN−1

1

⎤⎥⎥⎥⎦ (47)

with
b̃ij =

1√
Ti + Tj

− 1√
Ti + TN

− 1√
TN + Tj

+
1√

TN + TN
(48)

and ‹yi = 1√
Ti + T

− 1√
Ti + TN

− 1√
TN + T

+
1√

TN + TN
(49)

3. Temperature-Optimized Kernel Reconstruction Doppler Broadening

It has so far been demonstrated that provided the reference temperatures (Tj) and a temperature of
interest T to which one wishes to interpolate the value of a Doppler broadened quantity by linear combination
of the values at reference temperatures, then the choice of the (cj) interpolation coefficients can be optimally
approximated in a cross section independent way by solving a kernel reconstruction problem. In other words,
given (Tj) and T , optimal choices (in L2 sense) for (cj) have been established.

The purpose of this section is to address the optimal choice of reference temperatures (Tj) that will
minimize the interpolation error over a given temperature range T ∈ [Tmin, Tmax]. This error is dependent
on the cross section values. However, appendix D justifies why it is a good approximation to solve the
interpolation problem in a cross section independent fashion by minimizing the distance amongst the kernels.
From this it stems that the optimal choice of reference temperatures (Tj)j∈�1;N� can also be chosen in a cross
section independent way by solving for the optimal set of reference temperatures (Tj)j∈�1;N� that minimizes
the distance, in both energy and temperature spaces, and in a sense yet to be determined, amongst the
kernels.

3.1. L2 kernel reconstruction relative error
Another advantage of having defined our problem with a Hilbert space structure is that the relative dis-

tances between the kernels also become analytically expressible as functions of the Gram matrix coefficients
as follows:

Å
Δε

ε

ã
G

≡

∥∥∥KT −∑N
j=1 cjKTj

∥∥∥
L2

‖KT ‖L2

=

Ã
1− 2

∑
j

cj
〈KTi |KT 〉
〈KT |KT 〉 +

∑
i

∑
j

cicj
〈KTi

|KTj
〉

〈KT |KT 〉
(50)

Thus, for the various kernel reconstruction problems, one finds the following relative L2 distances among
kernels by reporting the (cj), which are the solutions of either the constrained or free problem, into:

Boltzmann kernel relative errorÅ
Δε

ε

ã
B

≡

∥∥∥KB

T −
∑N

j=1 cjKB

Tj

∥∥∥
L2∥∥KB

T

∥∥
L2

=

Ã
1− 2

∑
j

cj

√
2T√

Tj + T
+
∑
i

∑
j

cicj

√
2T√

Ti + Tj

(51)
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Maxwell kernel relative errorÅ
Δε

ε

ã
M

≡

∥∥∥KM

T −
∑N

j=1 cjKM

Tj

∥∥∥
L2∥∥KM

T

∥∥
L2

=

Ã
1− 2

∑
j

cj
Tj25/2T 3/2

(Tj + T )
5/2

+
∑
i

∑
j

cicj
TiTj25/2T 1/2

(Ti + Tj)
5/2

(52)

Maxwell-over-velocity kernel relative error

Å
Δε

ε

ã
M

v

≡

∥∥∥KM

v

T −
∑N

j=1 cjK
M

v

Tj

∥∥∥
L2∥∥∥KM

v

T

∥∥∥
L2

=

Ã
1− 2

∑
j

cj

√
2T

3√
Tj + T

3 +
∑
i

∑
j

cicj

√
2T

3√
Ti + Tj

3 (53)

Doppler kernel relative error

Å
Δε

ε

ã
D

≡

∥∥∥KD

T −
∑N

j=1 cjKD

Tj

∥∥∥
L2∥∥KD

T

∥∥
L2

=

Ã
1− 2

∑
i

ci

√
TiT(

Ti+T
2

) +
∑
i

∑
j

cicj

√
TiTjÄ

Ti+Tj

2

ä (54)

3.2. L∞ Temperature Optimization: Min-max problem
These kernel reconstruction errors can now be optimized so as to find the reference temperatures (Tj)

that best reconstruct the kernel over a given temperature range. If the L∞ metric is now chosen to represent
what it means to minimize the distance among kernels over all of the temperature range, the optimization
can be cast as solving for the following min-max problem:

Find the (Tj) reference temperatures that minimize
the relative distance between exact and interpolated kernels

(Tj) = argmin
(Tj)

Å
max

T∈[Tmin,Tmax]

Å
Δε

ε

ã
G

ã
over a range of temperatures of interest T ∈ [Tmin, Tmax]

(55)

3.3. Solving the min-max problem: Temperature Optimization Algorithm
For a given number N of reference temperatures (Tj), solving this min-max problem for any of the four

kernels (and the respective eight solutions of optimal coefficients (cj) for free and constrained problems)
is a highly non-linear (nor convex) high-dimensionality problem. Differential evolution and basin-hopping
optimization algorithms were tested in an attempt to minimize the maximum relative error (i.e. max

(
Δε
ε

)
G
)

over the temperature range [Tmin, Tmax]. However, the high dimensionality of the optimization problem
coupled with the stochastic nature of these algorithms led to the algorithms converging in many cases to
local rather than global minimae, and with very long running times that were prohibitive past N = 6. This
issue inspired the creation of a non-stochastic optimization algorithm specifically tailored to the needs of
solving the min-max problem on (Δε

ε )G.
This algorithm works by choosing values for the reference temperatures such that the maximum relative

error on the interval between any pair of adjacent reference temperatures is equal to within some tolerance
to the maximum relative error between neighboring adjacent reference temperature pairs. In other words,
given some number N of reference temperatures, the algorithm chooses reference temperature values so that:

∀(i, j) ∈ �1, N − 1�2 ,

Å
max

T∈[Ti,Ti+1]

Å
Δε

ε

ã
G

ã
≈
Å

max
T∈[Tj ,Tj+1]

Å
Δε

ε

ã
G

ã
(56)

The algorithm begins with an initial linear guess in (Tj), then iterates through sets of three adjacent
reference temperatures, equalizing the maximum relative errors on the intervals between the first two and
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last two temperatures in each set. This is accomplished by moving the center temperature in a binary search
fashion until the difference in the maximum errors on each of the two intervals is below some threshold.

The use of this algorithm allowed reference temperature placement to be optimized more accurately and
in a much faster manner than either of the previously tried algorithms. The result of the algorithm on six
reference temperatures with an initial guess of linear spacing is shown in figure (1). A thorough analysis of
the optimal reference temperature grid for Doppler kernel reconstruction can be found in appendix E.

Figure 1: Free Doppler kernel reconstruction L2 relative error over the temperature range [300, 3000] for both
linearly spaced and optimized spacing of N = 6 reference temperatures. Optimization of the reference temperature
grid was performed through the presented algorithm with tolerance 10−6, and yields an order of magnitude on kernel
reconstruction L2 relative error.

The high condition numbers of the matrices, specially the one stemming from equation (39), necessitated
the use of the preconditioned conjugate gradients method for numerically stable inversion. For the free
Doppler Kernel method in particular, numerical instability in the calculation of (cj) values was essentially
eliminated through use of the analytical expression for these values shown in equation (31).

Another source of numerical instability was the truncation of calculated relative errors due to machine
precision when the number of reference temperatures used was sufficiently large. This issue was addressed
by calculating both relative errors and optimal temperature points in arbitrary precision. For any given N

number of reference temperatures, 10−(N+4) precision was used to compute
(
Δε
ε

)2
G
.

3.4. Optimal reference (Tj) distributions kernel reconstruction performance
Once the optimal temperature grid (Tj) has been found for each one of the eight methods, a way of

gauging the performance of the various kernel reconstruction methods is to compare, given N reference
temperatures, which method is better at reconstructing its own kernel. The results of such an analysis are
pictured in figure (2).

It can be observed that the temperature-optimized free Boltzmann kernel reconstruction was the best at
reconstructing itself. This, however, did not mean it would fair better on actual isotopes.
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Figure 2: Comparison of self reconstruction ability:
(
Δε
ε

)
G
(T ) for each of the eight kernel reconstruction methods

(free and constrained Boltzmann, Maxwell, Maxwell-over-velocity, and Doppler), with there respective optimal ref-
erence temperature grids (Tj) for N = 4 optimal reference temperatures over the temperature range [300, 3000]. The
temperature-optimized free Boltzmann kernel reconstruction is the best at reconstructing itself.

4. Performance & comparison of temperature interpolation methods

Of the eight Doppler broadening temperature interpolation methods here introduced, only one – the
constrained Maxwell kernel reconstruction method – has been previously attempted [2]. The other linear
interpolation methods traditionally used in the field are provided below, as well as the reference logarithmic
interpolation method for comparison purposes [1].

4.1. Previous temperature interpolation methods
Traditional temperature interpolation methods have been either linear interpolations in temperature, or

linear in logarithmic space, while a recent curve-fit method was introduced in MCNP.

4.1.1. Linear interpolation methods
Linear combination interpolation methods are defined by:

σT ≈
N∑
j=1

cjσTj (57)

The choices for finding the (cj) have been [2]:

• The "Lin-Lin" interpolation scheme:

cj =

∏
i�=j (T − Ti)∏
i�=j (Tj − Ti)

(58)
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• The "Lin-Sqrt" interpolation scheme:

cj =

∏
i�=j

Ä√
T −√Ti

ä
∏

i�=j

(√
Tj −

√
Ti

) (59)

• The "Lin-Log" interpolation scheme:

cj =

∏
i�=j (lnT − lnTi)∏
i�=j (lnTj − lnTi)

(60)

4.1.2. Logarithmic-Logarithmic method
The "Log-Log" interpolation scheme is defined as:

σT ≈
N∏
j=1

(
σTj

)cj
cj =

∏
i�=j (lnT − lnTi)∏
i�=j (lnTj − lnTi)

(61)

Though they are here defined with general expressions, these interpolation methods as such would suffer
from Runge phenomena, and are thus in practice always computed piecewise, using the two closest refer-
ence temperature points and ignoring the information provided by all other temperatures. The following
comparisons use this two-points interpolation definition.

4.1.3. MCNP curve fit method
One other way to perform temperature interpolation of nuclear data is to curve fit the temperature

dimension. This is the method recently adopted by MCNP [5]. For a given reaction, the cross section is
Doppler broadened to a large number of temperatures on an union energy mesh. Then, for each energy, the
coefficients, ag,i, bg,i and cg are calculated for the following equation using least-squares minimization:

σγ(T,Eg) ≈
N∑
i=1

ag,i
T i/2

+
N∑
i=1

bg,iT
i/2 + cg (62)

The MCNP method is thus a symmetrically truncated Laurent development curve-fit, and the coefficients
are entirely cross section and energy dependent.

4.2. Performance of the temperature-optimized kernel reconstruction methods
The performance of an interpolation method is assessed on the L∞ maximum relative error criterium as

defined below:. ∣∣∣∣Δσ

σ

∣∣∣∣
L∞

(T ) = max
E∈[Emin,Emax]

∣∣∣∣∣σ(exact)
T (E)− σ

(approx)
T (E)

σ
(exact)
T (E)

∣∣∣∣∣ (63)

and ∥∥∥∥Δσ

σ

∥∥∥∥
L∞

= max
T∈[Tmin,Tmax]

®∣∣∣∣Δσ

σ

∣∣∣∣
L∞

(T )

´
(64)

The performance of the kernel reconstruction methods here introduced was tested upon isotope 238U,
over the energy range

[
Emin = 10−5eV, Emax = 20 keV

]
. The point-wise ENDF/B-VII.1 data was Doppler

broadened using the SIGMA1 algorithm [3], to a sequence of fixed reference temperatures (Tj), providing
the exact reference σTj

(E) , as well as to calculate all σ(exact)
T (E) of the temperature grid. The L∞ norm

of the relative difference between the exact cross section, σ
(exact)
T (E), and the interpolated cross section,

σ
(approx)
T (E), was then computed for a range of temperatures.
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4.2.1. Best performer amongst kernel reconstruction methods
Each of the eight temperature-optimized kernel reconstruction methods was run using one to six reference

temperatures on 238U isotope data. The result of this test for N = 6 is displayed in figure (3). It can
be noticed that the constrained interpolations slightly outperform the free ones in this case. This could
presumably be attributed to the fact that constraining the coefficients to summing to unity enforced the
essential property of probability distribution, yielding better results overall, specially at the tails of the
distributions. Thus, though the free M

v method does not appear in figure (3) due to numerical instability
issues, the constrained version of this method can be viewed as its lower bound.

From figure (3), it can readily be observed that the two Doppler reconstruction methods outperform
all other methods over the entire range of temperatures. Though the temperature-optimized constrained
Doppler kernel reconstruction method narrowly outperforms the temperature-optimized free Doppler kernel
reconstruction one, the difference in performance is quite slight. The ease with which the free Doppler kernel
reconstruction coefficients can be computed using the analytical expression of equation (31), as opposed to
the matrix inversion required to compute the constrained Doppler coefficients, was felt to make up for
the small performance difference between the two methods. Thus the temperature-optimized free Doppler
kernel reconstruction method was reckoned to be the best performer amongst temperature-optimized kernel
reconstruction methods, and was thus tested on 238U isotope and compared against currently used Doppler
broadening interpolation methods.

Figure 3:
∣∣Δσ

σ

∣∣
L∞

(T ) is computed for N = 6 optimal reference temperatures on the temperature range [300, 3000],
for each kernel reconstruction method. The two Doppler kernel reconstruction methods outperform all other kernel
reconstruction methods on 238U isotope. The ease of computing the free Doppler kernel reconstruction coefficients
led to its choice over the constrained Doppler method as a candidate for further testing.

4.2.2. Performance of temperature-optimized free Doppler kernel reconstruction against previous methods
The temperature-optimized free Doppler kernel reconstruction method was tested on 238U isotope data

against linear interpolation, logarithmic interpolation, and the MCNP curve fit method discussed in section
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4.1.3 for N = 2 through 15 reference temperatures. The results of this are displayed in figure (4). The
free Doppler kernel reconstruction method was found to beat the other methods up to N = 12, at which
point the maximum relative errors of the kernel reconstruction and the MCNP curve fit methods fell below
the level of accuracy from the SIGMA1 Doppler broadening of the 238U isotope data itself, rendering
comparison meaningless. From figure (4), it can be observed that in order to obtain 0.1% accuracy on
a reconstructed 238U kernel using the temperature-optimized free Doppler kernel reconstruction method,
nine reference temperatures would be required. The 238U isotope was chosen because the complexity of its
resonance structure makes it a difficult isotope to Doppler broaden. Therefore it is likely that using the free
Doppler kernel reconstruction method with N = 10 reference temperatures would be sufficient to ensure
0.1% precision on all other isotopes.

Figure 4: Maximum relative errors over energy
[
10−5eV, 20 keV

]
and temperature [300K, 3000K] ranges. Per-

formance of temperature-optimized free Doppler kernel reconstruction method (kernel rec.) compared to linear
interpolation (lin-lin), logarithmic interpolation (log-log), and the MCNP curve fit (curve-fit) method. Temperature-
optimized free Doppler kernel reconstruction is one order of magnitude more accurate than the MCNP curve-fit
method. N = 10 optimal reference temperatures suffice to achieve 0.1% relative error.

4.2.3. Considerations on performance
Apart from the MCNP curve fit method, which is an ad hoc Laurent development curve-fit which kernel

reconstruction outperforms by one order of magnitude on precision of interpolation for the same number
of reference temperatures, previous methods all consisted of a local interpolation between the two closest
temperatures. For a small-enough temperature difference (Tj+1 − Tj → 0), lin-lin interpolation is sure to
converge as a 1st order Taylor expansion, with convergence in O(N). In contrast, the kernel reconstruction
methods here introduced are global methods. They converge as O(CN ) to the true solution as the number
of reference temperatures increases (N → ∞), because the physics of the system at temperature T are
increasingly well reconstructed through linear combinations of distributions at reference temperatures Tj .

Analyses have shown that to achieve 0.1% accuracy on temperature interpolation of 238U, previous
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methods require a temperature mesh of about 30K intervals, thus requiring roughly 100 temperature points
to cover nuclear reactor analysis range [1]. The need to use the cross section information for all 10 reference
temperatures in the kernel reconstruction methods, instead of only the 2 closest for the older methods
(except the MCNP curve fit which needs 12 points for the same precision), invariably requires more cross
section lookups. However, the same accuracy can be achieved with roughly one order of magnitude less
temperature points. Additionally, better efficiency can be obtained if each nuclide utilizes a uniform energy
grid in temperature and proper ordering.

5. Conclusions

A new family of methods has here been established for performing cross section, reaction rates, or
energy times cross section, temperature interpolation by linear combination of reference cross sections (or
their respective quantity). The methods rely on the L2-norm difference minimization of operator kernels,
representing the physical idea that the optimal way of interpolating is by best reconstructing the conditions
of the interaction, that is the kernel of the operation. For instance, this can mean reconstructing the
energy (or velocity) distribution for the target nuclei as close as possible to the real one at temperature T .
Furthermore, isotope-independent optimal reference temperatures grids have been calculated to fine-tune
the performance of kernel reconstruction methods over a given temperature range [Tmin, Tmax]. Though
these methods require higher runtime due to multiple cross section lookups, the temperature-optimized free
Doppler kernel reconstruction method was shown to achieve 0.1% accuracy on isotope 238U cross section
temperature interpolation over the entire temperature range T ∈ [300K, 3000K] with only N = 10 optimally
spaced reference temperatures (Tj), reducing the memory requirements for Doppler broadening interpolation
by an order of magnitude.
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A. Doppler kernel reconstruction derivations

A.1. Dopper kernel reconstruction divergence issue
The cross section is extended as an odd function over the entire energy range as:

sT : E �→
ß

σT (E), ∀E ∈ R+

sT (E) = −sT (−E) ∀E ∈ R−
(A.1)

which transforms Solbrig’s kernel into the following Doppler broadening operation:

sT (z) =

∫ ∞

−∞
sT0

(x)KD

T (z, x)dx (A.2)

with z =
√
E and where the Doppler Kernel KD

T is here defined as

KD

T (z, x) ≡
x2

z2
KB

T (z − x) =
x2

z2
s√
π
e−s2(z−x)2 (A.3)

The functional Hilbert space is provided with the following scalar product
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〈f |g〉 ≡
∫∫

R2

f · g (A.4)

With this notation, and defining ξi =
1

4s2
i

∝ Ti, it can be shown that

〈KD

Ti
|KD

Tj
〉 = 1

2π

√
ξiξj

ξi + ξj
Θ (A.5)

where:

Θ = 2

∫ π

θ=0

cos4 θ

sin4 θ(cos θ − sin θ)2
dθ (A.6)

One can observe that Θ diverges: the integrand is defined everywhere but for the points:
{
θ = 0, θ = π

4 , θ = π
}
.

The problem thus seems to be ill-defined.

A.1.1. Free Doppler kernel reconstruction
It is however still possible to find an optimal solution to the problem by means of a continuity argument.

Defining Θε as:

Θε = 2

∫ π
4 −ε

ε

cos4 θ

sin4 θ(cos θ − sin θ)2
dθ + 2

∫ π−ε

π
4 +ε

cos4 θ

sin4 θ(cos θ − sin θ)2
dθ (A.7)

For all value of epsilon ε > 0, the optimal inversion of the system becomes:

Dε · C = Yε (A.8)

with ⎡⎢⎢⎢⎢⎣
√
T1T1

(T1+T1
2 )

. . .
√
T1TN(

T1+TN
2

)
...

. . .
...√

T1TN(
T1+TN

2

) . . .
√
TNTN(

TN+TN
2

)

⎤⎥⎥⎥⎥⎦ ·
⎡⎢⎣ c1

...
cN

⎤⎥⎦ =

⎡⎢⎢⎢⎣
√
T1T

(T1+T

2 )
... √

TNT(
TN+T

2

)
⎤⎥⎥⎥⎦ (A.9)

where the definition of ξj =
kb(Tj−T0)

4A was used to show the explicit temperature dependence of the
Gram coefficients, and also making the problem nuclide independent. Since the system is invariant in ε, by
continuity of the property with respect to the value of ε, this system still represents the optimal solution in
the limit of ε = 0.

A.1.2. Constrained Doppler kernel reconstruction
As done above, the constrained problem becomes

D̃ · C = Ã (A.10)

where ⎡⎢⎢⎢⎢⎣
d̃1,1 . . . ‡d1,N−1 0
...

. . .
...

...‡dN−1,1 . . . „�dN−1,N−1 0
1 . . . 1 1

⎤⎥⎥⎥⎥⎦ ·
⎡⎢⎢⎢⎣

c1
...

cN−1

cN

⎤⎥⎥⎥⎦ =

⎡⎢⎢⎢⎣
‹y1
...flyN−1

1

⎤⎥⎥⎥⎦ (A.11)

with ›dij = √
TiTjÄ

Ti+Tj

2

ä − √
TiTN(

Ti+TN

2

) − √
TNTjÄ

TN+Tj

2

ä + √
TNTN(

TN+TN

2

) (A.12)
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and ‹yi = √
TiT(

Ti+T
2

) − √
TiTN(

Ti+TN

2

) − √
TNT(

TN+T
2

) +

√
TNTN(

TN+TN

2

) (A.13)

A.2. Analytical Solutions
The free Doppler kernel reconstruction system has stunningly remarkable properties:

1. Since D is a Gram matrix, it is a strictly symmetric positive definite matrix: D ∈ S++
N

2. Moreover, the elements of the matrix D are ratios of the geometric mean to the arithmetic mean of
the reference temperature pairs, which only yields values between 0 and 1, with 1’s on the diagonal:√

TiTjÄ
Ti+Tj

2

ä ∈ [0, 1]. This quantity is very rich in physical meaning and has links to the information

entropy of the system.
3. The matrix D also exhibits a particular symmetry in that it can be written as:

D = 2 · T1/2 · C · T1/2 (A.14)

where T = diag (Ti) and C = mat
Ä

1
Ti+Tj

ä
. The latter is a Cauchy matrix, which enables us to derive

the algebraic solution to this system.

Cramer’s inversion formula on the free Doppler kernel reconstruction system yields:

ck =
det

(
D(k)

)
det (D)

(A.15)

where D(k) is the matrix formed by replacing the k-th column of D by the column vector Y .
Let us note that D(k) also exhibits a particular symmetry in that it can be written:

D(k) = 2 · T1/2
(k) · C(k) · T1/2 (A.16)

where the sub-index (k) signifies that Tk is replaced by T in the k-th column:
T(k) = diag (T1 , . . . , Tk−1 , T , Tk+1 , . . . , TN ) and
C(k) = mat

Ä
C1 , . . . , Ck−1 ,

Ä
1

Ti+T

ä
i
, Ck+1 , . . . , CN

ä
.

Both C and C(k) are Cauchy matrices of the type mat
Ä

1
ai+bj

ä
, the determinant of which is given by the

well-known formula:

|C|N =

∏
i<j (aj − ai)

∏
i<j (bj − bi)∏

i,j (ai + bj)
(A.17)

By analyzing the ratio of determinants in Cramer’s formula ck =
√
Tdet(Ck)√
Tkdet(C)

, one finds the explicit solution
of the kernel-minimizing coefficients:

ck =

√
TkT(

Tk+T
2

) ∏
i�=k

Å
T − Ti

T + Ti

ãÅ
Tk + Ti

Tk − Ti

ã
(A.18)

It is noteworthy that ck(
√
T ) is a proper rational fraction in

√
T of degree −1, and on which it is thus

possible to perform partial fraction decomposition, with poles ±i√Ti and roots ±√Ti and 0.
Thus, provided a set of reference temperatures (Tj) and given a temperature T , the (ck) coefficients in

equation A.18 are the ones that algebraically minimize the L2 norm between the Doppler kernels.
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B. Maxwell kernel & Maxwell-over-velocity reconstruction derivations

B.1. Maxwell & Maxwell-over-velocity kernels definition
Physically, the Doppler broadening operation is defined through the conservation of the reaction rate in

equation (1) as the relative energies span the Maxwellian distribution of velocities of the ideal gaz model for
the target nucleus. When interpolating by linear combination of reference temperatures, this yields:Ä

vσ
(True)
T − vσ

(approx)
T

ä
(v) =

∫
vt|vr>0

vrσT0(vr)

[
MT (−→vt )−

∑
j

cjMTj (
−→vt )

]
d−→vt (B.1)

Upon change of variables from vectorial velocity to scalar speeds, the Maxwell distribution is recovered:

vσT (v) =
1

2

∫ ∞

0

[vrσT0
(vr)]

vr
v
dvr

∫ |v+vr|

|v−vr|

MT (vt)

vt
dvt (B.2)

From this, we define the Maxwell kernel as:

KM

T : z �→ 4s2z2KB

T = 4z2
s3√
π
e−s2z2

(B.3)

Using the definition ξ = 1
4s2 , the coefficients of the Gram matrix are then readily calculated

〈KM

Ti
|KM

Tj
〉 = 1

4π

1√
ξiξj

3

∫ ∞

0

u4e
−u2
Ä

1
4ξi

+ 1
4ξj

ä
du (B.4)

Defining the Gauss integrals of order n

Gn =

∫ ∞

0

xne−x2

dx (B.5)

and using the following recurrence formula

Gn =
n− 1

2
Gn−2

G1 =
1

2

G0 =

√
π

2

(B.6)

one finds

〈KM

Ti
|KM

Tj
〉 = 3√

π

ξiξj

(ξi + ξj)
5/2 (B.7)

Let us note that equation (B.2) leaves the choice of reconstructing the M
v kernel instead of M. In that

particular case, the recurrence formula would have yielded the following Gram matrix coefficients:

〈K
M

Ti

v
|K

M

Tj

v
〉 = 1

2
√
π

1√
ξi + ξj

3 (B.8)
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B.1.1. Free Maxwell & Maxwell-over-velocity kernels reconstruction
From the latter, the free Maxwell kernel reconstruction system is:

M · C = Y (B.9)

with ⎡⎢⎢⎣
T1T1

(T1+T1)
5/2 . . . T1TN

(T1+TN )5/2

...
. . .

...
TNT1

(TN+T1)
5/2 . . . TNTN

(TN+TN )5/2

⎤⎥⎥⎦ ·
⎡⎢⎣ c1

...
cN

⎤⎥⎦ =

⎡⎢⎢⎣
T1T

(T1+T )5/2

...
TNT

(TN+T )5/2

⎤⎥⎥⎦ (B.10)

If instead the choice of reconstructing M
v is made, then the L2 minimization solution is given by

M

v
· C = Y (B.11)

with ⎡⎢⎢⎣
1√

T1+T1
3 . . . 1√

T1+TN
3

...
. . .

...
1√

TN+T1
3 . . . 1√

TN+TN
3

⎤⎥⎥⎦ ·
⎡⎢⎣ c1

...
cN

⎤⎥⎦ =

⎡⎢⎢⎣
1√

T+T1
3

...
1√

T+TN
3

⎤⎥⎥⎦ (B.12)

which is the Hadamard product 3rd power of the Boltzmann kernel reconstruction problem.

B.1.2. Constrained Maxwell & Maxwell-over-velocity kernels reconstruction
The constrained Maxwell kernel reconstruction problem is then

‹M · C = ‹Y (B.13)

where ⎡⎢⎢⎢⎣
fim1,1 . . . ·�m1,N−1 0

...
. . .

...
...·�mN−1,1 . . . ‰�mN−1,N−1 0

1 . . . 1 1

⎤⎥⎥⎥⎦ ·
⎡⎢⎢⎢⎣

c1
...

cN−1

cN

⎤⎥⎥⎥⎦ =

⎡⎢⎢⎢⎣
‹y1
...flyN−1

1

⎤⎥⎥⎥⎦ (B.14)

with
m̃ij =

TiTj

(Ti + Tj)
5/2

− TiTN

(Ti + TN )
5/2

− TNTj

(TN + Tj)
5/2

+
TNTN

(TN + TN )
5/2 (B.15)

and ‹yi = TiT

(Ti + T )
5/2

− TiTN

(Ti + TN )
5/2

− TNT

(TN + T )
5/2

+
TNTN

(TN + TN )
5/2 (B.16)

Again, the same considerations are true for the M
v reconstruction by replacing TiTj

(Ti+Tj)
5/2 by 1√

Ti+Tj
3 .

C. Boltzmann kernel reconstruction derivations

C.1. Casting the Doppler broadening operation as a convolution with the Boltzmann distribution
G. Ferran et al. [4] recently introduced a generalized, odd parity, function sT linked to the cross section

as:

sT : E �→
ß

E · σT (E), ∀E ∈ R+

sT (E) = −sT (−E) ∀E ∈ R−
(C.1)
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Applying the Doppler broadening operation to sT yields a linear convolution product operator that
transforms the generalized function s0 from temperature T0 to temperature T > T0 as follows [4]:

sT = s0 �KB

T (C.2)

where the convolution product is defined as:

∀x ∈ R, f � g(x) =

∫ ∞

−∞
f(t)g(x− t)dt (C.3)

and with KB

T representing the Boltzmann distribution of energies of the target nuclei.

KB

T :

®
R → R+

t �→ s√
π
e−s2t2 (C.4)

The problem provides a Hilbert space structure through the L2 norm and its associated scalar product:

〈f |g〉 =
∫ ∞

−∞
f(t)g(t)dt (C.5)

Using ξi =
1

4s2
i

, it stems that the Gram matrix coefficients are:

〈KB

Ti
|KB

Tj
〉 = 1

4π
√
ξi · ξj

∫ +∞

−∞
e
−t2
î

1
4ξi

+ 1
4ξj

ó
dt (C.6)

and using the recurrence formula for the Gauss integrals (equations B.6), one finds:

〈KB

Ti
|KB

Tj
〉 = 1

2
√

π (ξi + ξj)
(C.7)

C.2. Free Boltzmann kernel reconstruction
The free Boltzmann kernel reconstruction solution for the L2 norm is thus found by inverting the system:

B · C = Y (C.8)

with ⎡⎢⎣
1√

T1+T1
. . . 1√

T1+TN

...
. . .

...
1√

TN+T1
. . . 1√

TN+TN

⎤⎥⎦ ·
⎡⎢⎣ c1

...
cN

⎤⎥⎦ =

⎡⎢⎣
1√

T+T1

...
1√

T+TN

⎤⎥⎦ (C.9)

C.2.1. Constrained Boltzmann kernel reconstruction
Similarly, the constrained Boltzmann kernel reconstruction problem is:

B̃ · C = ‹Y (C.10)

where ⎡⎢⎢⎢⎢⎣
b̃1,1 . . . ‡b1,N−1 0
...

. . .
...

...‡bN−1,1 . . . „�bN−1,N−1 0
1 . . . 1 1

⎤⎥⎥⎥⎥⎦ ·
⎡⎢⎢⎢⎣

c1
...

cN−1

cN

⎤⎥⎥⎥⎦ =

⎡⎢⎢⎢⎣
‹y1
...flyN−1

1

⎤⎥⎥⎥⎦ (C.11)
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with
b̃ij =

1√
Ti + Tj

− 1√
Ti + TN

− 1√
TN + Tj

+
1√

TN + TN
(C.12)

and ‹yi = 1√
Ti + T

− 1√
Ti + TN

− 1√
TN + T

+
1√

TN + TN
(C.13)

D. Physical justification of the choice of L2 norm for kernel reconstruction

The performance of all these kernel reconstruction methods will be nuclide dependent, hence the choice
in equation (13) of posing the problems as L2 norm minimizations may seem somewhat arbitrary. However,
the general physical properties of cross sections tend to support the latter choice in the following way.

D.1. L2 norm interpolation error for Boltzmann convolution Kernel
When considering the linear combination temperature interpolation problem in the light of Ferran’s con-

volution product approach, the difference between the exact generalized odd function sT and the interpolated
one is given by:

s
(True)
T − s

(approx)
T = s0 �

(
KB

T −
N∑
j=1

cjKB

Tj

)
(D.1)

Having the approximate temperature-interpolated cross section equating the true value (in a simple
convergence sense)

Ä
s
(True)
T − s

(approx)
T = 0

ä
is thus equivalent to verifying the condition:

s0 �

(
KB

T −
N∑
j=1

cjKB

Tj

)
= 0 (D.2)

However, considerations hereafter exposed on s0 show that s0 is not of a compact support, which means
the latter condition can be met if, and only if:(

KB

T −
N∑
j=1

cjKB

Tj

)
= 0 (D.3)

It is however not possible to fully satisfy such condition by interpolation, and thus a metric has to be
chosen so as to minimize the distance among kernels to approach this condition. The L2 metric is a good
choice in tune with the properties of s0. Indeed, if it is sought to minimize the L2-distance between the two,
this means finding the (cj) such as to minimize:

∥∥∥s(True)
T − s

(approx)
T

∥∥∥
L2

=

∥∥∥∥∥∥s0 �
(
KB

T −
N∑
j=1

cjKB

Tj

)∥∥∥∥∥∥
L2

(D.4)

Recalling the Fourier transform property on the convolution product,

‘f � g = f̂ · ĝ (D.5)

one can invoke the theorem of Parseval to establish that:

∥∥∥s(True)
T − s

(approx)
T

∥∥∥
L2

=

∥∥∥∥∥∥“s0 ·
(”KB

T −
N∑
j=1

cjK̂B

Tj

)∥∥∥∥∥∥
L2

(D.6)
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D.2. Pole representation properties of nuclear cross sections
To infer additional information, a careful analysis of the “s0 function is required. Angle-integrated nuclear

cross sections can be cast into a sum of poles and residues according to the Pole Representation formalism
[6] [7]. From which s0 takes the general form:

s0(u) = spot +
∑
j

�
ï

rj
pj − u

ò
(D.7)

and thus the Fourier transform verify

“s0(ν) = ŝpot +
∑
j

�
î

rj
pj−u

ó∧
(ν) (D.8)

The first term can be close to an inverse function or a sign function, the Fourier transforms of which
are Fourier transforms of one-another. The poles will correspond to wide and flat Exponential integrals
Fourier transforms, which can be derived analytically. On the contrary, the Boltzmann distributions will
have Gaussian Fourier transforms. Frequency separation is thus a physically good approximation and one
can treat “s0 as slowly varying in comparison to the Boltzmann kernels.∥∥∥∥∥∥“s0 ·

(”KB

T −
N∑
j=1

cjK̂B

Tj

)∥∥∥∥∥∥
L2

≈ ‖“s0‖L2
·
∥∥∥∥∥∥
(”KB

T −
N∑
j=1

cjK̂B

Tj

)∥∥∥∥∥∥
L2

(D.9)

Thus, minimizing the L2 norm
∥∥∥s(True)

T − s
(approx)
T

∥∥∥
L2

is close to minimizing the L2 distance between the
Boltzmann energy distributions of the target particles.

D.3. Quantifying cross section independent kernel reconstruction error
How good an approximation the former is can be more accurately captured by further analysis, where

the isotope specificity of each s0 appears. Let KB
c =

Ä
KB

T −
∑N

j=1 cjKB

Tj

ä
, and c designate the vector of

coefficients: c = [c1, . . . , cj , . . . , cN ]
�

Bi-linearity of the hermitian product combined with the Plancherel-Parseval theorem then yield

∂

∂cj
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c
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L2
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∂cj
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ï
〈|“s0|2 | ∂

∂cj

Å”KB
c

2
ã
〉
ò (D.10)

Or, in gradient notation:

∇c

∥∥∥s0 �KB

c

∥∥∥2
L2

= �
ï
〈|“s0|2 |∇c

Å”KB
c

2
ã
〉
ò

(D.11)

Let us now consider the two optimal coefficient vectors, c(s0) and c(K), which would minimize
∥∥s0 �KB

c

∥∥2
L2

and
∥∥KB

c

∥∥2
L2

respectively. Then, at the c(K) coefficients, which satisfy ∇c=c(K)

∥∥KB
c

∥∥2
L2

= 0, the gradient
becomes expressible as a function of the distance to the L2 mean:
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Using the Hessian matrixï
∇∇c=c(K)

∥∥∥s0 �KB

c

∥∥∥2
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ò
=

ï
�
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to Taylor expand around c(K), and using the fact that c(s0) satisfies ∇c=c(s0)

∥∥s0 �KB
c

∥∥2
L2

= 0, the 1st order
difference between the two optimal coefficients can be expressed as:

Ä
c(s0) − c(K)

ä
= −

ï
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∥∥∥s0 �KB
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ò−1 ï
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∥∥∥s0 �KB

c
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L2

ò
+O
Å∥∥∥c(s0) − c(K)

∥∥∥2ã (D.14)

from which it stems that:
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Thus, equation (D.14) enables us to estimate how close to the s0 cross section dependent optimal linear
interpolation coefficients, c(s0), are the cross section independent optimal coefficients c(K) found by L2 kernel
reconstruction; and equation (D.15) informs us on how far from cross section dependent L2 optimality the
kernel reconstruction coefficients c(K) place us.

Thus, one can calculate for various cross sections the right-hand-side of equation (D.15) at their kernel
reconstruction optimal c(K) and compare: the bigger the value, the most has been lost with respect to
isotope-dependent optimality c(s0) for this isotope. This quantifies the dependency in s0 and reinforces the
validity of the approximation provided the general mathematical properties of the Pole Representation of
angle-integrated nuclear cross sections.

E. Temperature optimized free Doppler kernel reconstruction reference temperatures (Tj)
distribution study

Here are analyzed important properties of the temperature-optimized free Doppler kernel reconstruction
reference temperature grid (Tj).

E.1. Structure of optimal temperature grid (Tj) & scaling properties
The study of the optimal reference temperatures as a function of N shows that the entire problem is

scaled according to the dimensionless variable:

τ = ln

Å
T

Tmin

ã
/ln

Å
Tmax

Tmin

ã
(E.1)

and the entire system is determined only by the ratio r =
Ä
Tmax

Tmin

ä
, i.e. for any [Tmin, Tmax] with the same

ratio r =
Ä
Tmax

Tmin

ä
, the L2 relative error

(
Δε
ε

)
is left unchanged. Also, the optimal distribution is symmetric,

centered on τ = 1/2. Thus,Å
Δε

ε

ã
(τi)

(1− τ) =

Å
Δε

ε

ã
(τi)

(τ) =

Å
Δε

ε

ã
(Ti)

(T ) . (E.2)

A noteworthy property is that for the particular choice of r = e, where e designates the Euler number,
the optimal values match exactly those of the Chebyshev quadrature, as seen in figure (E.5). This hints
that the optimization problem is some super-set quadrature, that can range from Chebyshev to Legendre
according to the value of r. Indeed, the kernel reconstruction methods can be seen as a form of extended
quadrature operation with separation of variables where the coefficients bear all the T dependence and the
energy E dependence is carried out by the cross sections.
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Figure E.5: Number of reference temperatures vs optimal temperatures on the range [1,e]. Optimal temperature
points line up with Chebyshev quadrature.

E.2. Optimal temperature grid for Doppler kernel reconstruction
For the purpose of reactor analysis, the dimensionless τi solutions to the min-max optimization problem

with ratio r = 10 (which corresponds to the usual values used in nuclear reactor analysis) are hereafter re-
ported in figure (E.6), and their scaled optimal values for Tmin = 300 to Tmax = 3000 reference temperatures
corresponding values are recorded in table (E.1).

Figure E.6: Plots of number of reference temperatures vs optimal reference temperature grid for Doppler kernel
reconstruction, in both linear and log space. In Linear space, the scaling properties are such that [3, 30] is equivalent
to [300, 3000], as the ratio r =

Ä
Tmax
Tmin

ä
is left unchanged.

E.3. Temperature-optimized Doppler kernel reconstruction performance
Here are assessed the efficiency gains in reconstructing the Doppler kernel as the grid of reference tem-

peratures (Tj) varies. These are quantified by comparing the maximum kernel reconstruction relative error(
Δε
ε

)
D

over the temperature range of interest [Tmin, Tmax]. The optimized temperature grid outperforms
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N Optimized temperature grid (Tj) to perform temperature-optimized free Doppler kernel reconstruction temperature interpolation
1 [948.427]
2 [435.246, 2062.500]
3 [358.012, 948.520, 2512.500]
4 [332.153, 629.087, 1425.806, 2700.000]
5 [320.460, 500.262, 947.380, 1793.691, 2800.000]
6 [314.094, 435.908, 720.689, 1249.489, 2065.967, 2862.500]
7 [310.307, 398.356, 595.912, 949.001, 1511.168, 2259.447, 2893.160]
8 [307.963, 374.068, 519.349, 770.695, 1165.427, 1728.875, 2399.149, 2912.500]
9 [306.145, 359.232, 471.071, 660.047, 950.788, 1369.094, 1917.188, 2513.831, 2937.500]
10 [305.048, 347.608, 436.673, 584.202, 806.228, 1123.081, 1548.951, 2069.173, 2596.590, 2950.000]
11 [304.252, 338.681, 412.408, 530.512, 705.793, 951.890, 1283.538, 1704.703, 2189.430, 2653.095, 2950.000]
12 [303.585, 332.980, 393.688, 492.033, 634.213, 831.825, 1096.021, 1435.603, 1846.909, 2297.375, 2708.445, 2962.500]
13 [303.000, 328.648, 380.443, 462.297, 580.728, 742.398, 956.598, 1232.018, 1571.752, 1966.591, 2380.887, 2744.320, 2962.500]
14 [302.495, 325.278, 370.687, 441.433, 541.558, 677.013, 855.133, 1082.763, 1365.105, 1701.746, 2078.919, 2460.747, 2783.786, 2971.098]
15 [302.0560, 322.886, 362.312, 423.02, 508.989, 624.631, 774.835, 965.193, 1201.262, 1485.613, 1814.241, 2170.679, 2520.285, 2809.074, 2975.000]

Table E.1: Optimal temperature grid for cross section interpolation using the free Doppler kernel reconstruction
method on the range of temperatures [300, 3000], for a given number N of reference temperatures.

linear, square-root, and logarithmic spacing for any number of reference temperatures. As the number of ref-
erence temperatures increases, optimized spacing yields greater gains over other methods. This is illustrated
in figure (E.7) and results are recorded in table (E.2) and plotted in (E.8).

Figure E.7: Doppler kernel relative error over the range [300, 3000] for both linearly spaced and optimized temper-
atures.
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N Optimized Linear Square-root Logarithmic
2 1.382× 10−1 2.698× 10−1 2.698× 10−1 2.698× 10−1

3 3.614× 10−2 1.037× 10−1 8.241× 10−2 5.532× 10−2

4 9.791× 10−3 4.524× 10−2 2.900× 10−2 1.435× 10−2

5 2.600× 10−3 2.102× 10−2 1.101× 10−2 4.157× 10−3

6 6.600× 10−4 1.015× 10−2 4.372× 10−3 1.279× 10−3

7 1.819× 10−4 5.034× 10−3 1.791× 10−3 4.091× 10−4

8 5.146× 10−5 2.542× 10−3 7.477× 10−4 1.342× 10−4

9 1.197× 10−5 1.300× 10−3 3.184× 10−4 4.490× 10−5

10 3.236× 10−6 6.731× 10−4 1.374× 10−4 1.522× 10−5

11 9.833× 10−7 3.508× 10−4 5.923× 10−5 5.222× 10−6

12 2.300× 10−7 1.839× 10−4 2.614× 10−5 1.807× 10−6

13 7.005× 10−8 9.725× 10−5 1.151× 10−5 6.296× 10−7

14 2.021× 10−8 5.166× 10−5 5.041× 10−6 2.208× 10−7

15 1.319× 10−8 2.732× 10−5 2.247× 10−6 7.780× 10−8

Figure E.8 & Table E.2: Maximum relative error in reconstructing the Doppler kernel for a given number of ref-
erence temperatures N , for various temperature spacings. The optimal reference temperatures grid (Tj) significantly
outperforms all other reference temperature grid spacing.
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