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We consider numerical simulation of the isotropic elastic wave equations arising from 
seismic applications with non-trivial land topography. The more flexible finite element 
method is applied to the shallow region of the simulation domain to account for the 
topography, and combined with the more efficient finite difference method that is applied 
to the deep region of the simulation domain. We demonstrate that these two discretization 
methods, albeit starting from different formulations of the elastic wave equation, can be 
joined together smoothly via weakly imposed interface conditions. Discrete energy analysis 
is employed to derive the proper interface treatment, leading to an overall discretization 
that is energy-conserving. Numerical examples are presented to demonstrate the efficacy 
of the proposed interface treatment.

© 2018 Elsevier Inc. All rights reserved.

1. Introduction

Numerical simulation of wave propagation in earth media is of vital importance in seismic studies with substantial 
impacts on real-life applications such as resource exploration and hazard assessment, cf. [1–4]. Elastic wave equations are 
often used to describe the propagation of seismic waves emitted from either earthquake sources or active sources used 
in land-based explorations, cf. [5,6]. Both finite difference methods (FDMs), e.g., [7,8], and finite element methods (FEMs), 
e.g., [9,10], are widely employed to simulate the elastic waves, with the former being more popular in seismic exploration 
community due to its efficiency and the latter being more popular in seismological studies of larger scales where the 
impacts of topography and other geometric structures are prominent.

In this work, we propose to combine the more flexible finite element method and the more efficient finite difference 
method in order to account for non-trivial topography, yet retain computational efficiency for majority of the simulation 
domain. Similar attempts may be found in existing geophysical literature, e.g., [11,12]. Novelty of this work resides in the 
energy-conserving interface treatment. Such energy-conserving property is desirable for long-time simulation. It also offers 
more flexibility in constructing the gradients for PDE-constrained optimization problems by enabling the simulations to 
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run backwards stably. Moreover, we anticipate it to be an important feature in future studies where attenuation effect is 
incorporated.

Specifically, we split the simulation domain into two parts, namely, the shallow region and the deep region, with a 
straight horizontal interface as illustrated in Fig. 1. The finite element method is employed for the shallow region (i.e., top 
layer in Fig. 1) simulation while the finite difference method is employed for the deep region (i.e., bottom layer in Fig. 1) 
simulation. In the following, we may refer to these two regions as the FEM region and the FDM region, respectively. The 
2D isotropic elastic wave equation is considered throughout this work, which is posed in the second-order displacement 
formulation for the FEM region and the first-order velocity-stress formulation for the FDM region, as detailed in Section 2. 
These choices of formulations, albeit different, are natural to carry out energy analysis for the respective discretization 
methods.

Fig. 1. Geometric configuration. The simulation domain is split into the FEM region (top) and the FDM region (bottom) with a horizontal interface. The FDM 
region is discretized with staggered grids consisting of four subgrids. On the interface, vertices of the elements match the grid points of the σxy subgrid.

In the FEM region, the standard Bubnov–Galerkin approach (i.e., the solution space and the test space are identical) 
is adopted to discretize the isotropic elastic wave equation, leading to a semi-discretized linear system with symmetric 
mass and stiffness matrices. These symmetric matrices enter the definitions of the discrete kinetic and potential energies 
in the FEM region. In the FDM region, the finite difference operators are designed following the summation-by-parts (SBP) 
principle, cf. [13–16], leading to a semi-discretized linear system that mimics the behavior of the elastic wave equation from 
the energy analysis perspective. The two simulation regions are joined together with an interface treatment derived from 
discrete energy analysis. Specifically, the interface conditions are imposed weakly through penalty terms, which are often 
referred to as the simultaneous approximation terms (SATs) in finite difference literature, cf. [17]. With carefully designed 
penalty terms, the overall discretization is shown to be energy-conserving for a discrete energy resembling the physical 
energy associated with the elastic medium.

Similar efforts on coupling different discretization methodologies or nonconforming grids exist in the SBP-SAT literature, 
see [18–27], among others. In this work, both the discretization methodologies and the formulations of the equation are 
different in the two simulation regions. Here, we only intend to demonstrate the possibility and the necessary ingredients to 
combine finite element and finite difference discretizations for elastic wave simulations, enabled by the SBP-SAT approach. 
The chosen schemes and their combination may not be the optimal choice, depending on the application scenario. However, 
we believe that the presented methodology on interface treatment can be naturally applied to alternative discretization 
choices.

The rest of this paper is organized as follows. In Section 2, we describe the 2D isotropic elastic wave equation and its two 
formulations used in the FEM region and the FDM region, respectively. In Section 3, we briefly recount the discretization 
procedures used in the FEM region and the FDM region, respectively, and then present the proper interface treatment to 
join together the two simulation regions. In Section 4, we demonstrate the efficacy of the proposed interface treatment with 
numerical examples. In Section 5, we remark on several relevant problems and potential future extensions. We conclude in 
Section 6.
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2. Problem description

In the absence of external forces, wave propagation in elastic media can be described by the equation of motion:

ρüi = σi j, j (1)

and the constitutive relation:

σi j = Cijklεkl . (2)

Equations (1) and (2) are written in index notation where the summation convention applies to the subscripts over 
repeated indices. For the 2D case considered in this work, all the indices, e.g., i, j, k and l in the above equations, range 
from 1 to 2. Moreover, the comma in the subscripts, e.g., σi j, j , denotes spatial differentiation, the dot overhead denotes 
temporal differentiation while the double dots in the case of üi denotes double differentiation in time. The index notation 
is convenient for equation derivation but lacks intuitive recognition. For the remainder of this work, we associate the first 
index, i.e., 1, with the axis variable in the horizontal direction, i.e., x, and associate the second index, i.e., 2, with the 
axis variable in the vertical direction, i.e., y. Equations and symbols written in indices and axis variables will be used 
interchangeably in the following. For instance, σ1 j, j is the same as dσxx

dx + dσxy
dy .

In (1) and (2), density ρ and fourth-order stiffness tensor Cijkl are given physical parameters that characterize the elastic 
media, which are heterogeneous in earth subsurface. The equation of motion relates the displacement vector ui with the 
second-order stress tensor σi j while the constitutive relation relates the stress tensor with the second-order strain tensor 
εkl , which can be expressed as εkl = 1

2 (uk,l + ul,k) using the displacement vector. Both stress and strain tensors are sym-
metric, i.e., σi j = σ ji and εkl = εlk . Symmetry in these tensors will become useful for subsequent derivations. For instance, 
we have σi ju j,i = σ jiu j,i = σi jui, j given the symmetry of σi j and consequently, σi jεi j = σi jui, j . The fourth-order stiffness 
tensor possesses minor and major symmetries, leading to the following relations: Cijkl = Cijlk = C jikl = Ckli j . Alternatively, 
the constitutive relation (2) can be written in terms of the compliance tensor Sijkl as:

Sijklσkl = εi j , (3)

where the fourth-order tensor Sijkl is the inverse of Cijkl and also possesses the same symmetries as Cijkl does. We will 
switch between the two forms of constitutive relations depending on the circumstances. In the discussion of finite difference 
discretization (cf. Section 3.2), the form of (3) is more convenient for energy analysis while the form of (2) is more suitable 
for implementation.

The kinetic energy density function associated with the elastic wave equation is defined as

�k = 1
2ρvi vi , (4)

where vi = u̇i is the velocity vector. The potential (strain) energy density function associated with the elastic wave equation 
is defined as

�p = 1
2σi jεi j . (5)

Substituting (2) or (3) into (5), the potential energy density function can also be written as �p = 1
2 εi j Ci jklεkl or �p =

1
2 σi j Si jklσkl . Integration of �k and �p over a given region gives the kinetic and potential energies associated with the elastic 
wave equation on that region, respectively. We use ek and ep to denote these two energies and append superscript E or D

to indicate the region under discussion, with E for the FEM region and D for the FDM region.
In the isotropic case, the constitutive relation reduces to

σi j = λδi jεkk + 2μεi j , (6)

parametrized by only two free parameters λ and μ, i.e., the Lamé parameters. The symbol δi j in (6) stands for the Kronecker 
delta, i.e., δi j equals to 1 if i = j; 0 otherwise.

The above brief account of elastodynamics is not meant to be thorough, but merely to serve the purpose of establishing 
the notation used throughout this work. For more information on the theory of elasticity, interested readers may consult 
[28–30]. In the following, we give formulations of the elastic wave equation in the two discretization regions.

In the FEM region, the 2D isotropic elastic wave equation is posed in the second-order displacement formulation as 
follows:{

ρüi = σi j, j ;
σi j = Cijklεkl = λδi juk,k + μ

(
ui, j + u j,i

)
.

(7)

In this formulation, the displacements ui , i = 1 . . . 2, are the sought solution variables while the stress tensor components 
σi j merely serve as intermediate variables which do not necessarily appear in the actual computation. However, they will 
frequently appear in the upcoming derivations to simplify notations and to provide physical intuitions. We refer to (7) as 
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the second-order displacement formulation because the temporal derivatives involved therein are second order and the 
displacements are the sought solution variables. We may simply refer to it as the second-order formulation if there is no 
ambiguity.

In the FDM region, the 2D isotropic elastic wave equation is posed in the first-order velocity-stress formulation as 
follows:{

ρ v̇ i = σi j, j ;
σ̇i j = Cijklε̇kl = λδi j vk,k + μ

(
vi, j + v j,i

)
.

(8)

The second equation of (8) may also be written in the following equivalent form:

Sijklσ̇kl = ε̇i j = 1
2

(
vi, j + v j,i

)
(9)

to assist the discussion. In this formulation, the sought solution variables include components of both velocity v and 
stress σ , which exhibit a reciprocal relationship in (8). Moreover, the temporal derivatives involved in (8) are first order. 
Hence, it is referred to as the first-order velocity-stress formulation. We may simply refer to it as the first-order formulation 
if there is no ambiguity. System (8) can be written in its equivalent form in (10) using the axis variables x and y, which 
may be more straightforward in the finite difference context,⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂vx

∂t
= 1

ρ

∂σxx

∂x
+ 1

ρ

∂σxy

∂ y
;

∂v y

∂t
= 1

ρ

∂σxy

∂x
+ 1

ρ

∂σyy

∂ y
;

∂σxx

∂t
= (λ + 2μ)

∂vx

∂x
+ λ

∂v y

∂ y
;

∂σxy

∂t
= μ

∂v y

∂x
+ μ

∂vx

∂ y
;

∂σyy

∂t
= λ

∂vx

∂x
+ (λ + 2μ)

∂v y

∂ y
.

(10)

3. Methodology

In this section, we first describe the discretization methods used in the interiors of the FEM region and the FDM region, 
respectively, and then present the interface treatment that joins these two regions. To focus on the interface treatment, we 
start our discussion with the case of flat topography, i.e., the FEM region is also rectangular, as illustrated in Fig. 1. However, 
it will become clear that the derived results apply naturally to the case of non-trivial topography, as explained in Remarks 1
and 2.

In Fig. 1, the simulation domain is split into two discretization regions, i.e., the FEM region (top) and the FDM region 
(bottom), with a straight interface. This interface is included in both regions, where degrees of freedom from both sides 
meet. In the FDM region, four subgrids are positioned in staggered fashion, with σxy , v y and vx each occupying one subgrid 
and the two normal stress components σxx and σyy sharing one subgrid. Grid spacing in the FDM region is the same as 
element width in the FEM region, both denoted as 	x. Moreover, on the interface, vertices of the elements match the grid 
points of the subgrid occupied by σxy . In the upcoming discussion, we may use symbols ∂L, ∂ R , ∂ B , and ∂T to denote the 
left, right, bottom, and top boundaries, respectively, and use symbol ∂ I to denote the interface.

3.1. Discretization in the FEM region

Since our focus is on the interface treatment, we only give a brief account to the discretization in the FEM region here. 
Interested readers may consult [31–33] for more information about finite element methods.

The weak formulation of (7) can be written as: find ui ∈ Ui such that∫



ρwiüid
 =
∫



wiσi j, jd
 = −
∫



wi, jσi jd
 +
∫
∂


wiσi jn jd∂
 , ∀wi ∈ Ui , (11)

where wi are the test variables. The solution space and test space are chosen to be the same in (11), i.e., Ui . Energy 
analysis at the continuous level can be carried out with (11) by substituting test variables wi with velocities vi , leading to 
the following relation:∫

ρvi v̇ id
 +
∫

vi, jσi jd
 =
∫

viσi jn jd∂
 . (12)

 
 ∂
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Recalling the definitions in (4) and (5), we recognize that

∫



ρvi v̇ id
 = d

dt

⎛
⎝1

2

∫



ρvi vid


⎞
⎠ = deE

k

dt
(13)

and

∫



vi, jσi jd
 =
∫



ε̇i jσi jd
 =
∫



σi j Si jklσ̇kld
 = d

dt

⎛
⎝1

2

∫



σi j Si jklσkld


⎞
⎠ = deE

p

dt
, (14)

where eE
k and eE

p are the kinetic and potential energies associated with the elastic wave equation in the FEM region, 
respectively. Substituting (13) and (14) into (12), we have

deE

dt
=

∫
∂


viσi jn jd∂
 , (15)

where eE = eE
k + eE

p denotes the total energy. In other words, evolution of the total energy reduces to the behavior of the 
solution variables on the boundaries only.

For ease of discussion, we assume that the boundary integral in (15) vanishes on boundaries ∂T , ∂L, and ∂ R and reduces 
to the interface ∂ I only, using the arguments of, for instance, free surface boundary condition (σi jn j = 0) on ∂T and periodic 
boundary condition on ∂L and ∂ R . We note here that for the FEM region, the outward normal vector takes the values 
[0, −1]T on the interface ∂ I and therefore, (15) can be written as

deE

dt
=

∫
∂ I

viσi jn j d∂ I =
∫
∂ I

(−vxσxy − v yσyy
)

d∂ I . (16)

To discretize, we use the finite dimensional function space spanned by {φα}Nφ

α=1 to approximate the space Ui and define 
the column vector φ as [φ1, . . . , φNφ ]T . Furthermore, we use b1 and b2 to denote the coefficient column vectors correspond-
ing to φ and express the approximations of u1 and u2 as

φT b1 and φT b2 ,

respectively. Finally, we sample the test variables in the order of {w1, w2} = {φα, 0}, α = 1, . . . , Nφ and then {w1, w2} =
{0, φα}, α = 1, . . . , Nφ . With these choices, the two area integrals in (11), i.e., 

∫



ρwiüi d
 and 
∫



wi, jσi j d
 , reduce to the 

following matrix forms:

Mb̈ and Kb , (17)

respectively, where

b =
[

b1

b2

]
, M =

⎡
⎢⎢⎢⎢⎣

∫



ρφφT d
 0

0
∫



ρφφT d


⎤
⎥⎥⎥⎥⎦ (18)

and

K =

⎡
⎢⎢⎢⎢⎣

∫



(λ + 2μ)φ,1φ
T
,1d
 +

∫



μφ,2φ
T
,2d


∫



λφ,1φ
T
,2d
 +

∫



μφ,2φ
T
,1d


∫



μφ,1φ
T
,2d
 +

∫



λφ,2φ
T
,1d


∫



μφ,1φ
T
,1d
 +

∫



(λ + 2μ)φ,2φ
T
,2d


⎤
⎥⎥⎥⎥⎦ . (19)

In the definitions of M in (18) and K in (19), each area integral therein is a succinct representation of a matrix block. For 

instance, 
∫

ρφφT d
 shall be interpreted as
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⎡
⎢⎢⎢⎢⎢⎢⎢⎣

∫



ρ · φ1 · φ1 d
 · · ·
∫



ρ · φ1 · φNφ d


...
. . .

...∫



ρ · φNφ · φ1 d
 · · ·
∫



ρ · φNφ · φNφ d


⎤
⎥⎥⎥⎥⎥⎥⎥⎦

.

These two matrices, i.e., M and K , are referred to as the mass matrix and the stiffness matrix, respectively. To arrive at the 
form of K in (19), the isotropic assumption (6) has been invoked. In practical implementations, the integrals in (18) and 
(19) are evaluated using quadrature rules. Discretization of the boundary integral term in (11) is left unaddressed here. As 
shown later in Section 3.3, it will be cancelled out by the penalty terms introduced for the interface treatment.

The discrete kinetic and potential energies in the FEM region are defined as

E E
k = 1

2
ḃT Mḃ and E E

p = 1

2
bT Kb , (20)

respectively. Their respective correspondences to the continuous energies eE
k and eE

p can be verified straightforwardly, real-

izing that φT b1 and φT b2 are approximations to u1 and u2, respectively, while φT ḃ1 and φT ḃ2 are approximations to v1
and v2, respectively. Accordingly, left multiplying ḃT to the two terms in (17), the resulting terms ḃT Mb̈ and ḃT Kb are the 
discrete correspondences to ėE

k and ėE
p , respectively. The choice of quadrature rule is reflected in the above definitions of 

discrete energies.

Remark 1. Results presented in this subsection, particularly those regarding energy analysis, extend naturally to FEM regions 
occupying general geometric shapes. In this case, the concept of parametric domain is often invoked to assist the imple-
mentation. Parametric domains are often of simple geometric shapes (e.g., square) so that it is easy to define finite element 
basis functions on them. These basis functions are then mapped to the physical domain to approximate the quantities of 
interest. For the above results to apply for general geometry, φ should be understood as images of these basis functions on 
the FEM region (physical domain).

3.2. Discretization in the FDM region

With energy analysis in mind, we consider the following form of the elastic wave equation in the FDM region:{
ρ v̇ i = σi j, j ; (a)

Sijklσ̇kl = ε̇i j = 1
2

(
vi, j + v j,i

)
. (b)

(21)

Taking temporal differentiation of the total energy eD = eD
k + eD

p in the FDM region, we have

deD

dt
= d

dt

⎛
⎝1

2

∫



(
ρvi vi + σi j Si jklσkl

)
d


⎞
⎠ =

∫



(
ρvi v̇ i + σi j Si jklσ̇kl

)
d
 . (22)

Substituting the two equations of (21) into (22) and recalling the symmetry of σi j , we arrive at:

deD

dt
=

∫



(
viσi j, j + σi j vi, j

)
d
 =

∫
∂


viσi jn j d∂
 , (23)

which is similar to the result that we obtained for the FEM region in (15), i.e., evolution of the total energy reduces to the 
behavior of the solution variables on the boundaries only. We aim to retain this property in the discretized system, which 
is often referred to as the summation-by-parts (SBP) property in the finite difference literature, cf. [13–16,34,35]. Design of 
SBP operators often omits boundary conditions, in which case the technique of simultaneous approximation terms (SATs) is 
often invoked to impose the boundary conditions weakly through penalty, cf. [17,36–39].

Again, for ease of discussion, we assume that the boundary integral in (23) vanishes on boundaries ∂ B , ∂L, and ∂ R and 
reduces to the interface only. We note here that for the FDM region, the outward normal vector takes the values [0, 1]T on 
the interface ∂ I and therefore, (23) can be written as

deD

dt
=

∫
viσi jn jd∂ I =

∫ (
vxσxy + v yσyy

)
d∂ I . (24)
∂ I ∂ I
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For the isotropic elastic wave equation considered in this work, we use the staggered grids demonstrated in the FDM 
region of Fig. 1 for its discretization. This type of grid configuration is popular in seismic studies, cf. [7,40,41], and dates 
back to the Yee scheme [42]. Symbolically, we use the following system to denote the finite difference discretization of (21):⎧⎨

⎩
A V i ρV i V̇ i = A V i D

�i j

j �i j ; (a)

A�i j S�kl
i jkl�̇kl = 1

2 A�i j
(
D V i

j V i + D
V j

i V j
)
. (b)

(25)

In (25), the summation convention applies to indices in the subscripts, but not to indices in the superscripts. For instance, in 
A V i D

�i j

j �ij , the summation only applies to the index j highlighted in bold font. Superscripts are appended to indicate which 
subgrids (or variables) these matrices are associated with. For instance, A V 1 and ρV 1 are associated with the vx subgrid 
(or variable vx). A final note on notation is that for (25b) to make sense, given any fixed i and j, all stress components 
σkl that correspond to non-zero compliance tensor components Sijkl need to be on the same subgrid as σi j . This can be 
verified for isotropic elastic wave equation and the grid configuration illustrated in the FDM region of Fig. 1, as explained in 
Appendix A.

Solution variables vi and σkl in (21) are approximated by column vectors V i and �kl in (25), respectively. These col-
umn vectors are mapped from the respective subgrids in column-wise manner. Spatial derivatives σi j, j , vi, j and v j,i are 
approximated by the finite difference operators D�i j

j , D V i
j and D V j

i , respectively.

Matrices A V i and A�i j may seem redundant at first glance, but will become useful in the upcoming discrete energy anal-
ysis. These matrices are referred to as the norm matrices in the SBP literature. In this work, we limit ourselves to the case of 
diagonal norm matrices. Loosely speaking, diagonal entries of A V i and A�i j resemble the areas that their corresponding grid 
points occupy, and are always positive. It is pointed out in [43] that diagonal entries of the norm matrices and their cor-
responding grid points provide quadrature rules for the underlying discretization domain, acting as the quadrature weights 
and quadrature points, respectively. Therefore, the appearances of A V i and A�i j in (25) can be understood as stemming 
from the integral operator 

∫



that appears in the definitions of continuous energies.

Finally, matrices ρV i and S�kl
i jkl in (25) are also diagonal, whose diagonal entries contain the respective discrete coefficients 

on subgrids indicated by their superscripts. These matrices are referred to as the coefficient matrices in the following. 
We remark here that diagonal matrices (e.g., norm matrices and coefficient matrices) of the same sizes commute under 
multiplication.

System (25) can be written in its equivalent form in (26) using the axis variables x and y:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

A V xρV x V̇ x = A V x

(
D�xx

x �xx + D
�xy
y �xy

)
; (a)

A V y ρV y V̇ y = A V y

(
D

�xy
x �xy + D

�yy
y �yy

)
; (b)

A�xx S�kl
xxkl�̇kl = A�xx D V x

x V x; (c)

A�xy S�kl
xykl�̇kl = 1

2 A�xy

(
D V x

y V x + D
V y
x V y

)
; (d)

A�yy S�kl
yykl�̇kl = A�yy D

V y
y V y . (e)

(26)

These two forms, as well as the notations therein, will be used interchangeably in the following.
Design of SBP operators has been thoroughly discussed in existing literature. Interested readers may consult [14–16] for 

general information and [44–46] for their design on staggered grids. In particular, 1D SBP operators on staggered grids have 
been devised in [46], where the concept of projection operator is introduced to deal with the situation when subgrids do 
not align with the boundaries. Authors of [46] also demonstrated how to construct 2D SBP operators on staggered grids 
using these 1D SBP operators as building blocks. Here, we omit the derivation detail and simply use the 1D SBP operators 
from [46] and then demonstrate how they can be applied to the simulation of isotropic elastic wave equation on the grid 
configuration illustrated in the FDM region of Fig. 1. These 1D SBP operators are included in Appendix B so that this work 
can be self-contained.1

Specifically, the 1D building blocks include the 1D norm matrices A N
x , A M

x , A N
y , and A M

y , the 1D finite difference operators 
D N

x , D M
x , D N

y , and D M
y and the 1D identity matrices IN

x , IM
x , IN

y , and IM
y . Superscript N indicates that the operator is 

associated with a grid whose endpoints match the boundaries. We refer to this grid as the N-grid in the following. Similarly, 
superscript M indicates that the operator is associated with a grid that is staggered with respect to the previously mentioned 
N-grid. We refer to this staggered one as the M-grid in the following. To give an example, on the interface depicted in Fig. 1, 
the N-grid is occupied by σxy while the M-grid is occupied by v y .

1 We note here that in this article, we use these specific SBP operators, which are fourth-order in the interior and second-order near the boundary, as a 
concrete example to demonstrate the interface treatment. The presented methodology can be naturally applied to other SBP operators. Same observation 
can be made for the finite element discretization order. The only change needed would be the interpolation operators, which need to be designed on a 
case-by-case basis. In particular, extension to higher order schemes is possible, as evidenced in [20,25–27,44], among others.
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In the x-direction, we limit ourselves to the case of periodic boundary conditions in this work. In the interior, the 
fourth-order staggered grid central difference stencil [1/24, −9/8, 9/8, −1/24]/	x is employed, cf. [40,47]. When approaching the 
left and right boundaries, the stencil is wrapped around to account for the periodic boundary condition. It can be easily 
verified that the resulting finite difference operators D N

x and D M
x satisfy the relation D N

x + (
D M

x

)T = 0. Moreover, the norm 
matrices A N

x and A M
x are simply chosen as the identity matrices of the appropriate sizes, scaled by the grid spacing 	x. 

Consequently, we have

A N
x D M

x +
(

A M
x D N

x

)T = 0 . (27)

In the y-direction, the finite difference operators D N
y and D M

y take the forms of (B.1a) and (B.1b), respectively, while 
the norm matrices A N

y and A M
y take the forms of (B.1c) and (B.1d), respectively. For D N

y and D M
y , the fourth-order stencil 

[1/24, −9/8, 9/8, −1/24]/	x is still employed for the interior, but adapts to the boundaries as in (B.1a) and (B.1b) and reduces to 
second order in the process.2 Moreover, these matrices have the following property:

A N
y D M

y +
(

A M
y D N

y

)T = − EN
B (PM

B )T + EN
I (PM

I )T , (28)

where EN
B , EN

I , PM
B and PM

I are column vectors, whose explicit forms are displayed in (B.3). Specifically, EN
B and EN

I are 
canonical basis vectors that select the N-grid values on boundary ∂ B and interface ∂ I , respectively, while PM

B and PM
I

are projection operators that project the M-grid values to boundary ∂ B and interface ∂ I , respectively. By design, PM
B and 

PM
I provide second-order accurate projection approximations, matching the order of derivative approximations near the 

boundaries.
The 2D norm matrices are built as tensor products of the 1D norm matrices as follows:

A V x = A N
x ⊗ A M

y , A V y = A M
x ⊗ A N

y ,

A�xy = A N
x ⊗ A N

y , A�xx = A�yy = A M
x ⊗ A M

y .
(29)

The 2D finite difference operators are built as tensor products of the 1D finite difference operators and the 1D identity 
matrices as follows:

D V x
x = D N

x ⊗ IM
y , D V x

y = IN
x ⊗ D M

y ,

D
V y
x = D M

x ⊗ IN
y , D

V y
y = IM

x ⊗ D N
y ,

D
�xy
x = D N

x ⊗ IN
y , D

�xy
y = IN

x ⊗ D N
y ,

D�xx
x = D M

x ⊗ IM
y , D

�yy
y = IM

x ⊗ D M
y .

(30)

The discrete kinetic and potential energies in the FDM region are defined as

E D
k = 1

2
V T

i

(
A V i ρV i

)
V i and E D

p = 1

2
�T

i j

(
A�i j S�kl

i jkl

)
�kl , (31)

respectively. Their respective correspondences to the continuous energies

eD
k =

∫



�vi vi d
 and eD
p =

∫



σi j Si jklσkl d


are obvious, realizing that the norm matrices A V i and A�i j act as quadrature weights. The total discrete energy in the FDM 
region is denoted by E D and defined as the sum of E D

k and E D
p . Taking the temporal differentiation of E D and substituting 

in (25), we have

dE D

dt
= V T

i A V i D
�i j

j �i j + �T
i jA

�i j D V i
j V i . (32)

Rewriting (32) in terms of the axis variables and collecting terms, we arrive at

dE D

dt
= V T

x

[
A V x D�xx

x +
(

A�xx D V x
x

)T
]

�xx + V T
y

[
A V y D

�xy
x +

(
A�xy D

V y
x

)T
]

�xy

+ V T
x

[
A V x D

�xy
y +

(
A�xy D V x

y

)T
]

�xy + V T
y

[
A V y D

�yy
y +

(
A�yy D

V y
y

)T
]

�yy .

(33)

2 Regarding this order reduction near the boundaries, interested readers may consult [48–51] and the references therein for more information.
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Recalling the definitions of the 2D SBP operators in (29) and (30), we have the following simplifications:

A V x D�xx
x +

(
A�xx D V x

x

)T =
[

A N
x D M

x +
(

A M
x D N

x

)T
]

⊗ A M
y ; (34a)

A V y D
�xy
x +

(
A�xy D

V y
x

)T =
[

A M
x D N

x +
(

A N
x D M

x

)T
]

⊗ A N
y ; (34b)

A V x D
�xy
y +

(
A�xy D V x

y

)T = A N
x ⊗

[
A M

y D N
y +

(
A N

y D M
y

)T
]

; (34c)

A V y D
�yy
y +

(
A�yy D

V y
y

)T = A M
x ⊗

[
A N

y D M
y +

(
A M

y D N
y

)T
]

(34d)

for the four matrix sums appearing on the right hand side of (33), respectively. Furthermore, recalling (27), the terms in 
(34a) and (34b) reduce to zero blocks; recalling (28), the terms in (34c) and (34d) can be written as

A V x D
�xy
y +

(
A�xy D V x

y

)T = A N
x ⊗

[
− PM

B

(
EN

B

)T +PM
I

(
EN

I

)T
]

= − [
IN

x ⊗PM
B

] · A N
x ·

[
IN

x ⊗ (
EN

B

)T
]

+ [
IN

x ⊗PM
I

] · A N
x ·

[
IN

x ⊗ (
EN

I

)T
] (35a)

and

A V y D
�yy
y +

(
A�yy D

V y
y

)T = A M
x ⊗

[
− EN

B

(
PM

B

)T + EN
I

(
PM

I

)T
]

= − [
IM

x ⊗ EN
B

] · A M
x ·

[
IM

x ⊗ (
PM

B

)T
]

+ [
IM

x ⊗ EN
I

] · A M
x ·

[
IM

x ⊗ (
PM

I

)T
]
,

(35b)

respectively. To concentrate on the interface treatment, we assume that in the above expressions, the terms related to 
boundary ∂ B disappear in the expression of dE D

dt due to proper boundary treatment. Eventually, (33) reduces to

dE D

dt
= V T

x

[
IN

x ⊗PM
I

] · A N
x ·

[
IN

x ⊗ (
EN

I

)T
]
�xy

+ V T
y

[
IM

x ⊗ EN
I

] · A M
x ·

[
IM

x ⊗ (
PM

I

)T
]
�yy .

(36)

In Appendix C, we explain how to append proper penalty terms to the discretized system to account for free surface 
boundary condition on ∂ B so that those terms related to ∂ B do cancel out in the expression of dE D

dt .
We remark here on the resemblance between (36) and (24). Taking the first term of (36) as an example, we notice 

that V T
x

[
IN

x ⊗PM
I

]
projects the values of V x to the N-grid points on interface ∂ I while 

[
IN

x ⊗ (
EN

I

)T
]
�xy selects the 

values of �xy at the N-grid points on interface ∂ I . In addition, realizing that A N
x acts as a quadrature rule for ∂ I with the 

N-grid points being the corresponding quadrature points, it now becomes clear that the first term of (36) is the discrete 
correspondence of 

∫
∂ I vxσxy d∂ I in (24). Similar correspondence can be established between the second term of (36) and ∫

∂ I v yσyy d∂ I in (24).
In the following, we use symbols χ N

I (·) and χ M
I (·) to denote the restrictions (by projection, selection or other means) of 

a solution variable at the N-grid and M-grid points on the interface, respectively. For instance, (36) may be written as

dE D

dt
=

[
χ N

I (vx)
]T · A N

x ·
[
χ N

I (σxy)
]

+
[
χ M

I (v y)
]T · A M

x ·
[
χ M

I (σyy)
]
. (37)

3.3. Interface treatment

On the interface ∂ I , we seek to impose the following interface conditions:

v E
i = v D

i ; (38a)

σ E
i j nE

j + σ D
ij nD

j = 0 , (38b)

where superscripts E and D are attached to solution variables to indicate to which regions they belong, with E for the 
FEM region and D for the FDM region, while nE

j and nD
j are the outward normal vectors on the interface for the respective 

regions. (38a) stems from continuity of the elastic medium, i.e., no overlap or tear; (38b) stems from Newton’s third law. 
On the interface, nE

j and nD
j take the values of [0, −1]T and [0, 1]T , respectively. Therefore, (38b) reduces to

σ E
xy = σ D

xy and σ E
yy = σ D

yy . (39)
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In the following, we demonstrate how to incorporate these interface conditions in the FEM and FDM discretizations in an 
energy-conserving manner.

First, (38b) is absorbed by the FEM discretization. Specifically, the weak formulation (11) is modified as follows: find 
ui ∈ Ui such that ∀wi ∈ Ui∫




ρwiüid
 = −
∫



wi, jσi jd
 +
∫
∂ I

wiσi jn jd∂ I + ηE
∫
∂ I

wi(σi jn j + σ D
ij nD

j )d∂ I , (40)

where (38b) is incorporated through the penalty term (underlined). Superscript E is dropped from the FEM variables since 
there is no ambiguity. Setting the penalty parameter ηE to −1, (40) reduces to

∫



ρwiüid
 = −
∫



wi, jσi jd
 −
∫
∂ I

wiσ
D

ij nD
j d∂ I , (41)

which leads to the following matrix form:

Mb̈ = −Kb − p , (42)

where matrices M and K have been given in (18) and (19), respectively, while vector p takes the following form:

p =

⎡
⎢⎢⎢⎢⎣

∫
∂ I

φσ D
xy d∂ I

∫
∂ I

φσ D
yy d∂ I

⎤
⎥⎥⎥⎥⎦ . (43)

Left multiplying (42) with ḃT and recalling the definitions of the discrete energies in (20), we have the following result:

dE E

dt
= −

∫
∂ I

(
φT ḃ1

)
· σ D

xy d∂ I −
∫
∂ I

(
φT ḃ2

)
· σ D

yy d∂ I (44)

regarding the discrete energy associated with (42) in the FEM region. When it comes to implementation, the line integral ∫
∂ I

in (43) is usually replaced by quadrature. We use xQ to denote the quadrature points for ∂ I and use W Q
x to denote 

the diagonal matrix whose diagonal components are the corresponding quadrature weights. The result in (44) can now be 
written as:

dE E

dt
= −

[
χ Q

I (v E
x )
]T ·W Q

x ·
[
χ Q

I (σ D
xy)

]
−

[
χ Q

I (v E
y)
]T ·W Q

x ·
[
χ Q

I (σ D
yy)

]
, (45)

where, for instance, χ Q
I (v E

x ) is the restriction of v E
x = φT ḃ1 at the quadrature points xQ on the interface.

On the other hand, (38a) is absorbed by the FDM discretization. Specifically, the finite difference discretization (26) is 
modified as follows:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

A V xρV x V̇ x = A V x

(
D�xx

x �xx + D
�xy
y �xy

)
; (a)

A V y ρV y V̇ y = A V y

(
D

�xy
x �xy + D

�yy
y �yy

)
; (b)

A�xx S�kl
xxkl�̇kl = A�xx D V x

x V x; (c)

A�xy S�kl
xykl�̇kl = 1

2 A�xy

(
D V x

y V x + D
V y
x V y

)
(d)

+ 1
2ηD

σxy

(
IN

x ⊗ EN
I

)
A N

x

[(
IN

x ⊗ (
PM

I

)T
)

V x − χ N
I

(
v E

x

)] ;
A�yy S�kl

yykl�̇kl = A�yy D
V y
y V y (e)

+ ηD
σyy

(
IM

x ⊗PM
I

)
A M

x

[(
IM

x ⊗ (
EN

I

)T
)

V y − χ M
I

(
v E

y

)]
,

(46)
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where the additional penalty terms (underlined) in (46d) and (46e) result from the discretization of (38a). Superscript D is 
dropped from the FDM variables since there is no ambiguity. Setting penalty parameters ηD

σxy
and ηD

σyy
to −1 and following 

the procedure described in Section 3.2, we arrive at the following result

dE D

dt
=

[
χ N

I (v E
x )
]T · A N

x ·
[
χ N

I (σ D
xy)

]
+

[
χ M

I (v E
y)
]T · A M

x ·
[
χ M

I (σ D
yy)

]
(47)

regarding the discrete energy associated with (46) in the FDM region.
We remark here that (46) is convenient for carrying out the discrete energy analysis, but cumbersome for implementa-

tion. Instead, the penalty terms in (46d) and (46e) can be absorbed by the y-derivative approximations D V x
y V x and D V y

y V y , 
respectively, resulting in the following modified derivative approximations:

˜D V x
y V x =

[
D V x

y − IN
x ⊗

((
A N

y

)−1
(
EN

I

(
PM

I

)T
))]

V x +
[
IN

x ⊗
((

A N
y

)−1
EN

I

)]
χ N

I (v E
x ) ; (48a)

˜

D
V y
y V y =

[
D

V y
y − IM

x ⊗
((

A M
y

)−1
(
PM

I

(
EN

I

)T
))]

V y +
[
IM

x ⊗
((

A M
y

)−1
PM

I

)]
χ M

I (v E
y) , (48b)

respectively. With these definitions, (46) can be inverted to the more familiar form:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

V̇ x =
(
ρV x

)−1 (
D�xx

x �xx + D
�xy
y �xy

)
;

V̇ y =
(
ρV y

)−1 (
D

�xy
x �xy + D

�yy
y �yy

)
;

�̇xx = (λ�xx + 2μ�xx)D V x
x V x + λ�xx

˜

D
V y
y V y ;

�̇xy = μ�xy D
V y
x V y + μ�xy ˜D V x

y V x ;
�̇yy = λ�yy D V x

x V x + (λ�yy + 2μ�yy )
˜

D
V y
y V y ,

(49)

which is more suitable for implementation. Comparing with the case without penalty terms, cf. (10), the only difference in 
implementing (49) is that the two y-derivative approximations, i.e., D V x

y V x and D
V y
y V y , need to be modified according to 

(48b) before being used to update the stress components.
We observe from (42) and (46) that χ Q

I

(
σ D

xy

)
and χ Q

I

(
σ D

yy

)
act as external input terms for the FEM region discretization 

while χ N
I

(
v E

x

)
and χ M

I

(
v E

y

)
act as external input terms for the FDM region discretization. Next, we demonstrate how to 

construct these external input terms so that the overall discretization is energy-conserving in the sense that

dE E

dt
+ dE D

dt
= 0 , (50)

i.e., the remaining terms in (45) and (47) cancel out. Given the quadrature weights W Q
x and the norm matrices A N

x and 
A M

x , this task reduces to properly interpolating solution values between the quadrature points xQ and the N-grid points 
and M-grid points on the interface. The N-grid points and M-grid points are denoted by xN and xM hereafter, respectively.

We use symbols T DN
E Q and T DM

E Q to denote the interpolation operators that map values from xQ to xN and xM , respec-

tively, and symbols T E Q
DN and T E Q

DM to denote the interpolation operators that map values from xN and xM , respectively, 
to xQ . Considering the first terms in (45) and (47), they become

−
[
χ Q

I (v E
x )
]T ·W Q

x T E Q
DN ·

[
χ N

I (σ D
xy)

]
and

[
χ Q

I (v E
x )
]T ·

(
T DN

E Q

)T
A N

x ·
[
χ N

I (σ D
xy)

]
,

respectively. Similarly, the second terms in (45) and (47) become

−
[
χ Q

I (v E
y)
]T ·W Q

x T E Q
DM ·

[
χ M

I (σ D
yy)

]
and

[
χ Q

I (v E
y)
]T ·

(
T DM

E Q

)T
A M

x ·
[
χ M

I (σ D
yy)

]
,

respectively. For (50) to hold regardless of the solution state, these interpolation operators need to satisfy the following 
relations:

W Q
x T E Q

DN =
(
T DN

E Q

)T
A N

x and W Q
x T E Q

DM =
(
T DM

E Q

)T
A M

x . (51)

In Appendix D, we give pairs of interpolation operators that satisfy (51) for two different quadrature rules. By design, these 
operators provide at least second-order accurate interpolation results, matching the order of projection operators and the 
order of derivative approximations near the boundaries. Design of these operators is assisted by the symbolic computing 
software Maple.
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Remark 2. Based on the above derivation, it is clear that the interface treatment presented in this subsection depends only 
on terms that are restricted to the interface, cf. (45) and (47). Therefore, it applies naturally to the case of non-trivial topog-
raphy as long as the interface is not distorted by the mapping from parametric domain to physical domain (cf. Remark 1) 
beyond uniform stretching in the x-direction. A numerical example of such case is presented in Section 4.2.

3.4. Full discretization

In previous subsections, we have described in detail the spatial discretizations in the FEM region and the FDM region, as 
well as the interface treatment, resulting in the semi-discretized systems (42) and (49). In the following, we explain how 
these semi-discretized systems can be numerically integrated in time. We note here that exchange of information at the 
interface via external input terms requires the time discretizations of these two systems to be coordinated. In this work, 
we demonstrate how to achieve this with the staggered leapfrog time integration scheme, which is popular in seismic 
studies for being time reversible and easy to implement. However, other time integration schemes can be applied in similar 
manners as outlined in the following.

We start with the time integration of (49) with the staggered leapfrog scheme in the FDM region. Specifically, the stress 
components σxx , σxy and σyy are discretized at integer time steps, i.e., 0, 1, 2, etc.; the velocities vx and v y are discretized 
at half time steps, i.e., 1

2 , 3
2 , 5

2 , etc. Taking vx as an example, it is updated from time step it − 1
2 to it + 1

2 using the following 
formula:

V (it+1/2)
x = V (it−1/2)

x + 	t
(
ρV x

)−1 (
D�xx

x �
(it )
xx + D

�xy
y �

(it )
xy

)
,

where 	t denotes the time step length while superscripts are appended to solution vectors to indicate the time steps. Other 
solution variables are updated in similar manners. We note here that in order to update the stress components, the external 
input terms χ N

I

(
v E

x

)
and χ M

I

(
v E

y

)
need to be available at half time steps.

To have a matching time integration scheme in the FEM region, the second-order system (42) is first split as follows:{
M ξ̇ = −Kb − p ; (a)

ḃ = ξ , (b)
(52)

with the assistance of auxiliary variable ξ , which, like b in (18), consists of subvectors ξ1 and ξ2. Since ξ = ḃ, φT ξ1 and 
φT ξ2 are approximations to v E

x and v E
y , respectively. This first-order system is then discretized using the same staggered 

leapfrog scheme as in the FDM region. Specifically, b is discretized at integer time steps while ξ is discretized at half time 
steps. The external input terms χ Q

I

(
σ D

xy

)
and χ Q

I

(
σ D

yy

)
enter (52) through vector p and therefore, need to be available at 

integer time steps in order to update ξ .
The above updating procedures are sketched in the following table, where the underlined variables appear in external 

input terms.

Table 1
Updating procedures for semi-discretized systems in the FDM region and the FEM region, i.e., 
(49) and (42), respectively.

FDM FEM

it −→ it + 1/2
{
σ D

xx, σ
D

xy , σ D
yy

} −→ {
v D

x , v D
y

} {
b, σ D

xy , σ D
yy

}
−→ ξ

it + 1/2 −→ it + 1
{

v D
x , v D

y , ξ
}

−→ {
σ D

xx, σ
D

xy , σ D
yy

}
ξ −→ b

We observe from Table 1 that by carefully matching the updates of solution variables from both discretizations as out-
lined in the above, the external input terms are made available for each other at the right time instances.

4. Numerical examples

In the following, we corroborate the proposed interface treatment with numerical examples. For this purpose, the 2D 
isotropic elastic wave equation is considered, which is posed in its second-order formulation (7) for the FEM region and 
first-order formulation (8) for the FDM region, with the corresponding discretizations described in Sections 3.1 and 3.2, 
respectively, and the interface treatment presented in Section 3.3. Periodic boundary conditions are considered in the 
x-direction, while free surface boundary conditions are imposed on the top and bottom boundaries. At the beginning of 
the simulation, the medium is assumed to be at rest, which translates to the initial conditions that all solution components, 
as well as their derivatives, are zero. To drive the wave propagation, a point source is imposed on the normal stress compo-
nents σxx and σyy (with the same temporal profile for both σxx and σyy), mimicking an explosive source in seismic survey. 
The simulated vertical velocity v y at some receiver location is recorded at each time step for later comparison, which is 
sometimes referred to as the seismogram. In the following examples, quadrilateral elements are used for the FEM region 
discretization. However, the same interface treatment can be applied to other types of elements as well.
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4.1. Example: flat topography

To have a better focus on the interface treatment, we first consider the case of flat topography, i.e., both the FEM region 
and the FDM region are rectangles, as illustrated in Fig. 1. The FEM region is uniformly partitioned with 200 (horizon-
tal) by 30 (vertical) square elements. Tensor products of quadratic Lagrange basis functions with equidistant interpolatory 
points are used to approximate the solution. To approximate the integrals that appear in the finite element discretization, 
the Gauss quadrature rule with three quadrature points on both directions per element is employed. On the other hand, the 
FDM region is discretized by four staggered subgrids, the outmost of which is occupied by σxy and consists of 201 (hori-
zontal) by 31 (vertical) grid points (including the rightmost grid column, which is voided in the simulation because of the 
periodic boundary conditions in the x-direction). The finite difference operators employed in the FDM region are described 
in Section 3.2. Element width in the FEM region and grid spacing in the FDM region are kept the same, both denoted as 	x. 
On the interface, we use the interpolation operators defined by (D.1) and (D.2) of Appendix D.

The isotropic elastic medium is parametrized by density ρ , compressional wave velocity cp and shear wave velocity cs . 
The Lamé parameters in constitutive relation (6), i.e., λ and μ, are linked with these parameters via λ = ρ(c2

p − 2c2
s ) and 

μ = ρc2
s , respectively. In this example, we consider homogeneous medium with ρ = 1 kg/m3, cp = 2 m/s and cs = 1 m/s.

The point source is placed at 5 1
2 	x below the top boundary and 49 1

2 	x to the right of the left boundary. Its temporal 
profile is chosen as the Ricker wavelet with central frequency of 5 Hz and time delay of 0.25 s (see Appendix E for more 
information). We count the maximal frequency of the source content as 12.5 Hz, which corresponds to minimal wavelength 
of 0.08 m. 	x is chosen as 0.005 m, which amounts to 16 grid points (elements) per minimal wavelength. The time step 
length 	t is chosen as 5e-4s while the number of simulated time steps is chosen as 20000, which amounts to 10 s in total. 
The v y component of the simulated solution is recorded at the receiver location, which is placed at 6	x below the top 
boundary and 149 1

2 	x to the right of the left boundary.
The recorded v y signal, referred to as the FEM-FDM result, is displayed in Fig. 2. For comparison, results simulated with 

FEM discretization alone and FDM discretization alone are also displayed in Fig. 2, referred to as the FEM result and the FDM 
result, respectively. We observe that all three results match extremely well with one another, which implies that with the 
proposed interface treatment, the mixed FEM-FDM discretization is capable of delivering accurate simulation results parallel 
to those produced by FEM discretization and FDM discretization alone. In particular, we do not observe any additional 
spurious wave packets in the FEM-FDM result that may emit from the interface, thanks to the energy-conserving principle 
that we adhere to when designing the interface treatment.

Fig. 2. Seismograms simulated with mixed FEM-FDM discretization, FEM discretization alone and FDM discretization alone for the domain illustrated in 
Fig. 1. All three superposed results match extremely well.

Fig. 3. Evolution of the total discrete energies associated with mixed FEM-FDM simulation, FEM simulation and FDM simulation for the domain illustrated 
in Fig. 1. In all three cases, the discrete energy remains constant after the source tapers off.

Next, in Fig. 3, we display evolution of the total discrete energies associated with the three aforementioned simulations 
after the source tapers off (see Appendix E for some explanation). At each time step, the total discrete energy is calculated 
based on (20) for the FEM simulation and (31) for the FDM simulation. For the mixed FEM-FDM simulation, it is calculated 
with (20) for the FEM region and (31) for the FDM region, and then summed together. We observe that in all three cases, 
the total discrete energy remains constant after the source tapers off. Specifically, this confirms that the mixed FEM-FDM 
discretization is energy-conserving. Importance of such energy-conserving property is twofold. First, it implies stability of 
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the simulation since the solution amplitude (measured by the discrete energy) is not allowed to grow, thus avoiding insta-
bility issues that may damage the wave simulation results (see [52] for an example). Second, the non-dissipative behavior 
offers additional value for seismic applications that rely on amplitude information or require long time simulations, when 
compared to, for instance, the Lax-Wendroff scheme, which may deliver stable simulation but yields dissipative solutions.

4.2. Example: non-trivial topography

With this example, we demonstrate the applicability of the proposed techniques for more general cases. Specifically, we 
consider the simulation domain illustrated in Fig. 4, where the top boundary of the FEM region (i.e., the free surface) is 
described by a sinusoidal function. Width and (maximal) height of the FEM region are 6250 m and 500 m, respectively. 
Amplitude of the sinusoidal function is 20% of the maximal height, leading to a variation of 200 m in free surface altitude. 
On the other hand, the FDM region is a rectangle with width 6250 m and height 1500 m.

Fig. 4. Illustration of the simulation domain with non-trivial topography. The FEM region (top) and the FDM region (bottom) are delineated by the green 
dashed line. Variation in compressional velocity cp is indicated by color in the above figure to exemplify the media complexity. Moreover, the red star and 
triangle indicate the source and receiver locations, respectively. (For a colored version of this figure, please refer to the web version of this article.)

The FEM region is discretized by a mesh consisting of quadrilateral elements. We remark here that to have a convincing 
test, these are general irregular quadrilaterals,3 although for this simple geometry, a collection of trapezoids may suffice for 
the purpose of discretization. The FDM region is still discretized by the four staggered subgrids (cf. Fig. 1) as in the previous 
example. On the interface between these two regions, we make sure that the elements (or rather, their restrictions on the 
interface) are uniform and that vertices of these elements match the grid points of the σxy subgrid.

A specific variant of the finite element method, i.e., the spectral element method (see, e.g., [53,54]) is used to assemble 
the finite element system for the FEM region. This approach has been popularized in global seismological studies (see, e.g., 
[9,55]). Specifically, to approximate the integrals that appear in the FEM discretization, we use the Gauss-Lobatto quadrature 
rule with three quadrature points on both directions per element. With Gauss-Lobatto quadrature, the quadrature points 
include both endpoints of the integration interval. Accordingly, bi-quadratic Lagrange basis functions whose interpolatory 
points coincide with these quadrature points are used to approximate the solution on each element. These choices lead 
to a diagonal mass matrix, which is efficient to invert and therefore, suitable for explicit dynamics. The finite difference 
operators used in the FDM region are the same as in the previous example. On the interface, we use the interpolation 
operators defined by (D.3) and (D.4) of Appendix D.

Medium parameters (i.e., ρ , cp and cs) are cropped from the Marmousi2 model (the right bottom corner), which is a 
common test case for seismic studies, cf. [56]. Grid points in the FDM region are carefully aligned to match the data points 
in the Marmousi2 model. In the FEM region, these medium parameters are linearly interpolated to the quadrature points. To 
give an idea of the medium complexity, cp is indicated in Fig. 4 via the variation of color. The maximum and minimum of 
cp are, approximately, 4700 m/s and 2287 m/s, respectively; the maximum and minimum of cs are, approximately, 2752 m/s 
and 894 m/s, respectively; and finally, the maximum and minimum of ρ are, approximately, 2627 kg/m3 and 2030 kg/m3, 
respectively.

The source and receiver locations are depicted in Fig. 4, which are, approximately, 23.8 m and 26 m below the free 
surface, respectively. Temporal profile of the source is the Ricker wavelet with central frequency of 5 Hz and time delay of 
0.25 s. We count the maximal frequency of the source content as 12.5 Hz, which corresponds to minimal wavelength of 
71.5 m, approximately. Grid spacing of the FDM region is chosen as 5 m, which amounts to roughly 14.3 grid points per 
minimal wavelength. Element width in the FEM region, although varies from element to element, is around 5 m as well. 
The time step length 	t is chosen as 2e-4s while the number of simulated time steps is chosen as 30000, which amounts 
to 6 s in total.

The v y component of the simulated solution at the receiver location is recorded at every time step and displayed in 
Fig. 5. For comparison, the result simulated with FEM discretization alone is also displayed in Fig. 5. As in the previous 
example, we observe that the two results match very well with each other. Moreover, the total discrete energies associated 

3 Vertices of these quadrilaterals are included in the supplementary material in binary format (single-precision, small-endian), along with values of the 
medium parameters at the quadrature points.
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with these two simulations after the source effect tapers off are displayed in Fig. 6, which remain constant. Once again, this 
confirms that the mixed FEM-FDM discretization is energy-conserving.

Fig. 5. Seismograms simulated with mixed FEM-FDM discretization and FEM discretization alone for the domain illustrated in Fig. 4.

Fig. 6. Evolution of the total discrete energies associated with mixed FEM-FDM simulation and FEM simulation for the domain illustrated in Fig. 4.

With this example, we confirmed that the presented interface treatment can work with general meshes and heteroge-
neous media. This can be understood intuitively based on the derivations in Section 3. Specifically, these two factors, i.e., 
general meshes and heterogeneous media, are shielded from the interface treatment by 1) straight and uniformly discretized 
interface that makes the interface treatment immune from the mesh choices in the interior of the FEM region; 2) defini-
tions of the discrete energies that absorb the heterogeneous media parameters such that they are absent from the interface 
treatment.

5. Discussion

In this work, we only intend to demonstrate the feasibility of combining finite element and finite difference discretiza-
tions in an energy-conserving manner for elastic wave simulations. Potential extensions and improvements remain for future 
exploration.

5.1. More general constitutive relations

One such extension is elastic wave equations with more general constitutive relations, such as those defined on trans-
versely isotropic media. We note here that the finite difference discretized system (25) and the discrete potential energy E D

p
in (31) are both written formally for general constitutive relations. Meanwhile, for the finite element discretized system (42), 
the constitutive relation does not appear in the penalty term p associated with the interface treatment, cf. (43). Therefore, 
we expect the interface treatment presented in this work to transplant smoothly to more general constitutive relations.

5.2. Other discretization techniques

Other branches of finite element methods can also be considered, such as the discontinuous Galerkin methods, which 
often start with the first-order velocity-stress formulation that is identical to the one employed in the FDM region, cf. (8)
or (10). We expect this scenario to be easier to handle than the one considered in this work, where we have employed 
different PDE formulations for the FEM region and the FDM region. In particular, we expect more flexibility in designing the 
penalty terms when the formulations employed in the two regions are the same.

5.3. Extension to 3D

The interface treatment presented here can be naturally extended to the 3D case. Provided that restrictions of the 3D 
elements on the interface are uniform, the 2D interpolation operators required for information exchange on the interface 
can be constructed as the tensor products of their 1D counterparts, e.g., those presented in Appendix D of this work. 
Relations in (51) will be carried over to these 2D operators because of the properties of tensor product. In addition, since 
the information exchange reduces to the interface only, we expect the integration of the proposed technique to existing 
software, such as those from the SPECFEM project, to be marginally intrusive.
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5.4. More general SBP operators

One possible improvement is in the SBP operators used in the FDM region discretization. Specifically, since we only 
intend to apply these SBP operators on regularly structured grids without curvilinear features, we may consider the usage 
of non-diagonal norm matrices to avoid the order reduction near the boundary or interface. However, existence of such 
operators and, if so, their incorporation in the interface treatment need to be carefully examined in future studies, which 
are beyond the scope of this work. Similarly, we leave the investigation of the various possible discretization orders in both 
regions for future studies, since the interface treatment, in particular, the design of interpolation operators, needs to be 
considered on a case by case basis.

5.5. Perfectly matched layers

In seismic exploration applications, the technique of perfectly matched layers (PMLs) is commonly used to absorb out-
going waves in order to mimic an infinite or semi-infinite simulation domain, cf. [57,58]. Discrete stability of the PMLs has 
been investigated within the SBP-SAT framework, see, e.g., [59,60]. For the particular setting under consideration, discretely 
stable implementation of the PMLs still requires further investigation. Various boundary conditions can be considered for 
exterior boundaries of the PMLs, including the periodic boundary condition considered in this article for the x-direction, 
which allows the usage of uniform stencils when approaching these exterior boundaries.

6. Conclusion

In this work, we consider the isotropic elastic wave equations arising from land-based seismic applications. In particular, 
we focus on numerical techniques that enable us to combine finite element and finite difference discretizations of such 
equations in an energy-conserving manner. These techniques are developed following the concept of discrete energy anal-
ysis. For both finite element and finite difference discretizations, we demonstrate that with proper discretization choices, 
evolution of the total discrete energy, which includes a kinetic and a potential part, can be reduced to terms on the interface 
only. Moreover, with carefully designed interface treatment, these remaining terms on the interface can be made to cancel 
out each other to achieve an overall discretization that is energy-conserving. Accuracy of the proposed interface treatment 
and the energy-conserving property of the overall discretization are verified by numerical examples.
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Appendix A. On the isotropic constitutive relation

The isotropic constitutive relation can be written with the axis variables as:⎧⎨
⎩

σxx = (λ + 2μ)εxx + λεyy ;
σxy = 2μεxy ;
σyy = λεxx + (λ + 2μ)εyy .

(A.1)

Inverting the above linear system for the strain components εxx , εxy and εyy , we arrive at:

⎧⎪⎪⎨
⎪⎪⎩

λ+2μ
4μ(λ+μ)

σxx − λ
4μ(λ+μ)

σyy = εxx ;
1

2μσxy = εxy ;
− λ

4μ(λ+μ)
σxx + λ+2μ

4μ(λ+μ)
σyy = εyy .

(A.2)

We observe from (A.2) that the non-trivial stiffness tensor components mix the two normal stress components, i.e., σxx

and σyy . For (25b) to make sense, σxx and σyy need to be on the same subgrid, which is the case for the grid configuration 
illustrated in the FDM region of Fig. 1.

Appendix B. 1D SBP operators

The following 1D SBP operators (B.1a)–(B.1d) are used as building blocks for the finite difference discretization presented 
in Section 3.2. They already appeared in [46] and are included here to make this work self-contained. Interested readers 
may consult [46] for more information.
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D N
y =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−79/78 27/26 −1/26 1/78 0
2/21 −9/7 9/7 −2/21 0
1/75 0 −27/25 83/75 −1/25

1/24 −9/8 9/8 −1/24
1/24 −9/8 9/8 −1/24

. . .
. . .

. . .
. . .

1/24 −9/8 9/8 −1/24
1/24 −9/8 9/8 −1/24

1/25 −83/75 27/25 0 −1/75

0 2/21 −9/7 9/7 −2/21

0 −1/78 1/26 −27/26 79/78

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

; (B.1a)

D M
y =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−2 3 −1 0 0
−1 1 0 0 0

1/24 −9/8 9/8 −1/24 0
−1/71 6/71 −83/71 81/71 −3/71

1/24 −9/8 9/8 −1/24
1/24 −9/8 9/8 −1/24

. . .
. . .

. . .
. . .

1/24 −9/8 9/8 −1/24
1/24 −9/8 9/8 −1/24

3/71 −81/71 83/71 −6/71 1/71

0 1/24 −9/8 9/8 −1/24

0 0 0 −1 1
0 0 1 −3 2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

; (B.1b)

A N
y =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

7/18
9/8

1
71/72

1
1

. . .

1
1

71/72

1
9/8

7/18

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

; (B.1c)

A M
y =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

13/12
7/8

25/24

1
1

. . .

1
1

25/24
7/8

13/12

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (B.1d)

We note here that the matrices presented in (B.1) correspond to the case of unit grid spacing, i.e., 	x = 1. When applied to 
general cases, D N

y and D M
y need to be scaled by 1/	x while A N

y and A M
y need to be scaled by 	x. With these matrices, the 

sum A N
y D M

y + (
A M

y D N
y

)T
, cf. (28), takes the following explicit form:

⎡
⎢⎢⎢⎣

−15/8 5/4 −3/8

3 5 15

⎤
⎥⎥⎥⎦ , (B.2)
/8 − /4 /8
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which can be written as −EN
B (PM

B )T + EN
I (PM

I )T with E N
B , E N

I , P M
B and P M

I given by:

EN
B =

⎡
⎢⎢⎢⎣

1
0
...

0

⎤
⎥⎥⎥⎦ ; EN

I =

⎡
⎢⎢⎢⎣

0
...

0
1

⎤
⎥⎥⎥⎦ ; PM

B =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

15/8

−5/4
3/8

0
...

0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

; PM
I =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

0
...

0
3/8

−5/4
15/8

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

, (B.3)

respectively.

Appendix C. SATs for free surface boundary conditions

To accompany the discrete energy analysis presented throughout (32)–(35), we explain how to append the proper penalty 
terms to the discretized system (25) to account for free surface boundary conditions (σxy = 0; σyy = 0) on boundary ∂ B in 
the way that the remaining terms in dE D

dt that are related to ∂ B , i.e.,

−V T
x

[
IN

x ⊗PM
B

]
A N

x

[
IN

x ⊗ (
EN

B

)T
]
�xy and − V T

y

[
IM

x ⊗ EN
B

]
A M

x

[
IM

x ⊗ (
PM

B

)T
]
�yy ,

are cancelled out, cf. (33) and (35). Specifically, the equations used to update V x and V y , i.e., (46a) and (46b), are modified 
as

A V xρV x V̇ x = A V x
(

D�xx
x �xx + D

�xy
y �xy

)
+

[
IN

x ⊗PM
B

]
A N

x

([
IN

x ⊗ (
EN

B

)T
]
�xy − 0N

x

)
and

A V y ρV y V̇ y = A V y
(

D
�xy
x �xy + D

�yy
y �yy

)
+

[
IM

x ⊗ EN
B

]
A M

x

([
IM

x ⊗ (
PM

B

)T
]
�yy − 0M

x

)
,

respectively, where 0N
x and 0M

x are zero column vectors of the sizes of xN and xM , respectively. Since 
[
IN

x ⊗ (
EN

B

)T ]
�xy and [

IM
x ⊗ (

PM
B

)T ]
�yy are restrictions of σxy and σyy at boundary ∂ B , respectively, the two additional penalty terms impose 

relations σxy = 0 and σyy = 0, respectively.

Appendix D. Interpolation operators

In this appendix, we give two pairs of interpolation operators that satisfy (51) for two discretization scenarios on the 
interface, which are considered in Sections 4.1 and 4.2, respectively.

Fig. D.1. Layout of grid and quadrature points involved in the interpolations for the case of Gauss quadrature rule with three quadrature points per element. 
Elements are delineated by the dashed lines.

First, we consider the case where the Gauss quadrature rule with three quadrature points per element is used to ap-
proximate the line integrals in (43). Layout of grid and quadrature points involved in the interpolations is illustrated in 
Fig. D.1. Fig. D.1a corresponds to operator T E Q

DN , which interpolate from the N-grid points xN to the quadrature points xQ . 
In the following, we give interpolation formulas for the three quadrature points in the middle only, since the others can be 
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deduced based on the repeated pattern in the layout of grid points. Given the values of smooth function f at xN
1 , xN

2 , xN
3

and xN
4 , its values at xQ

1 , xQ
2 and xQ

3 can be approximated by the following formulas:

f (xQ
1 ) ≈ − 1

20 f (xN
1 ) +

(
3
5 +

√
15

10

)
f (xN

2 ) +
(

9
20 −

√
15

10

)
f (xN

3 );
f (xQ

2 ) ≈ − 1
16 f (xN

1 ) + 9
16 f (xN

2 ) + 9
16 f (xN

3 ) − 1
16 f (xN

4 );
f (xQ

3 ) ≈
(

9
20 −

√
15

10

)
f (xN

2 ) +
(

3
5 +

√
15

10

)
f (xN

3 ) − 1
20 f (xN

4 ).

(D.1)

Similarly, Fig. D.1b corresponds to operator T E Q
DM , which interpolates from the M-grid points xM to the quadrature points xQ . 

The following formulas are used to interpolate from xM
1 , xM

2 , xM
3 to xQ

1 , xQ
2 and xQ

3 :

f (xQ
1 ) ≈

(
3

40 +
√

15
20

)
f (xM

1 ) + 17
20 f (xM

2 ) +
(

3
40 −

√
15

20

)
f (xM

3 );
f (xQ

2 ) ≈ f (xM
2 );

f (xQ
3 ) ≈

(
3

40 −
√

15
20

)
f (xM

1 ) + 17
20 f (xM

2 ) +
(

3
40 +

√
15

20

)
f (xM

3 ).

(D.2)

By repeating the formulas in (D.1) and (D.2) for all quadrature points in xQ , one obtains the operators T E Q
DN and T E Q

DM , 
respectively. Their counterparts, i.e., T DN

E Q and T DM
E Q , can be deduced using the relations in (51).

Fig. D.2. Layout of grid and quadrature points involved in the interpolations for the case of Gauss-Lobatto quadrature rule with three quadrature points per 
element. Elements are delineated by the dashed lines. With Gauss-Lobatto quadrature rule, element endpoints are included in the quadrature points.

Next, we consider the case where the Gauss-Lobatto quadrature rule with three quadrature points per element is used 
to approximate the line integrals in (43). Layout of grid and quadrature points involved in the interpolations is illustrated in 
Fig. D.2. We note here that unlike the Gauss quadrature rule where all quadrature points are in the interior of the elements, 
the Gauss-Lobatto quadrature rule has the element endpoints included in the quadrature points. Fig. D.2a corresponds to 
operator T E Q

DN , which interpolate from xN to xQ with the following formulas:

f (xQ
1 ) ≈ f (xN

2 );
f (xQ

2 ) ≈ − 1
16 f (xN

1 ) + 9
16 f (xN

2 ) + 9
16 f (xN

3 ) − 1
16 f (xN

4 );
f (xQ

3 ) ≈ f (xN
3 ).

(D.3)

Fig. D.2b corresponds to operator T E Q
DM , which interpolates from xM to xQ with the following formulas:

f (xQ
1 ) ≈ f (xM

2 );
f (xQ

2 ) ≈ − 1
16 f (xM

1 ) + 9
16 f (xM

2 ) + 9
16 f (xM

3 ) − 1
16 f (xM

4 );
f (xQ

3 ) ≈ f (xM
3 ).

(D.4)

By design, all interpolation operators mentioned above, including T E Q
DN , T E Q

DM , T DN
E Q , and T DM

E Q associated with both 
scenarios illustrated in Figs. D.1 and D.2, provide at least second-order accurate interpolation results. These operators are 
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derived by solving for the coefficients that satisfy the constraints demanded by accuracy and relations in (51), using the 
symbolic computing software Maple. Situations involving more complicated grid layouts can be handled in similar manner.

Appendix E. Ricker wavelet (temporal profile of the source)

For the numerical examples in Section 4, a Ricker wavelet is used as the temporal profile of the point source. The 
standard Ricker wavelet is defined as A(t) = (1 − 2π2 f 2t2)e−π2 f 2t2

, which is the second derivative of a Gaussian function, 
where f is referred to as the peak (central) frequency. Fig. E.1a displays the standard Ricker wavelet for f = 5 Hz, which is 
symmetric with respect to the y-axis. Its amplitude approaches zero as t → ±∞ and diminishes quickly outside of a small 
window.

Fig. E.1. Ricker wavelet. The left figure shows the standard Ricker wavelet given by formula A(t) = (1 − 2π2 f 2t2)e−π2 f 2t2
with f = 5 Hz. In the right figure, 

it is shifted to the right for T0 = 0.25 s.

Since the simulation usually starts at t = 0 s, it is desirable to shift the wavelet to the right so that the cutoff amplitude 
at t = 0 s is negligible. This is achieved by introducing a time delay T0 and variable transformation t̂ = t − T0 so that 
A(t) = (1 − 2π2 f 2t̂2)e−π2 f 2 t̂2

. Fig. E.1b displays the shifted (delayed) Ricker wavelet for T0 = 0.25 s. The amount of time 
delay is empirical and depends on the central frequency. It needs to be larger for smaller central frequency as the shape of 
the wavelet is wider.

Nevertheless, once the time delay T0 is determined, it is obvious from symmetry of the wavelet that after 2T0, the 
source tapers off, i.e., amplitude of the source becomes negligible. Since all analysis conducted in this work is with respect 
to the homogeneous wave equation (i.e., without external source terms), the energy-conserving property is only valid when 
external source terms are absent. Therefore, to demonstrate the energy-conserving property, the discrete energy is only 
displayed after the source tapers off (i.e., after 2T0) in Figs. 3 and 6.

Appendix F. Supplementary material

Supplementary material related to this article can be found online at https://doi .org /10 .1016 /j .jcp .2018 .11.031.
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