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Several different approaches are proposed for solving fully implicit discretizations of a 
simplified Boltzmann-Poisson system with a linear relaxation-type collision kernel. This 
system models the evolution of free electrons in semiconductor devices under a low-
density assumption. At each implicit time step, the discretized system is formulated as 
a fixed-point problem, which can then be solved with a variety of methods. A key 
algorithmic component in all the approaches considered here is a recently developed 
sweeping algorithm for Vlasov-Poisson systems. A synthetic acceleration scheme has been 
implemented to accelerate the convergence of iterative solvers by using the solution to a 
drift-diffusion equation as a preconditioner. The performance of four iterative solvers and 
their accelerated variants has been compared on problems modeling semiconductor devices 
with various electron mean-free-path.

Published by Elsevier Inc.

1. Introduction

The Boltzmann-Poisson system is considered an accurate kinetic model of electron transport in semiconductor devices 
[1]. This system describes the evolution of an electron distribution function using a semi-classical Boltzmann kinetic equa-
tion and generates a self-consistent electric field by coupling the Boltzmann equation to a Poisson equation that is driven 
by the electron density. Numerical simulation of the Boltzmann-Poisson system is known to be difficult for several reasons, 
including the nonlinear coupling between equations, the nonlinear collision operator that describes electron-electron and 
electron-background interactions, and the dimension of the computational domain. Indeed, simulating a three-dimensional 
device requires the solution to a six-dimensional Boltzmann equation.

Under a low-density assumption, electron-electron interactions become negligible and electrons can be treated as clas-
sical particles interacting with a material background. In such cases, the nonlinear collision operator can be replaced by a 
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linear, relaxation time approximation [1–3] when the steady-state solution to the Boltzmann-Poisson system is of interest. 
In the case that the electron transport is through channels that are parallel to the electric field, the semiconductor device is 
effectively one-dimensional [1,3] and can therefore be simulated using the approximated Boltzmann-Poisson system in one 
space dimension.

In addition to traditional Direct Simulation Monte Carlo methods [4], many deterministic numerical schemes have been 
developed for solving the Boltzmann-Poisson system and its simplified variants. The deterministic schemes considered in 
previous works discretize the position-velocity phase space of the Boltzmann equation and its simplified variants using the 
weighted essentially non-oscillatory (WENO) finite difference method [5–7], the discontinuous Galerkin (DG) method [8–10], 
and the spectral-difference method [11]. These schemes either consider a steady-state Boltzmann-Poisson system or use 
explicit time-stepping schemes to capture transient behavior. To guarantee stability, explicit time-stepping schemes usually 
require the size of the time steps to be proportional to the mean-free-path of particles in the system. Such a restriction 
can be computational prohibitive for highly collisional problems, where the mean-free-path is small. An explicit asymptotic 
preserving scheme was introduced to address this issue in [12], where the stability is guaranteed under a parabolic time-step 
restriction (independent of the mean-free-path) for highly collisional problems. Later, an implicit-explicit (IMEX) asymptotic 
preserving scheme was developed in [13] to relax the parabolic time-step restriction. However, these and similar approaches 
do not allow for large-scale local variations in the mean-free-path that are common in multiscale problems.

In this paper, we consider a fully implicit numerical scheme for solving the simplified Boltzmann-Poisson system under 
the low density assumption in one space dimension. The fully implicit time-stepping method allows for larger time steps 
that are independent of the mean-free-path, regardless of the collisionality of the problem. Such stability comes at the 
cost of solving large, possibly ill-conditioned, linear and nonlinear algebraic equations. Hence efficient numerical solvers 
are needed to update the numerical solution at each time step. In [14], a fast, fully implicit solver was proposed for the 
nonlinear Vlasov-Poisson system, which is the collisionless variant of the simplified Boltzmann-Poisson system considered 
in this paper. At each time step, this solver applies a special decomposition of the phase space to allow for the use of 
the sweeping technique that are commonly used to accelerate the solution of radiation transport problems [15–17]. To 
utilize the fast solver [14] in the collisional case, we consider the scattering term as a source and formulate the simplified 
Boltzmann-Poisson system as a nonlinear fixed-point problem at each implicit time step. At each fixed-point iteration, a 
collisionless problem with source is solved and the electron distribution that solves the collisionless problem is used to 
update the collision term, which becomes the source at the next fixed-point iteration. The fixed-point problem reaches a 
solution when the collisionless problem gives an electron distribution that is consistent with the collision term.

Two types of fixed-point formulations for the simplified Boltzmann-Poisson systems are considered and compared in 
this paper. The main difference between the two formulations is in the treatment of the scattering source in the relaxation 
operator: in the first case, both the electric field and the scattering source are lagged; in the second, only the electric field 
is lagged. As a result, problems in the first formulation are solved in a single iteration loop, while the ones in the second 
formulation require two nested loops. We apply various iterative solvers on these problems and compare their performance. 
To solve problems in the first formulation, we consider Picard iteration (see, e.g., [18, Section I.8]) and also Anderson 
acceleration [19,20]. For problems in the second formulation, we solve the nonlinear outer loop via Anderson acceleration 
and solve the linear inner loop using either Picard iteration or the generalized minimal residual method (GMRES) [21]. 
We do not apply Picard iteration on the outer loop since preliminary numerical results suggest that this approach is not 
competitive.

We also consider accelerated/preconditioned variants of the solvers described above, based on the idea of synthetic 
acceleration (SA) [15,17,22,23], an approach that accelerates convergence of iterative solvers by applying a correction term 
in between each iteration. This correction term is obtained by solving coarse, cheap, or low-order approximate equations 
to the error equation of the base iterative solver. Thus, many of the SA schemes can be viewed as two-level multigrid 
algorithms [24] or preconditioned iterative solvers [15,25,26]. For neutron transport problems, the correction terms can be 
computed by solving the transport equation on a coarse mesh [26,27] or solving a diffusion equation [15,28,29] that is a 
low-order approximation to the transport equation near the collision limit where the mean-free-path is small. In this paper, 
we compute the correction term by solving a drift-diffusion equation that approximates the simplified Boltzmann-Poisson 
system in the highly collisional, low-field regime.

The various strategies are tested on a one-dimensional silicon n+–n–n+ diode problem [3,5,8,30,31]. The algebraic equa-
tions to be solved are derived via a backward Euler discretization in time and a discontinuous Galerkin discretization in the 
position-velocity phase space. The low-order time discretization is chosen primary to simplify the presentation; however the 
DG discretization is important for capturing the drift-diffusion limit. While other discretizations are possible, our focus here 
is on the efficiency of the solver strategy. Thus for various levels of collisionality, the computation time and iteration count 
of each fixed-point formulation and each iterative solver are compared. These results provide a guideline on the selection 
of iterative solvers for problems with different material profiles.

The remainder of the paper is organized as follows. In Section 2, the simplified Boltzmann-Poisson system, the drift-
diffusion equation, and the time, space, and velocity discretization for solving them are described. Section 3 provides details 
of fixed-point formulations for the discretized equations as well as the iterative solvers for these fixed-point problems. In 
Section 4, the implementation details and numerical results for the various iterative solvers are reported for the n+–n–n+
diode problem. Conclusions and discussion are given in Section 5.
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2. Preliminaries

2.1. Semiconductor models

We consider the kinetic model

∂t f + v∂x f + qe

m
E∂v f = ω(ρM� − f ) , (1a)

E = ∂x� , ∂2
x � = qe

εp
(ρ − D) . (1b)

Here (1a) describes the evolution of the electron distribution f = f (t, x, v), which is a function of position x ∈ [0, L], velocity 
v ∈ R, and time t ≥ 0; the electric field E = E(t, x) in (1b) is the spatial gradient2 of a potential � = �(t, x) that satisfies 
a Poisson equation with a source due to the balance between a given doping profile D = D(x) and the particle (electron) 
concentration ρ = ρ(t, x) = ´

R f (t, x, v)dv . The constants qe , m, and εp denote, respectively, the magnitude of the electron 
charge, the effective electron mass, and the electric permittivity of the material. The collision frequency ω = ω(x) takes the 
form ω = qe

mμ with electron mobility μ = μ(x), and the absolute Maxwellian

M�(v) := (2π�)−
1
2 e−v2/2� , (2)

where the background temperature � := kB
m T with kB the Boltzmann constant and T the lattice temperature. For the detail 

derivations of this model, we refer to the reader to [1,32].

2.1.1. Scaled semiconductor models
Since the qualitative behavior of solutions to (1) largely depends on the scales of the system, we introduce non-

dimensional variables t̂ = t
t0

, x̂ = x
x0

, v̂ = v
v0

and express (1) in terms of the scaled variables

f̂ (t̂, x̂, v̂) = f (t, x, v)

f0
, ω̂(x̂) = ω(x)

ω0
, D̂(x̂) = D(x)

D0
, ρ̂(t̂, x̂) = ρ(t, x)

ρ0
. (3)

Let �0 be a nominal value of the potential � and let 	�(t, x) := �(t, x) − �0. Because the solution of (1) is independent 
of �0, we consider the scaled potential �̂ = �0 + 	�

[�] . By assuming ρ̂ = ´
R f̂ dv̂ , the scaled system takes the form

δ∂t f +v∂x f + β2 E∂v f = ω

ε
(ρMα2 − f ) , (4a)

E = ∂x� , ∂2
x � = γ 2

β2
(ζρ − D) , (4b)

where the hats on the variables dropped for simplicity. In (4), the kinetic Strouhal and Knudsen numbers [33,34] are given 
by δ = x0

v0t0
and ε = v0

x0ω0
, respectively, and the ratios are defined as ζ := ρ0

D0
, α := �

1/2

v0
, β := B0

v0
, and γ := C0

v0
with

�
1/2 =

(
kB

m
T

)1/2

, B0 :=
(

qe[�]
m

)1/2

, and C0 := x0ωpe := x0

(
q2

e D0

εpm

)1/2

. (5)

Here �1/2 is the thermal velocity, B0 is the ballistic velocity, and in plasma physics, ωpe is known as the plasma frequency 
[35,36].

2.1.2. The drift-diffusion limit
To describe semiconductors with different characteristics, there exist various scaling of the semiconductor model (4), 

such as the low-field scaling [1,37], the high-field scaling [3,38,39], and the ballistic scaling [5]. In this paper, we use the 
solution of a drift-diffusion equation as a preconditioner to accelerate the solution procedure for (4) in the low-field, highly 
collisional regime. While this preconditioner is expected to work well only in this regime, the discretizations of (4) and the 
formulation of solvers for the resulting algebraic equations do not rely on any particular scaling.

The low-field scaling of (4) assumes that the ratio β is an O(1) quantity and that the ratio ζ = 1, i.e., the scaling of 
the particle concentration ρ and the doping profile D is identical. Under these assumptions, when ε is small, i.e., when 
the electron mean-free-path λ := v0

ω0
is much smaller than the spatial scale x0, the collision term on the right-hand side 

of (4a) is much larger than the drift term β2 E∂v f ; it thus becomes the dominant term. In this situation, it is necessary to 

2 There is a sign difference between the electric field defined in (1) and the usual physics definition convention. We make this choice to match the 
definition used in the fast sweeping algorithm in [14] for solving Vlasov-Poisson systems. In particular, the sign choice in (1) implies that sign of E
determines the direction of flow in the velocity variable. The sweeping algorithm is used extensively in this paper. See Section 2.2.3 for details.
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choose δ ≈ ε in order to observe the nontrivial dynamics in the long time scale, in which case (4) can be approximated by 
a drift-diffusion-Poisson model.

It is shown in [37] that when the potential � is known and sufficiently smooth, a standard drift-diffusion model can 
be derived from (4a) in the low-field, collision limit (δ ≈ ε → 0) by expanding the distribution function f via the Hilbert 
expansion as

f (t, x, v) = �(t, x)Mα2(v) +O(ε) . (6)

This result has been extended in [40] and [41] respectively to the one-dimensional and multi-dimensional Boltzmann-
Poisson systems with a self-consistent potential via Poisson coupling as in (4b). The resulting drift-diffusion-Poisson model 
takes the form

ξ∂t�−∂x
(
ω−1∂x�

) + β2∂x
(
ω−1 E�

) = 0 , (7a)

E = ∂x� , ∂2
x � = γ 2

β2
(� − D) , (7b)

where (7a) is a drift-diffusion equation coupled with the Poisson system (7b), and ξ > 0 is the ratio between δ and ε , i.e., 
δ = ξε . We refer to this low-field, collision limit as the “drift-diffusion limit”.

In this paper, we use the solution to the drift-diffusion equation as a preconditioner for solving the scaled semiconductor 
kinetic equation (4a). The numerical method we used to solve the drift-diffusion equation is discussed in Section 2.4, and 
the drift-diffusion preconditioning approach is introduced in Section 3.3.

2.2. Solving the kinetic equation

In this paper, implicit time discretization of the kinetic equation (4a) is considered. In the simplified case when the 
electric field E and the particle concentration ρ are known a priori, implicit time discretization of (4a) leads to linear 
systems that can be solved efficiently via the fast sweeping algorithm proposed in [14]. The implicit time discretization, 
the position-velocity phase space discretization, and the fast sweeping approach for solving (4a) in the simplified case are 
discussed in Sections 2.2.1, 2.2.2, and 2.2.3, respectively. Based on the method presented in this section, we propose several 
iterative solvers in Section 3 for solving (4a) in the self-consistent case that E and ρ are coupled via the Poisson equation 
(4b).

2.2.1. Time discretization
In the temporal domain [0, tfinal], we apply a uniform discretization with time step size 	t and denote f n ≈ f (tn, ·, ·), 

where tn = n	t . To simplify the presentation, we consider the backward Euler scheme in this paper. Although this scheme is 
only first-order accurate, it can be used as a building block for higher-order implicit schemes, such as the singly diagonally 
implicit Runge-Kutta method (SDIRK) [18,42]. Applying the backward Euler scheme to (4a) leads to

v∂x f n+1 + β2 En+1∂v f n+1 +
(

δ

	t
+ ω

ε

)
f n+1 = ω

ε
ρn+1Mα2 + δ

	t
f n , (8)

where ρn+1 = ´
R f n+1dv and En+1 is coupled via the Poisson equation (4b) with ρ = ρn+1. For the remainder of Sec-

tion 2.2, we assume that ρn+1 and En+1 are known a priori at time tn . In this simplified case, (8) becomes a linear 
steady-state Vlasov problem with a source:

v∂x f + ηE∂v f + σ f = q , (9)

where, in an abuse of notation, f = f n+1(x, v) denotes the steady-state unknown, E = En+1(x) denotes a given electric field, 
η and σ are positive constants, and q = q(x, v) denotes a general source. This simplified steady-state problem (9) can be 
solved efficiently using the fast sweeping algorithm proposed in [14]. We give the details of this algorithm in Section 2.2.3.

2.2.2. Phase space discretization
For the position-velocity (x-v) phase space discretization, we apply the discontinuous Galerkin method with P 1 ele-

ments and upwind numerical flux. This choice is motivated by the fact that DG methods with upwind flux allows for the 
application of the fast sweeping technique introduced in Section 2.2.3, as shown in [14]. Another important advantage of DG 
methods is that, unlike finite volume and finite difference methods, they are able to capture the diffusion limit for neutral 
particle transport using a standard upwind flux [43–46]. The drift-diffusion limit is derived under the same scaling, and 
numerical results suggest that DG methods capture this limit as well. A rigorous analysis of such a result is the subject of 
future work.

We also note that, although higher-order DG elements can be used without affecting the sweeping technique in Sec-
tion 2.2.3, the spatial accuracy is still limited by the Poisson solver in Section 2.3. Specifically, the spatial discretization of 
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Fig. 1. Examples of boundary conditions: Figs. 1a and 1b show the inflow data and periodic/reflecting boundary in the x-direction, respectively. In both 
figures, inflow data is given on the v-boundary. Here solid lines denote the outflow boundary (∂Dout), dashed lines denote the inflow data (∂DData), and 
dash-dotted lines denote solution-dependent inflow boundary (∂D�).

potential � is restricted to at most second order, which results in a first-order approximation of the electric field E . We 
refer the reader to Section 2.3 and [14, Remark 1] for discussions on this restriction.

For the position-velocity (x-v) phase space, we truncate the velocity domain from R, the entire real line, to a finite 
interval [av , bv ]. The position-velocity computational domain is then D := [0, L] × [av , bv ]. Let ∂D be the boundary of D
and n(x, v) ∈ R2 be the outward normal at (x, v) ∈ ∂D. As usual, we decompose the boundary into two disjoint pieces: 
∂D = ∂Din ∪ ∂Dout where

∂Din := {(x, v) : (v, E) · n(x, v) ≤ 0} and ∂Dout := {(x, v) : (v, E) · n(x, v) > 0} . (10)

We further decompose ∂Din into pieces: ∂Din = ∂D� ∪ ∂DData, where ∂D� is the portion of the inflow boundary that 
depends on the interior solution, e.g., periodic or reflecting boundary, and ∂DData is the portion upon which data is given. 
With these notations, the steady state equation (9) takes the form⎧⎪⎨⎪⎩

v∂x f + ηE∂v f + σ f = q

f (x, v) = (� f )(x, v), (x, v) ∈ ∂D�

f (x, v) = w(x, v), (x, v) ∈ ∂DData

(11)

where w is known and the abstract linear operator �, which maps functions on ∂Dout to functions on ∂D� , can be used 
to describe periodic or reflecting boundary conditions.

The computational domain D is discretized into Nx × Nv rectangular cells of uniform size 	x × 	v . For i = 1, . . . , Nx

and j = 1, . . . , Nv , the cell Ci, j is centered at (xi, v j) := ((i − 1
2 )	x, av + ( j − 1

2 )	v). We denote the set of all cells by T and 
the set of all edges by F . The set F is then decomposed into disjoint sets

F = F � ∪F Data ∪Fx ∪Fv , (12)

where F � contains cell edges on the boundary component ∂D� , F Data contains cell edges on the boundary component 
∂DData, and Fx and Fv contains the remaining cell edges that are perpendicular to the x and v axes, respectively. We 
further decompose F � = F �

x ∪ F �
v and F Data = F Data

x ∪ F Data
v , where the subscripts denote the axis to which the edges 

are perpendicular. Fig. 1 illustrates two types of boundary conditions on D. Specifically, Fig. 1a shows the inflow boundary 
that only depends on prescribed data, and Fig. 1b shows the inflow boundary that depends on the interior solution, e.g., 
periodic or reflecting boundary conditions, in the x direction. Here, solid lines represent the outflow boundary ∂Dout, dashed 
lines represent the inflow data ∂DData, and dash-dotted lines represent ∂D� , the part of inflow boundary that depends on 
interior solutions. The sets of edges F �

x , F �
v , F Data

x , F Data
v , Fx , and Fv then can be easily associated to the edges shown in 

Fig. 1.
Let Z = {g ∈ L2(R × R) : g|Dc = 0} and Zh := {gh ∈ Z : gh|C ∈ P 1(C) , ∀C ∈ T }, where P 1(C) denotes the space of 

polynomials up to degree one on the cell C . For gh ∈Zh , the traces on the two sides of an edge e ∈ Fx ∪Fv are defined as

gh,±(x, v) = lim
ε→0+ gh(x ± ε, v ± ε) , for all (x, v) ∈ e . (13)

For these edges, the numerical trace of gh is defined via upwinding. Specifically, let v̄ex denote the value of v at the center 
of edge ex ∈ Fx , and let Ēev denote the value of E at the center of edge ev ∈ Fv , the numerical traces on ex and ev are 
respectively defined as
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ĝh(x, v) =
{

gh,−(x, v) , v̄ex > 0 ,

gh,+(x, v) , v̄ex < 0 ,
ĝh(x, v) =

{
gh,−(x, v) , Ēev > 0 ,

gh,+(x, v) , Ēev < 0 .
(14)

This definition guarantees a constant upwind direction on each edge. For a test function gh ∈Zh , the traces on a boundary 
edge e ∈ F � ∪F Data are defined as

gh,∂ (x, v) = lim
ε→0+ gh(x − εnx, v − εnv) , for all (x, v) ∈ e , (15)

where nx and nv are the first and second components of the outward normal n, respectively.
With these definitions, the discontinuous Galerkin method solves for f h ∈Zh that satisfies

A( f h, gh) =Q(gh) , ∀gh ∈Zh , (16)

with the bilinear operator

A( f h, gh) :=
∑
C∈T

¨

C

(−v̄C f h∂x gh − η ĒC f h∂v gh + σ f h gh)dxdv

−
∑
e∈Fx

v̄e

ˆ

e

f̂ h(gh,+ − gh,−)dv −
∑
e∈Fv

η Ēe

ˆ

e

f̂ h(gh,+ − gh,−)dx

−
∑

e∈F�
x

|v̄e|
ˆ

e

(� f h)gh,∂dv −
∑

e∈F�
v

η|Ēe|
ˆ

e

(� f h)gh,∂dx

(17)

and the source

Q(gh) :=
∑
C∈T

¨

C

qghdxdv +
∑

e∈F Data
x

|v̄e|
ˆ

e

wgh,∂dv +
∑

e∈F Data
v

η|Ēe|
ˆ

e

wgh,∂dx , (18)

where v̄C and ĒC are the values of v and E at the center of cell C , respectively.
In the case of neutral particles (E = 0), the upwind definition of the numerical traces in (14) allows (16) to be solved 

with an explicit sweeping procedure that moves through the computational domain in a direction determined by the sign 
of v . Such sweeping procedures are commonly used for solving radiation transfer problems [15–17]. However, in the case 
of charged particles, the procedure no longer applies when both v and E are allowed to change sign over the phase space 
domain. This is because, in such cases, changes in the upwind direction may create cyclic dependencies in the elements, 
see, e.g., [14, Figure 3.1]. To address this challenge, a domain decomposition approach was introduced in [14] to break these 
dependencies. We briefly discuss this approach and the associated sweeping method in the next subsection.

2.2.3. Domain decomposition and fast sweeping
The domain decomposition method separates the phase space into subdomains along the line {v = 0}. Let D1 := [0, L] ×

(0, bv ] and D2 := [0, L] × [av , 0) be the subdomains, and let � := [0, L] × {0}. We assume that there exists some index j0

such that Ci, j0 ⊆D2 and Ci, j0+1 ⊆D1, and denote the set of cell edges in � as F0. We further decompose F0 into disjoint 
sets F +

0 and F −
0 based on the sign of the electric field at the edge center. For gh ∈Zh , we define

gh
1(x, v) =

{
gh(x, v) , (x, v) ∈D1 ,

0 , otherwise ,
gh

2(x, v) =
{

gh(x, v) , (x, v) ∈D2 ,

0 , otherwise .
(19)

The bilinear form in (16) then can be expanded as

A( f h, gh) =A( f h
1 , gh

1) +A( f h
2 , gh

2) +A( f h
1 , gh

2) +A( f h
2 , gh

1) . (20)

By the definition of A, it is straightforward to verify that

A( f h
1 , gh

2) = −
∑

e∈F−
0

η|Ēe|
ˆ

e

f̂ h gh,−dx , (21a)

A( f h
2 , gh

1) = −
∑

e∈F+
0

η|Ēe|
ˆ

e

f̂ h gh,+dx , (21b)

where the edges in F +
0 do not appear in (21a) since f h

1 does not contribute to the numerical traces f̂ h on these edges due 
to upwinding. Similarly, the edges in F − are not included in (21b). We then define for all F ± ⊂ �, the edge values
0 0
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f̂ h,∗
1 =P1( f h

1 ) :=
{

f̂ h
1 , on F −

0 ,

0 , on F +
0 ,

and f̂ h,∗
2 =P2( f h

2 ) :=
{

f̂ h
2 , on F +

0 ,

0 , on F −
0 .

(22)

The system (16) is then equivalent to the coupled system

A( f h
1 , gh

1) =Q(gh
1) −B( f̂ h,∗

2 , gh
1) , (23a)

A( f h
2 , gh

2) =Q(gh
2) −B( f̂ h,∗

1 , gh
2) , (23b)

f̂ h,∗
1 =P1( f h

1 ) , (23c)

f̂ h,∗
2 =P2( f h

2 ) , (23d)

where B( f̂ h,∗
1 , gh

2) :=A( f h
1 , gh

2), B( f̂ h,∗
2 , gh

1) :=A( f h
2 , gh

1), and the equations in (23a) and (23b) are coupled only through 
the projections in (23c) and (23d). Suppose that f̂ h,∗

1 and f̂ h,∗
2 are known; then (23a) and (23b) are fully decoupled. In 

each subdomain (D1 or D2) of the phase space, the sign of v is fixed and only E is allowed to change sign. Thus, there 
is no cyclic dependency in these subdomains, and the decoupled systems (23a) and (23b) can be solved independently via 
explicit sweeping approach in D1 and D2, respectively.

Let f be the expansion coefficients of f h := f h
1 + f h

2 on an orthogonal basis of P 1(C) for all C ∈ T , and let f̂∗ be the 
expansion coefficients of f̂ h,∗ := f̂ h,∗

1 + f̂ h,∗
2 on an orthogonal basis of P 1(e) for all e ∈ F0. Then (23) can be expressed a 

linear system in f and f̂∗ as

Af = q − B f̂∗ , (24a)

f̂∗ = P f , (24b)

where q is the vector of expansion coefficients of the source term Q(gh), and the matrices A, B , and P are defined based 
on the operators A, B, P1, and P2. See [14] for the detailed definitions. Applying A−1 from the left on both sides of (24a)
and plugging the resulting equation into (24b) leads to a much smaller linear system

(I + P A−1 B)f̂∗ = P A−1q , (25)

where the operation A−1 can be performed efficiently via the sweeping approach. Then f̂∗ can be computed by solving (25)
with a Krylov solver, such as the generalized minimal residual method (GMRES) [21]. After obtaining f̂∗ , the full expansion 
coefficient f is then computed by a final sweeping procedure

f = A−1(q − B f̂∗) . (26)

To summarize, (25)–(26) defines a mapping from the discretized source q to the vector f which solves the discretized form 
of the steady-state equation (11).

2.3. Solving the Poisson equation

We solve the Poisson equation (4b) with a continuous Galerkin method with Q1 elements on the same spatial mesh as 
given in Section 2.2.2. Because the method is standard, we omit the details and refer the reader to, for example, [47,48]
for complete presentation. For a given particle concentration ρ , this method maps the Galerkin discretization of ρ to a 
discretized potential �, and, since Q1 elements are used, the discretized electric field E can be directly calculated from 
�. Further, this discretization of � guarantees that E does not change sign within a spatial cell, which is necessary for 
the application of the sweeping algorithm introduced in Section 2.2.3. Specifically, as pointed out in [14, Remark 1], the 
sweeping algorithm requires a single upwind direction assigned on each cell. Therefore, to apply the sweeping technique, 
the electric field given by the Poisson solver cannot change signs within a spatial cell, which restricts the approximation 
of E to be first order. The development of higher-order Poisson solvers that allows for the application of the sweeping 
algorithm is a research topic which warrants further investigation.

2.4. Solving the drift-diffusion equation

In the drift-diffusion limit, numerically solving the scaled semiconductor kinetic equation (4a) is difficult since the system 
is stiff. As discussed in Section 2.1.2, the drift-diffusion equation (7a) serves as a good approximation to (4a) near the drift-
diffusion limit. To accelerate the solution procedure of (4a) near this limit, we apply a synthetic acceleration [15,16] and use 
the solution to (7a) as a preconditioner when solving (4a). The detailed discussion of this acceleration technique is given in 
Section 3.3. Here we focus on the discretization of (7a). Discretizing in time with backward Euler gives

ξ
�n+1 − ∂x

(
ω−1∂x�

n+1) + β2∂x
(
ω−1 En+1�n+1) = ξ

�n . (27)

	t 	t
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If En+1 is known a priori at time tn , then (27) takes the steady-state form

−∂x
(
ω−1∂x�

) + β2∂x
(
ω−1 E�

) + ξ

	t
� = Q , (28)

where E is a given electric field and Q is a general source.
We solve (28) with the direct Discontinuous Galerkin method with interface correction (DDG-IC). The original DDG 

scheme [49] is derived based on the weak formulation of (28) with numerical fluxes approximating derivatives of the 
solution at element boundaries. The interface correction for DDG was introduced later in [50] to obtain the optimal (k + 1)-
th order of accuracy for polynomial approximations of degree k. It is shown in [51] that, with proper choices of numerical 
flux and limiters, the DDG-IC method satisfies the maximum principle with accuracy up to third order.

Let the spatial domain [0, L] be divided into Nx cells {I j}Nx
j=1, where I j = [x j−1, x j] with x j = j	x, and let Vh = {ϕh ∈

L2(R) : ϕh|[0,L]c = 0 , ϕh|I j ∈ P 1(I j) , ∀ j = 1, . . . , Nx} denote the numerical solution space. For ϕh ∈Vh , we define the 
numerical trace of ϕh at cell interface x j as ϕh,±

j := limε→0+ ϕh(x j ± ε) for j = 0, . . . , Nx . The jump and average of ϕh at x j

are defined respectively as

[ϕh] j = ϕh,+
j − ϕh,−

j and (ϕh) j = 1

2

(
ϕh,+

j + ϕh,−
j

)
. (29)

The DDG-IC scheme then solves (28) by finding the solution �h ∈Vh such that, for any test function ϕh ∈Vh and on any 
cell I j ,

ˆ

I j

τ h∂x�
h∂xϕ

h dx − ϕh,−
j ( ̂τ h∂x�h) j + ϕh,+

j−1(
̂τ h∂x�h) j−1 + (

∂xϕh
)

j[τ h∂x�
h] j + (

∂xϕh
)

j−1[τ h∂x�
h] j−1

−
ˆ

I j

τ hβ2 E�h∂xϕ
h dx + ϕh,−

j ( ̂τ h E�h) j − ϕh,+
j−1(

̂τ h E�h) j−1 + ξ

	t

ˆ

I j

�hϕh dx =
ˆ

I j

Q ϕh dx , (30)

where τ h is the L2 orthogonal projection of ω−1 onto Vh , and the fourth and fifth terms in (30) are the interface correction 
terms. Here the numerical flux ̂τ h∂x�h at x j is defined as

( ̂τ h∂x�h) j = 2

	x
[τ h�h] j + (τ h∂x�h) j = 2

	x

(
τ h,+

j �h,+
j − τ h,−

j �h,−
j

) + 1

2

(
τ h,+

j (∂x�)
h,+
j + τ h,−

j (∂x�)
h,−
j

)
, (31)

and the Lax-Friedrich flux is used for ̂τ h E�h , i.e.,

( ̂τ h E�h) j = 1

2

(
E jτ

h,−
j �h,−

j + E j+1τ
h,+
j �h,+

j − α j[�h] j
)
, α j := max{|E jτ

h,−
j |, |E j+1τ

h,+
j |} , (32)

where E j and E j+1 are the values of E at the cell centers of I j and I j+1, respectively. Here the term ω−1 is not involved 
in the numerical fluxes since the collision frequency ω is assumed to be known on the entire spatial domain, including the 
cell boundaries.

3. Nonlinear solution strategies

In this section, we propose several strategies for solving (4). To simplify the discussion, we first introduce a concise 
operator notation for the fast sweeping method discussed in Section 2.2.3. Specifically, we write (8) as

LEn+1 f n+1 = Sρn+1 + s , (33)

where

LE f := v∂x f + β2 E∂v f +
(

δ

	t
+ ω

ε

)
f , Sρ := ω

ε
ρMα2 , and s := δ

	t
f n . (34)

We refer to Sρ and s as the scattering source and the general source, respectively. If En+1 = Ẽ and ρn+1 = ρ̃ , where Ẽ and 
ρ̃ are known, then f n+1 satisfies a steady-state problem of the form (9):

LẼ f = Sρ̃ + s . (35)

We let

LẼf = Sρ̃+ s (36)
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denote the discretization of (35) as described in Section 2.2.2. Here the operators L and S are discretized versions of L and 
S while f, Ẽ, ρ̃, and s denote the discretizations of f , Ẽ , ρ̃ , and s, respectively. The solver discussed in Section 2.2.3 then 
computes fn+1 by solving the linear problem

f = L−1
Ẽ

(Sρ̃+ s) , (37)

where the operation L−1
Ẽ

is performed using the sweeping algorithm from [14] that is summarized in Section 2.2.3.

In the self-consistent setting, ρn+1 := ´
R f n+1dv , and En+1 is coupled to ρ via the Poisson equation (4b). Thus, instead 

of the linear problem (37), we solve

f = L−1
E (SPf + s) , E = F(Pf) , (38)

where P denotes integration over the computational velocity domain [av , bv ] and F, which maps a given particle concentra-
tion to an electric field, denotes the solution procedure of the Poisson equation (4b) using the continuous Galerkin method 
in Section 2.3. This problem is nonlinear since E depends on f.

The problem (38) can be solved via nonlinear fixed-point iterative solvers. However, the cost of solving (38) could be 
prohibitive in the multi-dimensional setting due to the high dimensionality of f. To reduce the problem dimension, a com-
mon trick (see, e.g., [15,17]) is to integrate the first equation in (38) with respect to v and solve the resulting fixed-point 
problem for ρ and E:

ρ = PL−1
E (Sρ+ s) , E = F(ρ) . (39)

The solution to (39) gives ρn+1 and En+1. Thus fn+1 can be computed by a final sweeping procedure by setting Ẽ = En+1

and ρ̃ = ρn+1 in (37). In the remainder of this section, we consider two different formulations of (39).

3.1. Type-I formulation

The type-I approach formulates (39) as a nonlinear fixed-point problem on ρ, i.e.,

ρ = G1(ρ) := PL−1
F(ρ)

(Sρ+ s) (40)

where G1 is nonlinear due to the coupling between E(= F(ρ)) and ρ. To solve (40), two iterative solvers are considered: 
standard Picard iteration (see, e.g., [18, Section I.8]) and Anderson acceleration [19,20].

3.1.1. Type-I – Picard iteration
With an initial guess ρ(0) , Picard iteration lags both the scattering source and the electric field terms in G1 and updates 

the electron concentration by evaluating G1. Specifically, the Picard iteration update at iteration k + 1 is given by

ρ(k+1) = G1(ρ
(k)) = PL−1

F(ρ(k))
(Sρ(k) + s) . (41)

It is well-known that Picard iteration converges when G1 is a contraction mapping, and the rate of convergence depends on 
the spectral radius of the Jacobian of G1.

3.1.2. Type-I – Anderson acceleration
Anderson acceleration was first proposed in [19] as an acceleration method based on nonlinear Krylov solvers for fixed-

point problems. Here we adopt the variant given in [20] for solving (40). At iteration k + 1, Anderson acceleration first 
computes the residual

h(k)
1 := G1(ρ

(k)) − ρ(k) , (42)

then solves the least-squares problem

α∗ := argmin
α∈Rmk+1

{∥∥∥∥ mk∑
i=0

αih
(k−i)
1

∥∥∥∥2

2
:

mk∑
i=0

αi = 1

}
(43)

with mk := min{m, k}, and finally updates

ρ(k+1) =
mk∑
i=0

α∗
i G1(ρ

(k−i)) . (44)

Here the truncation parameter m is a nonnegative integer that indicates the maximum number of residuals maintained in 
memory. When m = 0, Anderson acceleration reduces to standard Picard iteration. For m > 0, Anderson acceleration updates 
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ρ with a convex combination of the previous mk iterates that leads to the minimum residual. It is proved in [52] that, on 
linear problems, Anderson acceleration converges as long as Picard iteration does; for nonlinear problems, local convergence 
of Anderson acceleration is guaranteed under assumptions similar to the standard ones for local convergence of Newton’s 
method. Since Anderson acceleration utilizes information from the previous iterations, it is expected to converge faster than 
Picard iteration in practice, but at a cost of additional memory usage. When the problem is linear, Anderson acceleration 
has been shown to be equivalent to GMRES under some mild assumptions [20].

3.2. Type-II formulation

The type-II fixed-point formulation of (39) aims to reduce the nonlinearity of the type-I formulation (40) by relaxing the 
coupling between the electric field E and electron concentration ρ in the iterative procedure. Specifically, we write (39) as

(I − PL−1
E S)ρ = PL−1

E s , E = F(ρ) (45)

with I the identity operator, and then plug in E = F(ρ) to obtain the type-II formulation of (39)

ρ = G2(ρ) := (I − PL−1
F(ρ)S)−1PL−1

F(ρ)s , (46)

where G2(ρ) depends on ρ only through the electric field F(ρ).
The structure of (46) motivates a nested iterative procedure, which starts with an “outer loop” that solves the type-II 

fixed-point problem ρ = G2(ρ) with some iterative solvers, such as Picard iteration. In the outer loop, the evaluation of 
G2(ρ) at some ρ is then performed in an “inner loop” in which the linear system

(I − PL−1
F(ρ)S) x = PL−1

F(ρ)s (47)

is (iteratively) solved for x at a given electric field F(ρ), and G2(ρ) is then set to x. An example of the nested procedure that 
uses Anderson acceleration in the outer loop is given in the following paragraph. The intent is that, for a fixed electric field 
F(ρ) given by the outer loop, the inner loop will provide G2(ρ), a fast and accurate update of ρ, which is then fed into the 
outer loop, thereby improving the overall efficiency.

Anderson acceleration is used in this paper to solve the nonlinear fixed-point problem (46) in the outer loop.3 At iteration 
k + 1 in the outer loop, Anderson acceleration first computes the residual

h(k)
2 := G2(ρ

(k)) − ρ(k) , (48)

then solves the least-squares problem

α∗ := argmin
α∈Rmk+1

{∥∥∥∥ mk∑
i=0

αih
(k−i)
2

∥∥∥∥2

2
:

mk∑
i=0

αi = 1

}
(49)

with mk := min{m, k}, and finally updates

ρ(k+1) =
mk∑
i=0

α∗
i G2(ρ

(k−i)) . (50)

To evaluate G2(ρ
(k)) in (48), we need to solve the linear system (47) with ρ replaced by ρ(k) , and assign G2(ρ

(k)) to be 
x, the solution of (47). This system is solved using either Picard iteration or GMRES [21], which forms the inner loop of 
the nested procedure. In the following subsections, we discuss the applications of these two iterative solvers for evaluating 
G2(ρ

(k)) in the inner loop.

3.2.1. Type-II – Anderson acceleration with Picard iteration
Let ρ(k) denote the k-th iterate in the outer loop. To evaluate G2(ρ

(k)), we apply Picard iteration on an equivalent fixed-
point formulation of (47). Specifically, at iteration k + 1 in the outer loop, Picard iteration updates

ρ(k,�+1) = PL−1
F(ρ(k))

(Sρ(k,�) + s) , (51)

where ρ(k,0) = ρ(k) . Let ρ(k,∗) := lim�→∞ ρ(k,�) denote the limit point of iterates generated by (51), then it follows that 
G2(ρ

(k)) = ρ(k,∗) .

3 Picard iteration can serve as the nonlinear solver in the outer loop as well. However, we only consider Anderson acceleration here, since numerical 
results indicate that Picard iteration is not competitive in terms of computation time on this problem.



M.P. Laiu et al. / Journal of Computational Physics 417 (2020) 109567 11
3.2.2. Type-II – Anderson acceleration with GMRES
Let ρ(k) still denote the k-th iterate in the outer loop. G2(ρ

(k)) can also be evaluated by solving the linear system

(I − PL−1
F(ρ(k))

S)G2(ρ
(k)) = PL−1

F(ρ(k))
s (52)

using GMRES. In general, the GMRES solver is expected to converge in fewer iterations than the Picard iteration in (51). We 
will verify this in the numerical results reported in Section 4.

3.3. Synthetic acceleration for semiconductor equations

Synthetic acceleration (SA) schemes were first developed in [22,23] to improve efficiency of iterative solvers for transport 
equations. The basic idea of these schemes is to compute a coarse, cheap, or low-order correction term from residuals of 
the base iterative solver, and apply this correction to the current iterate to accelerate convergence of the base solver. As 
noted in [24], many of the synthetic acceleration schemes can be formulated as two-level multigrid algorithms.

In Section 3.3.1, we derive an SA scheme for the semiconductor equation (4a), and then apply this scheme to both type-I 
and type-II Picard iteration solvers considered in Sections 3.1.1 and 3.2.1. In Section 3.3.2, we follow the same approach as 
in [15,25,26] to formulate the synthetic acceleration as a preconditioner. We then accelerate the type-I and type-II Krylov 
solvers in Sections 3.1.2 and 3.2.2 by applying these solvers on the preconditioned problems.

3.3.1. SA scheme on Picard iteration
The derivation of SA schemes for steady-state linear transport equations with neutral particles can be found in, for 

example, [15, Section II.B.] and [17, Section 2-3]. These equations are well approximated in collisional by diffusion equations, 
which are used to compute cheap corrections to iterates in a solver, resulting in the diffusion synthetic acceleration (DSA) 
scheme [15,17,28,29].

For the semiconductor equations, it is known [1,37,41] that drift-diffusion equations serve as proper low-order approxi-
mations to the semiconductor equations in the drift-diffusion limit, as discussed in Section 2.1.2. In this section, we derive 
an SA scheme for semiconductor equations with the correction term computed by solving a drift-diffusion equation. The 
derivation is mostly a straightforward extension of the derivation for the DSA scheme in [15], and we include it here for 
completeness.

To derive the SA scheme, we first rewrite the semi-discrete semiconductor equation (33) as a steady-state equation

LF (P f ) f = SP f + s . (53)

Here P denotes integration over the velocity domain and F denotes the mapping from the particle concentration ρ =P f to 
the electric field E = F (P f ) via the Poisson equation (4b). Applying L−1

F (P f ) on both sides of (53) and solving the resulting 
equation with Picard iteration leads to

f (k+1/2) =L−1
F (P f (k))

(SP f (k) + s) , (54)

where index of the update is now k + 1
2 instead of k + 1. Integrating (54) with respect to v gives

ρ(k+1/2) =PL−1
F (ρ(k))

(Sρ(k) + s) , (55)

which is a continuous version of the type-I Picard iteration (41). To derive a correction for (55), we write (54) as

LF (P f (k)) f (k+1/2) = SP f (k) + s , (56)

and subtract (56) from (53). By adding and subtracting terms in the resulting equation, we have

(LF (P f ) −LF (P f (k))) f +LF (P f (k))ψ −SPψ = SP( f (k+1/2) − f (k)) , (57)

where ψ := f − f (k+1/2) denotes the error. If ψ can be computed by solving (57), then it can be used as a correction to 
Picard iterates by taking f (k+1) = f (k+1/2) + ψ . However, solving (57) is equivalent to finding f .

The SA scheme considered here computes corrections to Picard iterates by solving a reduced-order equation that approx-
imates (57). To obtain the reduced-order equation, we apply P to both sides of (57), which leads to

PLF (ρ(k))ψ −PSφ =PS(ρ(k+1/2) − ρ(k)) , (58)

where φ := Pψ is the integral of ψ over the velocity domain. Here the first term in (57) vanishes since, for any electron 
distribution g and any electric fields E1 and E2, it follows from (34) that P(LE1 − LE2 )g = β2(E1 − E2) ́ R ∂v gdv = 0, 
provided that g goes to zero as v → ±∞. Motivated by the drift-diffusion limit, we approximate the operators on the 
left-hand side of (58) by a drift-diffusion operator DE defined as
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DEφ = −ε∂x(ω
−1∂xφ) + εβ2∂x(ω

−1 Eφ) +
(

δ

	t

)
φ . (59)

Thus, (58) is approximated by

DF (ρ(k))φ̃ =PS(ρ(k+1/2) − ρ(k)) . (60)

We correct the Picard iterate in (55) with φ̃, a solution to (60), by taking ρ(k+1) = ρ(k+1/2) + φ̃, which results in the SA 
scheme

ρ(k+1/2) =PL−1
F (ρ(k))

(Sρ(k) + s) , (61a)

ρ(k+1) = ρ(k+1/2) +D−1
F (ρ(k))

PS(ρ(k+1/2) − ρ(k)) , (61b)

where (61b) follows from the definition of φ̃ in (60). The SA scheme based on the type-I Picard iteration (41) is then given 
by a discretized version of (61)

ρ(k+1/2) = PL−1
F(ρ(k))

(Sρ(k) + s) , (62a)

ρ(k+1) = ρ(k+1/2) + D−1
F(ρ(k))

PS(ρ(k+1/2) − ρ(k)) , (62b)

where D−1
F(ρ(k))

denotes the solution procedure of the drift-diffusion equation (60) using the DDG-IC solver presented in 
Section 2.4.

An analogous SA scheme based on the type-II Picard iteration (51) can be derived by repeating the analysis above with 
minor modification in the indices in (54). The resulting SA takes the form

ρ(k,�+1/2) = PL−1
F(ρ(k))

(Sρ(k,�) + s) , (63a)

ρ(k,�+1) = ρ(k,�+1/2) + D−1
F(ρ(k))

PS(ρ(k,�+1/2) − ρ(k,�)) , (63b)

where D−1
F(ρ(k))

is still performed using the DDG-IC solver in Section 2.4.

3.3.2. Preconditioner form of the SA scheme
The SA scheme in Section 3.3.1 is derived specifically for Picard iteration. It is well-known [15,25,26] that many SA 

schemes can be formulated as preconditioners. Following this approach, we derive the SA scheme in the preconditioner 
forms for the type-I Anderson acceleration and the type-II GMRES solver considered in Sections 3.1.2 and 3.2.2, respectively.

We first consider the type-I Anderson acceleration in Sections 3.1.2. In this case, the SA scheme applies Anderson accel-
eration (42)–(44) to a preconditioned version of fixed-point problem (40). This preconditioned problem is derived from the 
SA scheme based on type-I Picard iteration (62) by first rewriting the correction process (62b) in the residual form as

ρ(k+1) − ρ(k) = (I + D−1
F(ρ(k))

PS)(ρ(k+1/2) − ρ(k)) . (64)

Plugging (62a) into (64) then gives

ρ(k+1) − ρ(k) = −(I + D−1
F(ρ(k))

PS)
(
(I − PL−1

F(ρ(k))
S)ρ(k) − PL−1

F(ρ(k))
s
)
, (65)

which is equivalent to a standard Picard iteration update on the (preconditioned) fixed-point problem

ρ = G̃1(ρ) := ρ− (I + D−1
F(ρ)PS)

(
(I − PL−1

F(ρ)S)ρ− PL−1
F(ρ)s

)
. (66)

Here (66) is a preconditioned version of (40) with preconditioner (I + D−1
F(ρ)

PS). We obtain the SA scheme based on type-I 
Anderson acceleration by replacing each G1 in (42)–(44) with G̃1.

For the type-II GMRES solver in Section 3.2.2, we follow a similar approach and use (63) to derive a preconditioned 
version of the linear system (52):

(I + D−1
F(ρ(k))

PS)(I − PL−1
F(ρ(k))

S)G2(ρ
(k)) = (I + D−1

F(ρ(k))
PS)PL−1

F(ρ(k))
s . (67)

Therefore, the SA scheme based on type-II GMRES solver computes G2(ρ
(k)) by solving the preconditioned system (67).
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4. Numerical results

The iterative solvers from the previous section are tested and compared on the one-dimensional silicon n+–n–n+ diode 
problem [3,5,8,30,31] with different collision frequencies. In Section 4.1, we describe the silicon diode problem and state 
the implementation details. In Section 4.2, we consider “single-scale” problems where the collision frequency is assumed 
to be constant throughout the spatial domain. Results from these single-scale tests illustrate characteristics of the different 
solvers. In Section 4.3, we consider more realistic “multiscale” problems with collision frequencies varying in the spatial 
domain. We first model the diode using the collision frequency specified in [30] which depends on the doping profile. We 
then consider a more challenging problem with collision frequency that changes more drastically over the spatial domain.

4.1. Silicon diode problem setup and implementation details

In the silicon (Si) n+–n–n+ diode problem, we simulate the electron movement in an one-dimension Si diode of length 
L = 0.6 μm with a bias voltage V bias = 1 V. Here the electron charge, the effective electron mass, and the electric permit-
tivity of the Si material are respectively given by qe = 1.602 × 10−19 C, m = 2.368 × 10−31 kg, εp = 1.034 × 10−10 F/m. 
The Boltzmann constant kB = 1.38 × 10−23 J/K, and the lattice temperature T = 300 K. As in [30], for x ∈ [0, 0.6] (μm), the 
doping profile is

D(x) =
{

2 × 1021 m−3, x ∈ [0.1,0.5] (μm)

5 × 1023 m−3, otherwise
. (68)

With these data, we apply the following scaling: x0 = 10−6 m, [�] = 1 V, and D0 = 1021 m−3. We set ζ = 1 in (4b)
(low-field scaling). The velocities in (5) take values

�
1/2 = 1.322 × 105 m/s , B0 = 8.225 × 105 m/s , and C0 = 1.024 × 106 m/s . (69)

We set the reference velocity to be v0 = max{�1/2, B0, C0} = C0. Thus, the ratios in (4) are α = 0.129, β = 0.803, and γ = 1. 
The nondimensional doping profile on x ∈ [0, 0.6] is

D(x) =
{

2, x ∈ [0.1,0.5]
500, otherwise

. (70)

In the numerical simulations, we impose smooth transitions into the doping profile as in [31]. These smooth transitions are 
constructed by cubic splines, and the transition regions are of width 0.04, centered at 0.1 and 0.5.

The initial condition and the incoming boundary data for the kinetic equation (4a) are respectively given by f (t0, x, v) =
D(x)Mα2 (v) and

f (t,0, v) = D(0)Mα2(v) , ∀v > 0 , f (t, L, v) = D(L)Mα2(v) , ∀v < 0 . (71)

Without loss of generality, we let �0 = �(t, 0) = 0 V in the Poisson equation (4b). The boundary data for (4b) then become 
�(t, 0) = 0 V and �(t, L) = V bias. Since [�] = 1 V, the scaled boundary data are �(t, 0) = 0 and �(t, L) = 1.

The computation is performed on a truncated domain D := [0, 0.6] × [−2, 2]. The velocity space is truncated from 
R to [−2, 2], i.e., vmax = 2, since the value of Maxwellian Mα2 (v) is smaller than the machine precision when |v| >
2. We discretize D into 200 × 50 uniform rectangular elements of size 	x × 	v , and solve the semiconductor model 
(4) from initial time t0 = 0 to final time tf = 0.5, at which point the system is essentially in steady state. The kinetic 
equation (4a) is solved using the fast sweeping algorithm detailed in Section 2.2, the Poisson equation (4b) is solved via 
the continuous Galerkin method discussed in Section 2.3, and the drift-diffusion equation (60), which is involved in the 
synthetic acceleration procedure, is solved by the direct discontinuous Galerkin method in Section 2.4. The Poisson equation 
and the drift-diffusion equation are both solved on a uniform mesh with 200 elements on [0, 0.6]. We choose the parameter 
m = 3 in Anderson acceleration (42)–(44). The relative tolerances for the type-I and type-II iterative solvers are set to 10−8, 
while the relative tolerance in the GMRES solver for solving (25) in the fast sweeping algorithm is set to 10−10. The lower 
tolerance on the fast sweeping GMRES solver is due to the fact that it is used to evaluate L−1

E , which is a fundamental 
building block in both type-I and type-II solvers. The iterative solvers are terminated once the relative residual is below the 
set tolerance, or when the solvers reach the maximum allowed number of iterations, which is set to 10, 000 for all solvers. 
This number is set to be large solely for studying the behavior of different iterative solvers. For practical applications, the 
maximum allowed number of iterations should be set much lower.

In the following sections, we consider the diode problem described in this subsection with various collision frequencies 
and compare the performance of the eight iterative solvers introduced in Section 3. We also make a formal efficiency 
comparison of the proposed implicit scheme to standard explicit schemes and standard implicit-explicit (IMEX) asymptotic 
preserving (AP) schemes. In all tests, the implicit time step is chosen to be 	t = 	x. We note that the CFL condition for 
standard explicit schemes takes the form 	t ≤ min{C1δ	x/vmax, C2δε/ωmax} and the CFL condition for standard IMEX-AP 
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Table 1
Single-scale problem with ω(x) = 1, δ = ε = 0.200, and 	t = 	x. Averaged iteration counts and 
total computation time (sec) for the compared solvers and their accelerated variants.

Solver SA Iteration Total 
Time

Solver SA Iteration Total 
TimeFP SW FP LS SW

Type-I N 4.6 1.3 8.8 Type-II N 3.2 3.0 1.3 21.4

PI Y 4.5 1.3 9.7 AA/PI Y 3.2 2.9 1.3 22.5

Type-I N 3.0 1.4 7.9 Type-II N 3.3 1.4 3.2 43.7

AA Y 3.3 1.3 9.2 AA/GMRES Y 7.3 2.1 3.3 97.8

schemes takes the form 	t ≤ max{C3δ	x/vmax, C4δωmin	x2/ε} [53], where vmax, vmin, ωmax and ωmin are the maximum 
and minimum values of the velocity and collision frequency over the spatial domain, respectively. For simplicity, we assume 
that the O (1) constants C1, C2, C3, and C4 are all equal to one. Here we do not consider the time step restrictions associated 
to 	v , since 	x is much smaller than 	v . Also, the condition 	t ≤ δε/ωmax for standard explicit schemes is never active 
in problems tested in this section due to the small value of 	x. In the formal comparison, we assume that an explicit or 
IMEX step roughly requires the same computation time as one sweeping iteration in an implicit time steps. Thus for each 
iterative solver, we compute the ratio

XEX/IMEX :=
	tIM

	tEX/IMEX

total number of sweeping iterations per implicit time step
(72)

as an efficiency indicator of the proposed scheme. We also note that parallelization of the explicit or IMEX updates is often 
possible, while the sweeping procedure in the implicit scheme requires serial implementation. We do not take this fact into 
account in the comparison.

4.2. Single-scale test

In this section, we test the iterative solvers on problems with constant collision frequency on the spatial domain. We 
first consider the low collision case, where the electron mobility is approximated (see [30]) by

μSi(x) = 0.0088 + 0.1793 × 1023

1.4320 × 1023 + D(x)
(73)

with D(x) = 2 × 1021 m−3, which determines the collision frequency ω(x) = qe
mμSi(x) . We scale the collision frequency by 

ω0 = 5.114 × 1012 s−1, and the nondimensional collision frequency is ω(x) = 1. The Knudsen number is ε = v0
x0ω0

= 0.200
and we choose δ = ε = 0.200.

Table 1 reports the averaged iteration counts and total computation time for each iterative solver. For type-I methods, 
column “FP” reports the averaged iteration counts per time step for solving the fixed-point problem (40), and column 
“SW” gives the averaged GMRES iteration counts per FP iteration for solving (25) from the fast sweeping algorithm when 
computing L−1

E in the FP iteration. For type-II methods, column “FP” reports the averaged outer-loop iteration counts per 
time step for solving the fixed-point problem (46), column “LS” shows the averaged inner-loop iteration counts per outer-
loop iteration for solving the linear system (47) when evaluating G2 in (46), and column “SW” gives the averaged GMRES 
iteration counts for solving (25) in each inner-loop iteration. As for the solvers, “PI” and “AA” stand for Picard iteration and 
Anderson acceleration, respectively.

From the results reported in Table 1, we first observe that the accelerated solvers are slower than the unaccelerated 
ones. This result is to be expected, since the system is away from the drift-diffusion limit due to the relatively small 
collision frequency. We also observe that the type-I solvers are faster than the type-II solvers. We conclude that for the 
type-II solvers, the additional computation cost of solving the linear system (47) when evaluating G2 outweighs the benefit 
of the more accurate updates for the fixed-point problem As we expected, the Krylov-type solvers (Anderson acceleration 
and GMRES) converge in fewer iterations than Picard iteration does. For type-I solvers, this results in less computation time, 
while for type-II solvers, the higher computation time per iteration of GMRES makes it slower than Picard iteration.

For this problem, the explicit and IMEX-AP CFL conditions both take the form 	t ≤ δ	x/vmax, which results in time 
steps that are 10x smaller than the implicit time step 	t = 	x used in the test. For each tested iterative solver, the value of 
the efficient indicator X defined in (72) is reported in Table 2. Here IterSW denotes the total number of sweeping iterations 
required in one implicit step. From Table 2, the proposed scheme with type-I solvers results in X > 1 when comparing 
to both the explicit and IMEX-AP schemes. When using type-II solvers, X < 1 as the higher iteration counts outweigh the 
benefit of larger implicit time steps.

We next test the iterative solvers on problems with large collision frequency that is 100x of the one in the previous 
problem, and we scale the collision frequency by ω0 = 5.114 × 1014 s−1 so that the nondimensional collision frequency is 
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Table 2
Single-scale problem with ω(x) = 1, δ = ε = 0.200, and 	t = 	x. The values of the efficiency indi-
cator X (72) and the total number of sweeping iterations in an implicit step (IterSW) are reported. 
This serves as a formal efficiency comparison between the proposed implicit scheme and the stan-
dard explicit and IMEX-AP schemes.

1 implicit step ∼ 10 IMEX-AP steps ∼ 10 explicit steps

Solver SA IterSW XIMEX XEX Solver SA IterSW XIMEX XEX

Type-I N 6.0 1.67 1.67 Type-II N 12.5 0.80 0.80

PI Y 5.9 1.69 1.69 AA/PI Y 12.1 0.83 0.83

Type-I N 4.2 2.38 2.38 Type-II N 14.8 0.68 0.68

AA Y 4.3 2.33 2.33 AA/GMRES Y 50.6 0.20 0.20

Table 3
Single-scale problem with ω(x) = 1, δ = ε = 0.002, and 	t = 	x. Averaged iteration counts and total 
computation time (sec) for the compared solvers and their accelerated variants.

Solver SA Iteration Total 
Time

Solver SA Iteration Total 
TimeFP SW FP LS SW

Type-I N 1399.3 1.0 2011.6 Type-II N 2.5 440.1 1.0 2165.2

PI Y 131.9 1.0 232.9 AA/PI Y 6.1 84.4 1.0 918.0

Type-I N 49.7 1.0 99.9 Type-II N 6.1 22.7 2.1 392.2

AA Y 29.0 1.1 67.8 AA/GMRES Y 7.6 9.2 2.1 218.3

Table 4
Single-scale problem with ω(x) = 1, δ = ε = 0.002, and 	t = 	x. The values of the efficiency indica-
tor X (72) and the total number of sweeping iterations in an implicit step (IterSW) are reported. This 
serves as a formal efficiency comparison between the proposed implicit scheme and the standard 
explicit and IMEX-AP schemes.

1 implicit step ∼ 333 IMEX-AP steps ∼ 1000 explicit steps

Solver SA IterSW XIMEX XEX Solver SA IterSW XIMEX XEX

Type-I N 1399.3 0.24 0.71 Type-II N 1100.3 0.30 0.91

PI Y 131.9 2.53 7.58 AA/PI Y 514.8 0.65 1.94

Type-I N 49.7 6.71 20.12 Type-II N 290.8 1.15 3.44

AA Y 32.0 10.42 31.25 AA/GMRES Y 146.8 2.27 6.81

still ω(x) = 1. The Knudsen number is then ε = v0

x0ω0
= 0.002 and again we choose δ = ε = 0.002. We still choose the time 

step to be 	t = 	x. For this problem, the system is close to the drift-diffusion limit due to the large collision frequency. 
Thus we expect that the drift-diffusion based synthetic acceleration would provide sufficient accurate corrections and result 
in faster convergence for the iterative solvers. The iteration counts and computation time for this problem are reported in 
Table 3. From these results, we observe that SA schemes indeed require fewer number of iteration and speed up the base 
iterative solvers from 1.5x to 8.7x. We also note that the computation time per iteration remains roughly the same, which 
implies that the time spent on computing the drift-diffusion correction term is essentially negligible.

For this problem, the standard explicit time step satisfies 	t ≤ δ	x/vmax, which is 1000x smaller than the implicit time 
step 	t = 	x. The standard IMEX-AP time step satisfies 	t ≤ δωmin	x2/ε , which is 333x smaller than the implicit time 
step. From Table 4, in most cases, the proposed scheme results in X > 1 when comparing to both the explicit and IMEX-AP 
schemes. The exceptions are the unaccelerated type-I PI solver and the type-II AA/PI solvers.

4.3. Multiscale test

In this section, we test the solvers on multiscale problems with collision frequencies varying in the spatial domain. The 
first multiscale problem is the “standard” silicon diode problem from [30,31]. Here the collision frequency is determined 
by the approximated electron mobility based on the doping profile. Specifically, with the approximate formula μSi(x) =
0.0088 + 0.1793 × 1023

23 at T = 300 K and the doping profile D(x) in (68), the electron mobility is given by

1.4320 × 10 + D(x)
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Fig. 2. The scaled doping profile, Maxwellian, and collision frequency for the standard n+–n–n+ diode problem.

Fig. 3. The electron concentration, electric field, and electron distribution at the final time tf = 0.5 for the standard n+–n–n+ diode problem with scaled 
collision frequency given in (75). Here the electron distribution f is plotted in Fig. 3c in logarithmic scale, and the magnitude of the observed oscillations 
at positive velocities is smaller than 0.1% of the maximum value of f . These oscillations are stable artifacts that can be mitigated or removed by refining 
the velocity discretization. (For interpretation of the colors in the figure(s), the reader is referred to the web version of this article.)

μSi(x) =
⎧⎨⎩0.1323 m2

Vs , x ∈ [0.1,0.5] (μm)

0.0367 m2

Vs , otherwise
. (74)

The nondimensional collision frequency on x ∈ [0, 0.6] is then

ω(x) =
{

0.277, x ∈ [0.1,0.5]
1, otherwise

(75)

with the scaling ω0 = 1.843 × 1013 s−1. Here the Knudsen number ε = v0

x0ω0
= 0.056, and we choose δ = ε = 0.056. As 

mentioned in Section 4.1, the doping profile used in the numerical tests includes the smooth transitions as in [31]. The 
collision frequency at these transition regions are computed from the smooth doping profile using the approximate formula 
given above.

Fig. 2 shows the scaled doping profile D(x) with smooth transitions, Maxwellian Mα2 (v), and collision frequency ω(x) in 
this silicon diode problem. Fig. 3 illustrate the electron concentration ρ , the electric field E , and the full electron distribution 
f at the final, steady-state time tf = 0.5. As expected, all tested solvers give identical results up to the set numerical 
tolerance, and these results agree with the those reported in other places in the literatures, such as [5,30].

Table 5 reports the iteration counts and computation time for each of the iterative solvers. The system is away from the 
drift-diffusion limit with the given collision frequency. Hence the results in Table 5 are similar to the ones in Table 1 and 
the drift-diffusion synthetic acceleration does not accelerate the convergence of the iterative solvers. The type-I solvers still 
outperform the type-II solvers for this test.

Here the implicit time step 	t = 	x is roughly 35x larger than the standard explicit and IMEX-AP time steps 	t ≤
δ	x/vmax. We observe in Table 6 that the implicit scheme generally gives X > 1, except when the accelerated type-II 
AA/GMRES solver is used.

We next consider another multiscale problem with much stronger variation in the collision frequency. Specifically, the 
scaled collision frequency considered in this problem is
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Table 5
Standard n+–n–n+ diode problem with ω(x) given in (75), δ = ε = 0.056, and 	t = 	x. Averaged 
iteration counts and total computation time (sec) for the compared solvers and their accelerated 
variants.

Solver SA Iteration Total 
Time

Solver SA Iteration Total 
TimeFP SW FP LS SW

Type-I N 3.8 1.4 7.6 Type-II N 2.6 4.8 1.4 28.6

PI Y 4.6 1.6 10.1 AA/PI Y 2.6 4.5 1.4 29.6

Type-I N 2.6 1.4 7.3 Type-II N 2.8 2.2 3.7 49.8

AA Y 2.8 1.4 8.2 AA/GMRES Y 6.0 3.5 3.6 110.7

Table 6
Standard n+–n–n+ diode problem with ω(x) given in (75), δ = ε = 0.056, and 	t = 	x. The values 
of the efficiency indicator X (72) and the total number of sweeping iterations in an implicit step 
(IterSW) are reported. This serves as a formal efficiency comparison between the proposed implicit 
scheme and the standard explicit and IMEX-AP schemes.

1 implicit step ∼ 35 IMEX-AP steps ∼ 35 explicit steps

Solver SA IterSW XIMEX XEX Solver SA IterSW XIMEX XEX

Type-I N 5.3 6.58 6.58 Type-II N 17.5 2.00 2.00

PI Y 7.4 4.76 4.76 AA/PI Y 16.4 2.14 2.14

Type-I N 3.6 9.62 9.62 Type-II N 22.8 1.54 1.54

AA Y 3.9 8.93 8.93 AA/GMRES Y 75.6 0.46 0.46

ω(x) =
{

1 × 10−5, x ∈ [0.1,0.5]
1, otherwise

(76)

with ω0 = 2.048 × 1015 s−1 and δ = ε = v0

x0ω0
= 0.0005. The maximum collision frequency in this problem is higher than 

the one in the first multiscale problem by two orders of magnitude. Similarly, the minimum collision frequency here is two
orders of magnitude smaller than the one in the first multiscale problem.

The iteration counts and computation time for this problem are reported in Table 7. These results show that for this 
multiscale problem, synthetic acceleration with the drift-diffusion model still speeds up the convergence of convergent 
iterative solvers, but the difference is not as significant as in the single-scale case with large collision frequency. We suspect 
that the multiscale nature of this problem makes the drift-diffusion acceleration ineffective, especially in regions with 
relatively low collision frequency. We also observe that three of the tested solvers (accelerated type-I PI, standard and 
accelerated type-II AA/GMRES) result in diverging residuals (denoted as ∞). The divergent result of the accelerated type-I PI 
scheme indicates that applying the drift-diffusion based synthetic acceleration on multiscale problems may lead to unstable 
schemes. This observation is related to a known deficiency of diffusion synthetic acceleration (DSA). Specifically, it has 
been reported in [54] and analyzed in [55] that DSA becomes unstable and gives divergent results when applied to highly 
collisional problems. To guarantee convergence, the spatial discretization of the diffusion equation has to be consistent to 
the discretization of the original transport equation. We refer the reader to [15] and [16] for a complete discussion. As for 
the type-II AA/GMRES schemes, we suspect that the failure of convergence is due to the fact that the linear system (47)
becomes ill-conditioned in this multiscale setup.

Finally, we note that on this problem, the standard explicit time step needs to satisfy 	t ≤ δε/ωmax, which is 12000x 
smaller than the implicit time step 	t = 	x, while the standard IMEX-AP time step satisfies 	t ≤ δ	x/vmax, which is 4000x 
smaller than the implicit time step. As shown in Table 8, the efficient indicator X > 1 for all iterative solvers that lead to a 
convergent implicit scheme. Among these iterative solvers, the most efficient one is the accelerated type-I AA solver.

5. Conclusions and discussion

We have proposed a fully implicit numerical scheme for solving Boltzmann-Poisson systems with an approximate col-
lision operator that describes linear relaxation. At each implicit time step, the updated solution comes from a nonlinear 
fixed-point problem. We have formulated Boltzmann-Poisson systems as two types of fixed-point problems: the type-I prob-
lems that are solved in a single strongly coupled iterative loop and the type-II problems that require two nested iterative 
loops. We have applied Picard iteration and Anderson acceleration to solve the type-I problems. For the type-II problems, the 
outer loop of the nested iterative procedure is performed by Anderson acceleration while the inner loop uses either Picard 
iteration or GMRES. The performance of these iterative solvers and their synthetically accelerated (SA) variants is compared 
on several scaled versions of a standard silicon diode problem. Numerical results show that (i) solving the type-I fixed-point 
problems requires fewer iterations than solving the type-II problems and (ii) Anderson acceleration is more efficient than 
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Table 7
Multiscale problem with ω(x) given in (76), δ = ε = 0.0005, and 	t = 	x. Averaged iteration counts 
and total computation time (sec) for the compared solvers and their accelerated variants. Here ∞
denotes the case that diverging residual is observed.

Solver SA Iteration Total 
Time

Solver SA Iteration Total 
TimeFP SW FP LS SW

Type-I N 520.4 1.0 736.2 Type-II N 1.6 143.0 1.0 508.0

PI Y ∞ ∞ ∞ AA/PI Y 2.0 73.5 1.0 317.6

Type-I N 17.1 1.0 27.4 Type-II N ∞ ∞ ∞ ∞
AA Y 10.0 1.0 19.1 AA/GMRES Y ∞ ∞ ∞ ∞

Table 8
Multiscale problem with ω(x) given in (76), δ = ε = 0.0005, and 	t = 	x. The values of the efficiency 
indicator X (72) and the total number of sweeping iterations in an implicit step (IterSW) are reported. This 
serves as a formal efficiency comparison between the proposed implicit scheme and the standard explicit 
and IMEX-AP schemes.

1 implicit step ∼ 4000 IMEX-AP steps ∼ 12000 explicit steps

Solver SA IterSW XIMEX XEX Solver SA IterSW XIMEX XEX

Type-I N 520.4 7.69 23.06 Type-II N 229.0 17.47 52.40

PI Y ∞ — — AA/PI Y 93.7 42.69 128.07

Type-I N 17.1 233.92 701.75 Type-II N ∞ — —

AA Y 10.0 402.01 1206.03 AA/GMRES Y ∞ — —

Picard iteration on type-I problems, in terms of both iteration counts and computation time. These results also confirm that 
SA schemes with a drift-diffusion model converge faster than the standard iterative solvers when the system is near the 
drift-diffusion limit (when collision frequency is large). For systems away from this limit, there is no observed advantage in 
using these accelerated schemes. To address this issue, some potential approaches to be investigated in the future include (i) 
modifying the drift-diffusion SA schemes to incorporate the boundary conditions as proposed in [56] for a neutron transport 
problem and (ii) deriving SA schemes based on low-order/low-cost approximations other than the drift-diffusion equation. 
For (ii), possible candidates of such approximation include the S2-SA scheme considered in [26,27] and the more general, 
two-level multigrid algorithms as the one found in [57, Section 6.2].

Another potential future work is to apply the hybrid schemes [58,59] proposed for linear transport equations. These 
schemes decompose the transport solution into collisional and non-collisional components. At each time step, the hybrid 
schemes use cheap, low-resolution approximations for the collisional component and reserve expensive, high resolution 
approximations for the non-collisional component. Since the primary difficulty on solving the Boltzmann-Poisson system is 
the nonlinear coupling between the electric field and collision term, we expect that the hybrid approach would significantly 
lower the computation cost while producing quality solutions that are comparable to the ones given by an uniformly high-
resolution solver.

There are several open problems that require further investigation. One of them is to extend the proposed method to 
higher order. High-order time discretization, e.g., SDIRK method, can be obtained by cascading the backward Euler scheme 
in Section 2.2.1. High-order phase-space discretization can be achieved by using the DG method in Section 2.2.2 with high-
order elements. However, it is not trivial to expand the Poisson solver in Section 2.3 to high order without affecting the 
sweeping technique in Section 2.2.3, due to the sign change of electric field within a spatial cell, as discussed in Section 2.3
and [14, Remark 1]. Another important open problem is to perform a comprehensive efficiency comparison between the 
proposed fully implicit scheme and standard explicit/IMEX schemes. As opposed to the formal comparison results reported 
in Section 4, the comprehensive comparison should take both the computation time and consistency errors into account. In 
particular, while the larger time steps used in the fully implicit scheme speed up the solution procedure, they could lead 
to larger consistency errors in time, which may become the dominant error in the solution. A comprehensive efficiency 
comparison is needed to verify that, at least on some class of problems, the fully implicit solution indeed achieves some 
given precision in less computation time when comparing to the explicit/IMEX solutions.

Declaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have 
appeared to influence the work reported in this paper.

References

[1] P.A. Markowich, C.A. Ringhofer, C. Schmeiser, Semiconductor Equations, Springer-Verlag, New York, 1990.

http://refhub.elsevier.com/S0021-9991(20)30341-7/bib2C801FFB0DD58C8901AE7C6F624A9F9Bs1


M.P. Laiu et al. / Journal of Computational Physics 417 (2020) 109567 19
[2] D. Ferry, R. Grondin, Physics of Submicron Devices, Microdevices Series, Plenum Press, 1991.
[3] C. Cercignani, I.M. Gamba, C.D. Levermore, A drift-collision balance for a Boltzmann-Poisson system in bounded domains, SIAM J. Appl. Math. 61 (2001) 

1932–1958.
[4] C. Jacoboni, P. Lugli, The Monte Carlo Method for Semiconductor Device Simulation, Computational Microelectronics, Springer, Vienna, 1989.
[5] J.A. Carrillo, I.M. Gamba, C.-W. Shu, Computational macroscopic approximations to the one-dimensional relaxation-time kinetic system for semicon-

ductors, Physica D 146 (2000) 289–306.
[6] J.A. Carrillo, I.M. Gamba, A. Majorana, C.-W. Shu, A direct solver for 2D non-stationary Boltzmann-Poisson systems for semiconductor devices: a MESFET 

simulation by WENO-Boltzmann schemes, J. Comput. Electron. 2 (2003) 375–380.
[7] J.A. Carrillo, I.M. Gamba, A. Majorana, C.-W. Shu, 2D semiconductor device simulations by WENO-Boltzmann schemes: efficiency, boundary conditions 

and comparison to Monte Carlo methods, J. Comput. Phys. 214 (2006) 55–80.
[8] Y. Cheng, I.M. Gamba, A. Majorana, C.-W. Shu, A discontinuous Galerkin solver for Boltzmann–Poisson systems in nano devices, Comput. Methods Appl. 

Mech. Eng. 198 (2009) 3130–3150.
[9] Y. Cheng, I.M. Gamba, A. Majorana, C.-W. Shu, Discontinuous Galerkin solver for Boltzmann-Poisson transients, J. Comput. Electron. 7 (2008) 119–123.

[10] Y. Cheng, I.M. Gamba, A. Majorana, C.-W. Shu, A brief survey of the discontinuous Galerkin method for the Boltzmann-Poisson equations, SeMA J. 54 
(2011) 47–64.

[11] C. Ringhofer, A mixed spectral-difference method for the steady state Boltzmann–Poisson system, SIAM J. Numer. Anal. 41 (2003) 64–89.
[12] S. Jin, L. Pareschi, Discretization of the multiscale semiconductor Boltzmann equation by diffusive relaxation schemes, J. Comput. Phys. 161 (2000) 

312–330.
[13] G. Dimarco, L. Pareschi, V. Rispoli, Implicit-explicit Runge-Kutta schemes for the Boltzmann-Poisson system for semiconductors, Commun. Comput. 

Phys. 15 (2014) 1291–1319.
[14] C. Garrett, C. Hauck, A fast solver for implicit integration of the Vlasov–Poisson system in the Eulerian framework, SIAM J. Sci. Comput. 40 (2018) 

B483–B506.
[15] M.L. Adams, E.W. Larsen, Fast iterative methods for discrete-ordinates particle transport calculations, Prog. Nucl. Energy 40 (2002) 3–159.
[16] E.W. Larsen, J.E. Morel, Advances in Discrete-Ordinates Methodology, Springer Netherlands Dordrecht, 2010, pp. 1–84.
[17] E.E. Lewis, J.W.F. Miller, Computational Methods in Neutron Transport, John Wiley and Sons, New York, 1984.
[18] E. Hairer, S. Nørsett, G. Wanner, Solving Ordinary Differential Equations I: Nonstiff Problems, Springer Series in Computational Mathematics, Springer 

Berlin Heidelberg, 1993.
[19] D.G. Anderson, Iterative procedures for nonlinear integral equations, J. ACM 12 (1965) 547–560.
[20] H. Walker, P. Ni, Anderson acceleration for fixed-point iterations, SIAM J. Numer. Anal. 49 (2011) 1715–1735.
[21] Y. Saad, M. Schultz, GMRES: a generalized minimal residual algorithm for solving nonsymmetric linear systems, SIAM J. Sci. Stat. Comput. 7 (1986) 

856–869.
[22] V. Lebedev, The iterative KP method for the kinetic equation, in: Proc. Conf. on Mathematical Methods for Solution of Nuclear Physics Problems, vol. 93, 

Nov. 17–20, 1964 (in Russian).
[23] H. Kopp, Synthetic method solution of the transport equation, Nucl. Sci. Eng. 17 (1963) 65–74.
[24] E.W. Larsen, Transport Acceleration Methods as Two-Level Multigrid Algorithms, Birkhäuser Basel, Basel, 1991, pp. 34–47.
[25] K. Derstine, E. Gelbard, Use of the preconditioned conjugate gradient method to accelerate s/sub n/iterations, Trans. Am. Nucl. Soc. 50 (1985).
[26] D.E. Bruss, J.E. Morel, J.C. Ragusa, S2SA preconditioning for the Sn equations with strictly nonnegative spatial discretization, J. Comput. Phys. 273 (2014) 

706–719.
[27] L.J. Lorence Jr, J. Morel, E.W. Larsen, An S2 synthetic acceleration scheme for the one-dimensional Sn equations with linear discontinuous spatial 

differencing, Nucl. Sci. Eng. 101 (1989) 341–351.
[28] R.E. Alcouffe, A stable diffusion synthetic acceleration method for neutron transport iterations, Trans. Am. Nucl. Soc. 23 (1976).
[29] R.E. Alcouffe, Diffusion synthetic acceleration methods for the diamond-differenced discrete-ordinates equations, Nucl. Sci. Eng. 64 (1977) 344–355.
[30] C. Cercignani, I.M. Gamba, J.W. Jerome, C.-W. Shu, A domain decomposition method for silicon devices, Transp. Theory Stat. Phys. 29 (2000) 525–536.
[31] Z. Hu, R. Li, T. Lu, Y. Wang, W. Yao, Simulation of an n+-n-n+ diode by using globally-hyperbolically-closed high-order moment models, J. Sci. Comput. 

59 (2014) 761–774.
[32] S. Selberherr, H. Stippel, E. Strasser, Simulation of Semiconductor Devices and Processes, vol. 5, Springer, Vienna, 2012, https://books .google .com /books ?

id =QtuoCAAAQBAJ.
[33] F. Golse, C.D. Levermore, Hydrodynamic limits of kinetic models, in: Topics in Kinetic Theory, Fields Inst. Commun., Amer. Math. Soc., 2005, pp. 1–75.
[34] L. Saint-Raymond, Hydrodynamic Limits of the Boltzmann Equation, 1971, Springer Science & Business Media, 2009.
[35] T. Boyd, J. Sanderson, The Physics of Plasmas, Cambridge University Press, 2003.
[36] R. Hazeltine, F. Waelbroeck, The Framework of Plasma Physics, Frontiers in Physics, Avalon Publishing, 2004.
[37] F. Poupaud, Diffusion approximation of the linear semiconductor Boltzmann equation: analysis of boundary layers, Asymptot. Anal. 4 (1991) 293–317.
[38] P. Stichel, D. Strothmann, Asymptotic analysis of the high field semiconductor Boltzmann equation, Physica A 202 (1994) 553–576.
[39] F. Poupaud, Runaway phenomena and fluid approximation under high fields in semiconductor kinetic theory, J. Appl. Math. Mech./Z. Angew. Math. 

Mech. 72 (1992) 359–372.
[40] N.B. Abdallah, M.L. Tayeb, Diffusion approximation for the one dimensional Boltzmann-Poisson system, Discrete Contin. Dyn. Syst., Ser. B 4 (2004) 

1129–1142.
[41] N. Masmoudi, M. Tayeb, Diffusion limit of a semiconductor Boltzmann-Poisson system, SIAM J. Math. Anal. 38 (2007) 1788–1807.
[42] E. Hairer, G. Wanner, Solving Ordinary Differential Equations II: Stiff and Differential-Algebraic Problems, Springer Berlin Heidelberg, 1996.
[43] R.B. Lowrie, J.E. Morel, Methods for hyperbolic systems with stiff relaxation, Int. J. Numer. Methods Fluids 40 (2002) 413–423.
[44] E.W. Larsen, J. Morel, Asymptotic solutions of numerical transport problems in optically thick, diffusive regimes II, J. Comput. Phys. 83 (1989) 212–236.
[45] J.-L. Guermond, G. Kanschat, Asymptotic analysis of upwind discontinuous Galerkin approximation of the radiative transport equation in the diffusive 

limit, SIAM J. Numer. Anal. 48 (2010) 53–78.
[46] M.L. Adams, Discontinuous finite element transport solutions in thick diffusive problems, Nucl. Sci. Eng. 137 (2001) 298–333.
[47] S. Brenner, R. Scott, The Mathematical Theory of Finite Element Methods, Texts in Applied Mathematics, Springer, New York, 2007.
[48] A. Ern, J. Guermond, Theory and Practice of Finite Elements, Applied Mathematical Sciences, Springer, New York, 2013.
[49] H. Liu, J. Yan, The direct discontinuous Galerkin (DDG) methods for diffusion problems, SIAM J. Numer. Anal. 47 (2009) 675–698.
[50] H. Liu, J. Yan, The direct discontinuous Galerkin (DDG) method for diffusion with interface corrections, Commun. Comput. Phys. (2010).
[51] Z. Chen, H. Huang, J. Yan, Third order maximum-principle-satisfying direct discontinuous Galerkin methods for time dependent convection diffusion 

equations on unstructured triangular meshes, J. Comput. Phys. 308 (2016) 198–217.
[52] A. Toth, C. Kelley, Convergence analysis for Anderson acceleration, SIAM J. Numer. Anal. 53 (2015) 805–819.
[53] S. Jin, Asymptotic preserving (AP) schemes for multiscale kinetic and hyperbolic equations: a review, Riv. Mat. Univ. Parma 3 (2012) 177–216.
[54] E.M. Gelbard, L.A. Hageman, The synthetic method as applied to the Sn equations, Nucl. Sci. Eng. 37 (1969) 288–298.
[55] W.H. Reed, The effectiveness of acceleration techniques for iterative methods in transport theory, Nucl. Sci. Eng. 45 (1971) 245–254.

http://refhub.elsevier.com/S0021-9991(20)30341-7/bib2441500610E808913D9BC9C75B6798FCs1
http://refhub.elsevier.com/S0021-9991(20)30341-7/bibC93B3EE119D415644665DA84E5772053s1
http://refhub.elsevier.com/S0021-9991(20)30341-7/bibC93B3EE119D415644665DA84E5772053s1
http://refhub.elsevier.com/S0021-9991(20)30341-7/bibC9045AB15EE46243FB691A797F3DD6E7s1
http://refhub.elsevier.com/S0021-9991(20)30341-7/bib6101A9122A8FB16E896918C230A81EE8s1
http://refhub.elsevier.com/S0021-9991(20)30341-7/bib6101A9122A8FB16E896918C230A81EE8s1
http://refhub.elsevier.com/S0021-9991(20)30341-7/bib8E1F2E267061B41CD2A9FDF0247A1458s1
http://refhub.elsevier.com/S0021-9991(20)30341-7/bib8E1F2E267061B41CD2A9FDF0247A1458s1
http://refhub.elsevier.com/S0021-9991(20)30341-7/bibD40CBC1098718CD222AE1FD8480A4776s1
http://refhub.elsevier.com/S0021-9991(20)30341-7/bibD40CBC1098718CD222AE1FD8480A4776s1
http://refhub.elsevier.com/S0021-9991(20)30341-7/bib517FE40BD3240FF32C1555CE7019F45As1
http://refhub.elsevier.com/S0021-9991(20)30341-7/bib517FE40BD3240FF32C1555CE7019F45As1
http://refhub.elsevier.com/S0021-9991(20)30341-7/bib20B3A4AA3A9910AEC2D81A9251704076s1
http://refhub.elsevier.com/S0021-9991(20)30341-7/bib853369B57185EB8E7BB15D7904B0B101s1
http://refhub.elsevier.com/S0021-9991(20)30341-7/bib853369B57185EB8E7BB15D7904B0B101s1
http://refhub.elsevier.com/S0021-9991(20)30341-7/bib661B0A3CE330BD6DAC0057B023B24519s1
http://refhub.elsevier.com/S0021-9991(20)30341-7/bib227D1CCDC030A0F96F3539D71933A6B3s1
http://refhub.elsevier.com/S0021-9991(20)30341-7/bib227D1CCDC030A0F96F3539D71933A6B3s1
http://refhub.elsevier.com/S0021-9991(20)30341-7/bibE3AC20BAC064EE4FE7309735008643F0s1
http://refhub.elsevier.com/S0021-9991(20)30341-7/bibE3AC20BAC064EE4FE7309735008643F0s1
http://refhub.elsevier.com/S0021-9991(20)30341-7/bibED2AB3C4C8BAB2B5A5C7A0809345C715s1
http://refhub.elsevier.com/S0021-9991(20)30341-7/bibED2AB3C4C8BAB2B5A5C7A0809345C715s1
http://refhub.elsevier.com/S0021-9991(20)30341-7/bib3EBE9C6C30C0F792B0EEB0BE06FC7222s1
http://refhub.elsevier.com/S0021-9991(20)30341-7/bib7073939F67A0C7B3FB40BF57B4AC3E44s1
http://refhub.elsevier.com/S0021-9991(20)30341-7/bibDF88324C8542D126DE56ABF89C1A319Cs1
http://refhub.elsevier.com/S0021-9991(20)30341-7/bib4608A095FC0B30D5EA574F1A0A2E520Fs1
http://refhub.elsevier.com/S0021-9991(20)30341-7/bib4608A095FC0B30D5EA574F1A0A2E520Fs1
http://refhub.elsevier.com/S0021-9991(20)30341-7/bib3F5201612EFECBB132CC44F08CD668E5s1
http://refhub.elsevier.com/S0021-9991(20)30341-7/bib899B24DA8B7744C332933B4888C3C492s1
http://refhub.elsevier.com/S0021-9991(20)30341-7/bib7BC9B139F13403F11906609675D0E6F7s1
http://refhub.elsevier.com/S0021-9991(20)30341-7/bib7BC9B139F13403F11906609675D0E6F7s1
http://refhub.elsevier.com/S0021-9991(20)30341-7/bib57921D891E03C4D53E941E4EF14BBAFAs1
http://refhub.elsevier.com/S0021-9991(20)30341-7/bib57921D891E03C4D53E941E4EF14BBAFAs1
http://refhub.elsevier.com/S0021-9991(20)30341-7/bib123F32179E0ECF690E39308D709FFB76s1
http://refhub.elsevier.com/S0021-9991(20)30341-7/bib950ADF18B4CCBD3BC44F5E1CDCE37A9Fs1
http://refhub.elsevier.com/S0021-9991(20)30341-7/bibC474B8BCDD5F30DF685E9FDD81C3FA1Ds1
http://refhub.elsevier.com/S0021-9991(20)30341-7/bib49B1A1758F72305F3994DC192ED944FFs1
http://refhub.elsevier.com/S0021-9991(20)30341-7/bib49B1A1758F72305F3994DC192ED944FFs1
http://refhub.elsevier.com/S0021-9991(20)30341-7/bib42D8B9A3DE2A13E33289B7C55770A09As1
http://refhub.elsevier.com/S0021-9991(20)30341-7/bib42D8B9A3DE2A13E33289B7C55770A09As1
http://refhub.elsevier.com/S0021-9991(20)30341-7/bib5082AC53E8F3DE2BA1760A8ED64981B8s1
http://refhub.elsevier.com/S0021-9991(20)30341-7/bibC1E5CE36F5491C2924341A7BFAEA5E4As1
http://refhub.elsevier.com/S0021-9991(20)30341-7/bib986C28EC9A3E03656592677A35BF6002s1
http://refhub.elsevier.com/S0021-9991(20)30341-7/bibC2B5F531801F05E0E42456CF1177FDEAs1
http://refhub.elsevier.com/S0021-9991(20)30341-7/bibC2B5F531801F05E0E42456CF1177FDEAs1
https://books.google.com/books?id=QtuoCAAAQBAJ
https://books.google.com/books?id=QtuoCAAAQBAJ
http://refhub.elsevier.com/S0021-9991(20)30341-7/bib679CCEEF1BAD81003A658037B5D9CDBAs1
http://refhub.elsevier.com/S0021-9991(20)30341-7/bib6097790B9F0491B1A2B0EF910FB4685Fs1
http://refhub.elsevier.com/S0021-9991(20)30341-7/bib56DEBAB741356568BEF50F18191219AEs1
http://refhub.elsevier.com/S0021-9991(20)30341-7/bibD1C0AB0C70DA5C4E4072C47971AB6F7As1
http://refhub.elsevier.com/S0021-9991(20)30341-7/bibBD845A58538CB9C676BD090276D95335s1
http://refhub.elsevier.com/S0021-9991(20)30341-7/bibF53E21B134A4B4D2AA5DFA5C2A7CA3C1s1
http://refhub.elsevier.com/S0021-9991(20)30341-7/bibD53730F1FB0BD0614904481D610141F9s1
http://refhub.elsevier.com/S0021-9991(20)30341-7/bibD53730F1FB0BD0614904481D610141F9s1
http://refhub.elsevier.com/S0021-9991(20)30341-7/bib55E10EBBC11361CEF54B834045F17D0Es1
http://refhub.elsevier.com/S0021-9991(20)30341-7/bib55E10EBBC11361CEF54B834045F17D0Es1
http://refhub.elsevier.com/S0021-9991(20)30341-7/bib158D00980CFA9E059A28940D04500D53s1
http://refhub.elsevier.com/S0021-9991(20)30341-7/bib2BE56B8C67CB1B47B7EE40309E07A241s1
http://refhub.elsevier.com/S0021-9991(20)30341-7/bibB7A1F46CC61B39B1860F1FF621E2656Es1
http://refhub.elsevier.com/S0021-9991(20)30341-7/bib6D3AC3357F02AB041BED5FF8158AE41As1
http://refhub.elsevier.com/S0021-9991(20)30341-7/bib56EE8E2C32CC6423136D7A0EC633C4C8s1
http://refhub.elsevier.com/S0021-9991(20)30341-7/bib56EE8E2C32CC6423136D7A0EC633C4C8s1
http://refhub.elsevier.com/S0021-9991(20)30341-7/bibB1CFFFE00652FAC7166A3E81516E6722s1
http://refhub.elsevier.com/S0021-9991(20)30341-7/bibA7D89B8D653E49F379B579B3A1605A13s1
http://refhub.elsevier.com/S0021-9991(20)30341-7/bibEE62D305A2EEA437B987E12397204354s1
http://refhub.elsevier.com/S0021-9991(20)30341-7/bibD0CC2833041EDFF6289BC211CEE91482s1
http://refhub.elsevier.com/S0021-9991(20)30341-7/bib52C68053D21AB06853DB13D03F83FB35s1
http://refhub.elsevier.com/S0021-9991(20)30341-7/bib022D5C02876A1B0CFD93A1B0A255DCB3s1
http://refhub.elsevier.com/S0021-9991(20)30341-7/bib022D5C02876A1B0CFD93A1B0A255DCB3s1
http://refhub.elsevier.com/S0021-9991(20)30341-7/bibE4E66B06C4653AC76A3619E4A85918D0s1
http://refhub.elsevier.com/S0021-9991(20)30341-7/bib43C756F86BEE49805F7379FA55DB49AFs1
http://refhub.elsevier.com/S0021-9991(20)30341-7/bibE6ADED3083C87E28B657A2D87725EAA0s1
http://refhub.elsevier.com/S0021-9991(20)30341-7/bibF676DF29BE61532CAC1640BA88B2CB2Ds1


20 M.P. Laiu et al. / Journal of Computational Physics 417 (2020) 109567
[56] D. Valougeorgis, Boundary treatment of the diffusion synthetic acceleration method for fixed-source discrete-ordinates problems in x-y geometry, Nucl. 
Sci. Eng. 100 (1988) 142–148.

[57] K.E. Atkinson, The Numerical Solution of Integral Equations of the Second Kind, Cambridge Monographs on Applied and Computational Mathematics, 
Cambridge University Press, 1997.

[58] M.M. Crockatt, A.J. Christlieb, C.K. Garrett, C.D. Hauck, An arbitrary-order, fully implicit, hybrid kinetic solver for linear radiative transport using integral 
deferred correction, J. Comput. Phys. 346 (2017) 212–241.

[59] C. Hauck, R. McClarren, A collision-based hybrid method for time-dependent, linear, kinetic transport equations, Multiscale Model. Simul. 11 (2013) 
1197–1227.

http://refhub.elsevier.com/S0021-9991(20)30341-7/bib93ACD8C4C81E59C8E402BFD22ABDAAA5s1
http://refhub.elsevier.com/S0021-9991(20)30341-7/bib93ACD8C4C81E59C8E402BFD22ABDAAA5s1
http://refhub.elsevier.com/S0021-9991(20)30341-7/bibDED6EF61184C491305C997435E82DE4As1
http://refhub.elsevier.com/S0021-9991(20)30341-7/bibDED6EF61184C491305C997435E82DE4As1
http://refhub.elsevier.com/S0021-9991(20)30341-7/bibDEC72B74AD2621B0DD0C6A01416D4BE4s1
http://refhub.elsevier.com/S0021-9991(20)30341-7/bibDEC72B74AD2621B0DD0C6A01416D4BE4s1
http://refhub.elsevier.com/S0021-9991(20)30341-7/bib4ACCB862F78777D7B5D3B1FFDB55C112s1
http://refhub.elsevier.com/S0021-9991(20)30341-7/bib4ACCB862F78777D7B5D3B1FFDB55C112s1

	A fast implicit solver for semiconductor models in one space dimension
	1 Introduction
	2 Preliminaries
	2.1 Semiconductor models
	2.1.1 Scaled semiconductor models
	2.1.2 The drift-diffusion limit

	2.2 Solving the kinetic equation
	2.2.1 Time discretization
	2.2.2 Phase space discretization
	2.2.3 Domain decomposition and fast sweeping

	2.3 Solving the Poisson equation
	2.4 Solving the drift-diffusion equation

	3 Nonlinear solution strategies
	3.1 Type-I formulation
	3.1.1 Type-I -- Picard iteration
	3.1.2 Type-I -- Anderson acceleration

	3.2 Type-II formulation
	3.2.1 Type-II -- Anderson acceleration with Picard iteration
	3.2.2 Type-II -- Anderson acceleration with GMRES

	3.3 Synthetic acceleration for semiconductor equations
	3.3.1 SA scheme on Picard iteration
	3.3.2 Preconditioner form of the SA scheme


	4 Numerical results
	4.1 Silicon diode problem setup and implementation details
	4.2 Single-scale test
	4.3 Multiscale test

	5 Conclusions and discussion
	References


