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a b s t r a c t

Energy system optimization models (ESOMs) such as MARKAL/TIMES are used to support energy policy
analysis worldwide. ESOMs cover the full life-cycle of fuels from extraction to end-use, including the
associated direct emissions. Nevertheless, the life-cycle emissions of energy equipment and infrastruc-
ture are not modelled explicitly. This prevents analysis of questions relating to the relative importance of
emissions associated with the build-up of infrastructure and other equipment required for
decarbonization.

We have soft-linked an environmentally-extended input-output (EEIO) model to a European TIMES
Model (ETM-UCL) with the aim of addressing the following questions:

- In what ways does the inclusion of indirect emissions change the optimal technology
pathway for decarbonizing the European energy system?

- How much does the present value of key low-carbon technologies change when indirect
emissions are accounted for in a decarbonization scenario for Europe?

We show that, although indirect emissions are a relatively small portion of overall power sector
emissions (<10% in 2050), including them in the model leads to changes in the optimal power sector
portfolio. Renewable energy technologies become relatively less attractive once indirect emissions are
included within the optimization framework, and we quantify this effect, showing that it is not large.
Changes to the relative attractiveness of specific renewable energy technologies are more pronounced
than the reduction in attractiveness of renewable energy as a whole: in our main scenarios wind energy
saw increased relative deployment in 2050 when indirect emissions are accounted for, since it displaced
other technologies with higher life-cycle emissions (notably solar PV). Optimal cumulative installed
capacity of PV in the EU 2050 is at least 7% lower when indirect emissions are included. We conclude that
policy advice derived from ESOMs that focuses on the roles of specific technologies should ensure that it
is robust to the possible effects of indirect emissions.

© 2017 Elsevier Ltd. All rights reserved.
1. Introduction

Energy system optimization models (ESOMs) are used to sup-
port energy policy analysis worldwide (DeCarolis et al., 2017). They
are used both to address questions relating to long-term strategic
choices (such as decarbonization targets), and to inform energy
all).
technology policy (by illustrating the relative potential for different
energy technologies) (Chiodi et al., 2015). For example, the UK has
used both MARKAL/TIMES models and the similar ESME model to
inform R&D priorities for energy technologies (Taylor et al., 2014).

ESOMs cover the full life-cycle of fuels from extraction to end-
use, including the associated direct CO2 emissions.1 Nevertheless,
1 This paper addresses only CO2 emissions. The term ‘emissions’, unless other-
wise indicated, always refers only to CO2.
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2 The same is true for indirect emissions associated with the operation of energy
technologies; or emissions associated with inputs used in the cultivation of bio-
energy, such as fertilizer manufacture.
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the emissions associated with manufacture or construction of the
necessary technologies and infrastructure are not modelled explic-
itly. This prevents analysis of questions relating to the relative
importance of emissions associated with the build-up of infra-
structure and other equipment required to shift to a low-carbon
economy. Unless the emissions arising from energy technology
manufacture are considered explicitly, ESOMs will likely over-
estimate the mitigation potential of certain renewable technologies
that are zero emitters during the use phase, but lead to higher
emissions during the construction phase.

The magnitude of this effect is unknown, since ESOMs do not
model the life-cycle emissions of energy infrastructure explicitly. In
contrast, life cycle assessments (LCAs) e which do have a detailed
representation of energy infrastructure e do not capture the
complexities of the energy system and the interactions between
technologies in a way that enables dynamic macro-level assess-
ments of thewhole energy system on their own (Gibon et al., 2015).
The combination of different tools can help overcome the short-
comings of each type of model, as has been recently highlighted by
Pauliuk et al. (2017).

Against this background, we have soft-linked an enviro-
nmentally-extended input-output (EEIO) model to an ESOM. Indi-
rect emissions from power sector technologies were obtained from
a disaggregated EEIO model (see Usubiaga et al., 2017) and were
then incorporated into the UCL European TIMES Model (ETM-UCL
(Solano-Rodriguez and Pye, 2014);) with the aim to address the
following questions:

- In what ways does the inclusion of indirect emissions change
the optimal abatement pathway?

- How much does the present value of key low-carbon technol-
ogies change when indirect emissions are accounted for in a
decarbonization scenario for Europe?

Models that can examine such questions can help inform R&D
prioritization decisions, since they can reveal how the relative
attractiveness of specific technologies changes when indirect
emissions are taken into account. Hybrid models that combine the
techno-economic realism of an energy systems model with the full
environmental accounting of disaggregated environmentally-
extended input-output (EEIO) analysis can thus contribute to the
development of ‘consequential’ life-cycle analysis, in which models
inform the possible consequences of adding or removing additional
units of a technology to a system (Plevin et al., 2014).

This paper first reviews previous relevant efforts to bring energy
systemmodels and life-cycle assessments together. In section 3, we
set out the method we have used, including the details of the EEIO
model, the TIMES model, the procedures for linking them, and the
scenarios examined. Section 4 then provides results relating to each
of the research questions, while section 5 draws key conclusions.
The paper is accompanied by a supplementary file that includes
considerable further detail on the modelling approach, the data
used, and the results.

2. Literature review

Bottom-up ESOMs (such as MARKAL [Loulou et al., 2004] and
TIMES [Loulou et al., 2004]) and MESSAGE (Messner and
Schrattenholzer, 2000)) provide a detailed depiction of the en-
ergy system, with explicit representation of primary extraction of
energy resources, processing and conversion, delivery to con-
sumers, and end-use (DeCarolis et al., 2017). Such models account
for some emissions associated with upstream extraction (flaring,
for example), and they account for the efficiency losses and energy
inputs associated with conversion and processing (e.g. in refineries
and power stations), with transmission and distribution (losses in
electricity transmission lines, energy use in fuel distribution, etc.),
and efficiency losses in end use devices. Many sources of fossil fuel
chain indirect emissions are thus already included in the default
setup of TIMES (see the supplementary file for further details).
ESOMs are “demand-driven” in the sense that the energy service
demands across the economy are a key exogenous input into the
models. Energy service demands associated with residential con-
sumption, transport, industry and service sectors are all key inputs
(DeCarolis et al., 2017).

However, various relevant upstream processes are frequently
not incorporated into the model in an explicit way. In particular,
emissions associated with the manufacture of energy technologies2

are not directly linked to the model's decisions to deploy energy
technologies (Scott et al., 2016). Instead, the emissions associated
with these activities are tracked through the satisfaction of exog-
enously specified energy demands in the industrial, service, agri-
cultural and other sectors. The energy demands e and hence
emissions e arising from the manufacture of energy technologies
are implicitly assumed to be constant across scenarios. Yet in the
real world, the indirect emissions associated with processes such as
the construction and manufacture of low-carbon energy technol-
ogies differs from their high-carbon alternatives, and structural
shifts to low-carbon technologies (such as wind, for example)
might be expected to lead to increases in activity and hence
emissions from the industrial sector relative to the case in which
fossil fuels continue to be used (at least during periods of instal-
lation and deployment of low-carbon technologies (Usubiaga et al.,
2017);). Such endogenous changes in industrial production implied
by energy transition scenarios have previously been ignored by
most ESOMs (including dominant modelling systems such as
MARKAL/TIMES and MESSAGE), suggesting that there is value in
integrating life-cycle or similar approaches with ESOM analysis.

Several recent papers have suggested a need to better integrate
life-cycle assessment and energy system (or integrated assessment)
modelling approaches (Pauliuk et al., 2017; Hertwich et al., 2015;
Masanet et al., 2013). Two broad strands of research can be iden-
tified that respond to this call. One strand of research has respon-
ded to this challenge by using the outputs of ESOMs as an input into
detailed prospective life-cycle assessment studies. Studies taking
this approach have developed LCAs of long term energy scenarios,
developing dynamic life-cycle inventories that are fully consistent
with the energy mix depicted in the scenario, focusing for example
on wind power (Arvesen and Hertwich, 2011), renewables in
Australia (Wolfram et al., 2016) or in Europe (Peter et al., 2016), and
low-carbon technologies more generally (Hertwich et al., 2015).
These scenarios are typically generated using energy system opti-
mization models, such as the IEA's ETP model, a member of the
MARKAL/TIMES family, which was used by Gibon et al. (2015;
2017); Arvesen and Hertwich (2011); Hertwich et al (2015). These
studies provide valuable insights into the relative environmental
impacts associated with various technologies in different possible
futures: they have shown that technologies with low use-phase
carbon emissions also provide considerable co-benefits (Hertwich
et al., 2015), as well as performing well in terms of whole-life-
cycle carbon emissions (Wolfram et al., 2016). However, they
have not addressed how the consideration of life-cycle emissions
might influence the optimal decarbonization pathway, and thus the
scenarios developed by the ESOM tools.

A second, smaller strand of research has approached the linkage
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of life-cycle emissions and energy system optimization models
from the other way around. This second strand of research (and the
one to which the present paper makes a contribution) has used the
outputs of life-cycle assessments as inputs into energy optimization
models. In early studies, several authors used LCA as a basis for
calculating the full life-cycle CO2 associated with different elec-
tricity generation technologies and applied these as external costs
in MARKAL models of the whole world (Rafaj and Kypreos, 2007),
western Europe (R€oder, 2001) and Val d’Agri in Italy (Pietrapertosa
et al., 2009). These studies have aimed to show whether and how
full life-cycle accounting for energy technologies can influence the
techno-economically optimal energy system under a carbon
constraint. However, while these studies have provided insights
into system responses to life-cycle costs, the approach they use
results in an internal inconsistency between the marginal CO2
abatement cost generated endogenously within the model and the
value of external costs of CO2 applied exogenously.

More recently, Rentizelas and Georgakellos (2014) built an
ESOM of the Greek power sector that used life-cycle emissions
rather than those arising from the use-phase of technologies. There
are clear limitations to their approach: the direct emissions from
energy technology operation should be an endogenous variable
within the model, since the model should determine how much to
use each technology once built; whereas indirect emissions asso-
ciated with construction should be fixed per unit capacity.

Three recent studies incorporate indirect emissions into an
ESOM. Menten et al. (2015) and (García-Gusano et al., 2016) both
incorporate emissions derived fromprocess-LCA intoTIMESmodels
(of France and Norway, respectively). Their work represents an
improvement on previous approaches to incorporating indirect
emissions, but the resulting model suffers from double-counting of
the indirect emissions (as explained in Menten et al., also see the
Supplementary Information for a fuller explanation). In the third
study Daly et al. (2015) have used indirect emissions from an EEIO
model, and incorporated these into a TIMES model of the UK. The
work presented in this paper builds on their approach. In particular,
the work presented here uses indirect emissions factors derived
from hybrid input-output based LCA, resulting in a more accurate
mapping of indirect emission factors to specific energy technolo-
gies, realizing the strengths of both process-LCA and EEIO analysis.
This enables greater insights into the extent to which indirect
emissions influences the optimal technology portfolio under a
carbon constraint. The work presented in this paper also offers a
more consistent approach to overcoming the double-counting
problem.

In the following sections we show the implications of incorpo-
rating the indirect emissions associated with the build-up of
infrastructure and other equipment of energy technologies.

3. Method, data and scenarios

3.1. ETM-UCL: overview of the model

UCL's European TIMES model (ETM-UCL (Solano-Rodriguez and
Pye, 2014; Solano Rodriguez et al., 2017);) is a cost optimization
model that investigates decarbonization and energy technology
pathways for 11 European regions covering the EU-28 countries
plus Norway, Switzerland and Iceland. The Integrated MARKAL-
EFOM System (TIMES) has been developed by the Energy Tech-
nology Systems Analysis Program (ETSAP) of the International En-
ergy Agency (IEA), and is used worldwide to implement both
national and global models (Chiodi et al., 2015).

TIMES is a technology rich, bottom-up, linear programming
model that minimizes total discounted energy system cost (Loulou
et al., 2016). Energy service demands and carbon targets are
exogenous inputs. The model then finds the least-cost energy sys-
tem for meeting energy service demands subject to carbon con-
straints from its large menu of energy technologies and resources.

The model is calibrated to its base year of 2010, with energy
service demand projected into the future using the exogenous
drivers GDP, population, household numbers and sectorial output
(linked to GDP), for each region. Energy consumption is available
for each region for end-use sectors (transport, industry, agriculture,
commercial and residential), and the upstream and power sectors.

Each region in ETM-UCL has its own energy system. These re-
gions are described and modelled in their supply sector (fuel
mining, primary and secondary production, exogenous import and
export), their power generation sector and their demand sectors
(residential, commercial, industrial, etc.). The 11 regions are linked
through the trade in crude oil, hard coal, pipeline gas, LNG (lique-
fied natural gas), petroleum products (diesel, gasoline, naphtha,
heavy fuel oil), biomass and electricity.

A wide range of energy supply and demand technologies for
future years are included in the model. For example, power sector
technologies are modelled considering investment and operating
cost parameters, efficiency factors, construction time, utilization
factors, etc. Subject to resource, technology and policy constraints
such as the EU 2050 greenhouse gas (GHG) emission target, the
model then chooses the cost-optimal set of electricity generation
technologies to meet demand in each time period up to 2050.

3.2. Developing indirect emission factors for power sector
technologies

The indirect CO2 emission factors (IEF) associated with the
construction of power sector technologies have been calculated by
means of input-output based hybrid LCA e a variant of EEIO anal-
ysis (full details of the method are reported in Usubiaga et al.
(2017). This method consists of a disaggregation of an input-
output table and its environmental extension(s) based on data
from life-cycle inventories (LCI), and the use of EEIO analysis to
calculate consumption-based pressures (Suh and Huppes, 2005) e
in this case, CO2 emissions. Disaggregating an EEIO model using LCI
data allows overcoming the main limitations of each of them, i.e.
the high aggregation of EEIO models and the incomplete system
boundaries in LCA (Lenzen, 2000).

In this exercise, the 2007 EU27 Eurostat symmetric input-output
tables (Eurostat, 2011) and the corresponding carbon emission
accounts (Eurostat, 2014a) have been disaggregated from the 59
original product groups to 125 product groups. The additional
product groups depict either 18 electricity supply technologies or
their most relevant life cycle stages, including the infrastructure
required (Table 1). The resulting disaggregated EEIO table thus in-
cludes explicit representation of the sectors that produce energy
technologies, enabling identification of the indirect emissions
associated with the production of a unit of each energy technology.

The disaggregation has been carried out by combining direct
input coefficient data (as a production recipe) and product output
data such as annual capacity additions and power generated in the
European power sector. The disaggregation process combines
physical input coefficients of the representative technology taken
from the Ecoinvent LCI database (Ecoinvent Centre, 2010, 2013),
prices (Gaulier and Zignago, 2010) and monetary input coefficients
the EXIOBASE v2 database (Wood et al., 2015) with their corre-
sponding outputs, which are either calculated in the previous step
or obtained from alternative sources such as Eurostat's Structural
Business Statistics (Eurostat, 2014d, 2014b, 2014c). The direct input
coefficients of manufactured products have been adapted to EU27
efficiencies with data from the International Energy Agency (IEA,
2013a, 2013b). As for the carbon emissions of each of these



Table 1
Detail of the infrastructure related to electricity production.

Technology Description

Wind onshore Wind power plant onshore - fixed parts
Wind power plant onshore - moving parts

Wind offshore Wind power plant offshore - fixed parts
Wind power plant offshore - moving parts

PV Inverter
Multi-Si PV panel
Multi-Si PV cell
Multi-Si PV wafer
Electric installation, photovoltaic plant, at plant
Slanted-roof construction, mounted, on roof

Coal Hard coal power plant - CHP
Hard coal power plant - no CHP

CCGT Combined cycle gas power plant - CHP
Combined cycle gas power plant - no CHP

Conventional gas Conventional gas power plant - CHP
Conventional gas power plant - no CHP

Nuclear PWR nuclear power plant
Hydro Run-of-river hydropower plant
Oil Oil power plant - CHP

Oil power plant - no CHP
Biomass/Waste Municipal waste incineration plant - CHP

Municipal waste incineration plant - no CHP

Note: CCGT: Combined Cycle Gas Turbine; CHP: Combined Heat & Power; Multi-Si:
Multicrystalline Silicon, PV: Photovoltaic.
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subproduct groups, the direct emission intensities from Ecoinvent
have been multiplied by the corresponding product output. More
details are provided in the original source (Usubiaga et al., 2017).

In a last step, the standard formulation of EEIO analysis is used
to estimate the direct and upstream CO2 emissions related to the
infrastructure associated with selected electricity production
technologies as shown in the following equation.

m ¼ B$ðI � AÞ�1$y

where m denotes direct and upstream pressures, B represents
direct pressure intensity, (I-A)�1 represents the Leontief inverse
and y refers to the final demand of a good or service. In this case, the
final demand y is set to 1 for selected energy technologies and
related infrastructure in order to obtain the direct and indirect
carbon emissions associated therewith.

The indirect emissions factors generated by (Usubiaga et al.,
2017) were compared against emissions factors identified in the
wider LCA literature (Masanet et al., 2013). By making assumptions
about average load factors, the CO2/MW factors generated by
Usubiaga et al. were compared with those from Masanet et al.
(which are expressed in terms of gCO2/kWh). This comparison
suggested that the estimates fromUsubiaga et al. are at the low end
of the range in the literature. Exploring sensitivity scenarios using
higher emissions factors thus is useful both in testing the model
and in exploring real-world uncertainty.
Table 2
Typical TIMES model demand categories.

TIMES demand sector Demand sub-sector

Agriculture Agriculture
Services Services
Industry Pulp and Paper

Chemicals
Iron & Steel
Non-metallic minerals
Other industry

Transport Heavy goods vehicles
Light goods vehicles
3.3. Mapping IO sectors to ETM-UCL technologies

For most existing power sector technologies, the mapping pro-
cess was straightforward (i.e. the new sector in the disaggregated
EEIO table that produces coal-fired power plants was mapped to
the TIMES coal-fired power plant technologies). New technologies
that were not included in the EEIO table (because they did not exist
in 2007, the snapshot year from which the IEFs were developed)
were assigned IEFs based on judgements about which other energy
technologies they are most similar to in terms of physical charac-
teristics, though it is acknowledged that this process introduces
considerable uncertainty in the IEFs. A full mapping of IO sectors to
TIMES technologies is included in the supplementary information.
The units for emissions factors from the EEIO table are in

monetary units (tCO2/Euro monetary output of the sector), and
must be converted into physical units (tCO2/MW capacity). In order
to do this, estimation of the historical EU annual capacity additions,
which corresponds to the years of the EEIO table, was used to
convert output of each sector in monetary terms into output in
physical terms.
3.4. Avoiding double counting

The system boundaries of the energy system model and EEIO
model overlap: the EEIO table incorporates the whole economy
including the energy system, while the energy system model in-
cludes detailed representation of the energy system alongside
exogenous assumptions about energy demand in different sectors
of the economy. This creates a double-counting problem, because
some of the activities associated with manufacture of energy
technologies (and hence the direct and indirect emissions associ-
ated with the energy inputs into those activities) are implicitly
represented by the energy demands within ETM-UCL. In other
words, the ETM-UCL end-use demands already include within
them the demands that arise from the construction and operation
of energy technologies e these are implicitly included within
exogenously specified industrial energy service demand (e.g. steel
production implicitly includes that steel required for power station
construction), service sector demand (construction activities) and
others. By including indirect emissions factors, the emissions
associated with this energy are accounted for twice; once explicitly
by the TIMES model through the various processes that satisfy
sectoral energy demands, and once through the indirect emissions
attached to the construction of energy technologies.

Daly et al. (2015) adjust for this double-counting by summing
the indirect emissions, and relaxing the emissions target by this
amount. In other words, the emissions and activities associated
with them are not removed from the model; rather the emissions
target is adjusted such that the marginal abatement cost of meeting
a particular target is unchanged. Daly et al.’s method works around
the double counting, but remains technically inconsistent, with
overlapping system boundaries. A conceptually clearer alternative
approach is to remove the energy service demands from the final
demand sectors in ETM-UCL that correspond to these double-
counted emissions. E.g. if 2% of the steel sector is producing steel
that is ultimately destined to be used in wind turbine
manufacturing, then the energy service demands of the steel sector
in ETM-UCL should be reduced by 2%, since this activity is now
represented by the IEF. To estimate this, one must identify the
portion of steel demand that is specific to the construction and
manufacture of energy technologies. This can be estimated from
the disaggregated input-output table. A more detailed explanation
of this approach is provided in the supplementary information.



Table 3
Illustrative mapping of IO sectors to TIMES exogenous demand categories.

IO Sector TIMES equivalent demand

Products of agriculture, hunting and related services Agriculture
Products of forestry, logging and related services Agriculture
Coal and lignite; peat N/A (demand created endogenously within TIMES)
Leather and leather products Other industry
Wood and products of wood and cork (except furniture); articles of straw and plaiting materials Other industry
Pulp, paper and paper products Pulp & Paper
Printed matter and recorded media Pulp & Paper
Coke oven products N/A (demand created endogenously within TIMES)
Nuclear fuel N/A (demand created endogenously within TIMES)
Chemicals, chemical products and man-made fibers Chemicals
Rubber and plastic products Chemicals
Other non-metallic mineral products Non Metallic minerals
Fabricated metal products, except machinery and equipment Other industry
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It is helpful here to examine the demand structure of ETM-UCL.
Table 2 illustrates ETM-UCL sectors that are equivalent to IO sectors
that produce goods and services that are used in the construction,
manufacture or operation of energy technologies.

ETM-UCL end-use energy demands that are associated with the
energy used in the production of goods and services for interme-
diate consumption (rather than final energy consumption by
households) can be matched to the IO sectors that describe those
production activities. Note that a major exception is IO sectors that
produce energy commodities (such as the IO sector “coke oven
products”), since the demands for these commodities are produced
endogenously by the energy system model, rather than being an
exogenous input. A sample of such a mapping process is shown in
Table 3 (the full mapping is provided in the supplementary
material).

The second step is to calculate the share of intermediate con-
sumption, for these aggregated sectoral categories, that is accoun-
ted for by the production of energy technologies for which IEFs are
being derived. This step requires applying the ‘structural path
analysis’method. This is done to derive direct and indirect demands
associated with the manufacture and construction of energy tech-
nologies, distributed across the industrial, service and transport
demands in TIMES. Ideally, these indirect energy service demands
should be calculated on an identical basis to the indirect carbon
emissions that are represented by the indirect emissions factors.

Finally, the third step is to reduce the energy service demands
for each of the aggregated sectoral categories. If the share of total
agricultural output used in the manufacture of energy technologies
is 1%, then the ‘agriculture’ demands in the TIMES model should be
reduced by 1%, and so on with other sectors (see Table 4).

The approach is based on a snapshot of the intermediate de-
mands associated with the production of energy technologies at a
given point in time. Note also that this approach makes the
assumption that there is a simple linear relationship between de-
mand for production for these aggregated sectors and energy
demand.
3 EU emissions targets are of course calculated on a production basis, not a
consumption basis. However, if the indirect emissions associated with infrastruc-
ture can be estimated on a common geographic basis as production-based emis-
sions, then the relative importance of infrastructure-related emissions could still be
used to inform analysis of carbon targets.
3.5. Limitations and simplifying assumptions

3.5.1. Assumptions on decarbonization of energy technology
manufacture

In the real world, the IEFs associated with technologies are ex-
pected to decline over time, as both the economic structure and
production processes change in response to decarbonization pol-
icies. It seems likely that decarbonization rates for the production
of energy technologies are likely to be similar to those in other
sectors. The analysis here explores both scenarios in which IEFs are
assumed to be static across time (i.e. no technological change) and
dynamic, in which IEFs decrease across time in a decarbonization
scenario. The rate of decrease in IEFs is derived from the decar-
bonization rate of the TIMES industry sector in a model run that
meets targets, i.e. the sectors producing energy technologies are
assumed to decarbonize at the same rate as the rest of the industry
sector. Further detail on these rates is given in the supplementary
material.

3.5.2. Geographic system boundaries
The EEIO table used in this analysis is fully described in Usubiaga

et al. (2017). It is a single region table covering all 27 countries of
the EU (before the addition of Croatia). In estimating IEFs, Usubiaga
et al., 2017 adopt the ‘domestic technology assumption’, i.e. they
assume that production structures and technologies are identical
globally. The IEFs thus include emissions from outside the borders
of the EU, embodied in imported goods. This is a weakness of the
current analysis, since it precludes strong conclusions about the
importance of IEFs in the ability of the EU to meet targets.3

3.5.3. Sectoral coverage and model balancing
In the current analysis, IEFs were applied only to power sector

technologies, which creates an imbalance in the model, since other
sectors do not generate indirect emissions. As a result, the inter-
pretation of results must be avoid drawing conclusions that could
be distorted by this imbalance. For example, drawing conclusions
about the relative attractiveness of electric vehicles vs. Biofuels in
such a model would be unwise, since electricity will be effectively
penalized by carrying the burden of indirect emissions, whereas
biofuels would not. Ideally, a fully hybridized EEIO-ESOM model
would include all indirect emissions factors for all technologies in
the energy system model, including end-use technologies (lights,
ovens, cars, etc.), conservation technologies (such as insulation)
and upstream and industrial sector technologies (refineries, steel
mills).

3.6. Scenarios

The first research question set out in the introduction is: In what
ways does the inclusion of indirect emissions change the optimal
abatement pathway? Addressing this question requires comparison
of scenarios in which indirect emissions are included with those in
which they are excluded, with various sensitivity tests to examine



Table 4
Energy service demands in TIMES attributable to themanufacture of energy technologies. NB: in the EEIO table, the ETM-UCL categories Iron& Steel and non-ferrousmetals are
represented by a single IO sector, ‘basic metals’. We assume that the share of demand of these sectors associated with energy technologies is the same.

ETM-UCL demand sector Total use by sectors
manufacturing power
sector technologies (mV)

Total use by all sectors at
basic prices
(mV)

Share of total use
that goes to power sector tech.

Coefficient for energy
service demands

Agriculture 223 413,850 0.05% 99.95%
Other industry 9228 4,390,832 0.21% 99.79%
Pulp & Paper 169 397,462 0.04% 99.96%
Chemicals 965 917,922 0.11% 99.89%
Iron & Steel; Non-ferrous 1780 359,346 0.50% 99.50%
Services 14,717 13,589,209 0.11% 99.89%
HGVs 707 497,000 0.14% 99.86%
Aviation 33 125,193 0.03% 99.97%
Shipping 360 98,369 0.37% 99.63%
Non-metallic minerals 3203 216,489 1.48% 98.52%
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key uncertainties in both the time-path of indirect emissions, and
the magnitude of emissions factors. The scenarios required to do
this are presented in Table 5.

The high IEFs scenario examines the model's response to higher
indirect emissions, which is useful because of the considerable
uncertainty in the estimation of the emissions factors. In addition,
EEIO-derived emissions factors exclude emissions associated with
end-of-life and decommissioning processes. The resulting under-
estimation of the real values of indirect emissions across the full
life-cycle, though not expected to be large, provides a further
rationale for sensitivity testing with inflated emissions factors.

The second research question is: How much does the present
value of key low-carbon technologies change, when indirect emissions
are accounted for in a decarbonization scenario for Europe? Assessing
the value of a single specific technology requires running scenarios
in which that technology is excluded as an option, and comparing
the total discounted system costs of that scenario with an equiva-
lent scenario in which the technology is available to the model. The
scenarios in which wind and solar PV are prevented from diffusing
provide a way of estimating the change in value of the technologies
to the energy system when indirect emissions are taken into
account.

Note that these scenarios, while exhibiting key differences, hold
a number of common assumptions:

- Energy service demands: The scenarios share common energy
service demand projections, which are themselves based on
projections for GDP, population growth and number of house-
holds. These values are taken from the IEA's “Energy Technology
Perspectives 2012” (ETP) for the European Union (IEA, 2012).

- Carbon targets: Low carbon scenarios in this study constrain
themodel to reduce GHG emissions by 80% below 1990 levels by
2050.

- Exogenous fuel import prices: While the model generates
prices of energy commodities within Europe endogenously, the
rest-of-the-world prices (i.e. the price for imports into Europe of
Table 5
Summary of scenarios.

Scenario names Description

No IEFs Basic model run, with direct emissions constrained tomeet ca
constraint.

Constant IEFs As above, but with indirect emissions included in the scope o
based on the EEIO snapshot from the 2007 symmetrical EEIO

Declining IEFs As above, but with declining IEFs, rather than static. In this s
industry sector in the previous low-carbon runs)

High IEFs This sensitivity scenario examines higher IEFs (five times hig
constraint in this scenario, and are constant over time.
oil, coal and gas) are exogenous. In all scenarios, these prices are
derived from the IEA ETP 2DS scenario prices for oil, gas and coal
imports (IEA, 2012).
4. Results and discussion

4.1. Research question 1: does the inclusion of indirect emissions
change the optimal abatement pathway?

Though the overall share of indirect emissions is relatively small
in most scenarios (<10% of power sector emissions in the constant
IEFs scenario), these additional emissions do result in changes in
the optimal configuration of the power systeme in particular in the
sensitivity scenario with high IEFs. As expected, the overall power
sector capacity is reduced when indirect emissions are included,
and further reduced in scenarios with high IEFs. Recall that this is
an expected result where the model is imbalanced (i.e. because
indirect emissions have only been applied to the power sector).

The changes that occur within the power sector itself are more
interesting. When indirect emissions are included, the model re-
sponds by reducing the deployment of solar PV (see Fig. 1). In the
declining IEF case, in which IEFs are reduced over time, the optimal
installed capacity of PV across Europe is around 30 GW less in 2050
than in a case in which indirect emissions are ignored. This is
around a 7% reduction in cumulative installed capacity of PV in
2050dnot dramatic, but certainly not negligible. This result is
unsurprising: solar becomes less attractive under a decarbonization
scenario once it is no longer a zero carbon energy source. This effect
is strongly observed in the high indirect emissions sensitivity
scenario.

This pattern is similar for renewables as a whole: the impact of
including indirect emissions results in a 4% reduction in renewable
energy installed capacity in 2050 (ranging from 1% in the declining
IEFs scenario to 27% in the high IEFs scenario). These results provide
a quantification of the intuition that accounting for the full life-
cycle of the infrastructure of energy technologies will reduce the
rbon targets, but with indirect emissions not included in the scope of the emissions

f the emissions constraint. The IEFs used in this scenario are constant across time,
table).

cenario, IEFs are reduced according to the decarbonization trajectory of the ETM

her than in the constant indirects scenario). Indirect emissions are included in the



Fig. 1. Change in PV and Wind capacity relative to No IEFs scenario, in which indirect
emissions are not constrained. A version of this figure showing absolute changes in GW
is available in the supplementary material.

Fig. 2. Difference in capacity in the ‘constant IEFs’ scenario in 2050, relative to the ‘no
IEFs’ scenario. The figure shows both the case in which power sector size is fixed, and
when the power sector is allowed to shrink. A version of this figure showing absolute
changes in GW is available in the supplementary material.
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apparent attractiveness of technologies that have zero emissions in
the use-phase. It is worth noting that in the most plausible scenario
(empirically derived indirect emissions that fall as the wider
economy is decarbonized) the effect is small, both for renewables in
general (1% reduction in cumulative installed capacity in 2050) and
for PV in particular (a 7% reduction in 2050).

The results are more interesting for wind. In 2030 the installed
capacity of wind decreases between 35 and 100 GW when indirect
emissions are included (Fig. 1). However, in 2050 the reduction in
PV is compensated by increases in wind deployment at baseline
indirect emissions factors. This occurs evenwhen emissions factors
are constant across the time horizon (which implicitly assumes that
while the rest of the economy decarbonizes, the production of wind
turbines generates identical indirect emissions in 2040 as it did in
the EEIO base year of 2007). This is a surprising finding: one would
expect that adding indirect emissions to a zero-carbon technology
would result in a decrease in its optimal levels of deployment in a
carbon-constrained scenario, and that this pattern would be
consistent across the model time horizon. Here, instead, the low-
carbon technology portfolio shifts as a whole, such that the
decline in PV is partially offset by relative increases in wind
deployment.Wind also appears to be subject to a threshold effect in
these 2050 results: in sensitivity runs with higher levels of indirect
emissions, wind follows the pattern of PV and shows declines in
deployment.

One possible explanation for the reductions in PV shown in Fig.1
is that the addition of indirect emissions results in a reduction of
power generation as a whole (for example, the model may use less
electricity in the transport sector, since the addition of indirect
emissions to electricity will result in higher emissions burdens
associated with electricity consumption). Thus the reduction in PV
could be a response to a smaller overall power sector, rather than a
result of the model preferring other power generation technologies
over solar. This could occur if solar PV is the marginal technology
that the model is deploying in order to meet power generation
requirements. If that were the case, then when the overall power
sector is reduced, solar PV would be disproportionately reduced. A
similar effect might be expected to occur for renewable energy
technologies on aggregate.

In order to confirm that the reduction in the contribution of
particular power sector technologies to the electricity generation
capacity of the system under different scenarios is not solely due to
the reduction in power sector capacity, we have also run scenarios
inwhich power sector capacity has been fixed in all scenarios to the
level found in the scenario without indirect emissions constraints.
In other words, the model is forced to continue to use the same size
of power sector across scenarios in these runs, and can only
respond to the introduction of indirect emissions by changing the
power sector technology portfolio. The results (shown in Fig. 2)
show that even under the same power capacity there is a change in
the optimal power sector portfolio chosen by the model. The figure
shows that the overall patterns remain unchanged, though the
magnitude of the effects is reduced.

In addition to altering the model's choices with respect to
installed capacity, the addition of capacity-related indirect emis-
sions shifts the way in which power generation plants are used. As
might be anticipated, in general dispatchable technologies have a
higher load factor when indirect emissions are included. This is
illustrated in Fig. 3, showing usage of Europe's coal generating ca-
pacity in the high indirect emissions scenario and the scenario in
which indirect emissions are not constrained.

Since the introduction of new power generation assets now
results in indirect emissions, the model prefers to use existing as-
sets more intensively. In the No IEFs scenario, coal fired power
stations are being retired long before the end of their technical life,
as it is techno-economically optimal under a carbon constraint to
switch away from coal to other power generation options. In the
High IEFs case, many of these coal plants remain operational, since
shutting them down would require the construction of alternative
power generation technologies, incurring indirect emissions.
Moreover, the no IEFs scenario sees higher deployment of renew-
ables, resulting in higher levels of part-load operation of coal-fired
plants.

A similar result is found across all dispatchable technologies: the
lowest load factors are found in the scenario when indirect emis-
sions are unconstrained. In scenarios where indirect emissions are
constrained, the lowest load factors are found where the IEFs
reduce over time, while the highest load factors are found in sce-
narios in which IEFs are highest.
4.2. Research question 2: changing value of specific technologies

ESOM analysis can be used to generate a direct measure of the
value of a particular technology to the energy system (or, equiva-
lently, the cost of excluding that technology from the energy sys-
tem). Such measures can be used by policymakers to inform
analysis of R&D portfolios and prioritization for energy innovation
support. Here, we explore how the inclusion of indirect emissions



Fig. 3. Load factor of European coal plant (%).
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effects the value to the energy system of solar PV and wind.
In order to do this, scenarios were run inwhich PV and wind are

excluded from the energy system. When a technology is excluded,
the model must identify a replacement, and the additional cost of
doing so is captured by differences in the total discounted energy
system cost between the scenario in which the technology is
available, and the scenario in which it is excluded.

When constant IEFs are included, the additional energy system
costs in a scenario in which PV is excluded are $32bn. This rises to
$41bn when indirect emissions are ignored. In other words, the
present value of solar PV to the European energy system is $9bn
less when indirect emissions are taken into account, a reduction of
around 20%. Importantly, these numbers are based on a constant
emissions factor that ignores the potential for the decarbonization
of the sectors that produce energy technologies. When IEFs are
reduced in line with industry sector emissions, the reduction in the
net present value of PV arising from indirect emissions is halved, to
$4.5bn.

For wind, the findings are completely different. When indirect
emissions are included, the deployment of wind is higher than
when they are ignored, since higher levels of wind compensate for
the reduction in solar PV. The value of wind is thus increased in a
scenario inwhich indirect emissions are included, though the effect
is small (less than 1%).
5. Conclusions & limitations

The analysis conducted here demonstrates the feasibility and
value of incorporating indirect emissions into an energy systems
optimization model. The analysis provides a novel perspective and
highlights previously neglected issues. In particular:

1. Indirect emissions are a relatively small portion of overall power
sector emissions, but including them in the model leads to
changes in the optimal power sector portfolio.

2. Renewable energy technologies (with zero direct emissions)
become relatively less attractive once indirect emissions are
included within the optimization framework. However, the ef-
fect is not large (1% change in installed capacity in 2050 in the
most plausible case, using empirically-derived IEFs and
declining emissions factors).

3. The changes to the relative attractiveness of specific renewable
energy technologies are more pronounced than the reduction in
attractiveness of renewable energy as a whole: In our main
scenarios wind energy saw increased relative deployment by 3%
in 2050 when indirect emissions are accounted for, since it
displaced other technologies with higher life-cycle emissions
(notably solar PV, which had cumulative deployment 7% lower
in 2050 when indirects were taken into account).
4. The net present value of solar PV (a technology with zero direct
emissions) is reduced by around 20% once indirect emissions are
included within the emissions constraint; though this is subject
to considerable uncertainty.

5. The model responds to indirect emissions not only by adjusting
the capacity mix, but also by changing the operational profile of
dispatchable plants resulting in higher load factors when indi-
rect emissions are taken into account.

The results do not overturn the key insights of other attempts to
evaluate the full life-cycle implications of long-term energy system
scenarios. Renewable energy sources remain a key part of the
optimal power sector mix, and contribute to a cost-effective
decarbonization of the European economy. However, the results
do suggest that existing analytic tools, including the IEA's Energy
Technology Perspectives model, may overestimate the extent to
which renewables contribute to a cost-optimal decarbonization
pathway.

The analysis shows that the results of ESOMs, which are widely
used by policymakers to inform climate policy development
(Chiodi et al., 2015), are influenced by assumptions about the
relative burden of life-cycle emissions. While the effects are not
large for most technologies, the results highlight that indirect
emissions are not negligible for some technologies. Where ESOMs
are being used to inform policy: whether informing long-term
abatement strategies (e.g. Strachan et al., 2009), or technology-
specific R&D policies (e.g. (LCICG, 2014), analysts should ensure
that results are robust to this effect.

Several key assumptions must also be understood in interpret-
ing our results. In particular, the scale of uncertainties in input as-
sumptions is very large. This is true for the indirect emissions
factors, which here consider both the domestic and nondomestic
emissionse but no less true for other technology data, such as costs
and efficiencies. Moreover, the model operates according to a linear
optimization procedure across time horizonsdit is not an accurate
depiction of how energy systems evolve over time, but an illus-
tration of what is technically possible and economically cost-
optimal. The insights are in the comparison between scenarios
and the relative orders of magnitude and types of dynamics, rather
than the precise quantitative outputs.
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