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Disassembly planning (DP) is critical in remanufacturing and value recovery from end-of-life products
and has attracted increasing attention due to the recent resurgence of research on circular economy. DP
problem is NP-hard and its complexity increases exponentially with the size of problem. Sequence-
dependent cost due to varying quality of the parts to be retrieved further increases the complexity of
DP problems. This paper investigates the DP considering sequence-dependent costs among disassembly
operations. A mathematical model is proposed with the objective to maximize the recovery profit using
an AND/OR graph (AOG) subject to sequence-dependent costs. A novel two-phase heuristic method is
developed to effectively generate feasible disassembly sequence according to the AOG in reasonable
computation time. In addition, an improved genetic algorithm (IGA) is proposed to solve the problem, in
combination with the presented two-phase heuristic. The performance of IGA is measured on a series of
test problem instances against exact methods including CPLEX and an iterative method. Results indicate
that IGA successfully find the near-optimal/optimal solutions and outperforms the other methods in
terms of computation time. Finally, the proposed method is applied to compute the disassembly solution
of a HG5-20 triaxial five speed mechanical transmission. Compared to the existing disassembly solutions
of the transmission, the obtained solutions by IGA can shorten about 11% disassembly time and increase
by approximately 7% recovery profit.

© 2019 Elsevier Ltd. All rights reserved.

1. Introduction

the first key step is to disassemble EOL products into components
or parts and retrieve usable or repairable subassemblies (Ren et al.,

Due to the recent resurgence of research on circular economy,
remanufacturing has received increasing attention. Remanu-
facturing is devoted to the value recovery from end-of-life (EOL)
products (Harivardhini et al., 2017), which preserve part geometry
and function along with the materials and energy consumed during
manufacturing of these parts (Ren et al., 2017a). Remanufacturing
also reduces waste generation by diverting end-of-life products
from landfill (Colledani and Battaia, 2016). During remanufacturing,
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2018a). Therefore, disassembly not only contributes to reducing
environmental pollution but also brings economic benefits to in-
dustries by reusing/recycling the parts/materials from EOL prod-
ucts (Ondemir and Gupta, 2014).

Disassembly process can be seen as an inverse process of as-
sembly process, in which the subassemblies are disassembled from
products (Ren et al., 2018b). Precedence constraints between
disassembly operations must be satisfied during the disassembly
process in order to generate feasible disassembly sequences (Ren
et al, 2017b). Disassembly planning (DP) aims to select the
optimal disassembly sequence of an EOL product with the maxi-
mization of recovery value and/or processing efficiency (Ren et al.,
2017a). A DP involves product representation, disassembly
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Nomenclature

Aj Set of immediate predecessors of operation j

B; Set of exclusive OR operations of operation j

C Cost per unit time.

Gj Cost of performing operation j

ct Consumed time of performing operation j

E Exclusive matrix

ejk The cell in exclusive matrix E, denoting the exclusive
relationship between operations j and k

f The objective function value i.e. the recovery profit of
a product

fa The average f value over 20 runs of IGA

Soest The best f value over 20 runs of IGA

fn The fitness value of chromosome h

fr The fvalue of the optimal solution obtained from the
CPLEX software

Gap The gap between f * and f,

h The hth chromosome in the current population

Maxlter ~ The maximum iteration number of IGA

m, n The index used to represent the position of
disassembly operations in the disassembly sequence,
mn=12,..]

i The index of a subassembly,i=1, 2, ..., N

J k The index of an operation, j, k=0,1,2, ...,J

P Precedence matrix

PopSize  The population size.

P The crossover probability

P The mutation probability

Djk The cell in precedence matrix P, denoting the
precedence relationship between operations j and k

T Transition matrix

tij The cell in transition matrix T, denoting the
relationship between subassembly i and operation j

R; Revenue of subassembly i

r A random number between [0, 1]

s The jth operation in v!

SPh The selection probability of the hth chromosome in
the current population

gj The jth binary number in v?

v Chromosome i.e. a disassembly solution, v = {v!, v?}

v! Disassembly operation sequence, v! = {s, ..., Sy s SJ}

V2 Binary vector, v ={qy, ..., gj, ..., q;}

v Solution after the first adjustment

v’ Solution after the second adjustment

W1, W2  Subsequence in v

X;j Binary decision variable, x; = 1, if operation j is
performed otherwise, x; =0

Yim Binary decision variable, y;» = 1, if operation j is the

mth performing operation in the disassembly
sequence; otherwise, yj; =0

6 The percentage of obtaining the optimum solution in
20 runs of IGA

modeling, and disassembly sequencing. The product representation
in the DP is generally depicted via a disassembly graph (DG), such
as a directed graph, disassembly tree, AND/OR graph (AOG) and
Petri net, etc. These graphs are desired to show all possible disas-
sembly sequences of the given disassembly operations or compo-
nents/parts. The selection of DGs is utilized to model a feasible
disassembly sequence. Based on disassembly modeling, disas-
sembly sequencing can be explored in which possible disassembly
sequences of a product are identified and the best one is chosen to
be the resulting disassembly solution.

The DP has been studied in the past decades and there are a
number of papers on this problem. The DP can be modeled and
addressed by mathematical programing, in which the optimal
disassembly sequence could be identified by exact solution ap-
proaches. For example, Johnson and Wang (1998) presented an
integer linear programming problem using a two-commodity
network flow formulation and obtained the optimal solution with
maximum profit. Kang et al. (2001) established an integer pro-
gramming model to treat disassembly sequencing as the shortest
path problems. Lambert (2007) proposed an iterative procedure
based on a binary integer linear programming to tackle a sequence
dependent DP, in which the AOG is used to represent a disassembly
process. The iterative method enables the search for optima with
gradual increase of product complexity.

Nonetheless, these mathematical programming-based ap-
proaches inevitably run into challenges as the problem size in-
creases (Meng et al., 2019a). Due to the NP-hardness of the DP,
finding global optimum becomes computationally intractable for
large scale problems (Ren et al., 2018c). For this reason, heuristics or
metaheuristics have been developed in recent years as efficient
computation methods to generate near optimal solutions in order
to deal with large scale or complex instances (Meng et al., 2019b).
For example, Smith et al. (2016) utilized expert rules and cost-
benefit analysis to reduce the search space of disassembly

solutions. Then, an optimized partial disassembly sequence with
maximal economic benefits and minimal environmental costs was
determined. Sanchez and Haas (2018) studied the disassembly
process of building components. A selective disassembly sequence
planning method with rule-based recursive analyses was proposed
to achieve the minimization of environmental impact and removal
costs during the recovery of target components from buildings.
With regards to the metaheuristics in solving DP problems, the
most common methods are intelligent algorithms in recent years.
For example, Kheder et al. (2015) used a genetic algorithm (GA) to
optimize a disassembly process by various criteria including
maintainability of components, part volume, tool changes, and
disassembly direction changes. Due to the multiple decision
criteria, the DP was able to obtain satisfactory results in a short CPU
time. Ren et al. (2018b) studied a complicated asynchronous par-
allel DP. Two matrices, i.e. precedence and collision matrices, were
defined to determine feasible disassembly solutions. Based on the
matrices, a GA was adapted to efficiently tackle the DP. Tseng et al.
(2018) presented a block-based GA to deal with the DP. The GA can
efficiently compute the solutions of the problem based on a priority
precedence grahph, but it only takes into account the disassembly
cost/penalty function. Ren et al. employed a hierarchical disas-
sembly tree to model a parallel DP. A heuristic method was pre-
sented to rapidly create feasible disassembly solutions, while an
artificial bee colony (ABC) approach was developed to find the
Pareto solutions for maximum profit and minimum makespan of
the disassembly process. Percoco and Diella (2013) also adopted an
ABC to solve a multi-objective DSP, while they simplified the
multiple objectives to a weighted sum equation. Guo et al. (2016)
modeled a selective DP using Petri nets and solve this problem by
a scatter search (SS) algorithm.

Through analyzing the existing literature, we can see that the
mathematical programming and exact approaches have been
studied earlier for DP problems and can produce optimum
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solutions for small sized products (Lu et al., 2020). However, they
may not be suitable for current industrial practices since there are
large-scale or complex EOL products to be disassembled for
remanufacturing industries as they might become computationally
intractable. To address this issue, heuristics and metaheuristics
have been developed to solve large-scale DP problems with
reasonable computational cost. However, purely heuristics algo-
rithms might not be able to find high-quality solutions because
they could be easily trapped in local optima resulting from simple
heuristic rules. Fortunately, heuristics can further be improved by
combining with metaheuristics (Lambert and Gupta, 2008).

The AOG-based disassembly modeling has been adopted as one
of most widely used approaches to solve the DP, e.g., De Mello and
Sanderson (1990), Lambert (2007), Edmunds et al. (2011), and Guo
et al. (2018), which can depict the complete set of possible se-
quences while clearly show the assembly relations among sub-
assemblies (Edmunds et al., 2011). However, limited research work
is found which used metaheuristics with an AOG modeling to
address DP problems. In addition, most existing studies do not
provide an effective method that could efficiently produce possible
disassembly sequences by the AOG. Edmunds et al. (2011)
described a hierarchical genetic algorithm to automatically
generate feasible disassembly sequences using the AOG, but a
corresponding mathematical model was not explicitly given.
Further, sequence-dependent disassembly costs was not taken into
account by Edmunds et al. (2011). In practice, sequence-dependent
costs are frequently encountered in the disassembly of a product,
and it becomes more complex and challenging if the DP is assumed
to be sequence-dependent (Lambert, 2007). Therefore, there is a
need to address the sequence-dependent disassembly planning
(SDDP) problem with an efficient metaheuristic approach so a near
optimal solution can be found in reasonable computational time.
This motivates authors to address the SDDP using an AOG based on
an improved GA (IGA). The goal of the SDDP is to maximize the
recovery profit of an EOL product during the disassembly process.
Current research has following contributions:

- In order to describe the complex relationships in an AOG, cur-
rent research established two matrices, i.e., precedence matrix P
and exclusive OR matrix E are simultaneously defined to
represent an assembly product. Moreover, in term of matrices P
and E, a new binary integer programming model is formulated
for the SDDP;

A two-phase heuristic approach is proposed to quickly generate
feasible disassembly sequences according to the AOG;

An efficient metaheuristic i.e. IGA is developed and integrated
with the proposed two-phase heuristic to solve the SDDP;

The proposed algorithm is applied to a series of disassembly
problem instances and the performance of IGA is compared with
two famous exact methods. Furthermore, a real case study is
employed to demonstrate the practical value of IGA.

The rest of this paper is organized as follows. Section 2 describes
an AOG-based disassembly problem and establishes its mathe-
matical model. Section 3 describes the proposed approach. Section
4 presents computational experiments and results. Section 5 con-
cludes the research work and describes some future research
directions.

2. Problem statement

Disassembly is a process which can be defined as a sequence of
operations to separate components and parts from an assembly
(Lambert, 1999). Disassembly can be classified into complete and
partial disassembly. A complete disassembly dismantles all high-

value and all low-value components of the assembly product
while a partial disassembly can only removes specific high-value or
high-impact components form the assembly product (Smith and
Hung, 2015). This partial disassembly leads to better net revenue
than the recovery of a complete set of operations which is called
selective disassembly. Selective disassembly involves less number
of disassembly operations and can get subassemblies which can be
used directly during assembly of remanufactured product. Hence,
Selective disassembly is significant to save lots of time and cost as
compared to complete disassembly. During disassembly of the
product, some auxiliary operations are generally needed between
two operations, such as tool transformation and product reor-
ientation, etc., which result in the increase of the disassembly cost
and depend on the sequence of the disassembly operations, i.e., a
sequence-dependent cost (Lambert, 2007).

2.1. Representation of disassembly

In the DP there are different kinds of disassembly graphs (DGs)
which are used to represent the node graph of products such as an
undirected graph, directed graph, disassembly precedence graph,
AOG and Petri net. These are significant to determine graphical
representation of the set of all possible sequences of operations
involved in the product structure. In the current disassembly
sequencing problem there are two conditions which are necessary
to meet during representation of the disassembly:

1) The disassembly representation is required to show all the
feasible disassembly sequences in a product;

2) The assembly relations are needed to be specified between
subassemblies in the graph.

The first condition can be satisfied by most of DGs, but many of
them only involve parts and cannot express the assembly relations
between subassemblies, such as a disassembly network graph,
disassembly tree, and disassembly precedence graph. Similarly,
Petri net has been used to optimize selective disassembly se-
quences and maximize disassembly profit by Guo et al. (2016)
which included all subassemblies. However, it is relatively com-
plex to construct a disassembly Petri net and build its disassembly
model. DG is also required to be readable and describe disassembly
relations as simple as possible. An AOG is able to conveniently
depict the connection and precedence relations among sub-
assemblies. In this paper, the AOG is applied to illustrate the
disassembly process of a product. Note that the fasteners, e.g.,
screws and bolts, are not shown in the AOG. This simplification
significantly reduces the complexity of the AOG while the repre-
sentation of the disassembly information is not affected in the
SDDP. The basic ideas of AOG are explained with Bourjault’s ball-
point as seen in Fig. 1 which is converted to a disassembly AOG as
shown in Fig. 2 (Lambert, 2007). It can be observed from Fig. 1 that
the ballpoint consists of parts A, B, C, D and E.

In an AOG, each disassembly operation is expressed with a hyper
arc, which consists of two connected arcs. The two connected arcs

B A c

Fig. 1. Assembly drawing of Bourjault’s ballpoint.
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(1) ABCDEF
1 2
(2) ABCDE (3) ABCDF
Y3 4 11
(4) ABCD
5
(5) ABF (6) BCD
6 7
(7) AB (8) AE (9) CD (15)F
9
(14)El (11)B (10) A

Fig. 2. The AOG of Bourjault’s ballpoint.

beginning from a parent subassembly are directed towards two
disassembles and these arcs are representing AND relation. Fig. 2
illustrates an example where each operation is led to two disas-
sembles, however, the method presented is not limited to only two
disassembles. This is compatible with practical situations in which
more than two subassemblies may be resulted from one disas-
sembly operation. A disassembly operation is numbered by 1, 2, ...,
and J, where ] represents the number of operations involved in
disassembly of the product. Nodes in the AOG represent existent
subassemblies for an assembly in practice. Each node is in one-to-
one correspondence to a subassembly of a product from (1) to (N)
and N is the number of subassemblies. It can be seen from Fig. 2 that
the disassembly AOG has multiple random disassembly paths (i.e.,
OR relation) each of which represents a feasible disassembly
sequence which can be presented by the disassembly operations,
eg,2—-11-6—-8o0r1—-12-7 — 10.

A disassembly sequence can be represented by a series of op-
erations in the AOG. Moreover, all feasible disassembly sequences
are presented in the AOG and in order to determine a feasible
sequence, the following conditions are considered.

1) The precedence relation

It can be seen from Fig. 2 that by performing operation 1, an
assembly (1) is disassembled into (2) and (15), while (6) and (8) are
obtained after separating (2) through operation 12. This indicates
that operation 1 is the immediate predecessor of operation 12. A
precedence matrix P=[pj] is constructed here to represent the
immediate precedence relationship among operations, and pj is
denoted as follows:

1, if operation k can be performed immediately
after operation j
0, otherwise

Djk =

Thus, precedence matrix P of the ballpoint can be given in
Table 1. From precedence matrix P indicated in Table 1, it can be
seen that operation j represented by row j precedes operation k
represented by column k, where j and k € {1, 2, ..., J}, if pjx = 1. For

Table 1
Precedence matrix P of the ballpoint.
2) The exclusive OR (EOR) relation

1 2 3

=z
=
_
S
-
o
_
)
_
w

CONOO UL A WN =
Coooocoo0o0o0co0O0O0O
cCoooocoo0oo0oo0co0oo0O0O
CooooO0OO0OOO0CO0OOO =
(== lelelNe oo oo lNo ol el
cooocoocoocooco~==o00O|u
co—~oocooocoocoooo|o
oOo—~o0oo00co0o00o~=00O0O0O|N
—o0o0oo00co0oo0o—~0c0O0O0O|®
o—~o0oo0oo0co0ooocoocoooo|w
- O 00000000 Oo
cCooooco0oo0O0O0O0O =0
Cooo0oo0co00O0OO0COO0O =
CoO0O0O0O0O0O0OO=—=0O

example, from Table 1, as shown in row 11, p11,6=1and p11,10=1,
which means that operations 6 and 10 can be done immediately
after operation 11. Therefore, operation 11 is the immediate pre-
decessor of operations 6 and 10, and operations 6 and 10 are the
immediate successors of operation 11.

In a disassembly process, it is well noted that one parent sub-
assembly can be only removed once, and one part can be obtained
from only one parent in practice. For instance, it can be seen from
Fig. 2 that subassembly (3) can be dismantled via operation 4 or 11,
while subassembly (9) can be generated by operation 7, 11 or 13. In
fact, the operations 4 and 11 (7, 11 and 13) are EOR, which indicates
that only one of them can be carried out in one time. Operations 4
and 11 are defined as the EOR successors of operation 2, and op-
erations 7, 11 and 13 are defined as the EOR predecessors of oper-
ation 10. An exclusive matrix E=[ej;] is established here to depict
the EOR relations among operations in the AOG, and ej is expressed
as:

17
ejk: 0

For example, matrix E of the ballpoint is shown in Table 2. It can
be seen from the exclusive matrix that when e, = —1, it indicates
that operations 1 and 2 are exclusive and either of them can be
performed but both cannot be performed simultaneously.
Furthermore, matrix E is a symmetric matrix distinguishing from P.
Notice that the EOR relation may occur between non-neighboring
operations, e.g., operations 1 and 6, i.e., e;g=—1 and eg; = —1.

In the current problem, a feasible disassembly sequence not only
satisfies the precedence relation but also deals with the EOR rela-
tion. The EOR relation is uncommon in other DGs and exclusive
matrix E is firstly proposed in the current research. Note that an

if operation k can be performed immediately
otherwise

Table 2

Matrix E of the ballpoint.
ek 1 2 3 4 5 6 7 8 9 10 11 12 13
1 0 -1 0 -1 0 -1 0 0 0 0 -1 0 0
2 -1 0 -1 0 0 0 0 0 -1 0 O -1 0
3 0 -1 0 -1 0 -1 0 0 -1 0 -1 -1 0
4 -1 0 -1 0 0 -1 0 0 -1 0 -1 -1 0
5 0 0 0 0 0 -1 0 -1 -1 0 -1 -1 -1
6 -1 0 -1 -1 -1 0 -1 0 -1 0 0 -1 -1
7 0 0 0 0 0 -1 0 -1 0 0 -1 0 -1
8 0 0 0 0 -1 0 -1 0 -1 0 O -1 0
9 0 -1 -1 -1 -1 -1 0 -1 0 0 -1 0 -1
10 0 0 0 0 0 0 0 0 0 0 0 0 0
1 -1 0 -1 -1 -1 0 -1 0 -1 0 ©0 -1 -1
12 0 -1 -1 -1 -1 -1 0 -1 0 0 -1 0 -1
13 0 0 0 0 -1 -1 -1 0 -1 0 -1 -1 0
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operation may be immediate and EOR predecessors of one opera-
tion at the same time, e.g., operations 5 and 12 are both immediate
and EOR predecessors of operation 7.

2.2. Mathematical model

Disassembly operations are sequenced for an efficient disas-
sembly activity, and the recovery profit is obtained from sub-
assemblies. To compute the profit conveniently, a transition matrix
T is utilized here which is proposed by Lambert to depict the
relationship between subassemblies and operations in the AOG
(Lambert, 1999). Matrix T of the ballpoint is illustrated in Table 3.
The cells of the matrix are expressed via tj;, in which index i denotes
subassembly i, and index j denotes disassembly operation j. t; is
defined as follows:

1, if subassebmly i is obtained by operation j
tj=4¢ —1, if subassebmly i is obtained via operation j .
0, otherwise

Table 3 provides transition matrix T of the ballpoint. From
Table 3, we can see that parent (1) (ABCDEF) is separated via
operation 2, hence tj; = —1. Since this operation generates two
subordinates (3) (ABCDF) and (14) (E), t3p=1 and t14, 2=1.In T,
operation O refers to the initial disassembly operation which is
employed to generate the assembly product such that t;p=1 in
Table 3.

The proposed model is aimed to decide on an optimal sequence
with the disassembly level for the SDDP. The notations, index set,
parameters and decision variables used in the current study are
illustrated below:

(1) i: The index of a subassembly, i € {1, 2, ..., N}, where N is the
number of all nodes in a given AOG;

(2) j, k: The index of an operation, j, k € {0, 1, 2, ..., J}, where
operation O represents the initial disassembly operation, and
J is the number of operations;

(3) m, n: The index used to represent the position of disassembly
operations in the disassembly sequence i.e, m,n {1, 2, ...,
J

(4) Aj: Set of immediate predecessors of operation j;

(5) B;j: Set of EOR operations of operation j;

(6) C1: Operation cost per unit time;

(7) C3: Extra cost per unit time between two adjacent
operations;

(8) Ri: Revenue of subassembly i;

(9) ctj: Consumed time of performing operation j;

Table 3
Transition matrix T of the ballpoint.

G 01 2 3 4 5 6 7 8 9 10 11 12 13
My 1 -1 -1 0 0 0 0O O O O O O 0 O
2) o1 0 -10 0 0 0 O 0 O 0 -10
3 o0 1 0 -10 0 0 0 0 O -10 0
4 o0 o 1 1 -10 0 0 0 0O 0 0 -1
5 00 0O O O O -10 O O O 1 0 O
6) o0 0 O 0O 1 0 -10 0 O O 1 0O
(7’ o0 0 0O 0O O 1 0 -10 0 O 0 1
) 00 O O O O O O O -10 0 1 0O
9 o0 0o 0 0 O O 1 0 0 -11 0 1
(1) o0 o0 o 0 1 0 0 1 1 0 0 0 0O
() oo o o 0o 0 O 1 1 0 0 0 0 0O
(122 00 0 0 0 0 O O O O 1 0 0 0O
(13 00 0 0 0 0O O O O O 1 0 0 0O
(14900 1 1 0 0 0 0 O 1 0 0 0 O
(15 01 0 0o 1 0 1 0 0 0 0 0 0 0O

(10) etj: Extra time from operation j to operation k, which is
sequence-dependent;

(11) t;: The value of cell (i, j) in transition matrix T, and it may
enter —1,0, or 1.

Decision variables:

(1) xj: x;=1, if operation j is performed; otherwise, x;=0;
(2) Yjm: ¥jm = 1, if operation j is the mth performing operation in
the disassembly sequence; otherwise, yj; = 0.

We assume that the required data in the disassembly model is
given at hand, such as ¢j and R;, and based on the AOG we formulate
a selective disassembly optimization model for SDDP as follows.

J N J J J
Max f: Z t,'jRin — ch(:tjxj — Z Z
i=1 j=0 j=1 j=1 k=1
J-1
X GoetikYimYrm+1 (1)
m=1
st. xo=1 (2)
Xj+xp <1, jEB, k=0, 1, 2, ..., ]; (3)
J n-1
Z Zyjmzykru k = 17 27a]v (4)
jeA, m=1
n-1
xj: Z.ijv J = la zav.li (5)
m=1
n-1
m=1
xj7 .V_]me{o/l} ]7k = 17 27-”7 .]v (7)

Eq. (1) depicts the objective function of the SDDP which aims at
maximizing the recovered profit of an EOL product. The first term in
Eq. (1) is the total revenue to separate a product, the second one is
the disassembly cost of all operations, and the third one represents
the extra cost between two adjacent operations. Constraint (2)
denotes that the initial disassembly operation must be done.
Constraint (3) is used to deal with the EOR relations between op-
erations which implies that the exclusives operations are inhibited
in a sequence. Constraint (4) guarantees that an operation can be
performed after at least one of its predecessors has been
completed. Constraint (5) shows the relation between decision
variables. Constraint (6) ensures that at most one operation can be
done at that time during the disassembly process. And constraint
(7) represents that decision variables can take 0 or 1.

3. The proposed algorithm

SDDP is similar to the asymmetric traveling salesman problem
(TSP) due to its sequence-dependent characteristic (Lambert,
2006). However, TSP is NP-hard which means that when the
SDDP problem size (i.e., the number of subassemblies/operations in
a product) increases, the solution space is exponentially increased
and it is difficult to find an optimum solution in a reasonable time.
Furthermore, SDDP is complicated problem as compared to TSP as
there are some additional constraints which are taken into
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consideration during determining sequencing solution in DP, such
as precedence and EOR relations. Thus, this work proposes an
efficient metaheuristic approach (namely, IGA) to address the SDDP,
and the proposed algorithm consists of six tasks as follows:

3.1. Solution encoding

The encoding form of a solution directly affects the efficiency of
the proposed method, and it should enable to illustrate a solution
effectively. In this paper an AOG is adopted to present all possible
disassembly sequences of a product. The precedence and EOR re-
lations exist in the graph especially for the EOR relation which is
studied less in the previous work. Herein, the double-vector list
structure is utilized to form a disassembly solution, and it is
expressed by v={vl, v?} vl ={s, ..., 5j, ..., 5/} represents a disas-
sembly operation sequence in which each element, which is an
integer from 1 to J, corresponds to one task, and J is the number of
tasks in a product. v ={q, ..., gj, ..., qj} represents a binary vector
which includes ] binary values. If s; in v! is performed, gi=1;
otherwise, gj=0. For instance, vl={2 4, 3,5 8,6, 79 1} and
v*={1,1,0,0,1,0, 0,1, 0} mean that operations 2 (s1), 4 (s2), 8 (s5)
agld 9 (sg) in v! are carried out since g1, g2, gs and gg, are equal 1 in
ve.

3.2. Initialization of population

Initialization of population is key to create feasible solutions
(chromosomes) of the optimization problem. Randomly initializa-
tion of solutions of the disassembly sequence for SDDP is employed
in the proposed algorithm to generate diversified solutions in the
search space. Here, it is essential to ensure the precedence relation
and inhibit the appearance of the EOR operations for a feasible
sequence. In other words, constraints (3) and (4) are required to be
satisfied when initializing the population. Hence, a two-phase
heuristic approach is developed in the current research to
initialize individuals. It consists of two heuristic procedures, and its
detailed steps are presented in the following.

Phase 1 Eliminate the EOR operations in v:

Differing from most of DGs, the EOR relation has to be consid-
ered in a disassembly AOG. Hence, we suggest a heuristic technique
to deal with this issue, and Exclusive matrix E is applied here. The
heuristic process is as follows:

Step 1: Start.

Step 2: Randomly generate v, ie, v' and v? where v! is a
disassembly operation sequence including the integer numbers
from 1 to J, and v? is a binary array in which all elements are
initialized to be 1.

Step 3: Setj=1.

Step 4: If g; is equal 0, go to Step 7. Otherwise, according to
matrix E, identify the exclusive operations of the jth operation (s;)
from sj;1 to s in v!, and store them into a set G.

Step 5: If G is empty, go to Step 7. Otherwise, go to Step 6.

Step 6: If there are some exclusive operations in G whose cor-
responding elements in v?> are 1, the elements are reset as O.
Otherwise, G becomes an empty set.

Step7:j=j+ 1.

Step 8: If j is equal J, go to Step 9. Otherwise, go to Step 4.

Step 9: Stop the procedure.

In Fig. 3, a random solution v of the ballpoint is used to explain
the steps above. Fig. 3 (a) illustrates the first adjustment of v. It can
be seen that all operations are carried out since all elements in v?
are initialized as 1 (Step 2). Clearly it is not practicable for v with
respect to the EOR operation. According to E, s3, sS4, S7 and sqo
marked in shade are exclusive with s; (operation 7) in the subse-
quence W1, which are memorized into G (Step 4). The operations in

1

N
2|4|1
| |
v2|1 1|1|1|1|1|1,1|1|1|1|1|1
| |
| |
v‘|7 9|13|6|3|10|8|5|12|11|2|4|1
| |
v2|1 1|0|0|1|1|0,1|1|0|1|1|1
(a) The first adjustment of v.
w2
- ~
v1|7|913|6 1
| |
v2|1|10|0|1|1|0,1|1|0|1|1|1
| |
| |
v'|7|913|6|3|10|8|5|12|11|2|4|1
| |
v2|1|10|0|0|1|0,0|1|0|0|0|1
(b) The second adjustment of v.
v1|7|9|13|6|3|10|8|5|12|11|2|4|1|
o frfofofofafofofufofofo]u]

(c) The final v

Fig. 3. The adjustment for a random solution v of the ballpoint in phase 1.

set G are prohibited in sequence v, i.e., g3, 44, g7 and q10 become 0 in
v2 (Step 6). Then, follow Steps 7 and 8, the next iteration starts from
Step 4. Repeat Steps 4—8, the subsequence W2 in v is adjusted, see
Fig. 3 (b). After the third iteration of Steps 4—8, we can obtain the
resulting v without exclusive operations, see Fig. 3 (c).

Phase 2 Guarantee the precedence constraint:

The first phase focuses on dealing with the EOR relation in v, and
a set of operations performed are therefore yielded. However, it is
not ensured that v meets the prior relation. For example, in Fig. 3
(c), the final disassembly sequence is 7—9— 10> 12— 1
which is infeasible for the ballpoint. Note that the disassembly
operations are performed form left to right side in v. However, the
operations performed enable to form a feasible sequence through a
random adjustment procedure. Moreover in matrix P, the priorities
of all operations can be seen whereas it is relatively complicated to
sequence operations only based on matrix P. Therefore, the number
of immediate predecessors (NIPs) of each operation are created to
easily choose some operations with the highest priority. It is well
noted that the priorities among operations are dynamically varied
as the disassembly operations are performed one by one. Further,
NIPs of each operation are reduced as its immediate predecessors
are removed.

The initial information of immediate predecessors for all oper-
ations corresponding to Fig. 3 are listed in Table 4 according to
matrix P. The symbol “/” used in Table 4 represents the
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Table 4
The initial information of immediate predecessors for operations.

234567 89 10 11 12 13

Immediate predecessors (¥ [ [ [ [ [ 12 [ 12 7 | 1 |
NIPs o/ J /1 11 ] 1

No. of operations 1

corresponding operation is not implemented in v, and “¢s” denotes
that the corresponding operation has no immediate predecessors at
that time. Moreover, the NIPs for an operation is set to be —1 if it is
removed. When operation 1 is disassembled at first, the updated
data of Table 4 is presented in Table 5. It can be seen from Table 5,
that the data of operations 1 and 12 is changed due to the alteration
of their precedence relations. Further, an operation is able to be
dismantled when its NIPs becomes 0. Hence, one operation is
randomly selected to be disassembled from the operation(s) whose
NIPs are 0 until no more operations left to be performed. Finally, a
feasible disassembly sequence is produced for the product. The
random procedure for initializing an individual is described as:

Step 1: Start.

Step 2: Extract the operations which are performed in v after
Phase 1, and aggregate them into a new array v’, suchasv’: 7 - 9—
10 — 12— 1 in Fig. 4 provided from Fig. 3 (c).

Step 3: In term of matrix P, initialize NIPs.

Step 4: If there are no more operations left, go to Step 6.
Otherwise, based on NIPs, choose one operation with the highest
priority as the current performing operation, and go to Step 5.

Step 5: Update matrix P and NIPs; Go back to Step 4.

Step 6: Stop the procedure, and a feasible disassembly sequence
v” is derived, such as v” in Fig. 4.

Hereto, the initialization of a random v can be completed
through Phases 1 and 2.

3.3. Assessment of fitness value

Once the feasible solutions of SDDP are generated via the two-
phase method, it is necessary to evaluate a solution v”, and
decode it into a disassembly sequence for a product. However, v” is
a complete disassembly sequence, which indicates that all parts are
separated from a product and the highest disassembly level (HDL)
is reached here. For instance, in Figs.4and 1 -12— 7 - 10— 9
represents a complete disassembly process and its disassembly
level (DL) is 5, which is equal to its HDL. DL is not more than HDL in
a partial/selective disassembly. Thus, DL, which is a random integer
number between 1 and HDL, is used to decide on a partial sequence
based on v”. Still in case of v” in Fig. 4, if DL = 3, the partial disas-
sembly sequence is 1 — 12— 7. Then, according to Eq. (1) in the
model, the profit value is easily calculated. We utilize the profit of
each solution to evaluate its fitness value, and the greater the profit,
the better the disassembly solution.

3.4. Selection operation

The selection is employed to choose chromosomes for repro-
duction, and the roulette wheel selection is well noted and adopted
in this stage which is a fitness-based strategy. The selection prob-
ability spp of the hth chromosome in the current population is

Table 5
The updated information of immediate predecessors for operations.

No. of operations 1 23456 7 89 10 11 12 13

Immediate predecessors (% [ [ [ [ [ 12 [ 12 7 | & |
NIPs 00071 11 0

vl 719 l10f12] 1

vl 1|12 7]10] 09

Fig. 4. The random adjustment from v’ to v” in Phase 2.

formulated as:

J
SPp = Zﬁipfize hv (8)

where f, and PopSize represent the fitness value of chromosome h
and the population size, respectively. In this method of selection,
the individuals with good fitness values have more “survival” op-
portunities to be the offspring, which contributes to keeping the
better individuals.

3.5. Crossover operation

The crossover is the crucial procedure to change the search so-
lution space in GA, and its implementation efficiency can directly
determine the global search ability in the proposed method. In this
work the crossover is executed to not only obtain new chromo-
somes by exchanging genes carried in the parents but also ensure
the feasibility of the offspring.

In order to keep the integrality of gene recombination, the initial
double-vector link structure v is applied to the crossover process,
and precisely, only v! is crossed as v? is initialized as a constant
vector. The current individual’ v! is deemed as one parent, and
another one is randomly obtained from the rest individuals of the
current population. Herein, we adopt a double-point crossover
operation for two parents, and subsequently two offspring chro-
mosomes are created. Furthermore, both offspring are dealt with
Phases 1 and 2 similar to the initialization to guarantee the feasi-
bility, while the better one is chosen as the new individual through
a simple greedy selection.

3.6. Mutation operation

Mostly, the chromosomes are easily trapped in the local optimal
solutions, and the mutation facilitates seeking the neighboring
solutions and enhancing the diversity of the population. The mu-
tation operation generally leads to a negation of the binary gene
locus or slight perturbation in the chromosome with probability Py,.

For current research problem, however, the mutation may not
be effective for the initial v since: (1) each gene in v> must be
initialized as 1 and cannot be negated; and (2) it is relatively
possible to generate the same disassembly sequence v’ after the
slight perturbation of v! with respect to the EOR relation, e.g., in
Fig. 3 (a), if a swap occurs between two genes in v, v’ is also likely to
be7 - 9— 10 — 12— 1, and the probability is more than 0.59 by a
rough calculation. Furthermore, it is difficult for v’ to inherit and
keep the correct genetic information because v’ need be further
adjusted by Phase 2, which means that it is little of significance to
mutate v’. Therefore, a two-point swap method is applied to the
mutation of v”. Likewise, it is necessary to ensure the feasibility of
v”when inducing gene mutation. Fortunately, only using Phase 2 of
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the two-phase heuristic enables to produce a feasible sequence for
a mutated v”.

3.7. Main algorithm

Hereto, the main steps of IGA have been depicted, and it is
implemented in Fig. 5. Notice that IGA adopts the maximum iter-
ation count Maxlter as a termination criterion, i.e.,, when it is
reached, output the solution and terminate the algorithm.

4. Experimental results and analysis

This section describes the computational experiments and re-
sults to evaluate the performance of IGA. The experiments are
performed in MATLAB 7.14 and runs on an Intel(R) Core (TM) i5 CPU
(3.20GHz/8.00G RAM) PC with a Windows 7 operating system. The
performance of IGA is tested by different scales of instances,
including a large-scale real case. For the required data in our ex-
periments but not collected, we will randomly create this for our
problem. First, a series of experiments are executed to find the best
value combination of parameters (crossover probability P. and
mutation probability Pp) by running IGA, in which three combi-
nations of parameters are investigated using different size prob-
lems. Then, the proposed algorithm is compared with two exact
approaches, where one is the default exact algorithm from CPLEX
12.6.3 based on the proposed model, and another is an iterative
method proposed by Lambert (2007). Finally, we adopt a large-

scale real case to demonstrate the practical value of our proposed
method.

4.1. Tuning of algorithm parameters

Some parameters are generally predetermined for IGA, such as
the crossover and mutation probabilities P; and Py,. In order to find
the best combination of parameters, a series of experiments are
attempted to run IGA using three different disassembly products
with different size. Product 1 is taken from a simple case in the
literature (De Mello and Sanderson, 1990), and cell phone 1 used by
Behdad et al. is selected as product 2 (Behdad et al., 2010), and
product 3 is an assumed product proposed by Koc et al. (2009).
Each combination of parameters, which mainly involves P and Py,
is tested ten times for each instance, and the average f value f; of
IGA is shown in the last column of Table 6.

In Table 6, according to the problem size, MaxIter and PopSize are
set to be smaller values for observing the experimental results
conveniently, since the same optimal/near-optimal solutions are
easily sought with different combination of P. and P, when the
greater MaxIter and PopSize are defined. It can be seen from Table 6
that for each instance there is no statistically significant difference
in terms of f;. However, the combination of P.=0.8 and Py, =0.2
overall outperforms the other two combinations although the dif-
ference is very small between them, which can be clearly demon-
strated by Fig. A4 in Appendix. Hence, P.=0.8 and P, =0.2 are
employed in the following experiments.

Procedure: The improved GA
Input: SDDP data set, GA parameters
Output: a near-optimal solution

Start

Initialize

Initialize the GA parameters: the maximum iteration count Max/ter, the size of population PopSize, the crossover and

mutation probabilities P, and P,,;

Initialize population through the two-phase heuristic in section 3.2;

Evaluate each chromosome from the population according to section 3.3;

While (the termination condition has been not reached)

Selection

Perform the roulette wheel selection for the current population and determine PopSize individuals;

While (not reach the PopSize)

Crossover

If (r < P,) then // r is a random number between 0 and 1

Execute the crossover operation in section 3.5;

End if;
Mutation

If (r < P,,) then

Execute the mutation operation in section 3.6;

End if;
End while;
Obtain new population and evaluate fitness;
Update the current best chromosome;
End While;
Output a near-optimal solution;

End;

Fig. 5. The pseudocode of IGA.
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Table 6
Influence of Pc and Pm in the proposed approach for three products.
No. of products Number of subassemblies Number of operations MaxIter PopSize P Pp fa
1 12 15 10 10 0.6 0.05 8.462
0.7 0.10 8.428
0.8 0.20 8.562
2 18 10 4 2 0.6 0.05 1.869
0.7 0.10 1.880
0.8 0.20 1.880
3 14 23 20 20 0.6 0.05 11.816
0.7 0.10 11917
0.8 0.20 11917

4.2. Comparisons of IGA and the exact method from CPLEX 12.6.3

Metaheuristics usually return a ‘good enough’ solution while
mathematical programming generates the exact optimum solution.
It is of significance to validate whether the proposed metaheuristics
can yield the optimal solution as the exact solution. The solution
gap between IGA and the exact algorithm can effectively demon-
strate the performance of IGA. Therefore, according to the mathe-
matical model in section II-B, the default exact method of CPLEX
12.6.3 is used to search exact solutions of the problems. Meanwhile,
IGA is executed 20 times (sample size) each in order to have suf-
ficient statistical data for comparison since the algorithm has
probabilistic and randomized features. Apart from the above three
products, a radio set (product 4) (Lambert, 1999), which includes 29
subassemblies and 30 operations, is also considered, and its AOG is
given in Fig. A1 of the Appendix.

Table 7 provides the solution results of the CPLEX solver for
products 1, 2, 3 and 4, respectively, and the best result fyes: and f; of
running 20 times of IGA are also shown with different MaxIter and
PopSize in each instance. In Table 7, § is the percentage of obtaining
the optimum solution in 20 trials, and Gap are calculated by Gap = |
f* = fallff x 100%, where f * is the f value of the optimal solution
obtained from the CPLEX software. “-” represents that the optimum
cannot be found within an acceptable CPU time which is set to 12 h.

From Table 7, we can conclude that:

1) The proposed IGA successfully solves the SDDP, and enables to
seek the optimum solution similar to the solutions obtained
from CPLEX for each considered problem. Furthermore, it is

more possible to find the optimal solution with the increase of
MaxIter and PopSize, which can be clearly shown by the values of
@ for each instance. Moreover, f; is greatly approaching f* when
MaxlIter and PopSize reach a certain degree, which is demon-
strated in Fig. A5. of Appendix. Especially for product 3, the
average f value is equal f* when MaxlIter = 40 and PopSize = 20.

2) In products 1, 2 and 3, the CPLEX solver can obtain the optimum
solution within an acceptable time. However, the required CPU
time is unmanageable for product 4, specifically, the exact al-
gorithm has not terminated in 12 h. It reveals the poor efficiency
of the exact method for handling some larger-scale instances,
precisely, the used time grows exponentially as the problem size
increases. Fortunately, for product 4 the ‘good enough’ solutions
are rapidly produced by IGA. Furthermore, the proposed
approach also addresses the smaller size problems efficiently
according to the average CPU time of products 1, 2, and 3. Thus,
in terms of the computation speed, IGA outperforms the CPLEX
method greatly.

3) The performance of IGA is impacted by the size of MaxIter and
PopSize, i.e., the larger the values of Maxlter and PopSize, the
better performance of IGSA. Moreover, the running time may
moderately expand when MaxlIter and PopSize are greater, while
the resultant solutions may be more satisfactory, which can be
validated by the values of f; and Gap for each instance.

4.3. Comparisons with an iterative method

The comparison results show the feasibility and effectiveness of

Table 7
Results comparison between the exact method and IGA.
No. of Products CPLEX IGA
f* CPU time (s) MaxIter PopSize Spest fa 6 Gap Average CPU time (s)
1 8.64 1.92 4 4 8.64 7.376 15% 14.63% 0.004
5 5 8.64 8.384 30% 1.97% 0.007
10 5 8.64 8.479 50% 1.86% 0.013
10 10 8.64 8.601 90% 0.45% 0.023
2 1.963 1.38 2 2 1.963 1.826 60% 6.98% 0.003
4 2 1.963 1.871 80% 4.67% 0.005
4 4 1.963 1.940 95% 1.17% 0.009
3 12.22 13.22 10 10 12.22 11.241 35% 8.01% 0.037
20 10 12.22 11.571 65% 5.31% 0.070
10 20 12.22 11.470 55% 6.14% 0.073
40 20 12.22 12.220 100% 0.00% 0.271
4 - - 20 10 14.8824 14.7573 25% 0.84% 0.102
20 20 14.8824 14.7997 35% 0.56% 0.201
50 20 14.8824 14.8436 50% 0.26% 0.481
50 50 14.8824 14.8748 90% 0.05% 1.1662

Production, https://doi.org/10.1016/j.jclepro.2019.118644

Please cite this article as: Ren, Y et al,, An efficient metaheuristics for a sequence-dependent disassembly planning, Journal of Cleaner




10 Y. Ren et al. / Journal of Cleaner Production xxx (XXxx) xXx

IGA in the previous section. To further demonstrate the perfor-
mance of the proposed approach, it is also compared to an iterative
algorithm reported in the literature (Lambert, 2007). The iterative
procedure is developed to deal with a relaxed binary integer linear
programming for SDDP. Although repetitive calculation of the bi-
nary linear programming problem is also required, a considerable
alleviation in CPU time can be observed. In contrast with the pre-
vious work, this clearly shortens the solving time of SDDP and
quickly converges to the exact optimum especially for the products
with increased complexity through the series of intermediate so-
lutions that are generated by the iterative process. The detailed
steps of the iterative method can be referred in the literature
(Lambert, 2007).

Four scenarios are considered here to investigate the perfor-
mance of the iterative method and IGA. The first SDDP scenario is
taking the ballpoint in Fig. 2 as an example. The second SDDP
scenario is the radio set, i.e., product 4, that is applied in Table 7. The
third and fourth scenarios are the reduced structures modified
from an imaginary product with 31 operations and 63 sub-
assemblies including components and parts (Lambert, 2007), and
both AOGs are depicted in Figs. A2 and A3 of the Appendix,

Table 8
Results of the iterative method by Lambert (2007) for four scenarios.

respectively.

The computational results of the iterative approach and IGA for
four same scenarios are given in Table 8 and Table 9, respectively.
The iterative procedure is run in the CPLEX solver rather than the
XA solver of the original paper. Table 8 reveals the iterative pro-
cesses of four scenarios, which includes the number of iterations,
the objective value f* the quasi-solutions/optimum solutions and
the used time. Furthermore, the infeasible subsequences are listed
for each quasi-solution. The symbol @ acts as a separator between
the sequential and cyclic operations of the quasi-solution. Not only
cycles, suchas 5 — 7— 5 in the second iteration of scenario 3, must
be avoided, but other erroneous subsequences must also be
inhibited, such as 7 — 5— 3 in the 1st iteration of scenario 3. A
cycle can be considered a special case of an erroneous subsequence.
For IGA, MaxIter and PopSize are determined in term of the problem
size, where two requirements are needed to be considered: (1)
adequately converge to the optimum solution; and (2) use the CPU
time as short as possible. Likewise, the proposed algorithm is
executed 20 times each.

From Table 8, we can see that the optimum solution is found
only after one iteration in the first SDDP scenario, and for scenarios

No. of No. of f* Sequence Infeasible subsequences CPU time Accumulated CPU
scenarios iterations (s) time (s)
1 1 4.78 0—-1—- 12 No 0.11 0.11
2 1 149324 0-2- 10 @4 - 15— 23 - 27— 4—-15—-23 527> 29—-30— 4 2.68 7.99
29 - 30— 4
2 149324 0—-2—-10—-4—15@ 23 - 27-29 - 30— 23 2.70
23 - 27-29 - 30— 23
3 14.8824 0 - 2— 10 - 30— 4 — 15— 23 - 27— 29 No 2.61
3 1 50.0 0-1-7-5-3-6 7—-5-3 0.12 041
2 48.5 0-1-2-3-6@5—-7-5 5-7-5 0.14
3 475 0-1-2-3-6—-7-5 No 0.15
4 1 57.0 0-1-2-6-10-4-9-3@5->7->5->7-5 0.35 8.16
5
2 57.0 0-1-2-7-503-6—>10—-4— 6—-10-4-9-3 0.42
9-3
3 56.5 0-1-2-6-10—-4-7-5-9-3 2-56—-10—-410—-4—7—5and7 - 5— 0.32
9-3
4 56.5 0-1-2-7-5-9@3-56-10—-4—- 6—-10—>4—-3 0.46
3
5 56.5 0-1-2-7-5-3-6-10-4-9 7-55-3 0.40
6 56.0 0-1-2-6-10-7-504—->9— 10-7—-5and9—-3- 4 0.42
3-4
7 56.0 0-1-2-7@3-6—>10—-4— 10-4—-9-5 0.40
9-5-3
8 55.5 0-1-2-7-5@€3-6—-9—-3@ 6—-9—-3and4 - 10— 4 0.41
4—-10— 4
9 55.5 0-1-2-6-9-5-7-10-4-3 7-510-4-3 0.45
10 55.0 0-1-2-6-9-5-3@04—->7— 6—->9->5—->3and4—-7—- 10— 4 0.48
10 -4
11 55.0 0-1-2-6-10-7@3-4->3 @ 3-54->3and5-9-5 0.45
5-9-5
12 55.0 0-1-2—-6-10—-73-4-9-5->3-4-9—->5->3 0.39
3
13 54.5 0-1-2-7-5-4-9-3-6—-10 7-5-4-9-3 0.43
14 54.5 0-1-2-7-5@3—-6—-9—10— 9—- 10— 4 0.48
4 -3
15 54.5 0-1-2-7-50€3-4-9-3@ 6—- 10— 6 0.42
6— 10— 6
16 54.0 0-1-2-7-5-10-4-9-3-6 7—-5-10—-4->9-3 0.49
17 54.0 0-1-2-7#3-6-10—-4-5-9-> 10-4->5 0.48
3
18 53.5 0-1-2-3-6-10-4-9-7->5 10-4->9->7-5 0.45
19 53.5 0-1-2-4-9-5-3-6—->10—-7 No 0.46
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Table 9
Results of IGA for four scenarios.

No. of scenarios MaxlIter PopSize Sest fa Standard deviation of f Average CPU time (s) Standard deviation of CPU time
1 10 10 47800 47800 0.0000 0.0332 0.0034
2 50 50 14.8824 14.8824 0.0000 1.1871 0.0092
3 40 40 47.5000 47.2750 0.5495 0.6069 0.0153
4 100 50 53.5000 51.6000 0.6407 5.8624 0.0549

2 and 3, three iterations are proceeded to seek the solution.
Especially for the product 4 of scenario 2, it is almost impossible to
reveal the resultant solution within a reasonable CPU time through
the default CPLEX method, see Table 7. However, the iterative
approach enables to address this effectively, and a short CPU time
(7.99 s) is consumed here. For the fourth scenarios, although there
are 23 subassemblies and 11 operations as shown in Fig. A3, the
iterative procedure is relatively complicated which consists of 19
iterations. In terms of its accumulated CPU time (8.16s), its per-
formance seems to be satisfactory. Nevertheless, it is stressed that
all the calculations have been carried out with manual search for
identifying infeasible subsequences. According to our experience,
for the fourth scenario at least 10s is used each identification
sometimes more than 30 s which means that it may exceed 200 s
in the whole iteration if and only if each identification has no
human errors. In addition, the default CPLEX method unexpectedly
converges to the exact optimal solution within 20 s, which seems
to be more efficient due to the lack of manual search.

Fortunately, the proposed algorithm performs excellently with
respect to the computation speed. As shown in Table 9, its average
CPU times obviously outperform the CPU times of scenarios 1, 2 and
4 in Table 8. This appears different compared with others for sce-
nario 3, while we have to keep in mind that the used time of
manual search of erroneous subsequences is not considered in the
iteration.

The performance of the objective value f is further compared
between IGA and the iterative method. From Table 9, by observing
frest we can conclude that the proposed approach is able to

successfully find the best solution similar to the exact optimum
solution (see f* in Table 8) in each scenario. Especially for scenarios
1 and 2, the optimal one is determined each trial of IGA, which is
demonstrated in Fig. 6. Fig. 6 also demonstrates that IGA can seek
the optimum of the third scenario in most cases. Relatively, it
performs worst in scenario 4, and finds the optimal solution once,
i.e., the fourth test. But as seen in Fig. 6, the rest results of scenario 4
is approaching the optimum, and Gap is less than 3.6% between f;
and f*. Thus, the best solutions found by IGA could be accepted as
near optimal solutions in this work. Meanwhile, the standard de-
viation values of f and CPU time are very small in Table 9, which
indicates that the algorithm performance is stable.

Furthermore, we attempt to execute the iterative method for
solving the original imaginary product with 31 operations and 63
subassemblies proposed by Lambert (2007). However, the first
iteration is not completed after 12 h, which indicates that the CPU
time is unmanageable for this case we investigated. Fortunately, the
proposed approach can quickly generate the near optimal solution.
In fact, the iterative method has an outstanding performance for
solving some large-scale instances when there are moderate par-
allel operations (Lambert, 2007), which can be also demonstrated
in Table 8. Specifically, the size of the second scenario is relatively
large with 30 operations and 29 subassemblies, and only three it-
erations are implemented using a reasonable CPU time (7.99 s). But
with respect to the fourth scenario, its calculation is relatively
labored which focuses on the human identification for erroneous
subsequences.

The convergence of the iteration process is satisfactory, and the
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Fig. 6. f values of IGA for four scenarios.
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Table 10
Results of IGA for solving the HG5-20 triaxial five speed mechanical transmission.

No. of scenarios Maxlter PopSize Spest fa Standard deviation of f Average CPU time (s)
1 50 50 81.0151 78.0280 2.2888 1.2857

2 100 50 81.4410 78.8311 2.1146 2.4179

3 100 100 81.4410 80.0601 1.1302 5.2504

4 200 100 81.4528 80.6529 0.4537 10.1788

required CPU time appears relatively small as compared to the
default CPLEX algorithm based on the proposal model. However,
the manual search for infeasible subsequences not only easily
leads to manual errors but also takes extra time that is related to
the complexity of products. Further, the iterative procedure is
actually an exact approach based on a binary integer program-
ming, and the CPU time may be unmanageable for some complex
scenarios since the CPU time tends to increase exponentially with
the problem size. Fortunately, the proposed method is not limited
to this case while enables to obtain the ‘good enough’ solutions,
i.e,, near optimum solutions. Therefore, for SDDP, the CPLEX
method better suits for dealing with small sized instances, and the
iterative approach prefers the medium/large-scale ones with
modest parallel operations, and IGA are applicable to a wide range
of cases.

4.4. Case study

This subsection employs our proposed method to address a
large-scale real instance, i.e., a HG5-20 triaxial five speed me-
chanical transmission. As shown in Fig. 6A of Appendix, the
transmission consists of 12 main parts, and its AND/OR graph with
39 operations and 34 subassemblies is given in Fig. 7A. Let P, = 0.8
and P, =0.2, and Maxlter and PopSize are tuned here. Each
parameter combination is tested 20 runs using IGA and Table 10
presents the numerical results. From the table, it can be observed
that fpess, fo, and the standard deviation are better with the increase
of MaxlIter and PopSize. Especially when Maxiter =200 and Pop-
Size =100, IGA appears highly stable with less than 0.5 standard
deviation. On the other hand, the computational cost is very low in
each scenario, e.g., the biggest CPU time is approximately 10s as
seen in the last column of Table 10. Further, the best solution found
by IGA is compared with the traditional solutions determined by
the operators’ experience. We find that our solution can shorten
approximately 11% disassembly time while the recovery profit is
almost increased by 7%. This demonstrates that the proposed
approach can efficiently improve the disassembly solution in
practice.

5. Conclusions

The development of sustainable manufacturing and circular
economy has led to increasing attention on remanufacturing.
Compared with extracting virgin materials for manufacturing
products, remanufactured products represent a more environ-
mentally preferred approach as it conserves the energy and ma-
terials consumed during component manufacturing. Disassembly
planning is the first step of remanufacturing industries whose
result has a significant impact on the economic benefits of sus-
tainable manufacturing. Current research investigates a sequence-
dependent disassembly planning optimization issue that aims at
finding the order of disassembling subassemblies in an EOL product

with the maximal recovery profit. A graphical representation based
on AOG is adopted in this work and a disassembly model is
developed using AOG. In the AOG, precedence and exclusive OR
matrices are simultaneously formed to describe precedence and
EOR relations among components or operations, and the proposed
model is formulated using the two matrices. The model can not
only depict the SDDP, but be directly applied to the mathematical
programming. It indicates that an exact method enables to be
carried out for this problem, which is of significance to demonstrate
the effectiveness of the proposed metaheuristics as well as pro-
posed mathematical model. In addition, a two-phase heuristic is
proposed and utilized to quickly initialize feasible solutions, which
successfully deals with the complex constraints from the AOG.
Finally, an efficient metaheuristic based on GA called IGA is pre-
sented to solve the SDDP.

The performance of the proposed IGA is measured through a
number of experiments against the performance of two famous
exact methods. The comparison results indicate that the proposed
IGA outperforms the exact methods considered in terms of the
computational efficiency, while the satisfactory solutions are
effectively yielded for different sizes of problems. Finally, a real-
world case is applied to testify our approach, and the numerical
results demonstrate that IGA can efficiently compute the real
instance while the solutions obtained by IGA are superior to the
existing solutions determined by the operators’ experience. How-
ever, the robustness of our solutions has not been tested, which is
associated with the uncertainty of the EOL products. Specifically,
the revenues of subassemblies in EOL products are highly related to
their qualities when reprocessing or recycling them, whereas the
subassembly quality cannot be certain for decision makers (oper-
ators). Furthermore, the quality status of each subassembly might
change during the disassembly process under different disassembly
resources, e.g., the processing workshop and disassembly tools. To
provide a more practical method for selective disassembly plan-
ning, the uncertainty of the quality of EOL products could be
studied in the future.
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