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China is the world's largest energy consumer and CO2 emitter. Cities contribute 85% of the total CO2

emissions in China and thus are considered as the key areas for implementing policies designed for
climate change adaption and CO2 emission mitigation. However, the emission inventory construction of
Chinese cities has not been well researched, mainly owing to the lack of systematic statistics and poor
data quality. Focusing on this research gap, we developed a set of methods for constructing CO2 emis-
sions inventories for Chinese cities based on energy balance table. The newly constructed emission in-
ventory is compiled in terms of the definition provided by the IPCC territorial emission accounting
approach and covers 47 socioeconomic sectors, 17 fossil fuels and 9 primary industry products, which is
corresponding with the national and provincial inventory. In the study, we applied the methods to
compile CO2 emissions inventories for 24 common Chinese cities and examined uncertainties of the
inventories. Understanding the emissions sources in Chinese cities is the basis for many climate policy
and goal research in the future.

© 2017 Elsevier Ltd. All rights reserved.
1. Introduction

Cities are the main consumers of energy and emitters of CO2
throughout the world. The International Energy Agency (IEA)
(2009) estimates that CO2 emissions from energy use in cities
will grow by 1.8% per year between 2006 and 2030, with the share
of global CO2 emissions rising from 71% to 76%. As a result of ur-
banization, the world's urban population grew from 220 million in
1900 (13% of theworld's population) to 3530million in 2011 (52% of
the world's population) (Kennedy et al., 2015). Cities are major
components in the implementation of climate change adaption and
CO2 emission mitigation policies. Understanding the emission sta-
tus of cities is considered a fundamental step for proposing
liujingru@rcees.ac.cn (J. Liu).

t al., Methodology and applic
/j.jclepro.2017.06.075
mitigation actions.
With rapid economic development, lifestyle change and con-

sumption growth (Hubacek et al., 2011), China is now the world's
largest consumer of primary energy and emitter of greenhouse gas
emissions (Guan et al., 2009). According to U.S. Energy Information
Administration (EIA) (2010) and British Petroleum (2011), China
produces 25% of global CO2 emissions, consumes 20% of global
primary energy. Among CO2 emission sources, 85% of China's
emissions are contributed by energy usage in cities, which is much
higher than that of the USA (80%) or Europe (69%) (Dhakal, 2009,
2010). An effective understanding of the energy consumption and
emission status of common cities in China is urgently required to
practice mitigate climate change.

There are some challenges for the compilation of greenhouse
gas inventories at the city level for China. First, it is difficult to
define a city's boundary for greenhouse gas emissions accounting
because energy and material flows among cities may bring a large
quantity of cross-boundary greenhouse gas emissions (Liang and
ations of city level CO2 emission accounts in China, Journal of Cleaner
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Zhang, 2011; Wolman, 1965). Commercial activities are much more
frequent among cities, compared with inter-provinces/nations,
which leads to a great challenge. Second, data for energy con-
sumption and industry products are incomparable and very limited
for most cities in China (Liu et al., 2012b). Complete energy balance
tables and energy inventories are available for Chinese megacities
only (Beijing, Tianjin, Shanghai, and Chongqing), another
250þ cities of various sizes and development stages lack consistent
and systematic energy statistics. Data used in previous studies are
from various sources, including city statistical documents, remote
sensing images, direct interviews with local governmental officials,
and published reports and literature (Xi et al., 2011). Those data
require systematic reviews for consistency and accuracy.

In this study, we develop a feasible methodology for con-
structing CO2 emissions inventories for Chinese cities from fossil
energy consumption and industrial processes, aiming at providing
unified and comparable energy and emission statistics for generic
Chinese cities. The emission inventories are calculated based on
cities' energy balance tables, which are consistent with national
and provincial emission accounts by previous studies (Liu, 2016; Liu
et al., 2015). We verify the method by comparing our results with
previous studies, as well as calculating the uncertainties of the
estimates. We apply the method to 24 Chinese cities in this study,
and identify the main contributors to the cities’ CO2 emissions.

2. Literature review of emission inventory at city level

The CO2 emission inventory has captured both public and aca-
demic attention in recent years. Most of the previous emissions
inventories were developed at the national level (Guan et al., 2008,
2012; Menyah andWolde-Rufael, 2010; Mi et al., 2017; Peters et al.,
2012), provincial level (Meng et al., 2011; Shan et al., 2016a; Yu
et al., 2014), and sectoral level (Liu et al., 2012a; Shan et al.,
2016b; Shao et al., 2011). Emission inventories for cities are
limited (Brondfield et al., 2012; Chen and Chen, 2012; Dodman,
2009; Hasegawa et al., 2015; Hillman and Ramaswami, 2010;
Hoornweg et al., 2011; Kennedy et al., 2011; Ramaswami et al.,
2008).

Most city-level GHG emissions inventories were calculated us-
ing a bottom-up approach in the previous research, i.e., by using
energy data from certain sector sets. The sectors set are different
from study to study. Wang et al. (2012) calculated carbon emissions
of 12 Chinese provincial capital cities by 6 sectors, including in-
dustrial energy consumption, transportation, household energy
consumption, commercial energy consumption, industrial pro-
cesses and waste. Differently, Kennedy et al. (2010) and their sub-
sequent research (Kennedy et al., 2009, 2014) compiled carbon
emissions inventories that cover electricity, heating and industrial
fuels, ground transportation fuels, aviation and marine trans-
portation, industrial processes and product use, and waste for 10
global megacities. Creutzig et al. (2015) built an energy/emission
dataset including 274 cities, and present the aggregate potential for
urban climate change mitigation.

Compared with global research, CO2 emission inventory
research on Chinese cities has not been well documented. Dhakal
(2009) compiled emission inventories for 35 provincial capital
cities in China. Liu et al. (2012b) complied the scope 1 and 2
emission inventories of four Chinese municipalities from 1995 to
2009. Scope 1 emissions include CO2 induced from direct use of
primary energy and industrial activity within territorial boundary.
Scope 2 emissions refer to the out boundary purchased electricity
related CO2 emissions. Sugar et al. (2012) compiled the 2006
emission inventories of Chinese municipalities and compared the
results with 10 other global mega cities.

Above all, the current emission inventories of Chinese cities are
Please cite this article in press as: Shan, Y., et al., Methodology and applic
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compiled by sectors, which are not consistent with each other, as
well as the national/provincial inventories. The national/provincial
inventories are usually compiled according to energy balance tables
in China. What's more, most existing research has focused on a few
specific megacities, such as four municipality cities (Beijing, Tianjin,
Shanghai and Chongqing) and few provincial capital cities, which
have consistent and systematic energy statistics. Accurate accounts
of cities' CO2 emissions are needed for further analysis on emission-
economic nexus (Chen and Chen, 2017, 2016; Chen et al., 2015; Lu
and Chen, 2016; Meng et al., 2017; Mi et al., 2016; Shao et al., 2016).

3. Methodology

3.1. Boundary and method for emissions accounting

In accordance with the guidelines from the Intergovernmental
Panel on Climate Change (IPCC) regarding the allocation of GHG
emissions, we consider the administrative territorial scope for each
city's CO2 emissions accounting in this study. Administrative ter-
ritorial emissions refer to the emissions that occur within admin-
istered territories and offshore areas over which one region has
jurisdiction (IPCC (2006)), including emissions produced by socio-
economic sectors and residence activities directly within the region
boundary (Barrett et al., 2013). The CO2 emissions inventory con-
sists of two parts, emissions from fossil fuel consumption and from
industrial processes. Detailed scope and boundary for emission
accounting are shown in Table 1.

The notations and abbreviations used in the following emission
calculation and data collection are gathered in Table 2.

3.2. Calculation of CO2 emissions and inventory construction

First, we calculate the emissions from fossil fuel combustion.
The emissions are calculated for 17 fossil fuels and 47 socioeco-
nomic sectors. The 47 socioeconomic sectors are defined according
to the Chinese National Administration for Quality Supervision and
Inspection and Quarantine (NAQSIQ) (2011), which include all
possible socioeconomic activities conducted in a Chinese city's
administrative boundary (shown in SI Table S1). We include 17
fossil fuels in this paper that are widely used in the Chinese energy
system (Department of Energy Statistics of National Bureau of
Statistics of the People's Republic of China (NBS), 1986e2013), see
Table 3.

We adopt the IPCC (2006) sectoral approach to calculate the CO2
emissions, which is widely applied by research institutions and
scholars (European Commission, 2014; Feng et al., 2013; Lei et al.,
2011; Liu et al., 2014; United Nations Framework Convention on
Climate Change (UNFCCC); Wiedmann et al., 2008; Zhou et al.,
2010). The fossil fuel-related CO2 emission equals to activity data
(fossil fuel consumption) times emission factors, see Eq. (1).

CEenergy ¼
X
i

X
j

CEij

¼
X
t

X
j

ADij�NCVi�EFi�Oij; i2½1;17�; j2½1;47� (1)

The subscript i and j in the equation refers to fossil fuel types and
sector respectively, which are corresponding with those in Table 3
and SI Table S1. CEij represents the CO2 emissions from fossil fuel i
combusted in sector j ; ADij represents fossil fuel consumption.NCVi
(net caloric value), EFi (emission factor), and Oij (oxygenation effi-
ciency) are emission parameters of different fossil fuels. The units of
the three parameters are “J=tonne fossil fuel consumption”,
“tonneCO2=J”, and “%” respectively.

Both IPCC (2006) and NDRC (2011) provide default emission
ations of city level CO2 emission accounts in China, Journal of Cleaner



Table 1
Scope definition for city CO2 emission accounting.

Spatial boundaries Components

In-boundary fossil fuel
related CO2 emissions

Primary-industry use (farming, forestry, animal
husbandry, fishery and water conservancy)
Industrial use (40 sub-sectors)
Construction use
Tertiary-industry use (2 sub-sectors)
Residential use (Urban and Rural)
Other

In-boundary process-related
CO2 emissions

CO2 emissions from 9 industrial processes

Note: Due to the city's administrative boundary spanning both urban and rural
geographies in China, the residential energy use are also consisted of 2 categories:
urban and rural.

Table 2
Notations, abbreviations and their meaning used in this study.

Notations Explanation

Subscript
i

Fossil fuel type

Subscript
j

Sector

Subscript
t

Industrial process

CEij CO2 emissions from fossil fuel i combusted in sector j
CEt CO2 emissions from industrial process t
ADij Consumption of fossil fuel i in sector j
NCVi Net caloric value of fossil fuel i
EFi Emission factor of fossil fuel i
Oij Oxygenation efficiency of fossil fuel i combust in sector j
EFt Emission factor of industrial process t
EBT City's energy balance table
EBTp Provincial energy balance table
P City-province percentage, which is calculated with industrial outputs

and population, reflecting the percentage relation between a city and
its province

ADS Short for “Industrial enterprises above designated size”
m ADS multiplier, refers to the multiple of the whole industrial output

to that of the industry above the designated size
ADi Consumption of fossil fuel i of the whole industry
ADi�ADS Consumption of fossil fuel i at ADS scale
ADij�ADS Consumption of fossil fuel i in sector j at ADS scale

AD*
j�ADS

Comprehensive energy consumption of sector j at ADS scale

ADt Production of industrial process t
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factors for fossil fuels. However, based on measurements of 602
coal samples from the 100 largest coal-mining areas in China (Liu
et al., 2015), the emission factors recommended by the IPCC and
NDRC are frequently higher than the real emissions factors. In this
study, we adopted the newly measured emission factors, which we
assume to be more accurate than the IPCC and NDRC default values
(see Table 3). We considered different oxygenation efficiency for
fossil fuels burnt in different sectors, as the combustion technology
level of sectors are different in China.

Energy used as chemical raw material and loss during trans-
portation are removed from the total energy consumption to avoid
double counting. Emissions from electricity and heat generated
within the city boundary are counted based on the primary energy
input usage, such as raw coal (Peters et al., 2006). Our adminis-
trative territorial emission inventory excludes emissions from im-
ported electricity and heat consumption from outside the city
boundary, as well as the inter-city transportation energy con-
sumption. We only focus on fossil fuel consumed within the city
boundary.

In the second part, we calculate CO2 emissions from 9 industrial
processes (see Table 4). The 9 industrial processes are emission-
intensive processes, contributing over 95% of the total process-
related emissions in China (Shan et al., 2016b). The process-
related emissions are CO2 emitted as a result of chemical re-
actions in the production process, not as a result of the energy used
by industry. Emissions from industrial processes are factored into
the corresponding industrial sectors in the final emissions in-
ventory. We estimate the process CO2 emissions in Eq. (2).

CEprocess ¼
X
t

CEt ¼
X
t

ADt � EFt ; t2½1;9� (2)

The subscript t in the equation refers to industrial processes,
which are corresponding with those in Table 4. CEt and EFt repre-
sent the CO2 emissions and emission factor for industrial process t.
Most of the emission factors are collected from IPCC (2006), except
that of cement production, which is collected from our previous
study on China's cement process (Liu et al., 2015), shown in Table 4.

By including the emissions from fossil fuel consumption and
industrial processes, the emissions inventory designed in this paper
includes all administrative boundary territorial CO2 emissions from
47 sectors, 17 energy types and 9 main industrial processes.

3.3. Activity data requirement and process

Fig. 1 shows the overall methodology framework designed for
the construction of emissions inventories for Chinese cities in this
study. We need the energy balance table (EBT), industrial sectoral
fossil fuel consumption (ADij), and industrial products' production
(ADt) to calculate the CO2 emissions from both fossil fuel
Please cite this article in press as: Shan, Y., et al., Methodology and applic
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combustion and industrial processes. Generally, the data for cities
can be collected from city's municipal bureau of statistics, such as
Hefei Municipal Bureau of Statistics (2011) and Xiamen Municipal
Bureau of Statistics (2011).

3.3.1. Energy balance table
The Energy Balance Table (EBT) is an aggregate summary of

energy production, transformation and final consumption in one
area (Qiu, 1995), which could reveal the energy flow of one region.
The sectoral consumption of fossil fuels from EBT can be used as
activity data to calculate the fossil fuel-related CO2 emissions.
Detailed illustration of EBT are shown in the Support Information.
However, due to the poor data quality of Chinese cities, some cities
don't compile EBT in their statistical yearbook. The following three
cases cover all the possible EBT availabilities of Chinese cities.

3.3.1.1. Case a: city with energy balance table. Some cities compile
EBT in their statistical yearbooks, such as Guangzhou (Guangzhou
Municipal Bureau of Statistics, 2011). We collect the fossil fuel
consumption from the table directly for emission estimation.

3.3.1.2. Case b: city without energy balance table. For cities such as
Hefei and Xiamen, there is no EBT in their statistical yearbooks
(Hefei Municipal Bureau of Statistics, 2011; Xiamen Municipal
Bureau of Statistics, 2011). In these cases, we deduce the city's
EBT from its corresponding provincial energy balance table (EBTp).
First, we define a city-province percentage P in Eq. (3), which can be
calculated using different indexes, such as industrial outputs and
population. The equation reflects the percentage relation between
a city and its province.

P ¼ Indexcity
�
Indexprovince � 100% (3)

With the city-province percentage, P, we scale down the pro-
vincial energy balance table to the city level (see Eq. (4)). For ‘Input
& Output of Transformation’ and ‘Loss’ part of EBT , we use the in-
dustrial output as index to calculate the city-province percentage P,
ations of city level CO2 emission accounts in China, Journal of Cleaner



Table 3
Emissions parameters of fossil fuel combustion.

No. (i) Energy types NCViðPJ=104
tonnes;108 m3Þ

EFiðtonneCO2=TJÞ

1 Raw coal 0.21 96.51
2 Cleaned coal 0.26 96.51
3 Other washed coal 0.15 96.51
4 Briquettes 0.18 96.51
5 Coke 0.28 115.07
6 Coke oven gas 1.61 78.8
7 Other gas 0.83 78.8
8 Other coking products 0.28 100.64
9 Crude oil 0.43 73.63
10 Gasoline 0.44 69.3
11 Kerosene 0.44 71.87
12 Diesel oil 0.43 74.07
13 Fuel oil 0.43 77.37
14 Liquefied petroleum gas 0.51 63.07
15 Refinery gas 0.47 73.33
16 Other petroleum

products
0.43 74.07

17 Natural gas 3.89 56.17
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because energy transformation departments belong to industry.
For ‘Final consumption’ in EBT , we use the corresponding outputs of
each sector as the indexes. For ‘Residential consumption’, we use
population as the index. The industrial output and population can
be collected from each city's statistical yearbook as well.

EBT ¼ EBTp� P (4)

3.3.1.3. Case g: city without energy balance table, but with table of
“transformation usage of energy types”. Some cities do not have a
EBT in their statistical yearbooks, but have compiled a table of
“Transformation usage of energy types”, such as Huangshi
(Huangshi Municipal Bureau of Statistics, 2011) in Hubei province.
The transformation table presents the energy input and output
during transformation process, and can be used to make our
deduced EBT more accurate. We modify the “Input & Output of
Transformation” section of the deduced city EBT with the table of
transformation.

3.3.2. Industry sectoral energy consumption
The EBT counts industry as one entire component of all con-

sumption components. However, industry is the major energy
consumption component and contributes the majority of green-
house gas emissions. In addition, industry is also the primary area
for applying low carbon technologies (Liu et al., 2013). Based on the
industry sectoral energy consumption, we could expend the final
energy consumption of industry in EBT into 40 sub-sectors with
corresponding to the industry classification provided by NAQSIQ
(Xu, 2005). The extended energy balance table consists of 47 final
consumption sectors and can provide a more detailed illustration of
energy utilization for both industry and the entire city. Following
the methods below, we could deduce the industry sectoral energy
consumption of Chinese cities with different data qualities.

3.3.2.1. Case A: city with industry sectoral energy consumption by
types (ADij). For some cities, the sectoral energy consumption by
types of the whole industry is provided in the statistical yearbook.
We use the data directly.

3.3.2.2. Case B: city with sectoral energy consumption by types of
industry enterprises above designated size (ADij�ADS) and energy
consumption by types of the whole industry (ADi). For cities such as
Guangzhou, the industrial statistics is carried on above designated
Please cite this article in press as: Shan, Y., et al., Methodology and applic
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size (ADS) scale, which means the statistical data in its yearbook
only includes industry above designated size (Guangzhou
Municipal Bureau of Statistics, 2011). The enterprise above desig-
nated size refers to the enterprise with annual main business
turnover above 5 million Yuan. Guangzhou has sectoral energy
consumption by types of ADS industry (ADij�ADS) and energy con-
sumption by types of the whole industry (ADi) in its yearbook. In
this case, we expand ADij�ADS by ADi to obtain ADij in Eq. (5).

ADij ¼ ADij�ADS
�
ADij�ADS

� ADi; i2½1;17�; j2½2;41� (5)

3.3.2.3. Case C: city with sectoral energy consumption by types of
ADS industry (ADij�ADS) only. These cities are the most common
types in terms of data collection for Chinese cities. They only have
sectoral energy consumption by types of ADS industry (ADij�ADS) in
their statistical yearbooks. Most cities are classified into this case;
these include Hefei and Xiamen (Hefei Municipal Bureau of
Statistics, 2011; Xiamen Municipal Bureau of Statistics, 2011). To
calculate the sectoral energy consumption of the whole industry
(ADij), we expand ADij�ADS to ADij by the ADS multiplier m (see Eq.
(6)).

ADij ¼ ADij�ADS �m

¼ ADij�ADS � Oindustry
.
OADS

; i2½1;17�; j2½2;41� (6)

Oindustry=OADS, which is the ADS multiplier (m) in this paper,
refers to the multiple of industrial output to that of the industry
above the designated size.

3.3.2.4. Case D: city with total energy consumption by types of ADS
industry (ADi�ADS) only. For cities such as Weifang and Huangshi,
we can collect only the total energy consumption by types of ADS
industry (ADi�ADS) from the statistical yearbooks (Huangshi
Municipal Bureau of Statistics, 2011; Weifang Municipal Bureau of
Statistics, 2011). In this case, we first scale up ADi�ADS to ADi by
the ADS multiplier m and then divide ADi into each sector by the
sectoral comprehensive energy consumption of the ADS industry
(AD*

j�ADS) (refer to Eq. (7)). If one city does not have AD*
j�ADS, we use

the sectoral industry output instead.

ADij ¼ ADi�ADS �m� AD*
j�ADS

.X
j

AD*
j�ADS

; i2½1;17�; j2½2;41�

(7)

AD*
j�ADS in the equation refers to the comprehensive energy con-

sumption of sector j at ADS scale. ADi�ADS, as explained above, refers
to the total energy consumption of fossil fuel i at ADS scale.

With these three cases, we collect and deduce the industry
sectoral energy consumption by types for one city. By replacing the
final energy consumption of industry in the EBT with the sub-
sectoral detail, we obtain the extended energy balance table.

3.3.3. Industrial products’ production
Data collection for the production of industrial products is much

easier and universal. Every city has the “Production of industrial
products” table in its statistical yearbook. A portion of the pro-
duction is derived from industrial enterprises above the designated
size. If we expand the production above the designated size
(ADt�ADS) by the city's ASD multiplier m defined above, we can
obtain the total production of each industrial product (ADt), shown
in Eq. (8), in which the subscript t2½1;9� represents the different
industrial products (refer to Table 4).
ations of city level CO2 emission accounts in China, Journal of Cleaner



Table 4
CO2 emission factors for 9 main industrial processes.

No.(t) Industrial Processes EFtðtonne CO2=tonneÞ
1 Ammonia production 1.5000
2 Soda Ash production 0.4150
3 Cement production 0.2906
4 Lime production 0.6830
5 Ferrochromium production 1.3000
6 Silicon metal production 4.3000
7 Ferro-unclassified production 4.0000
8 Ferrous Metals production

(Coke usage as reducing agent)
3.1000

9 Nonferrous Metals production
(Coke usage as reducing agent)

3.1000
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ADt ¼ ADt�ADS �m; t2½1;9� (8)

3.4. Validation

In order to verify our method, we apply this method to 5 cities
firstly and compare the fossil fuel related CO2 emissions with pre-
vious research. The fossil fuel contributes more than 90% of the
total CO2 emissions. Therefore, the comparison of fossil fuel related
CO2 emissions with other research can be a validation of our esti-
mates. In the China High Resolution Emission Gridded Data
(CHRED) with 1 km resolution built by Chinese academy for envi-
ronmental planning (CAEP), they estimated few cities' fossil fuel-
related CO2 emissions based on energy consumption data
collected in a bottom-up way based on industrial facility data and
other information (Cai, 2011, 2012; Cai and Zhang, 2014; Wang
et al., 2014). The 5 cities, Hefei, Xiamen, Weifang, Huangshi, and
Guangzhou, contain all the different cases we deduce the city's
data, see Table 5.

From Table 5 we can see that the difference of CO2 emissions
between our study and CAEP's research is within 10%. According to
previous research, emissions from OECD countries may have an
uncertainty of 5%e10%, while the uncertainty for non-CECD coun-
tries may be 10%e20% (Marland, 2008; Olivier and Peters, 2002).
Therefore, we believe our estimations are relatively accurate and
our method is effective and reliable.

4. Inventory construction and uncertainty of 24 cities

In this paper, we apply our method to 24 cities and compile the
CO2 emissions inventory for 2010. These 24 cities, which cover all
the possible situations for data collection cases discussed above
(see SI Table S3), are in different sociometric developmental stages.
Per capita GDP of the 24 cities varies from 14.80 thousand Chinese
Yuan (Zunyi) to 106.88 thousand (Shenzhen). 9 of the 24 case cities
are provincial capital cities, which are larger andmore affluent than
the other 15 non-capital cities generally. Fig. 2 shows the locations
and total CO2 emissions of these 24 case cities.

Table 6 shows socioeconomic indexes of the 24 case cities. All
necessary activity data were collected from each city's statistical
yearbook. Detailed data source of this study is shown in the
Support Information. We present the data collection and calcula-
tion results in SI section 3 and 4, Tables S3eS6.We have included all
data used and our results online at our database: http://www.
ceads.net (free to download after registration).

4.1. Results

In 2010, total CO2 emissions of the 24 cities varied widely from
Please cite this article in press as: Shan, Y., et al., Methodology and applic
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4.86 to 104.33 million tonnes. Tangshan and Guangzhou belong to
the highest emission class, with more than 100 million tonnes,
followed by Handan, Hohhot, and Weifang, Shenyang, Xi'an, and
Changshawhich have between 50 and 100 million tonnes. All these
eight cities have heavy-intensity industries, such as coal mining
and manufacturing. The third emission class includes all cities with
CO2 emissions between 25 and 50 million tonnes, i.e., Jixi, Shenz-
hen, Nanchang, Hefei, Chengdu, Huangshi, and Zunyi. The
remaining cities belong to the lowest emissions class; these include
cities with less heavy-intensity manufacturing industry/more
developed service industry (i.e., Yichang, Nanning, Xiamen, and
Suqian) and cities located in more remote areas with a smaller
population and smaller GDP (i.e., Dandong, Nanping, Baicheng,
Zhoushan, and Wuwei) compared with the other three classes.

If we divide the total CO2 emissions by the population, we obtain
the CO2 emissions per capita of the 24 case cities (shown in Table 6).
We find that, among the 24 case cities, the CO2 emissions per capita
in Hohhot is the highest, with 29.67 tonnes, followed by Jixi (22.84
tonnes), Shenzhen (14.69 tonnes), and Tangshan (14.20 tonnes).
The four cities with the lowest CO2 emissions per capita are Suqian
(1.18) Nanping (2.38), Chengdu (2.53 tonnes), and Wuwei (2.54). In
the same way as the total CO2 emission distribution, cites with coal
mines and heavy-intensity industry have high CO2 emissions as
well as high CO2 emissions per capita, such as Jixi, Hohhot and
Tangshan. Cities located in remote areas and in less developed
stages have lower CO2 emissions per capita as well as less CO2
emission.

4.2. Uncertainty analysis

Analysing uncertainty is an important tool for improving
emission inventories that contain uncertainty (Jonas et al., 2014;
Shen et al., 2014). Different methods are used to analyse the un-
certainty of emissions, Jonas et al. (2010) describe four relevant
uncertainty terms and six techniques that can be used to analyse
uncertain emission changes. In this study, we employ Monte Carlo
simulations to calculate the uncertainties of 20 Chinese cities’ CO2
emissions, which is recommended by IPCC (Intergovernmental
Panel on Climate Change (IPCC), 2006) and widely used in previous
research (Lang et al., 2014).

As the CO2 emission is calculated as product of activity data and
emission factors, therefore uncertainty comes from two parts: ac-
tivity data (fossil fuel consumption) and emission factors. Accord-
ing to Monte Carlo analysis, we should assume individual
probability density functions for the two variables firstly, then
simulate the CO2 emissions values with the assumed functions for
many times (Penman, 2000). Industrial processes emit much less
CO2 (9.89% of the total CO2 emissions) compared with fossil fuel
combustion. What's more, emissions from industrial process are
generally with less uncertainties (Liu et al., 2015; Zhao et al., 2011).
Therefore, we only consider uncertainty from fossil fuel con-
sumption in this study. We calculate the uncertainty of both the
overall CO2 emissions and sub-sectors’ emissions of the 24 city
cases in this study.

We assume normal distributions for both activity data and
emission factors (Liu et al., 2015; Zhao et al., 2011). The coefficients
of variation (CV, the standard deviation divided by the mean) of
different emission factors and fossil fuel consumptions are chosen
from previous literature, see Table 7. We repeat the simulation
procedure for 20,000 times in Monte Carlo analysis. Table 8 shows
the total uncertainties of 24 cities’ emissions in 2010 with 95%
Confidence Interval.

The average uncertainty of total CO2 emissions of the 24 case
cites is from �4% to 4%, falling in the range of 10%e20% for non-
OECD countries (Marland, 2008; Olivier and Peters, 2002). This
ations of city level CO2 emission accounts in China, Journal of Cleaner
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Fig. 1. CO2 emissions inventory construction framework for Chinese cities. The subscript “ADS” is short for “above designated size”. ADij�ADS=ADi�ADS refers to sectoral/total con-
sumption of fossil fuel i in industry above designated size (see section “3.3.2 Industry sectoral energy consumption” for more details).
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illustrates that our estimations are relatively accurate and realis-
able. Among the 24 cities, CO2 emissions of Shenzhen have the
smallest uncertainty (�2%, 2%), while emissions of Jixi have the
highest uncertainty (�6%, 6%). As the largest contributor of CO2

emissions (39.19% of the total emissions averagely of the 24 cities in
this study), the emissions from electricity generation sector has the
largest uncertain averagely (�6%, 6%) among different sectors. This
is caused by large amount of coal combusted in coal-fired power
plant, uncertainty of coal's emission factor is the highest among
energy types, despite the fossil fuel consumption in electricity
generation sector has a low uncertainty. In contrast to power plant,
CO2 emission from service sector (transportation and territorial
industries) have the lowest uncertainty averagely (�2%, 2%). Much
oil and gas are used in these sectors compared with power plant,
which have lower uncertainties of emission factor. Detailed un-
certainties by sectors are shown in SI Table S6.
5. Discussion

5.1. Emissions of different fossil fuel types and industrial process

Fig. 3 shows the energy type distribution for the CO2 emissions
inventory in 2010. Raw coal is the largest primary source of emis-
sions among the 17 fossil fuel types, with an average percentage of
58.2%. The high CO2 emissions are induced by the large consump-
tion and high carbon content of raw coal (Pan et al., 2013). Coal is
the largest primary energy source in China. About 70% of the total
energy used in China comes from coal in 2010 (NBS (2016)).

For example, Jixi is one of the coal bases in China and produced
20.46 million tonnes raw coal in 2010. Coal and its related products
(cleaned coal, other washed coal, briquettes, and coke) become the
Please cite this article in press as: Shan, Y., et al., Methodology and applic
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primary energy types in Jixi. In 2010, 42.28 million tonnes of CO2
emissions were produced by coal and combustion of coal products;
this is of 97.84% of Jixi's total emissions. Similar to Jixi, Inner
Mongolia province is also a main coal base in China. As the pro-
vincial capital city of Inner Mongolia, Hohhot uses coal and coal
products as the main energy types as well. In 2010, Hohhot pro-
duced 6.01 million tonnes raw coal, 0.60 million tonnes coke, and
generated 35.26 billion watt-hour electricity in fire power plant in
2010. Coal and coal-related products contributed 57.57 million
tonnes of CO2 emissions (84.34%) to Hohhot's total CO2 emissions.

In addition to coal, diesel oil is another important source of CO2
emissions, with an average percentage of 8.31%. Diesel oil is widely
used most types of transportation, such as oversize vehicle and
ship. Among the 24 cities, Shenzhen, Zhoushan, Guangzhou, and
Xiamen have a much higher percentage of diesel use (32.34%,
22.64%, 14.79%, and 13.57% respectively) than the average per-
centage Diesel oil is widely used by truck and cargo shippers. These
four cities are located in the south and on the southeast coast of
China; they are important ports. The freight and transportation
industry is more developed in these cities than others. Take
Shenzhen as an example, there are 172 berths in Shenzhen harbour
with 79 berths over 10 thousand tonnes class, the cargo handled at
seaports are 220.98 million tonnes in 2010. The waterways and
highway freight traffic in 2010 are 198.47 and 58.59 million tonnes,
taking a percentage of 1.38% and 0.70% over the whole Chinese
300þ cities. Therefore, the diesel oil and Transportation sectors has
a higher percentage of these cities’ total CO2 emissions compared
with other cities (also see Sect. 5.2).

Industrial processes also contribute much to a city's total CO2
emissions. The total CO2 emissions produced during the industrial
process of the 24 case cities are 92.10million tonnes, which is 9.89%
ations of city level CO2 emission accounts in China, Journal of Cleaner



Table 5
Validation of fossil fuel-related CO2 emission estimations.

Fig. 2. CO2 emissions of the 24 case cities, 2010, million tonnes.
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Table 6
Socioeconomic-emission indexes of 24 cities.

City Location Per capita
GDP (106

Yuan)

CO2

emission
(Mt)

Per capita
emissions
(t)

CO2 intensity
(t/103 Yuan)

Hefei Provincial
capital, Central
east

54,796 32.49 6.56 0.12

Nanping Southeast 26,279 7.49 2.38 0.10
Xiamen Southeast 58,337 11.82 6.57 0.06
Wuwei Northwest 10,621 4.86 2.54 0.21
Guangzhou Provincial

capital, South
103,625 100.50 12.47 0.09

Shenzhen South 106,880 38.20 14.69 0.04
Nanning Provincial

capital,
Southwest

25,622 23.30 3.30 0.13

Zunyi Southwest 14,799 26.53 3.38 0.29
Handan Central north 26,143 85.98 8.92 0.36
Tangshan Central north 59,389 104.33 14.20 0.23
Jixi Northeast 22,083 43.22 22.84 1.03
Huangshi Central 28,427 26.75 10.28 0.39
Yichang Central 38,181 25.00 6.26 0.16
Changsha Provincial

capital, Central
66,443 52.89 8.11 0.12

Baicheng Northeast 21,973 7.41 3.65 0.17
Suqian Central east 22,525 6.45 1.18 0.06
Nanchang Central 43,769 36.62 7.29 0.17
Dandong Northeast 29,893 9.07 3.76 0.12
Shenyang Northeast 62,357 62.82 8.73 0.13
Hohhot Provincial

capital, North
66,929 68.25 29.67 0.37

Weifang Central east 34,273 66.37 7.59 0.21
Xi'an Provincial

capital, Central
west

38,341 55.76 7.12 0.17

Chengdu Provincial
capital,
Southwest

48,510 29.08 2.53 0.05

Zhoushan Central east 66,581 6.13 6.32 0.10

Table 8
Uncertainties of 24 Chinese cities’ CO2 emissions in 2010 (million tonnes).

City Uncertainty City Uncertainty

Hefei 30.22 (�4%, 4%) Yichang 15.12 (�4%, 4%)
Nanping 5.92 (�4%, 4%) Changsha 42.57 (�3%, 3%)
Xiamen 11.82 (�4%, 4%) Baicheng 7.41 (�5%, 5%)
Wuwei 4.36 (�5%, 5%) Suqian 5.00 (�3%, 3%)
Guangzhou 96.13 (�3%, 3%) Nanchang 35.03 (�5%, 5%)
Shenzhen 38.20 (�2%, 2%) Dandong 8.32 (�4%, 4%)
Nanning 17.06 (�4%, 4%) Shenyang 61.01 (�4%, 3%)
Zunyi 22.53 (�5%, 5%) Hohhot 65.12 (�5%, 5%)
Handan 81.91 (�4%, 4%) Weifang 60.17 (�4%, 4%)
Tangshan 85.54 (�5%, 5%) Xi'an 54.42 (�4%, 4%)
Jixi 42.85 (�6%, 6%) Chengdu 23.13 (�3%, 3%)
Huangshi 19.53 (�4%, 4%) Zhoushan 6.13 (�4%, 3%)

Note: The percentages in the parentheses indicate the 95% Confidence Interval
around the central estimate.
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of the total CO2 emissions. For example, there are many
manufacturing industries in Tangshan, particularly ‘non-metal
mineral products’ and ‘smelting and pressing of ferrousmetals’. The
production of cement, iron, and steel in 2010 are 37.32Mt, 65.67Mt
and 68.32 million m3. Therefore, the industrial process contributes
greatly to Tangshan's total CO2 emissions. The CO2 emissions from
Tangshan's industrial process in 2010 were 18.80 million tonnes
(18.01%), which is much higher than the average level. Changsha
(10.32 tonnes), Yichang (9.87 tonnes), and Huangshi (7.22 tonnes)
are similar manufacturing cities.
5.2. Emissions of different sectors

We summarise the CO2 emissions of 47 socioeconomic sectors
Table 7
Coefficient of variance (CV) of different emission factors and fossil fuel
consumptions.

CV of emission factor
(Liu et al., 2015)

CV of fossil fuel consumption (Zhao et al., 2011)

Electricity generation
sector

5% (Wu et al., 2010; Zhao et al.,
2008)

Coal-related fossil
fuel

3% Other industries,
construction

10% (Zhang et al., 2007)

Oil-related fossil
fuel

1% Residential fossil fuel
use

20% (IPCC (2006))

Gas-related fossil
fuel

2% Transportation sector 16% (Karvosenoja et al., 2008)

Primary industry 30% (Wang and Zhang, 2008)
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into 9 key sectors in Fig. 3 in order to present sectoral contribution
clearly. We also present four typical cities' sector share in Fig. 2.
Industry sectors are the primary resources that contribute to a city's
CO2 emissions. Approximately 80.80% of the total CO2 emissions are
contributed by industry sectors, on average. Among the 40 sub-
industry sectors defined in this paper, the “Electricity generation”
sector produces the most CO2 emissions, generating 39.19% of the
total CO2 emissions, on average. This generation is caused by the
huge quantities of electricity generated in coal-fired power plants.

The “non-metal mineral products” sector contributes a lot of
CO2 emissions to the total emissions as well, taking a percentage of
12.80% averagely. This sector includes all the CO2 emissions during
non-metal mineral production, such as cement and lime. Tangshan
(20.41 Mt), Changsha (14.98 Mt), Nanning (9.63 Mt), Huangshi
(9.52 Mt), and Chengdu (9.46 Mt) have high CO2 emissions in the
“non-metal mineral products” sector compared with other cities.
As discussed above, the cement production of Tangshan in 2010 is
37.32 Mt. Changsha (20.70 Mt), Nanning (11.87 Mt), Huangshi
(14.49 Mt), and Chengdu (10.39 Mt) also produced more cement in
2010.

“Coal Mining and Dressing” sector is the third largest industrial
source of CO2 emissions (7.67% averagely), especially for Jixi
(75.43%). This finding is because Jixi is a major coal-producing area
in China, as discussed above. Large quantities of fossil fuels are
consumed in mines to produce and wash coal and produce coke.

In addition, there are many “Smelting and pressing of ferrous
Metals” industries in Tangshan and Handan. Tangshan produced
65.67 Mt iron and 68.32 million m3 steel, while Handan produced
33.22 Mt iron and 36.84 Mt steel in 2010. The large production
brings the two cities large CO2 emissions of these sector (26.64 Mt
and 8.10 Mt respectively).

In addition to industry sectors, service sectors also greatly
contribute to total CO2 emissions. The “service sectors” in Fig. 3
includes two components: “transportation” and “wholesale ser-
vices”. CO2 emissions from these two sectors generate an average of
12.23% of the emissions in the 24 cities. For Shenzhen, Guangzhou,
Zhoushan, Xiamen, and Changsha, the CO2 emissions that the ser-
vice sectors contribute (33.16%, 28.39%, 25.11%, 19.18%, and18.39%
respectively) are much higher than the average level. Among these
five cities, Shenzhen, Guangzhou, and Zhoushan are located on the
south/southeast coast of China. These cities are very important
ports with high waterways and highway freight traffic, as discussed
above. Xi'an and Changsha are inland transport junctions. The
overall freight traffic of Xi'an and Changsha in 2010 are 343.23 and
229.47 Mt. The “transportation services” sectors of these five cities
are well developed. In addition, Shenzhen has a larger share of
tertiary industries. The proportion of value added by Shenzhen's
ations of city level CO2 emission accounts in China, Journal of Cleaner



Fig. 3. CO2 emissions by energy types and sectors (million tonnes, 2010).
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tertiary industry is 52.7%, which is much higher than the national
average of 44.2%. Therefore, the CO2 emissions of Shenzhen's ser-
vice departments are higher than those of other cities. The well-
developed tertiary industry makes Shenzhen more affluent than
other cities, the rural population of Shenzhen is 0 and per capita
GDP is 106,880 Yuan in 2010, much higher than the national
average level of 41,908 Yuan.

Primary industry and residential energy usage generate a small
percentage of cities’ CO2 emissions in China. Based on the 20 case
cities, the average percentage of the total CO2 emissions generated
by the two departments is 1.19% (primary industry) and 4.61%
(residential energy usage).
5.3. Policy recommendation for emission reduction

As discussed above, coal and heavy emission intensity
manufacturing industries are the primary emission sources within
one city. Therefore, in order to reduce the CO2 emissions in Chinese
cities, we could take policy from two aspects. The first path is
reducing the coal share in the energy mix and develop clean coal
utilization strategy. The second one is reforming the industrial
structure.

Reducing the coal share in the energy mix could decrease the
emission intensity of one city. This is an effective way to reduce the
CO2 emissions while keep economic growing continually. Coal
combustion emits more CO2 to produce the same unit of heat
comparedwith other energy types. Replacing coal by clearer energy
types, such as nature gas, will help emission control in both Chinese
cities and the whole world. In the 12th five-year plan (2011e2015)
on energy, the central government proposed to control the total
energy consumption and reduce coal share for the first time (NDRC,
2013). Efforts has been taken according to the government docu-
ment these years and achieved initial success. The coal share in the
energy mix decreased from 72.40% to 64.04% in the recent 10 years
from 2005 to 2014, while the natural gas share doubled from 2.40%
Please cite this article in press as: Shan, Y., et al., Methodology and applic
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to 5.63%. According to the most up to data research at COP 21, the
global carbon emissions decreased slightly by 2015 due to Chinese
coal consumption decreasing, and renewable energy increasing
globally (Le Qu�er�e et al., 2015). Efforts should be planned and un-
dertaken at the city level in the future. For example, we should
replace coal gas with natural gas for residential use; cities with
geography advantages should develop the renewable energy types,
such as wind power, hydroelectricity and nuclear power. Beijing, as
the capital city, has a more balanced energy mix compared with
other cities. The coal and natural gas share in the energy mix is
20.41% and 21.13%, respectively, in 2014. Beijing has reduced 43% of
its coal consumption (12.48 million tonnes) during 2007e2014,
which is required by the “Air Pollution Prevention and Control
Action Plan” (Ministry of Environmental Protection (P.R.China),
2013). Meanwhile, the consumption of natural gas increased by
144% (6.70 billion m3). Benefit from this policy, Beijing's CO2
emissions has remained stable since 2007 and has seen a slight
decrease in recent years (Guan et al., 2016).

The other way to control CO2 emissions in Chinese cities is
reforming the industrial structure. Firstly, we should close all the
non-permission coal mining and consuming enterprises, in which
the kilns are usually backward and produced a lot of CO2 emissions
with low economic outputs. All the private and unregulated energy
enterprises should be integrated into the corporations with the
most developed and clean energy technologies. Secondly, the city
government should also replace heavy emission intensity
manufacturing industries with services sectors. Reviewing the
emission intensity of the 24 case cities (see Table 6), we could find
that cities with more heavy manufacturing industries usually have
a higher emission intensity, such as Jixi, Huangshi, Hohhot, Zunyi
and Tangshan. On the contrary, cities with more service sector ac-
tivities have a smaller emission intensity, such as Shenzhen,
Chengdu, Xiamen and Guangzhou. Through reforming the indus-
trial structure, Chinese cities may not reduce CO2 emissions at the
expense of economic development, and achieve both
ations of city level CO2 emission accounts in China, Journal of Cleaner
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environmental and social objectives.

6. Conclusion

This paper develops a feasible methodology for constructing
territorial CO2 emissions inventories for Chinese cities. By applying
this methodology to cities, researchers can calculate the CO2
emissions of any Chinese cities. This knowledge will be helpful for
understanding energy utilization and identify key emission con-
tributors and drivers given different socioeconomic settings and
industrialisation phrase for different cities. Accurate accounts of
cities’ CO2 emissions are considered a fundamental step for further
analysis on emission-economic nexus, as well as proposing miti-
gation actions.

We applied this methodology to 24 cities and compiled the 2010
CO2 emissions inventories for the cities. The results show that, in
2010, the “Production and supply of electric power, steam and hot
water”, “Non-metal mineral products”, and “Coal mining and
dressing” sectors produced the most CO2 emissions. Additionally,
coal and its products are the primary energy source in Chinese
cities, with an average of 69.98%. In order to reduce the CO2
emissions in Chinese cities, we could take policy to reduce the coal
share in the energy mix and replace heavy emission intensity
manufacturing industries with service sector with smaller emission
intensity.

The study still contains some limitations. For example, we scale
down the provincial energy balance table by using a city-province
percentage. By using the different city-province percentages, the
deduced table for the city may not be balanced. However, this is
restrained by the data at city level. The method developed in this
study is based on the most comprehensive data we can ever find.
Further research will be conducted to improve the accuracy of city's
emission data.
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