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Abstract

Water quality has a crucial impact on human hedltarefore, water quality index modeling is
one of the challenging issues in the water sedtoe. accurate prediction of water quality index
is an essential requisite for water quality manag@mhuman health, public consumption, and
domestic uses. A comprehensive review as an irattaimpt is conducted on existing solutions
through data-driven models. In addition, the enderftalman filter is found to be a suitable
data assimilation method, which is successfullyliadpn hydrological variables modeling and
other complexes, nonlinear, and chaotic problemshis study, a new application of ensemble
Kalman filter-artificial neural network is propose predict water quality index using
physicochemical parameters for two commonly pofititavers, namely Klang and Langat, in
Malaysia. As a further attempt, in order to improttee models’ performance, a new
preprocessing technique is adopted as the newlgtiwared assimilated model. The results
confirm that ensemble hybrid basedrinsic time-scale decomposition has reduced roean
square error by 24 % for Klang and 34 % for Langagpectively, compared with the intrinsic
time-scale decomposition-conventional neural nétwanodel. Overall, the developed
assimilated methodology shows the robustness ofptioposed ensemble hybrid model in
analyzing water quality index over monthly horizothet experts could evaluate the water

quality of rivers more efficiently.

Keywords: Physicochemical Parameters, Water Quality IndextaDsssimilation, Ensemble

Kalman Filter, Intrinsic Time-scale Decomposition.
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Nomenclature

ALK= Alkalinity AN= Ammoniacal-Nitrate
ANFIS=Adaptive Neuro-Fuzzy Inference System  ANN4ifigial Neural Network
ANOVA= One-Way Analysis of Variance As=Arsenic

Atr= Atrazine BOD= Biological Oxygen Demand
BTEX= Benzene-Toluene—Ethylbenzene—Xylenes C=Qufifo

Ca= Calcium CA= Cluster Analysis

Cd= Cadmium COD= Chemical Oxygen Demand
Cl= Chlorine Cr= Chromium

Cu= Copper DA= Data Assimilation

DO= Dissolved Oxygen DoE= Department of Enviremin
DDMs= Data-Driven Models DS= Dissolved Solids
DT=Decision Tree EC= Electrical Conductivity
EnKF= Ensemble Kalman Filter F= Fluorides

FC=Faecal Coliforms Fe=Iron

FS=Fourier Series FST= Faecal Streptococcus
GA=Genetic Algorithm GD= Gradient Descent
HCA=Hierarchical Cluster Analysis HCBD= HexaChlatBDiene

Hg= Mercury ITD= intrinsic time-scale decompasi
K=Potassium KNN= K-Nearest Neighbor

LS-SVM=Least Square-Support Vector Machine MAE= NMdédsolute Error

Mg= Magnesium MLR=Multiple Linear Regression
MNNs=Multiple Neural Networks MSA= Multivariatet&istical Analyses
Na= Natrium NB = Naive Bayes

NH3=Ammonia NH3-N= Ammoniacal Nitrogen
NH4= Ammonia NH4-N=Ammonia-Nitrogen

Ni= Nickel NO2= Nitrite

NO2-N=Nitrite Nitrogen NO3=Nitrate
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NO3-N= Nitrate Nitrogen NSE= Nash-Sutcliffe Eféncy

NTU= Turbidity OG= QOil and Grease

PAH= Polycyclic Aromatic Hydrocarbons Pb= Plumbum

pH= Potential Hydrogen PO4=Phosphate

PO4-P= Phosphate Phosphorous PR@per Rotation Components

PSO =Particle Swarm Optimization RBC=Rule-Bastatsifier

RBFN= Radial Basis Function Network RMSE= Rootavié&square Error

RSD= Ratio of RMSE to Standard Deviation Sa= Saleflas

Sim= Simazine SMLR= Stepwise Multiple LineargRessions
SO4= Sulphates SS= Suspended Solid

SVR= Support Vector Regression T= Temperature

TA- CaCO3= Total Alkalinity of Calcium Carbonate ¥Qotal Coliforms

TCB= TriChloroBenzenes TDS= Total Dissolved 8ol

TH=Total Hardness TH- CaCO3=Total Hardness dtiGa Carbonate
TP= Total Phosphorus TOC= Total Organic Carbon

TS= Total Solids TSS= Total Suspended Solids

Twater= Water Temperature U95= Uncertainty a¥®5

WQI= Water Quality Index Zn=Zinc

1. Introduction
Water is the crucial natural element for human isatvand social development as well as the
ecological (natural, biological, environmental) hiedLi et al., 2009). Water is the fundamental
element for industrial, agriculture, and biotramsfation purposes regardless of drinking and
personal hygiene. In the last few decades, watdutfpm has turned into a severe problem
worldwide, particularly in developing countries. ¥a quality evaluation is, therefore, an
essential issue since it directly influences péepliges, and requires further attention from
decision-makers (Zhang and Li, 2019). For this pegy the main characteristics of water,

namely biological, physical, chemical, and radiadady are considered as the water quality (Liou
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et al., 2004). This is the extent of the conditadnwater regarding the prerequisites of in any
biotic animals and also to any human need. Lowityuaf surface water that is calculated by
various standards such as the health of ecosysteesafety of human, and drinking water is a
crucial subject in the developing world, accorditg which threatens ecosystems and
plants/animals life and human health (Sarkar et2807). Rivers are the most accessible water
resources and has been the primary water supphlyuioan civilizations throughout history
(Mohammadpour et al., 2016). Rivers among variausces of water supply have been utilized
more frequently for human societies' developmeettdueasy access (Ishikawa et al., 2019). The
reason for utilizing rivers instead of other watesources like groundwater and seawater is that
they might have some problems such as land suld@iotagh et al., 2017) and pollution
transmission (El-Kowrany et al., 2016), respectivel

Many years ago, the Department of Environment (Dsiggested the reception of WQI to
evaluate and rank the degree of waterways contéimmaFrom that point, the DoE
recommended a methodology called (OP-WQI) whichhdgafor Opinion Poll WQI for
ascertaining the rank the level of water river eéirby waterways. The strategy that utilized for
figuring the WQI in Malaysia includes extensiveimsitions, changes, devouring time, and
exertion (Hameed et al., 2017). In this manner,geating an alternative approach, which is
immediate and faster with high exactness of compgutine WQI, is required. The advantage of
water quality index modeling is to provide betteamagement of rivers (Gurjar and Tare, 2019).
For decades, precise prediction models of watelitgyzarameters established by experts like

(Ishikawa et al., 2019).

Artificial Neural Networks (ANNs) is one of the a@ténding DDMs which have been

successfully applied to address many predictioneissassociated with thenvironment and
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water resources such as stormwater prediction @Bagif al., 2019), wastewater modeling
(Bagheri et al., 2015), heavy metal prediction {Net al., 2018), sediment transport modeling
(Moeeni and Bonakdari, 2017), streamflow forecagtiittar et al., 2020), water level
forecasting (Nayak et al., 2006). Although ANN misdacrease the capacity of model functions
by training the data sets, it has some disadvastageluding difficulties in assessing the proper
network structure and finding the local optimungvslconvergence rate, and long training time
(Chau, 2006). All prediction and measurement apgres. have some errors related to them as

models do not appropriately simulate the whole beaf the real system (Attar et al., 2018).

Data Assimilation (DA) can be a useful technique fioe generation of an accurate state
estimation by fusing the data from these sourcexzgR-Balf et al., 2019b). Predictive model
parameters can be adjusted automatically throughttidfis based on mathematic conceptions
(Kashif Gill et al., 2007). The essential of DAt evaluate errors in the model along with the
observation data and to update model states by ioorgbthe model with observations

(Abbaszadeh et al., 2017; Moradkhani et al., 2005).

Researchers have proposed various strategies dacirg input/output variables to overcome
non-stationary time series in hydrological paramse{€hang et al., 2018) These strategies are
known as the pre-processing procedures for impgptie original data to noise ratio (Rezaie-
Balf et al., 2019b). Also, the time series varigbtan be changed into reasonable structures for
further estimation (Dong et al., 2019). Intrinsicng-scale Decomposition (ITD) is one of the
time-frequency-energy analysis, which is utilizadhis investigation to arrange multicomponent
variables into a few Proper Rotation ComponentSd8®Rnd change non-stationary signals into

stationary ones (Martis et al., 2013). In otherdgthe nonparametric decomposition technique
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has been influential for the dataset that inheyeistinonstationary and nonlinear with minimal

assumptions about data (Yu et al., 2017).

This study aims to provide an overview of availa@®Ms for WQI prediction. Several
predictive models based on soft computing appbcatihave been reviewed here in order to
assess the literature. The core objective of tkegmt research is to develop a new and accurate
hybrid model for predicting WQI using physicochealiparameters in Klang and Langat Rivers,
the two case studies in Malaysia. To the knowleafgthe authors, there is no published study
related to the application of the ANN learning maetand the Ensemble Kalman Filter (EnKF).
The main contribution of the study is to address #ironeous noise reduction for both
remarkable improvements in data quality, and ptemficaccuracy seems to have blurred the
hydrology community on the effectiveness of redutin nonlinear noise in WQI predicting. So
then, ITD is firstly used in the present study tonsount the non-stationarity issues applying to
decompose the original time series dataset regasdater quality parameters into several sub-
sequences. Different models, therefore, are bailefich sub-sequences according to its intrinsic
features. Another purpose of this study is to esttrihe robustness of the hybrid ITD-EnKF-
ANN vs. other hybrid models such as GD-ANN, EnKF-ANN, ahiD-EnKF-ANN viz
analytical calculation of performance with graphislats and numerical metrics of modeled and

observed WQI data.

2. Literature review

WQI is a number that illustrates the sum of watgaliy parameters as a particular number and
is useful for managers and decision-makers to asdes water quality in any specific site

(Mijares et al., 2019). WQI is introduced in German 1848 (Tasneem Abbasi, Shahid A.,

2012), and Horton proposed the first WQI in 19668t K, 1965).WQI has ranges by its index
7



184  numbers, which shows how the water is clean, andritbe classified as excellent quality, good
185 quality, poor quality, very poor, and unsuitable @inking (Khalid et al., 2018). In general,
186  water quality indexes are divided into six categeras follows: river WQI, drinking WQI,
187  Groundwater WQI, sanitation WQI, irrigation WQI, caWwWQI in the wetland (Babaei et al.,
188  2011). Table lprovides a list of relevant studies on the applcanf DDMs in river WQI
189  prediction. Also, the participant of physicochermigarameters on the prediction of WQI
190 extracting from literature review between 2000 &@d9 are illustrated pH and DO with the
191  95.83 and 91.67, respectively, were the most intiaé parameters researchers considered for
192  the studies (Figure 1).
193 Table 1 Application of DDM using WQI prediction-literatereview from 2000 to 2019.
194
Authors Year  Model Time scale Input Variables StudyArea Journal
Khuan et. al Pahang an Student Conferenc
(Khuan et al., 2002 ANNSs Annually DO, BOD, COD, pH, AN, SS Selangor Rivers on Research and
2002) in Malaysia  Development(IEEE)
Juahir et. al R
(Juahir et al., 2004 ANNSs Annually DO, BOD, SS, Langalt Rl\_/er n . Journal
2004) AN, COD, pH Malaysia Kejuruteraan Awam
Ocampo- DO, pH, EC
Dugue gt ol SS, BOD, TOC,
' ANFIS TC, FC, Sa, FST, PO4, NO3, Ebro Riverin Environment
D(l?ijaemeqoz;l 2006 Monthly NH4, SO4, CI, F, Atr, BTEX, Ni, Spain International
‘;006) g Sim, TCB, Cr, HCBD, PAH, As,
Pb, Hg
T, EC, DS, pH, NTU, S
Gazzaz et. al TS, NHS-N, DO,
: BOD, COD, Na, K, Ca, Mg, Kinta River in Marine Pollution
(Gazzaz etal, 2012 ANN Monthly  No3-N, CI, PO4-P, As, Zn, Fe,  Malaysia Bulletin
2012)
TC, C
Amornsama
nkul et. al 14th international
(Amornsaman 2012 FS, GA Monthly pH, DO, T_?'_ F_(l_:’ BOD, SS, TP, Thailand conference on
kul et al., ain L water Automatic Control
n.d.)
Sinha et. al CA, The Hooghly Desalination and
(Sinha and 2013 ANNSs Monthly pH, DO, FC, BOD, TC River Basin of ~ Water Treatment



(Saha), 201«

Mohammad
pour et. al
(Mohammadp 2015
our et al.,
2016)

Sahoo et. al
(Sahoo et al., 2015
2015)

Than et. a
(Nguyen Hien
Than et al.,
2016)

2016

Babbar et. al
(Babbar and 2017
Babbar, 2017)

Ahmad et. al
(Ahmad et al., 2017
2017)

Hameed et.
al
(Hameed et
al., 2017)

Pham et. al
(Pham et al.,
2017)

Al-Musawi
et. al
(Al-Musawi
et al., 2017)
Yaseen et. al
(Yaseen et al., 2018
2018)
Wau et. al
(Wu et al.,
2018)

Wang et. al
(Wang, 2018)

Tiwari et. al
(Tiwari et al.,
2018)

2017

2017

2017

2018

2018

2018

SVM

ANFIS,

PCA

ANNs

NB, DT,
KNN,
SVM,
ANN,
RBC

MNNs

ANNs

HCA,
CA,
ANOVA

ANNs

ANFIS

SMLR

SVR,
PSO-SVR

ANFIS

Weekly

Monsoon
season

Annually

June 1995—
1997

Weekly

Monthly

Seasonally

Annually

Monthly

Seasonally

October
2016

Annually

West Bengal ir
India

Wetland in the
' Universiti Sains
in Malaysia

T, pH, DO, EC, SS, NO2, NO3
AN, BOD, COD, PO3

pH, DO, BOD, EC

NO3-N, TC, FC, COD, Brahmani River

NH4-N, in India
TA-CaCO3
TH-CaCO3
T, Sunshine, Rainfall, Humidity, '"ooord N
Twa[er, pH, DO, NTU, C, EC Vletnam

NTU, pH, DO, Yamuna River
BOD, TDS, TH, CI, NO3, S04, o .
TC Basin in India

DO, SS, pH, NH-N, T, EC,

NTU, DS, TS, NO3, Cl, PO4, As, Pgak. River
Zn, Ca, Fe, K, Mg, Na, OG, E- M:E;;g
Coali, C, Cd, Cr, Pb
Langat Rivel

DO, BOD, COD, NH3-N, SS, pH . }
in Peninsular

Malaysia
The Upper Pai
DO, BOD, of Dong Nai
COD, NH4, N, PO4, P, TSS, pH River Basin in
Vietnam

pH, PO4, NO3, Mg, Ca, TH, Na, Tigris River of

S04, Cl, TDS, Alk, EC, Fe, NTU Baghdad in Iraq

DO, TS, NTU, Ca, BOD, COD, >elangor Rive

located in
T, pH Malaysia
T, pH, DO, EC, NTU, N, P, NF- In Lake Taihu

N, NO3, NO3-N, Ca, Mg,
Cl, so4
COD, DO, pH, NTU, EC, TF
TN, NH4-N, NO2-N, NO3-N, Ca,
Mg, Cl, SO4, Tate

DO, BOD, TDS, SS, NH3-N, N,
TP, FC

Basin in China

Ebinur Lake in
China

River Satluj in
India

and Klang River

Environmental
Science and
Pollution Research

Aquatic Procedia

Journal of
Environmental
Science and
Engineering

Environmental
Earth Sciences

International Journal

of River Basin
Management

Neural Computing
and Applications

Journal of Water
Sustainability

Applied Research
Journal

Water Resources
Management

Science of the Total

Environment

Nature, Scientific
Reports

Advances in Civil
Engineering



Yilma et. al Little Akaki Modeling Earth
(Yilma etal.,, 2018 ANNSs Seasonally T'I(')%S C'\é)gogol\[l) ND%Z ;I' NE(':I'A H River in Addis Systems and
2018) P Ababa, Ethiopia Environment
Leong et. al i . International Journz
(Leong etal., 2019 SVSI\C/I\/II_ S Annually DOS;SBOIS’ 28 D, Pe,\;lzlfaSt:il;e n of River Basin
2019) » PH y Management
Kumar et. al . International Journz
(Kumar et al., 2019 MSA March 2012 pH, T, DO, BOD, COD, TN, Yar‘nuna.Rlver of River Basin
NH4, TC, FC in India
2019) Management
('f(z%zmmeé le 019 ANNS, Pﬁ;‘:scggfl' pH, EC, TDS, TH, Ca, Mg, Na, Shivganga River Mg"’;';?ﬁf;‘rfg
v MLR K, Cl, HCO3, SO4, NO3, PO4 Basin in India ys
2019) seasons Environment
Kukrer et. al - Environmenta
(Kikrer and 2019 MSA Monthly PH, -(r:’aEclil’ iIIS—IBB?:E gg A, Egrkaéyic:]u_lz_ﬂrlli()sm Monitoring and
Mutlu, 2019) T T y Assessment
Ho et. a o
NH3-N, BOD, Klang River in Journal of
(Hoetal, 2019 DT Monthly COD, DO, pH, SS Malaysia Hydrology
2019a)
195
196
__________________________________________________________________ ~
/ - M Annually  ®m Monthly \'\
I Seasonaly = Other I
i 72917 FC,2500 |
! !
I BOD, 75.00 NHSN, I
i 504 2500 G 2500 20.83 ‘I'H,20.83 |
i s TP1250 Fe, 12.5C I
! 1567 m,:.s.ai |
! COD, 54.17 K 12.50 12 50 . |
| NO3-N, I
! 2‘5“;.," . !
\ /
\ DO, 91.67 It /.
197 e -
198 Figure 1. The participation of physicochemical parametershenprediction of WQI extracted
199 from the literature review between 2000 and 20109.
200
201  Chang et al. (Chang et al., 2001) considered tfueey synthetic evaluation approaches to
202  model Taiwan river water quality at the Tseng-Wieemrsystem. The results demonstrate that a
203 fuzzy synthetic evaluation method could be usetul daily total maximum load prediction.

10
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225

Khuan et al. (Khuan et al., 2002) predicted WQI tbree years for rivers in Pahang and
Selangor in Malaysia by using three algorithmshef ANN, including backpropagation, modular
neural network, and radial basis function. Ressittiswed that the RBFN algorithm had higher
accuracy than the two other models. Khan et al.a(Kkt al., 2003) assumed two different
standard indexes namely British Columbia water iguahdex (BWQI) and Canadian water

quality index (CWQI) to estimate WQI in specificatersheds of the region of Atlantic: the
Point Wolfe River, the Mersey River, and the DunkeR of Canada. The results of this study
asset each standard indexes.

Juahir et al. (Juahir et al., 2004) tested ANN, andtiple linear regression (MLR) approaches
for modeling WQI in the site of the Langat River dBg Malaysia. They showed that

Biochemical Oxygen Demand (BOD), Chemical Oxygerm@ed (COD), Dissolved Oxygen

(DO), Ammoniacal-Nitrate (AN), Suspended Solids S&1d pH were contributed to the

estimation of WQI. The results indicate that withitling two parameters, namely COD and pH
as independent variables, the accuracy of the ANMaihcould be better. Ocampo-Duque et al.
(Ocampo-Duque et al., 2006) stated fuzzy infereaystems as a model for estimation WQI in
Ebro River (Spain). The outcomes of this study h&c to proper linking between fuzzy

inference systems and parameter weighting apprea¢tee et al. (Hore et al., 2008) utilized
the artificial neural network to estimate WQI bycessing waste and polluted water from
industrial waste. Two algorithms, namely multilay&rceptron (MLP) with a back-propagation,
were used in this study. As a result, they fourat NN was a convincing method in WQI

prediction. Lermontov et al. (Lermontov et al., 9D0sed a fuzzy water quality index in order to

predict WQI in Ribeira do Iguape River watershed®mazil. They introduced a new Index as the

11
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247

248

fuzzy water quality index (FWQI), and the resultshos study showed a good correlation with

the traditional calculated index.

Roveda et al. (Roveda et al., 2010) evaluated flzgig in a case of Sorocaba River to model
WQI, and they tried to compare the estimated WQIhwCETESB WQI (Companhia de
Tecnologia de Saneamento Ambiental, in Brazil). yTieund that it is better to use this
estimated method instead of CETESB. Mahapatra. dMahapatra et al., 2011) evaluated the
Fuzzy Inference System for estimating WQI in Inthg utilizing two methods of Sugeno,
Takagi, Mamdani, and Kang (TSK) models. The resofltthis study were compared with three
international WQI criteria, and it was found thia¢ ttascaded fuzzy system has precious results.
Gazzaz et al. (Gazzaz et al., 2012) presented ANNadel WQI for the Kinta River in Malaysia
with three categorical variables, including watéwco water level, and weather, and 32
parameters. The algorithm of ANN called quick pmgut#on training algorithm was defined as
the best algorithm to model WQI. Sinha & Saha (8irdnd (Saha), 2014) evaluated the
reliability of artificial neural network and clustanalysis modeling in the case of the Hooghly
River basin in India for WQI estimation. They trieml compare the results of these methods of
DELPHI and CCME, and they found that the DELPHI hoet has the superior ability in WQI

estimation rather than the CCME method.

Hameed et al. (Hameed et al., 2017) investigatéificea intelligence techniques with two
different algorithms, namely BPNN and RBFNN, to rebdVQI in the tropical region in
Malaysia. They have used six water quality parametecluding DO, NH3-N, COD, SS, BOD,
and pH. Results demonstrated that the RBFNN algariperformed better than BPNN, which
has higher precision. Babbar & Babbar (Babbar Batlbar, 2017) evaluated water quality

index applying techniques of data mining as floadificial neural networks, naive Bayes,
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decision trees, k-nearest neighbors, and suppatbvenachines. Parameters that are used to
their study were pH, chlorides, DO, BOD, total tmims total dissolved solids (TDS), sulfates,
hardness, nitrates, and turbidity. They detectatittie decision tree and support vector machine

classifiers are the best models among the other DM

Kisi and Yaseen (2019) analyzed alternative hybriddels based on grid partition and
subtractive clustering models and adaptive neurayfunference system (ANFIS) integrated
with fuzzy c-means data clustering, in order to eld¥QIl in Selangor river basin in Selangor
by utilizing WQI parameters namely temperature, BQD, turbidity (TU), total suspended
solids (TSS), calcium (Ca), COD, and pH. The rasdémonstrate that in the case of accuracy,
ANFIS-SC and ANFISFCM have better results in corgmar to the ANFIS-GP model. Ho et al.
(2019a) employed decision tree machine learninignigces accompanied by different scenarios
(different inputs) for Klang river in Malaysia witix water quality parameters such as NH3-N,
DO, BOD, COD, SS, and pH in order to predict WQheTresults indicate that the number of
water quality parameters can be diminished as NH$3$| and pH because of a less significant
outcome on WQI prediction in a monitoring procesgong et al. (2019) outlined the use of a
support vector machine (SVM) and least-square SYYMMQI modeling. The DoE approach
(Malaysia formula to calculate WQI) was used andsodered six variables, including DO, SS,
BOD, COD, AN, and pH value. As a result, it is fdutmat the LS-SVM model performs better

than the SVM model.

By reviewing relevant literature, it is observeattimost of them used ANN, ANFIS, and SVM
to predict WQI without considering uncertainty irodels’ parameters. That is modest changes
to these parameters can significantly alter the ehodtput, making their uncertainty a serious

source for predict errors. Therefore, in this sfuthe feasibility of estimating parameters
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simultaneously with the dynamical state is invesg using EnKF by means of state space
augmentation. Monitoring and reducing the noisey-stationary, non-linearity, and complexity
of the time series data can be another gap thatnettaken into account in previous studies.
Prior to using input time series data in the modelkelopment process, the frequency
components should be resolved to enhance the agcwfthe model. Hence, ITD is a
decomposition tool available to address such issagsrecisely reconstruct the original time

series data and give an appropriate spectral depacd sub-series.

3. Case studies and available data

Adequate water resources are essential for ovecathomic prosperity in a developing country
such as Malaysia (Najah Ahmed et al., 2019). Howes@me areas in Malaysia are currently
experiencing water shortages, even though largeiate®f water reserves are available (Naubi
et al., 2016). This growing need for water is doethie growth in population, urbanization,
industrialization, and irrigated agriculture havardatically increased the demand for alternative
water supplies (Ho et al., 2019b). During the maomseseason, most flood-prone areas
experience flooding or flash floods that cause lfskves, damage to property, and destruction
of crops. According to (Ahmed et al., 2019), duethanging weather patterns, this situation will
only get worse, and Malaysia has to improve itsgisaster management systems in order to
avoid further damage and other adverse effectseddug floods in the future.

Before focusing on the core of the study (develgpmwater quality prediction model), it is
necessary to provide an overview of the climatedd@n in the selected study area. This is due
to the fact that the climate condition could beeesigl for the model generalization ability for
future research. The climate condition for botteribasins is the same as both are located in the

tropical zone in Malaysia. In general, the Malag&aclimate is affected by several regional and
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global phenomena such as El Nino, Indian Ocean IBid®D), and monsoons (Suhaila et al.,
2010). These phenomena played a vital role in fldedhogical formation of the whole country
and, more specifically, the extreme events of #iefall along with the whole year. The annual
rainfall is almost 2000 mm, and the highest recdrdainfall was 330 mm that has been
experienced in November. On the other hand, thesbwecord has occurred in June with almost

100 mm (Tangang et al., 2012).

Seasonally, two major monsoon regimes influencedctimate in Malaysia, namely; Northeast
(NE) and Southwest (SW) monsoon patterns. The SWsoun season that is dominated by the
low-level south-westerly winds begins in May anst$athrough August. On the other hand, the
NE monsoon season that is controlled by the nostheend commences in November and ends
in February of the following year (Tan et al., 2D119 terms of the temperature pattern in both
study areas, the maximum temperature that has te@ended during the last 40 years ranged
between 32 and 35C, while the minimum temperature was ranged betv@i8@ and 25C.
From these records, it could be noticed that threomachanges in the range of temperature,
whether the maximum or the minimum ones, showed ti@a temperature might not play a

significant influence on the water quality pattéPalizdan et al., 2015).

Recent research showed that there might not afisigmi change in the climate condition in

Malaysia in the short and medium terms. Howeveis gxpected that there might be a gradual
change in the long-term trend changes in the rhiaf@ temperature patterns. In this context, in
the long-term, such significant changes in the @aalsor annual rainfall and the maximum and
minimum temperature could drive to changes in thgewquality patterns. This is due to the fact

that such changes could influence on the flooddandght frequency and hence the availabilities
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of the freshwater. Also, it has been observedttimimonsoon phenomenon is the most powerful
system on the climate condition in Malaysia (Soalgt2019).

In the present study, in order to examine the pgedanodels’ performances, two different case
studies were chosen, namely the Klang River and.éimgat River. In the following subsections,

details about the water resources and water qufalityoth rivers would be explained.

3.1. The Klang River

The Klang River stretches approximately 120 km dlgio the two most populated areas in
Malaysia; the State of Selangor and the Wilayahl&uwampur. The river flows from the Ulu
Gombak Forest Reserve to Port Klang and on intoStnaits of Malacca, one of the busiest
shipping lanes in the world. The Klang River basirthe country's most inhabited region, with
more than four million residents. This area corgaaveral main cities of the Selangor State and
Wilayah Kuala Lumpur, such as Klang, Shah Alam,Heug, and Petaling Jaya. The biggest
seaport in Malaysia, Port Klang, is also situatadh®e estuary of the Klang Riv&tuahir et al.,
2004) The Klang River's watershed covers approximaieB88 knf of the storage basin. This
region has witnessed the country's strongest ecaengrawth, and 35 % of the area has been
built up for residential, commercial, industrialdamstitutional purposes. This region is also
considered to be polluted as the extensive devedapsralong the river basin due to the illegal
discharge of unprocessed wastewater, as well asntemt plant and animal farming waste,
which has deteriorated the water quality of themiigure 2 illustrates the location of the river

in Malaysia and the location of the water qualitymtoring stations.
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Figure 2. a) Location of Klang River Catchment and b) watealdy monitoring
stations

The Klang River serves as the primary water sugplyrce for Selangor and Kuala Lumpur,

providing nearly 1,128.4 million liters per day (EQ2007).

The data selected for the present study were momtater quality parameter assessment data,
summarized as WQI. The six physicochemical wataliguparameters used to calculate the

WQI was biochemical oxygen demand (BOD), chemicajgen demand (COD), dissolved
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oxygen (DO), suspended solids (SS), pH and ammahiatrogen (NH3-N). The data were
collected from monitoring stations situated on Klang River (Yahya et al., 2019). A total of
305 data samples were accumulated for the durbgtmeen January 2005 and August 2016 for

this study (Palizdan et al., 2015).

3.2. The Langat River

One of Malaysia’s most important rivers, the Langater, is regarded as the primary source for
agriculture, consumption, farming, and fishinghe state of Selangor (see Figure 3). The Langat
River runs west across the Langat Basin to Kuataghtifrom the highest point of the 1,493 m in
the Titiwangsa Range. It then flows into the Ssrait Malacca. It is 78 km long discharges an
area of 2,350 kf The Langat River is mainly characterized by wateties (e.qg., natural lakes),
forests, agriculture, and urban residential andmengial areas. The types of forests within the
catchment area are mangrove, dipterocarp, and swaimp dominant land-use within the

catchment area is for agricultural purposes.
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Figure 3. Location of the Langat River Catchment
Land-use practices along the banks of the riveehed to the degradation of the water quality of
the river (Najah et al., 2011). Research by Yaltyal.gYahya et al., 2019) determined that the
main factors contributing to differences in the lgyaof the Langat streamflow were the
development of the wastewater treatment plantstladndustrial waste (chemical effluents), as

well as runoff from domestic and commercial areas.

3.3. Available data
In 1978 DoE established baselines to detect therveatality changes in river water quality and

has since been extended to identifying pollutioarses as well. Water samples are collected at
regular intervals from Water samples that have lmetlected from designated stations for in--
situ and laboratory analysis to determine physieadbal and biological characteristics. Water

quality monitoring activities were privatized to M@ (Alam Sekitar Malaysia Sdn Bhd) on 1st
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January 1995, both manual & automatic monitorimg2005, 1064 manual stations in 146 river
basins were monitored (Thorough review of riverit®s& monitoring stations in 2004).
Parameter for in-situ measurement are DO (%), D@/IjmTurbidity (NTU), Conductivity
(uS/cm), Salinity (ppt), pH, Temperature (T). Whilee parameter for lab analysis are: BOD,
COD, SS, NH3-N, pH, DS, TS, NO3-N, CI, PO4-P, O&BAS, E.coli, Coliform, As, Hg, Cd,
Cr, Pb, Zn, Ca, Fe, K, Mg, Na [ 24 chemical anddgal parameters ]. There are three types of
monitoring stations that have been used by DoEl¢mtify the water quality parameters. The
first type is the baselines stations that allocatetthe far upstream position of the river, whish i
only considered for reference and not for detedtigreal water quality status of the river as the
river did not affect by the water users. The sectype is ambient stations used for monitoring
the water quality, and their records are used tofigore the change in the water quality
parameters. These stations are located along hgttwhole river to detect the point and non-
point sources of pollution. While the third type tbe station is the impact station. This type is
used for enforcement purposes and not for the ledion of the real water quality status of the
river.

The data is available in, owned by DoE, and cowdshared for research purposes. The data
have been collected from DoE, who operates theseitonmg stations for both Klang and
Langat rivers, which is institute in charge to ntonthe water quality for all rivers in Malaysia.
In the present study, DoE (DOE, 2007), Malaysiavigled the water quality records for the
Langat River. The data of the water quality wererded irregularly with respect to particular
time intervals; therefore, quarterly data wereanstused to expedite the study. Consequently,
the present study utilized time-series water qual#ta (ranging from September 2002 to August

2016) at several monitoring stations for the regpliiparameters. Because this research utilized
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three-monthly record data, the data reflectingfitts¢ quarter were drawn from that quarter's last
month, i.e., from March. Likewise, June data refedcthe results for the second quarter.

On the other hand, for the last month of a spedqtiarter, if there were no data available, data
were then taken from any of the other months witthiis quarter. For instance, the data
representing Quarter 1 were obtained from eitheudiy or February. Similarly, data from April
or May were used to reflect the data for Quartem2order to ensure the development of a
reliable model, it is required to utilize regulaatd monitoring. In this context, the proposed
model in this study has been developed based ostehey acquired water quality data.

The main reason for the selection of these per{@@85 to 2016 for Klang River and 2012 to
2016 for Langat River) is that the monitoring ptagr for the water quality parameters during
these periods was more reliable. In fact, it isee8al to develop the model relying on reliable
data in order to achieve a successful model streict this context, it was decided to utilize the

available reliable data during these periods teetitgvthe proposed model.

4. Methods

This section is categorized into six parts inclgditetermination of WQI as a national index, an
artificial neural network with its formulation, esreble Kalman filter as a data assimilation
technigue, intrinsic time-scale decomposition mdthaescription of ITD-based WQI prediction

models and in the last part, the performance ofrtbdels was assessed.

4.1. Determination of WQI
As defined by the US Foundation of National SamtgtWQI varies from 0 to 100, where high

water quality results in the high value of WQI, agver values of WQI represent the low
quality of water (Said et al., 2004). In 1974, beE Malaysia endorsed an index to evaluate the

surface water quality in Malaysia. Thoroughly, pegameters were chosen as chief water quality
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variables to develop and calculate WQI, such as BOD, SS, NH3-N, BOD, and pH for
surface water (Khan et al., 2003). These variasihesild be transformed into a non-dimensional
parameter that the relationship for each parantateibe seen from (Gazzaz et al., 2012), which
has the best-fit relations of parameters. WQI camlitained considering the following equation

(Khuan et al., 2002):

WQI = 0.22SIpp + 0.19SIp0p + 0.16SIcop + 0.15SIyys_y + 0.16SIss + 0.12S L,y 1)

4.2. Artificial Neural Networks

Artificial Neural Networks (ANNSs) is one of the mtoBuitful and brain neurological based
black-box methods in modeling environmental issweggcifically in water quality modeling
(Gazzaz et al., 2015). The central aspect of ANINthe estimation of nonlinear models with
input data and resulted in the output data whilegispecific functions and algorithms by
learning from an example (Maier et al., 2010). Tisdel typically depends on the architecture
of networks, the hidden layers, and nodes. ANN rsoden be categorized into varied categories
according to which gradient descent model (GD)ris of the learning approaches. One of the
most critical mathematical optimization methodsGB is backpropagation that is applied for
learning the connection weights of algorithms in MMhodels. The gradient descent model
usually attempts to minimize the root-mean-squamore (RMSE) by utilizing the
backpropagation algorithm. As aforementioned, tidNAmModel influenced by the architecture
of neural networks. Multi-layer perceptron is orfetlle most usual and popular feedforward
types of ANNs architecture and functions for modglin nonlinear occurrences (Rezaeian-
Zadeh et al., 2012). Single neurons titled perosptis the basis of this network. This

architecture involves three layers, including ingutiden, and output layers. The hidden and
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output layers contain a specific amount of neurdms, the input layer will vary by the data
dimensions. The weights (w) connecting layers afendd by training algorithms that utilize the
BP algorithm. Bearing above in mind, algorithms tise Levenberg-Marquardt algorithm for
their function approximations. Further informatiabout this typical neural network architecture

could be found (Taud and Mas, 2018).

4.3. Ensemble Kalman filter

Data assimilation is the technique which is dedtlhwrrors in model parameters, uncertainties in
the models, boundary conditions errors and etc. @tiee prominent data assimilation structures
is the Kalman filter, which was proposed by (Kalmd®60) for linear systems. Ensemble

Kalman filter (EnKF) was first introduced by (Evems 1994) as an extended Kalman filter. The
application of EnKF is based on an ensemble of kitimns, which can represent the distribution
of the system (Johns and Mandel, 2008). Unlikekthknan filter, EnKF can suit for nonlinear

models (e.g., hydrological models). The backgroahthis model is based on the approach of
Monte Carlo, in which probability density is thgresentation of the state (Clark et al., 2008). In
the state of ensemble data assimilation generatiwo, errors should be worth considering,

namely internal and external error. Consider tretesy of a stochastic, nonlinear, general model,

M and the observations (Kalman, 1960),

x () = MIx/ (t5-1), U(te-1)] + @ (1) (2)

yO(ty) = H(t)x () + 9(ty) (3)
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where the forecast representedxyt,) € R™ of the system state at the timg the system
forcing U(t,-,), and the one-time step of the model showed wHh It is compulsory to
combine the measurement taken from the observatidnmodeled by Equation (2), to gain an
optimum approximation. By using the information givby the system model Equation (3). The
forecast state at the timg, denoted by”(t,), is the forecast from observation time, to

observation time;, by the following Equation,

xT () = M[x(ty—1), U(tr—1)] (4)

wherex?(t,_,) is the modeled system state. tp, an observatiow®(t,) is existed, and the

investigation step restructures the model,

x(ty) = x7 (&) + K[y° (ty) — H(tr)x" ()] 5)
where,
K(ty) = P7(t,)H(t ) [H (6 )P (6 )H ()T + R]™ (6)

are the minimum variance gain and tlwariance matrix of modeled error represented by

P’ (t,). The covariance in the EnKF algorithm can be estih by randomly generated a finite
number of system states. In order to estimgtas an initial value, an ensemla[’éi =1,..,N

of the uncertainty is stated for randomly generattdes. Original model operator causes the

ensemble members to are transmitted from a onediaeto another (Karunasingha and Liong,

2018),

8{(%) = Mg (tx-1), U(tk—1)] + w;(tx—1) (7)

Where,w; (t;) apprehensions of the noise process. This noiaesigpplementary component for

uncertain parts of the model to estimate the camag between observation and modeled WQI
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489 indices. More information and detailed mathematimatkground of the ensemble Kalman filter
490 could be found at (Maxwell et al., 2018).

491

492  4.4. Intrinsic Time-scale Decomposition

493  Intrinsic Time-scale Decomposition (ITD)is a timeduency representation presented by (Frei
494 and Osorio, 2007) for complex and non-stationamgetiseries hydrologic datasets. Proper
495 Rotation Components (PRCs) are components in whieldlatasets are divided into them.

496 ITD process procedures could be divided into somgss This method has an operator L, which
497  extracts the baseline signal from the input sigiia) that resulted in an accurate rotation and
498 lower frequency in residuals (Frei and Osorio, 200YwhichLx(t) = Lx(t) is the mean of the
499  signal, written ad.(t). The proper rotation components (PRCs) are defasddx(t) = (1 —

500 L) x(t) which is written ad{(t). Then decomposed the input sigrnét) as:

501  x(t) = Hx(t) + L(t) = (1 —L) x(t) (8)

502 ITD algorithm follows four steps, including:

503  Step 1; Finding the corresponding occurrence tip@nd the extreme points of input signé),

504 wherek=0, 1, 2,--. Considering0 = 0 as the first signal.

505  Step 2; Considering the input signé) on the interval [O7« + 2] and I(t) andH(t) as operators
506 over the time interval [O7] in which the baseline-extracting operatoris defined as linear

507 function on the intervakf, 7« + 1]. The baseline extraction operator is desigrsed

508 Lx(t) = L(£) = Ly + (Z225) (x(6) — i), t € (T Tiean), ©)
k+1— Xk
509 and
_ (Tk41—Tk)
510 Lips = @[3 + T2 (e — )| + (1= @) (10)
k+2~ Tk
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Where 0 <a < 1 is a constant value and taken as fixed valy{e & ¥2). Linearly contraction of
original signal built in order to make monotonift) between the extrema points, which is
necessary for PRCs.

Step3; The following operator, were defined foragting PRCs:

H(t) = Hx(t) = x(t) — L(t) = x(t) — L(t) (11)

The main purpose of ITD is to integrate higher algnnto several PRCs. As shown in Equation
11, by subtracting the baseline from the input @sigRRCs can be attained. The advantages of
ITD can be summarized in three concepts; low coatmrtal time, avoiding transient
smoothing, solving the smearing in time-scale spacd constant sifting (this process is applied
to data iteratively in order to generate optimunCBR

Step4 This process of equations 9 and 10 iterativelgaded until the baselingt) converts to a
monotonic function in which the single signal candivided into PRCs.

x(£) = XP HY () + LP (1), (12)

wherep is the number of achieved PRCs.

4.5. Description of ITD-based WQI prediction models
The primary purpose of ITD-based DDMs is to predice WQI using physicochemical

parameters at two different rivers in Malaysia. BobBematics of the ITD-EnKF-ANN, which is

considered to predict WQI at two stations, is shawhigure 4. Before starting three main steps
of decomposition-based models, a total of physieothal measurements and WQI over a
monthly time-scale should be divided into two sef@aparts, calibration (a total of 75 % of data)
and validation phases (the remaining 25 %), thalideodel is selected independent of the

calibration stage.
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Figure 4. The schematic structure of the proposed hybri®{EhKF-ANN) model integrating
intrinsic time-scale decomposition (ITD) pre-progiag approach with an artificial neural
network (ANN) model based on the ensemble Kalmiger fENKF).

The number of the model parameters and the randssrofedata is two factors which based on

them, the number of data points could be calculé&gdni et al., 2019). In this research, little
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random variations of the data revealed that a redde model with a sufficient number of

available observations could be estimated.

By considering (Rezaie-Balf et al., 2019a) studyreé¢ essential steps to enhance the

performance of proposed models can be followed by:

Step 1: ITD procedure is used to break down thatiapd output datasets into several PRC and
one residual components.

Step 2: The GP/EnKF-ANN models are proven as WQimasion tools to calculate the
decomposed PRC and to calculate each componergt th&rsame sub-series (PRC1) and
the residual component of input variables respebtiv

Step 3: The forecasted values of all extracted RR@ residue components using both

GP/EnKF-ANN models are combined to generate the WQI

To summarize, the ITD-based DDMs (i.e., ITD-GP-AMNd ITD-EnKF-ANN) emphasize the

“decomposition and ensemble” idea. The decomposition is to facilitate the pcédg procedure.

Whereas, the ensemble is to formulate a consersdusagéing on the original datasets. In this

work, for verifying and making the pattern of thetracted PRCs and residual components to

reflect the estimation technique and improve thesljation process, two rivers in Malaysia (e.g.,

Klang and Langat) are selected.

It should be mentioned that in step 2, how the ANMridized with a Kalman filter to predict
each decomposed PRC and residuals componentse leothbined approach, the state vectors
are provided to the EnKF technique in which thepatibf the ANN will be considered as state
vectors. The output of the ANN will correct by tBeKF to determine the best estimate of the
analyzed state or system using the observation dhtse states will have resumed all the inputs

of the ANN model for the following time step. Theputs of this network have some differences
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within them, which are related to feedback formpamr force. For more details, one of the

hybridizations of EnKF and ANN the readers can d#ressed to (Sharma and Lie, 2012).

4.6. Model’s performance metrics
In this study, the newly implemented hybrid ITD-BHANN vs. ITD-GD-ANN, and standalone

EnKF-ANN and GD-ANN models were evaluated by selvstandard statistical criteria during
WQI prediction. Besides common criteria such as EMSash-Sutcliffe Efficiency (NSE), and
Mean Absolute Error (MAE), to assess the fidelifyhgbrid proposed models below indices
were applied.

1. Kolmogorov-Smirnov distance (K-S distance): Basures the maximum distance D between

two consecutive cumulative distribution functio@DF) (Justel et al., 1997).
D; = max|F;_;(x) — F;(x)| (13)

2. The ratio of RMSE to Standard Deviation (RSDRORmetric, was first introduced by (Singh
et al., 2005), which is a model evaluation metd@assess the variations between the predicted
and observed WQI data. This metric is calculatesetiaon two error metrics, namely, standard
deviation (STDEV) and RMSE of the observed WQI dqaimts. The lower value of RSD shows

the higher performance of the model.

RMSE [\/ Xit1(WQlops — Wlere)z]
RSD = STDEV,,, [

(14)

JZ?:l(WQlobs - WQlobs)]

3. Uncertainty at 95 % (U95): U95 is considere@ & % uncertainty confidence of the model.

Ugs = 1.96,/ (STDEV?2 + RMSE?) (15)
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581 4. Reliability of model (%): This statistical metiindicates the satisfactory state of the model’s

582  prediction rate by the probability.

N

N K.
Reliability = % x 100 % (16)
(1, if (RAE; < 6)
Ki= {0, else (17)
WQlyye () — WQIps(i
RAE; = [WQlore @ = WQlops (0] x 100 %, RAE; =0 (18)

WQIobs(i)

583 5. The resilience of model (%): This indicator des§ how rapidly the model forecast is likely to

584  recover once an unqualified prediction has follo@&dou et al., 2017).

100 %, if (Reliability = 100 %

N-1

. _ N-1p. 1
Resilience LNL x 100 %, else )
N_&ﬂ&
. _ oy <
R {1, if (RAE; > 8 and RAE;,; <& (20)
0, else

585 WhereF;(x) andF;_;(x) are the CDF of interval and the previous intervatX). WQl,,s and
586 WQI,,. denote the observed and predicted values, resp@ctim is an average of
587 observed values, ardl is the number of the datasBAE; is the ith value for the dat&; is the
588 number of periods that the threshold valéeaf the qualified forecast is greater than or éqoia
589 RAE value. According to the Chinese standard gtigeset to 20% (GB/T22482, 2008.is the
590 number of periods in which model prediction is hke transfer from unqualified into qualified

5901 prediction in the'f data (Rezaie-Balf et al., 2019a).
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5. Results and discussion

The result section starts with the input data sgreg which is finding the correlation between
them, along with determining the trend followingriaace estimation. Then this section
continuous with results of stand-alone and hybramtets for both Klang and Langat stations.
The discussion part gives information about the mamson between proposed models. This

section ends with the current study limitation andgestion for future works.

5.1. Physiochemical—covariate correlation of sourcdata
The monthly WQI co-variability with the river physihemical parameters BOD, DO, SS, COD,

NH3-NL, and pH are evaluated using the Pearsonficmeft, which is known as parametric
correlation analysis and primary check, in ordeint@stigate the dependence between multiple
variables at the same time. In order to assessldtee relationships, the correlation factor was
used in which it varies from -1 to +1, where -1whd a negative correlation, and +1 defines
positive correlation. In this study, a graphicakretation matrix is plotted to show a linear
dependence between two variables for both KlangLamgjat stations (Figure 5). According to
this matrix, the monthly WQI has a positive, statally significant correlation with monthly DO
(0.74) and pH (0.28) for Klang and DO (0.82) foe thangat River. Also, a strong negative
relationship is attained from the matrix between M&Q the corresponding target and BOD (-

0.68) and COD (-0.62) for Klang, and all indepertidemiables except DO for Langat river.
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Figure 5. Pearson correlation matrix measures the lineatiogiship between each
physicochemical parameters and corresponding VWGd.color scale indicates the direction of
the correlation which means that purple color repnés negatively correlated statistics, and
orange color positively correlated statistics

5.2. Monotonic trends detection of source data

The monotonic trends in monthly WQI are examinedlsfandard nonparametric method called
Spearman’s rank-order correlation coefficient, deddyp, to assess the fact that how two data
sets are linked to each other. In other wordsatteence of trends is verified by this method in
both nonlinear and linear trends (Rezaie-Balf gt20119c). The null hypothesis of this analyze
the identical distribution and the independencewaf variables, and the alternative hypothesis is
the existence of decreasing or increasing trenasisidering the position order for identical
values, the rank order is assigned. For instgnceuld take -1 to +1.

As proven in Table 2, correlations between modeW@®! and input (physicochemical
parameters of the river) variables are estimatethbySpearman’s rank correlation test for two
stations. When the P values <0.05, the confidepwel Ifor the correlation test is selected.
Spearman’s rank correlation coefficients for thpuinvariables at two stations of Klang and

Langat are more than 0.5, and the confidence I@R=elalues) is less than 0.05. So, the null
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hypothesis in which the two populations are indelea is rejected at a level of 5 % of
significance, and the modeled WQI is judged to &gethdent on input variables.

Table 2 Values of the correlation coefficient between @I and the physicochemical
input variables

Station Parameter Input variable
value DO BOD COD SS pH NH3L
Klang R 0.73** -0.59** -0.78* -0.64** 0.76**  -0.49**
Sig 0.00 0.002 0.00 0.001 0.00 0.005
Langat R 0.87** -0.79** -0.86** -0.73** 0.84*  -0.69**
Sig 0.00 0.00 0.00 0.00 0.00 0.00

** Marked correlations are significant at P > 0l@gel.

5.3. Statistical analysis of variance of source dat

The assessment of the effects of the variablese(dmt and independent) is a significant issue
in testing the data. Analysis of variance (ANOVA)ne of these tests and allows the modeler to
indicate whether independent variables have anenfie or the effect of the interaction between
these variables on the dependent variable (Lanh,e2@l6). The GLM-ANOVA which stands
for general linear model analysis of variance is ohthe diagnostic tools and critical statistical
analysis, which reduce the error variance. In thisearch, the significance level of 0.05 was
utilized in order to recognize the statistical #igance of physicochemical variables. These
variables, including DO, BOD, COD, SS, pH, and NMI3- were selected as the independent
variables in this analysis. The GLM-ANOVA was impiented on data for each variable; the
results are showed their degree of freedom, theesgigl sum of squares, and their contribution
percentage of physicochemical properties at eaeliost The effect of the individual
independent variable on WQI (dependent variables vedued by defining the null hypothesis of

equality of independent variances or significarese at probability level (p-values). As shown in
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649 Table 3, the significance of physicochemical vdaabwvas obtained from the comparison of p-
650 values with the significance level factor (0.05)ll Af the physicochemical variables were
651 defined as a significant variable because of tpewalue <= 0.05. The contribution of each
652  physiochemical data was also shown in these twectsl stations. For Klang station, NH3-NL
653  (90.22%) and pH (64.82%), respectively, were defiag the highest and the lowest contributors.
654 However, in Langat station, SS with 95.21 % and NNH3with 83.52 % has the highest and

655 lowest contribution, respectively.

656 Table 3. Analysis of variance (ANOVA) results for physicaehical variables of river
Station Statistical parameters
SOUTC? o DF Seq. SS Computed F P-value Significance Co. (%)
Variation ) '
DO 227 67671.2: 2.8t 0.0cC Yes 89.4¢
BOD 33 6210.9¢ 13.5¢ 0.0C Yes 82.41
Klang COoD 82 1425.4. 6.€ 0.0C Yes 70.9¢
SE 17¢ 17.8¢ 1.54 0.00¢ Yes 88.0¢
pH 14C 2.51 1.41 0.017 Yes 64.8:-
NH3-NL 23¢ 93.8¢ 2.52 0.0C Yes 90.27
Errot 13 258.0: - - - -
DO 104  40865.3 14 0.0z Yes 87.9¢
BOD 24 3141.4¢ 14.¢ 0.0C Yes 79.5¢
Langat CoD 50 153.4: 11.2¢ 0.0cC Yes 89.t
SE 10z 33.2¢ 2.51 0.0z Yes 95.2]
pH 93 3.67: 4.01 0.0C Yes 94.1¢
NH3-NL 66 29.7: 3.84 0.0C Yes 83.52
Errot 11€ 4422: - - - -

657 DF: the degree of freedom; Seq. SS: Sequentialadflsguares; Co.: Contribution.

658 5.4. Results for standalone and hybrid models

659  This section has highlighted the results for stamuaand hybrid models in two subsections for
660 Klang and Langat stations in both calibration amdidation stages. The initial attempt is to
661 investigate which training algorithm in ANN will lmuiitable for the given task. Besides gradient
662 descent that is one of the typical training aldoms, the result of another implementation with
663 EnKF assimilation is obtained in order to consiter effect of assimilation for predicting WQI.

664  Afterward, the pre-processing technique, ITD, indé¢igg with the models mentioned above, is
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applied in order to improve models’ accuracy. Dgfit evaluation of the statistical error
metrics, including NSE, RMSE, MAE, RSD, U95, relidp, resiliency, non-parametric
Kolmogorov- Smirnov (K-S) distance statistic, andual plots such as scatter plot, time-series
plot, Taylor diagram, and error bar for predictedl aneasured WQI are employed to assess

models’ performance.

5.4.1. Klang Station

According to performance measures, the predictiowedl-designed hybrid model ITD-EnKF-
ANN vs. ITD-GD-ANN, EnKF-ANN, and GD-ANN models is numeailty evaluated in this
sub-section. As shown in Table 4, at the calibraitage, in terms of NSE, the accuracy of both
GD-ANN and EnKF-ANN integrating the ITD approachingreased from 0.74 to 0.79 and 0.92
to 0.935, respectively. By considering RMSE, thenbmed model errors were decreased by 45
% for the ITD-GD-ANN model and 44 % for the ITD-ERKANN model. In the case of MAE,
ITD-EnKF-ANN (2.92) performed better than ITD-GD-AN(3.42), and RSD explains the
decrease by 0.238 and 0.206 for hybrid GD-ANN amtKEEANN models, respectively.
Therefore, it shows the satisfactory results thgtrid models outperformed the standalone
models. U95 shows that 95 % of the uncertainty identce of the models; the results confirmed
the decreasing trend in both hybrid models (ITD-BBN=31.906 and ITD-EnKF-
ANN=31.73). Further comparison of these models éjability and resilience percentages
showed a notable increase for both models. Focusmg-S distance between observed and
modeled WQI datahe ITD-EnKF-ANNmodel has the lowest amount of distance (0.068pa

other models for the Klang river. This shows thef@rence of this model in which the observed
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and modeled values are closer. All the above sitatishow the quicker and satisfactory WQI

forecast by using ITD-GD-ANN and ITD-EnKF-ANN.

Table 4. Evaluation metrics of the proposed models in @l#ration and validation stages at Klang

station
Models Statistical error indice
GD-ANN EnKF-ANN ITD-GD-ANN ITD-EnKF-ANN

Total available data in the calibration stage
NSE 0.74 0.78¢ 0.92 0.93¢
RMSE 7.91 7.21 4.31 3.97
MAE 6.2% 5.70¢ 3.4z 2.92
RSC 0.50¢ 0.45¢ 0.27 0.25:
U9t 34.5] 33.85¢ 31.90¢ 31.7:
Reliability (%) 78.2¢ 82.5¢ 95.7¢ 97.81
Resilience (% 56.6¢ 66.0¢ 90.17 93.47
K-S distanc 0.11f 0.08¢t 0.07: 0.06¢

Total available data in the validation stage
NSE 0.51 0.71 0.68: 0.81
RMSE 10.0¢ 7.6€ 8.05¢ 6.17
MAE 8.1¢€ 6.51 5.97 5.06¢
RSC 0.6¢ 0.532 0.55¢ 0.4z
U9t 34.40: 31.9¢ 32.3¢ 30.6¢
Reliability (%) 73.91 84.0t 89.8¢ 94.3(
Resilience (% 77.7¢ 90.9] 85.71 91.97
K-S distanc 0.31¢ 0.25¢ 0.28¢ 0.217

Regarding results presenting in the validation estadl the statistical indices marked that ITD
based ANN model with the help of EnKF assimilatjgerformed better than sole models. For
instance, the NSE increased by 0.172 and 0.1pri#yal5.94 and 10.25 and resiliency 7.96 and
1.06 for ITD-GD-ANN and ITD-EnKF-ANN respectivelyihe decrease in other error indices
such as RMSE, MAE also reveals that the coupledeisdthve better results in the prediction of
WQI. In accordance with this, MAE has the highestréase in values for both ITD-GD-ANN
(26.83 %) and ITD-EnKF-ANN (22.13 %) models, howevier RMSE values, 19.8 %, and
19.45 % deduction were noticed for coupled GD-ANNM &nKF-ANN models respectively. By

considering RSD as a mathematical index, by comgitie ITD algorithm with GD-ANN, this
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index was decreased from 0.69 to 0.559, and by zongothe ITD algorithm with EnKF-ANN

models, this index decreased from 0.532 to 0.4% $hows that the error diminished, and the
prediction could be more accurate. K-S statistithia validation stage also depicts the lowest
distance (0.217) fothe ITD-EnKF-ANN method, which is the result of concordance between

input and output data of WQI.

The scatter plots between observed and the preddi¥®I| (Figure 6) reveal that at the
calibration stage, the ITD-GD-ANN model %0.92) relatively superior to standalone GD-ANN
models (B=0.74). The same results for EnKF-ANN*&R.81) as standalone and ITD-EnKF-
ANN models (R=0.94) showed that combined models performed better standalone models.
Comparison of model accuracies in the validaticagest also the priority of coupled models
(ITD-GD-ANN and ITD-EnKF-ANN), was seen. In anothgew of scatter plots, the regression
equation, which is based on modeled and observkeesaf the WQI index, is found from

y(Wi)=aWy+b.
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Figure 6. Scatter plots between the observed and the peedietiue of WQI for standalone and
hybrid models at Klang station in calibration (@md validation (down) stages for all proposed
models.
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In this equation, W shows the modeled WQI, and Wilustrates the observed WQI. The
accurate model based on the values of a, b, &ancoBd be selected. In this research at the
calibration stage, the ITD-EnKF-ANN with a=0.864;605399, and &0.9432 was selected as
the best model. The same analysis for the validattage reveals that with a=0.9051, b=3.5789,
and R=0.8419, the ITD-EnKF-ANN model was selected asaheurate model for predicting
WQI in Klang station.

Although predicting all quantities of WQI is helpftor various practices, such as drinking,
agriculture, and industry, the low and high valoéshis index are more crucial because of its
direct impact on public health and the environmémtthis regard, by considering time-series
plots along with relative error plots which thetaxis showed their cumulative time (month) and
y-axis for predicted monthly WQI high and low vaduef WQI, which is predicted by selected
hybrid ITD-EnKF-ANN along with other models are &rzd (Figure 7).

Error criteria (relative error) and graphical arsaly were used for evaluating the proposed
methods of WQI prediction for standalone (GD-ANNI&NKF-ANN) and integrated (ITD-GD-
ANN and ITD-EnKF-ANN) models. In the plots thata#le error is calculated, the accuracy of
models was analyzed, and it is shown that in theABIN model, the peak values reach to one
value, while for ITD-GD-ANN, most of the values areser to zero. Besides, with EnKF-ANN,
the error values fluctuate between 0.5 and -0€y) ad ITD-EnKF-ANN. The values of relative
error were close to zero, and the fluctuationsexteemely low. Considering time series plots
and relative error plots, ITD-EnKF-ANN was found lbe more suitable for WQI prediction.
However, ANN, with the help of the GD algorithm,chpoor accuracy and was not a reliable

model.
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Figure 7. The hydrographs of observesl predicted monthly WQI using standalone and hybrid
models for calibration (solid lime) and validatifdash line) stages and relative error plot for
Klang station.

5.4.2. Langat Station
Similar to the previous sectiomable 5exhibitsthe mathematical indexes in the calibration stage

and validation stages for proposed models. As shiowthe calibration stage, NSE value was
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increased from 0.82 to 0.89 in ITD-GD-ANN and 0t870.92in ITD-EnKF-ANN in comparison
with their sole-models. The error values of RMSEAB and RSD were decreased by 22 %, 25
%, 24 % when the GD-ANN model was combined with I&@orithms. By comparing the
uncertainty of models, ITD-EnKF-ANN (U95=41.75) fegmed better than ITD-GD-ANN
(U95=42.38) at 95 % of confidence. In the validatgiage, the same indices provide adequate
proof that combines ITD-EnKF-ANN outperformed tHEDFGD-ANN models For example,
considering NSE, it is increased by 1.328 for tH2-&NN model also 0.14 for the EnKF-ANN
model by a combination of ITD algorithms. By coresidg the error indices, RMSE, MAE, RSD
were decreased by their values in coupled ITD nwdelthe other aspect, the lowest difference
between two consecutive cumulative distributionctions (CDF) of input and output WQI data
in the calibration stage for Langat station is 6,1@hich is belong fofTD-EnKF-ANN model.
This shows that the hybrid D-EnKF-ANN model performed better than the other models. The
same outcome of the preference of the ITD-EnKF-AMNdel with a distance of 0.217 was
calculated for the validation stage. These restdiseal that the ITD algorithm as a pre-

processing algorithm performed better while conrigrtio DDMs.

Table 5. Evaluation metrics of the proposed models in #lémtion and validation stages at Langat

station
Models Statistical error indice
GD-ANN EnKF-ANN ITD-GD-ANN ITD-EnKF-ANN

Total available data in the calibration stage
NSE 0.82 0.87 0.8¢ 0.92
RMSE 8.6¢€ 7.0¢ 6.74 5.61
MAE 7.21 5.91 5.42 4.5¢
RSC 0.4z 0.34¢ 0.32 0.27
U9t 43.71 42.60" 42.3¢ 41.7¢
Reliability (%) 72.7% 86.3¢ 89.71 95.4¢
Resilience (% 66.4¢ 83.3: 77.7¢ 89.5¢
K-S distanc 0.15¢ 0.14¢ 0.12¢ 0.10¢

Total available data in the validation stage
NSE 0.59¢ 0.6¢ 0.7: 0.8t
RMSE 8.2¢ 7.21 6.6¢ 5.40:
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MAE 6.504 6.1¢€ 5.72
RSC 0.62- 0.5¢ 0.50¢
u9s 30.72 29.72 29.1¢
Reliability (%) 89.6¢ 89.6¢ 94 5t
Resilience (% 67.5¢ 67.5¢ 91.4¢
K-S distanc 0.31( 0.27¢ 0.241
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0.40¢
28.1¢
97.6¢
94.1¢
0.217

Figure 8 showed the scatter plot of the proposedeats in order to assess the best accuracy for

WQI prediction. Considering Figure 8 in detail, tte calibration stage, the correlation

coefficient for ITD-GD-ANN was increased by 0.07adomparison with stand-alone GD-ANN.

Also, the coefficient of determination for ITD-EnkK&NN increased by 0.09 compared with

stand-alone EnKF-ANN. In the validation stage, Rfgor ITD-GD-ANN and ITD-EnKF-ANN

were increased by 25 % and 11 % in comparison thihr sole models. The outcomes from the

stand-alone and combined models reveal that in talthration and validation stages, the ITD-

EnKF-ANN was confirmed the best model in WQI preidic.
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Figure 8. Scatter plots between the observed and the peedietiue of WQI for standalone and
hybrid models at Langat station in calibration (eppw) and validation (lower row) stages for

all proposed models.
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Figure 9 depicts the time series of predicted Jsseoved values of WQI calibration and
validation stages. In standalone GD-ANN and EnKFMNAKodels, the maximum value of
relative error belongs to 8imonth with RE=1 and RE=0.7, respectively. By corimathe two
combined models, ITD-GD-ANN and ITD-EnKF-ANN, it ghown that the maximum value for
relative error was between 0.5 and -0.5, and tter galues are close to zero in ITD-EnKF-ANN
model. Thus, this also reaffirms that the ITD-EnKRN hybrid model has better predictive
skill than the other combined and standalone mad®isidered in this research.

Furthermore, the utilization of such a modelinggedure does not only predict water quality
index accurately but also can improve the watelityumonitoring programs by reducing the

costly experimental testing and time-consumingessu
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796  Figure 9. The hydrographs of observes predicted monthly WQI using standalone and hybrid
797 models for calibration (solid lime) and validatifdash line) stages and relative error plot for
798 Langat station.

799  5.5. Further comparison among proposed models

800 Based on peak values of predicted monthly WQI Wit observed extreme values of each
801 station, the best models can be identified. Fos thim, Table 6 demonstrates the ten highest
802  extreme values of predicted WQI for two stationasidering the GD-ANN, EnKF-ANN, ITD-
803 GD-ANN, and ITD-EnKF-ANN models. As shown in Tallethe maximum difference between
804 the extreme value belongs to the EnKF-ANN modellevtiie minimum difference goes to ITD-
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805 ENnKF-ANN for Klang station. Again for Langat statiothe highest value for WQI observation
806 was 93.84, while the peak values for the modelevB2.506, 82.436, 84.484, and 89.538 for
807 GD-ANN, EnKF-ANN, ITD-GD-ANN, and ITD-EnKF-ANN mods, respectively. This
808 resulted that the ITD-EnKF-ANN model outperformethey models in the view of extreme
809  values.

810 Table 6: Accuracy evaluation of different models for preitig extreme WQI values (Klang and

811 Langat stations)
Observed value GD-ANN EnKF-ANN ITD-GD-ANN ITD-EnKF-ANN
Klang station
92.86 88.252 82.528 85.916 90.471
91.77 83.628 83.134 86.181 92.699
90.78 86.110 81.664 76.881 91.664
90.15 76.608 81.664 77.14 91.664
90.13 85.3826 88.766 81.499 88.766
90.12 85.139 78.468 81.283 88.431
89.87 77.866 78.892 81.306 78.006
89.42 91.660 79.195 82.079 89.152
89.30 87.959 83.68 86.561 83.098
89.00 87.207 80.529 84.054 86.649
Langat station

93.84 82.506 82.436 84.484 89.538
92.2 91.099 83.838 91.389 86.101
92.12 88.549 83.980 85.437 91.274
91.85 77.995 82.551 81.692 90.269
91.71 86.74 82.248 89.072 86.618
90.91 84.721 82.452 86.299 85.442
90.83 84.5 83.960 83.497 86.411
90.37 95.478 84.063 95.396 92.93
89.93 87.006 82.896 88.47 86.262
87.90 77.701 81.121 79.935 83.305

812

813 Figure 10 demonstrates the Taylor diagram, whichused to quantify the degree of
814  correspondence between modeled and observed W% itested data in terms of three primary
815  statistics on a single diagram. It shows the RMBE,correlation coefficient, and the standard
816 deviation for GD-ANN, EnKF-ANN, ITD-GD-ANN, and ITEEnNKF-ANN models for both

817 Klang and Langat stations.
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Figure 10. Taylor plots indicating the correlation coefficieand standard deviation in the
validation stage based on the standalone modetherfiybrid-assimilated models for predicting
monthly water quality index at two candidate stgthtions.

Concurring with earlier results, it was evidenttttiee ITD-EnKF-ANN model in both stations is

closer to the optimum reference point when a costbwisual valuation of the statistics is made.
As evident from this diagram, the coupled ITD-EnKRN model has a higher correlation and
inversely a lower standard deviation for both stadiin the prediction of WQI. However, the

GD-ANN model lies much farther to the line represen the centered root-mean-square
difference, while the standard deviation of the BN model remains modestly farther than
other models to reference.

The empirical cumulative distribution function (EEPpwas plotted at different predicting

abilities (Figure 11), which predicted error of nidg WQI in the x-axis and the percentage of

the distribution function in the y-axis for each aeb According to the plot, it is evident that the
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ITD-EnKF-ANN hybrid model was gently better tharDAGD-ANN for WQI predicting at both
stations, and both decomposed-based models weeei@uip the original models.

Based on the percentage of errors in the minimuor éracket (i.e., from 0 to 5) for the Langat
station clearly confirms that the ITD-EnKF-ANN wdge most responsive model in predicting
water quality index (50 %) compared to 44 % for th®-EnKF-ANN, 36 % for the EnKF-
ANN, and 29 % for the standalone GD-ANN model. tide performances were demonstrated
when the non-ITD/DA mechanisms were utilized. Thaney the highest performance with the
lowest predicted error resulted from the GD-ANN mlod’ he results of these ECDF plots are
consistent with the subject that WQI prediction leagetter result when using an ensemble

Kalman filter ANN model, which is combined with ITpre-processing techniques.
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Figure 11. Empirical cumulative distribution (ECDF) of thesatute forecasted error |FE| for the
ITD-EnKF-ANN model compared to the other model&king and Langat stations in the
validation phase.

5.6. Current study limitations

This study consistent with the concept of wateriguandex modeling by using neural networks
modeling, which is used the ITD pre-processing dégarithm for the first time. Despite using a
standard training algorithm, namely gradient desaerthis research, ensemble Kalman filter
algorithm as an assimilation algorithm used in tieisearch in order to eliminate GD algorithm
drawbacks for improving the model's accuracy imteof prediction. For more satisfaction on
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the result of WQI prediction, data decompositiorchteque, ITD, proposed to extract
input/output variables into different sub-signats arder to overcome the non-stationarity
features in the time series real data.

The present study has shortcomings that creat@portwnity for follow-up research in the field
of hydrology. Implementation of the ITD pre-prodegstechnique integrated with EnKF-ANN
is time-consuming because it produces a large nuofeRCs. Follow-up studies can consider
another pre-processing method to reduce compugtmost or to implement ITD-EnKF-ANN
all together in one main source code, at leastethuce the time of development. Another
limitation through the study was the lack of metdogical data in some months for both
stations, and this drawback may provide uncertaontyhe prediction of water quality index. In
this regard, it is suggested that future studieghinuse the satellite-based dataset in order to
analyze the data for WQI prediction. In additios,raentioned above, source data was limited in
terms of predicting WQI and was the three-montheinale. Hence, a follow-up study could
investigate the model's skill for better temporasalution (e.g., hourly, daily, weekly, and

monthly) with satellite-based prediction.

6. Conclusions

This paper underlined the importance of water guatiodeling for human health. In this study,
as the first step, a comprehensive literature vewi@s carried out on the current state of river
WQI modeling. It was found thgiH and DO as the physicochemical parameters w9883
and 91.67, respectively, were the most influenpiatameters researchers considered for the

studies.
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Besides the GD algorithm that was initially usedffnding the minimum of a function in ANN,
the Ensemble Kalan Filter (EnKF) assimilation apggio that is one of the best solutions to
nonlinear problems, is used to merge ANN model iptieeh with assimilating production data at
two famous polluted rivers in Malaysia, namely Kjaand Langat. Considering evaluation
metrics, using EnKF to predict WQI could improve thccuracy of the standalone ANN model
by 39 % and 17 %, respectively, for Klang and Larggations in terms of NSE compared with
GD training algorithms. In addition, predicting @rwas reduced to 7.66 and 6.51 in terms of
RMSE and MAE, respectively, by augmenting the ssai@ce with model parameters (using DA
technigque) compared to no assimilation at Klangasta

As a further attempt, the performance of a newlgstacted ensemble hybrid decomposition
model embedded with the Intrinsic Time-scale Decositon (ITD) as a pre-processing
technique integrated with the ANN model was adopldtt is, the physicochemical time series
and the corresponding target using the ITD algorithere extracted (decomposed), resulting in
improved performance of the standalone modelshilrespect, the RSD and U95 values of the
ITD-EnKF-ANN model for WQI estimation were reducea 25.3 % and 5.2 %, respectively,
compared with the EnKF-ANN model at Langat statio@onsidering the plotted empirical
cumulative distribution function (ECDF) at diffetepredicting abilities in both stages of
calibration and validation along with non-paranestatistics, namely Kolmogorov-Smirnov (K-
S) Distance method in Klang and Langat rivers, bybrid assimilated ITD-EnKF-ANN
performed better than the other models.

Overall, the achieved results indicated that theridyassimilated ITD-EnKF-ANN model would
be a robust approach to predict WQI on the montihhgscale since the results were favorable

for both Malaysian stations. It is also can be psmal as a possible solution in order to reduce
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the noise in highly nonlinear hydrological phenomench as the prediction of streamflow, solar
radiation, etc.

In order to widen the scope of the study, the HEKF-ANN model could be improved with
ensemble-based uncertainty testing via a bootdtrgppnd the Bayesian model averaging
techniques, although the proposed model had asgrgmiediction. One possibility for future
study is to consider other DDMs such as gene egjesprogramming, extreme learning
machine, etc. for integrating with ensemble Kalnfiter to perform an accurate model in the
prediction of the hydrological processes (i.e.eatnflow, rainfall, water stage, groundwater,
etc.).

With the aim of the accuracy of WQI modeling, ithistter to consider more data samples and
various input variables such as heavy metals, faolts, and radioactive samples from different
rivers in Malaysia. The water quality can also Heated by their background basin, so this can
affect the concentration of each quality paraméfbus, for future works, the authors suggested
assessing basin effects too. Finally, it can beesigd as a potential alternative to enhance the
forecasting accuracy using other pre-processingoagpes, complete ensemble local mean
decomposition with adaptive noise, variational modecomposition, complete ensemble
empirical mode decomposition(CEEMD), improved CEEMID@cal mean decomposition

(LMD), and ensemble LMD.
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Highlight

As a comprehensive review, pH and DO were the most influential parameters for WQI
prediction.

Ensemble Kaman Filter asthe DA technique is applied to generate an accurate state estimation.

For improving the physicochemical data to noise ratio, ITD approach hybridized with EnKF-
ANN.

The new ITD-EnKF-ANN generally outperformed other standalone and hybrid DDMs for the
prediction of WQI.
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