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Abstract 35 

Water quality has a crucial impact on human health; therefore, water quality index modeling is 36 

one of the challenging issues in the water sector. The accurate prediction of water quality index 37 

is an essential requisite for water quality management, human health, public consumption, and 38 

domestic uses. A comprehensive review as an initial attempt is conducted on existing solutions 39 

through data-driven models. In addition, the ensemble Kalman filter  is found to be a suitable 40 

data assimilation method, which is successfully applied in hydrological variables modeling and 41 

other complexes, nonlinear, and chaotic problems. In this study, a new application of ensemble 42 

Kalman filter-artificial neural network is proposed to predict water quality index using 43 

physicochemical parameters for two commonly pollutant rivers, namely Klang and Langat, in 44 

Malaysia. As a further attempt, in order to improve the models’ performance, a new 45 

preprocessing technique is adopted as the newly constructed assimilated model.  The results 46 

confirm that ensemble hybrid based intrinsic time-scale decomposition  has reduced root mean 47 

square error by 24 % for Klang and 34 % for Langat, respectively, compared with the intrinsic 48 

time-scale decomposition-conventional neural network model. Overall, the developed 49 

assimilated methodology shows the robustness of the proposed ensemble hybrid model in 50 

analyzing water quality index over monthly horizons that experts could evaluate the water 51 

quality of rivers more efficiently. 52 

 53 

Keywords: Physicochemical Parameters, Water Quality Index, Data Assimilation, Ensemble 54 

Kalman Filter, Intrinsic Time-scale Decomposition. 55 

 56 

 57 
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 58 

 59 

Nomenclature 60 

ALK= Alkalinity     AN= Ammoniacal-Nitrate 61 

ANFIS=Adaptive Neuro-Fuzzy Inference System ANN= Artificial Neural Network 62 

ANOVA= One-Way Analysis of Variance   As=Arsenic 63 

Atr= Atrazine     BOD= Biological Oxygen Demand    64 

BTEX= Benzene–Toluene–Ethylbenzene–Xylenes C=Coliform      65 

Ca= Calcium      CA= Cluster Analysis 66 

Cd= Cadmium     COD= Chemical Oxygen Demand   67 

Cl= Chlorine      Cr= Chromium     68 

Cu= Copper     DA= Data Assimilation  69 

DO= Dissolved Oxygen    DoE= Department of Environment 70 

DDMs= Data-Driven Models   DS= Dissolved Solids    71 

DT=Decision Tree    EC= Electrical Conductivity    72 

EnKF= Ensemble Kalman Filter   F= Fluorides     73 

FC=Faecal Coliforms    Fe= Iron      74 

FS=Fourier Series    FST= Faecal Streptococcus   75 

GA=Genetic Algorithm    GD= Gradient Descent 76 

HCA=Hierarchical Cluster Analysis  HCBD= HexaChlorButaDiene    77 

Hg= Mercury     ITD= intrinsic time-scale decomposition   78 

K=Potassium     KNN= K-Nearest Neighbor    79 

LS-SVM=Least Square-Support Vector Machine MAE= Mean Absolute Error  80 

Mg= Magnesium     MLR=Multiple Linear Regression    81 

MNNs=Multiple Neural Networks   MSA= Multivariate Statistical Analyses   82 

Na= Natrium     NB = Naive Bayes    83 

NH3=Ammonia     NH3-N= Ammoniacal Nitrogen    84 

NH4= Ammonia     NH4-N=Ammonia-Nitrogen    85 

Ni= Nickel      NO2= Nitrite      86 

NO2-N=Nitrite Nitrogen    NO3=Nitrate      87 
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NO3-N= Nitrate Nitrogen    NSE= Nash-Sutcliffe Efficiency     88 

NTU= Turbidity     OG= Oil and Grease     89 

PAH= Polycyclic Aromatic Hydrocarbons  Pb= Plumbum      90 

pH= Potential Hydrogen    PO4=Phosphate      91 

PO4-P= Phosphate Phosphorous   PRC= Proper Rotation Components  92 

PSO =Particle Swarm Optimization   RBC=Rule-Based Classifier    93 

RBFN=  Radial Basis Function Network  RMSE= Root Mean Square Error    94 

RSD= Ratio of RMSE to Standard Deviation  Sa= Salmonellas      95 

Sim= Simazine     SMLR= Stepwise Multiple Linear Regressions  96 

SO4= Sulphates     SS= Suspended Solid     97 

SVR= Support Vector Regression   T= Temperature      98 

TA- CaCO3= Total Alkalinity of Calcium Carbonate TC= Total Coliforms     99 

TCB= TriChloroBenzenes    TDS= Total Dissolved Solid    100 

TH=Total Hardness    TH- CaCO3=Total Hardness of Calcium Carbonate  101 

TP= Total Phosphorus     TOC= Total Organic Carbon    102 

TS= Total Solids     TSS= Total Suspended Solids    103 

Twater= Water Temperature   U95= Uncertainty at 95 %     104 

WQI= Water Quality Index   Zn= Zinc  105 

 106 

1. Introduction   107 

Water is the crucial natural element for human survival and social development as well as the 108 

ecological (natural, biological, environmental) health (Li et al., 2009). Water is the fundamental 109 

element for industrial, agriculture, and biotransformation purposes regardless of drinking and 110 

personal hygiene. In the last few decades, water pollution has turned into a severe problem 111 

worldwide, particularly in developing countries. Water quality evaluation is, therefore, an 112 

essential issue since it directly influences people's lives, and requires further attention from 113 

decision-makers (Zhang and Li, 2019). For this purpose, the main characteristics of water, 114 

namely biological, physical, chemical, and radiological, are considered as the water quality (Liou 115 
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et al., 2004). This is the extent of the condition of water regarding the prerequisites of in any 116 

biotic animals and also to any human need. Low quality of surface water that is calculated by 117 

various standards such as the health of ecosystems, the safety of human, and drinking water is a 118 

crucial subject in the developing world, according to which threatens ecosystems and 119 

plants/animals life and human health (Sarkar et al., 2007). Rivers are the most accessible water 120 

resources and has been the primary water supply to human civilizations throughout history 121 

(Mohammadpour et al., 2016). Rivers among various sources of water supply have been utilized 122 

more frequently for human societies' development due to easy access (Ishikawa et al., 2019). The 123 

reason for utilizing rivers instead of other water resources like groundwater and seawater is that 124 

they might have some problems such as land subsidence (Motagh et al., 2017) and pollution 125 

transmission (El-Kowrany et al., 2016), respectively. 126 

Many years ago, the Department of Environment (DoE) suggested the reception of WQI to 127 

evaluate and rank the degree of waterways contamination. From that point, the DoE 128 

recommended a methodology called (OP-WQI) which stands for Opinion Poll WQI for 129 

ascertaining the rank the level of water river of nearby waterways. The strategy that utilized for 130 

figuring the WQI in Malaysia includes extensive estimations, changes, devouring time, and 131 

exertion (Hameed et al., 2017). In this manner, suggesting an alternative approach, which is 132 

immediate and faster with high exactness of computing the WQI, is required. The advantage of 133 

water quality index modeling is to provide better management of rivers (Gurjar and Tare, 2019). 134 

For decades, precise prediction models of water quality parameters established by experts like 135 

(Ishikawa et al., 2019). 136 

Artificial Neural Networks (ANNs) is one of the outstanding DDMs which have been 137 

successfully applied to address many prediction issues associated with the environment and 138 
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water resources such as stormwater prediction (Gaafar et al., 2019), wastewater modeling 139 

(Bagheri et al., 2015), heavy metal prediction (Nath et al., 2018), sediment transport modeling 140 

(Moeeni and Bonakdari, 2017), streamflow forecasting (Attar et al., 2020), water level 141 

forecasting (Nayak et al., 2006). Although ANN models increase the capacity of model functions 142 

by training the data sets, it has some disadvantages, including difficulties in assessing the proper 143 

network structure and finding the local optimum, slow convergence rate, and long training time 144 

(Chau, 2006). All prediction and measurement approaches have some errors related to them as 145 

models do not appropriately simulate the whole behavior of the real system (Attar et al., 2018).  146 

Data Assimilation (DA) can be a useful technique for the generation of an accurate state 147 

estimation by fusing the data from these sources (Rezaie-Balf et al., 2019b). Predictive model 148 

parameters can be adjusted automatically through DA that is based on mathematic conceptions 149 

(Kashif Gill et al., 2007). The essential of DA is to evaluate errors in the model along with the 150 

observation data and to update model states by combining the model with observations 151 

(Abbaszadeh et al., 2017; Moradkhani et al., 2005).  152 

Researchers have proposed various strategies for reducing input/output variables to overcome 153 

non-stationary time series in hydrological parameters (Zhang et al., 2018) These strategies are 154 

known as the pre-processing procedures for improving the original data to noise ratio (Rezaie-155 

Balf et al., 2019b). Also, the time series variables can be changed into reasonable structures for 156 

further estimation (Dong et al., 2019). Intrinsic Time-scale Decomposition (ITD) is one of the 157 

time-frequency-energy analysis, which is utilized in this investigation to arrange multicomponent 158 

variables into a few Proper Rotation Components (PRCs) and change non-stationary signals into 159 

stationary ones (Martis et al., 2013). In other words, the nonparametric decomposition technique 160 
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has been influential for the dataset that inherently is nonstationary and nonlinear with minimal 161 

assumptions about data (Yu et al., 2017).  162 

This study aims to provide an overview of available DDMs for WQI prediction. Several 163 

predictive models based on soft computing applications have been reviewed here in order to 164 

assess the literature. The core objective of the present research is to develop a new and accurate 165 

hybrid model for predicting WQI using physicochemical parameters in Klang and Langat Rivers, 166 

the two case studies in Malaysia. To the knowledge of the authors, there is no published study 167 

related to the application of the ANN learning machine and the Ensemble Kalman Filter (EnKF). 168 

The main contribution of the study is to address the erroneous noise reduction for both 169 

remarkable improvements in data quality, and prediction accuracy seems to have blurred the 170 

hydrology community on the effectiveness of reduction in nonlinear noise in WQI predicting. So 171 

then, ITD is firstly used in the present study to surmount the non-stationarity issues applying to 172 

decompose the original time series dataset regarding water quality parameters into several sub-173 

sequences. Different models, therefore, are built for each sub-sequences according to its intrinsic 174 

features. Another purpose of this study is to estimate the robustness of the hybrid ITD-EnKF-175 

ANN vs. other hybrid models such as GD-ANN, EnKF-ANN, and ITD-EnKF-ANN viz 176 

analytical calculation of performance with graphical plots and numerical metrics of modeled and 177 

observed WQI data. 178 

2.  Literature review  179 

WQI is a number that illustrates the sum of water quality parameters as a particular number and 180 

is useful for managers and decision-makers to assess the water quality in any specific site 181 

(Mijares et al., 2019). WQI is introduced in Germany in 1848 (Tasneem Abbasi, Shahid A., 182 

2012), and Horton proposed the first WQI in 1965 (Robert K, 1965).WQI has ranges by its index 183 
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numbers, which shows how the water is clean, and it can be classified as excellent quality, good 184 

quality, poor quality, very poor, and unsuitable for drinking (Khalid et al., 2018). In general, 185 

water quality indexes are divided into six categories as follows: river WQI, drinking WQI, 186 

Groundwater WQI, sanitation WQI, irrigation WQI, and WQI in the wetland (Babaei et al., 187 

2011). Table 1 provides a list of relevant studies on the application of DDMs in river WQI 188 

prediction. Also, the participant of physicochemical parameters on the prediction of WQI 189 

extracting from literature review between 2000 and 2019 are illustrated pH and DO with the 190 

95.83 and 91.67, respectively, were the most influential parameters researchers considered for 191 

the studies (Figure 1). 192 

Table 1. Application of DDM using WQI prediction-literature review from 2000 to 2019. 193 

 194 

Authors Year Model Time scale Input Variables Study Area Journal 
Khuan et. al 
(Khuan et al., 

2002) 
2002 ANNs Annually DO, BOD, COD, pH, AN, SS 

Pahang and 
Selangor Rivers 

in Malaysia 

Student Conference 
on Research and 

Development(IEEE) 
Juahir et. al 
(Juahir et al., 

2004) 
2004 ANNs Annually 

DO, BOD, SS, 
AN, COD, pH 

Langat River in 
Malaysia 

Journal 
Kejuruteraan Awam 

Ocampo-
Duque et. al 
(Ocampo-

Duque et al., 
2006) 

2006 
ANFIS 

 
Monthly 

DO, pH, EC 
SS, BOD, TOC, 

TC, FC, Sa, FST, PO4, NO3, 
NH4, SO4, Cl, F, Atr, BTEX, Ni, 
Sim, TCB, Cr, HCBD, PAH, As, 

Pb, Hg 

Ebro River in 
Spain 

Environment 
International 

Gazzaz et. al 
(Gazzaz et al., 

2012) 
2012 ANN Monthly 

T, EC, DS, pH, NTU, SS 
TS, NH3-N, DO, 

BOD, COD, Na, K, Ca, Mg, 
NO3-N, Cl, PO4-P, As, Zn, Fe, 

TC, C 
 

Kinta River in 
Malaysia 

Marine Pollution 
Bulletin 

Amornsama
nkul et. al 

(Amornsaman
kul et al., 

n.d.) 

2012 FS, GA Monthly 
pH, DO, TS, FC, BOD, SS, TP, 

Tair, Twater 
Thailand 

14th international 
conference on 

Automatic Control 

Sinha et. al 
(Sinha and 

2013 
CA, 

ANNs 
Monthly pH, DO, FC, BOD, TC 

The Hooghly 
River Basin of 

Desalination and 
Water Treatment 
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(Saha), 2014) West Bengal in 
India 

Mohammad
pour et. al 

(Mohammadp
our et al., 

2016) 

2015 SVM Weekly 
T, pH, DO, EC, SS, NO2, NO3, 

AN, BOD, COD, PO3 

Wetland in the 
Universiti Sains 

in Malaysia 

Environmental 
Science and 

Pollution Research 

Sahoo et. al 
(Sahoo et al., 

2015) 
2015 

ANFIS,  
PCA 

Monsoon 
season 

pH, DO, BOD, EC, 
NO3-N, TC, FC, COD, 

NH4-N, 
TA-CaCO3 
TH-CaCO3 

Brahmani River 
in India 

Aquatic Procedia 

Than et. al 
(Nguyen Hien 

Than et al., 
2016) 

2016 ANNs Annually 
T, Sunshine, Rainfall, Humidity, 

Twater, pH, DO, NTU, C, EC 

The Dong Nai 
River in 
Vietnam 

Journal of 
Environmental 

Science and 
Engineering 

Babbar et. al 
(Babbar and 

Babbar, 2017) 
2017 

NB, DT, 
KNN, 
SVM, 
ANN, 
RBC 

June 1995–
1997 

NTU, pH, DO, 
BOD, TDS, TH, Cl, NO3, SO4, 

TC 

Yamuna River 
Basin in India 

Environmental 
Earth Sciences 

Ahmad et. al 
(Ahmad et al., 

2017) 
2017 MNNs Weekly 

DO, SS, pH, NH3-N, T, EC, 
NTU, DS, TS, NO3, Cl, PO4, As, 

Zn, Ca, Fe, K, Mg, Na, OG, E-
Coli, C, Cd, Cr, Pb 

Perak River 
Basin in 
Malaysia 

International Journal 
of River Basin 
Management 

Hameed et. 
al 

(Hameed et 
al., 2017) 

2017 ANNs Monthly DO, BOD, COD, NH3-N, SS, pH 

Langat River 
and Klang River 

in Peninsular 
Malaysia 

Neural Computing 
and Applications 

Pham et. al 
(Pham et al., 

2017) 
2017 

HCA, 
CA, 

ANOVA 
Seasonally 

DO, BOD, 
COD, NH4, N,  PO4, P, TSS, pH 

The Upper Part 
of Dong Nai 

River Basin in 
Vietnam 

Journal of Water 
Sustainability 

Al-Musawi 
et. al 

(Al-Musawi 
et al., 2017) 

2017 ANNs Annually 
pH, PO4, NO3, Mg, Ca, TH, Na, 
SO4, Cl, TDS, Alk, EC, Fe, NTU 

Tigris River of 
Baghdad in Iraq 

Applied Research 
Journal 

Yaseen et. al 
(Yaseen et al., 

2018) 
2018 ANFIS Monthly 

DO, TS, NTU, Ca, BOD, COD, 
T, pH 

Selangor River 
located in 
Malaysia 

Water Resources 
Management 

Wu et. al 
(Wu et al., 

2018) 
2018 SMLR Seasonally 

T, pH, DO, EC, NTU, N, P, NH4-
N, NO3, NO3-N, Ca, Mg, 

Cl, SO4 

In Lake Taihu 
Basin in China 

Science of the Total 
Environment 

Wang et. al 
(Wang, 2018) 

2018 
SVR, 

PSO-SVR 
October 

2016 

COD, DO, pH, NTU, EC, TP, 
TN, NH4-N, NO2-N, NO3-N, Ca, 

Mg, Cl, SO4,Twater 

Ebinur Lake in 
China 

Nature, Scientific 
Reports 

Tiwari et. al 
(Tiwari et al., 

2018) 
2018 ANFIS Annually 

DO, BOD, TDS, SS, NH3-N, N, 
TP, FC 

River Satluj in 
India 

Advances in Civil 
Engineering 
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Yilma et. al 
(Yilma et al., 

2018) 
2018 ANNs Seasonally 

 
TSS, N-NO3, N-NO2, TN, TA, 

TOC, COD, BOD, DO, T, EC, pH 
 

Little Akaki 
River in Addis 

Ababa, Ethiopia 

Modeling Earth 
Systems and 
Environment 

Leong et. al 
(Leong et al., 

2019) 
2019 

SVM, LS-
SVM 

Annually 
DO, BOD, COD, 

SS, pH, AN 
Perak State in 

Malaysia 

International Journal 
of River Basin 
Management 

Kumar et. al 
(Kumar et al., 

2019) 
2019 MSA March 2012 

pH, T, DO, BOD, COD, TN, 
NH4, TC, FC 

Yamuna River 
in India 

International Journal 
of River Basin 
Management 

Kadam et. al 
(Kadam et al., 

2019) 
2019 

ANNs, 
MLR 

Pre and post-
monsoon 
seasons 

pH, EC, TDS, TH, Ca, Mg, Na, 
K, Cl, HCO3, SO4, NO3, PO4 

Shivganga River 
Basin in India 

Modeling Earth 
Systems and 
Environment 

Kükrer et. al 
(Kükrer and 
Mutlu, 2019) 

2019 MSA Monthly 
pH, T, EC, SS, BOD, TH, TA, 

Ca, N, NH3, Cu, DO 
Saraydüzü Dam 
Lake in Turkey 

Environmental 
Monitoring and 

Assessment 
Ho et. al 
(Ho et al., 

2019a) 
2019 DT Monthly 

NH3-N, BOD, 
COD, DO, pH, SS 

Klang River in 
Malaysia 

Journal of 
Hydrology 

 195 

 196 

 197 

Figure 1. The participation of physicochemical parameters on the prediction of WQI extracted 198 

from the literature review between 2000 and 2019. 199 

 200 

Chang et al. (Chang et al., 2001) considered three fuzzy synthetic evaluation approaches to 201 

model Taiwan river water quality at the Tseng-Wen river system. The results demonstrate that a 202 

fuzzy synthetic evaluation method could be useful for daily total maximum load prediction. 203 
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Khuan et al. (Khuan et al., 2002) predicted WQI for three years for rivers in Pahang and 204 

Selangor in Malaysia by using three algorithms of the ANN, including backpropagation, modular 205 

neural network, and radial basis function. Results showed that the RBFN algorithm had higher 206 

accuracy than the two other models. Khan et al. (Khan et al., 2003) assumed two different 207 

standard indexes namely British Columbia water quality index (BWQI) and Canadian water 208 

quality index (CWQI) to estimate WQI  in specific watersheds of the region of Atlantic: the 209 

Point Wolfe River, the Mersey River, and the Dunk River of Canada. The results of this study 210 

asset each standard indexes. 211 

Juahir et al. (Juahir et al., 2004) tested ANN, and multiple linear regression (MLR) approaches 212 

for modeling WQI in the site of the Langat River Basin, Malaysia. They showed that 213 

Biochemical Oxygen Demand (BOD), Chemical Oxygen Demand (COD), Dissolved Oxygen 214 

(DO), Ammoniacal-Nitrate (AN), Suspended Solids (SS), and pH were contributed to the 215 

estimation of WQI. The results indicate that with omitting two parameters, namely COD and pH 216 

as independent variables, the accuracy of the ANN model could be better. Ocampo-Duque et al. 217 

(Ocampo-Duque et al., 2006)  stated fuzzy inference systems as a model for estimation WQI in 218 

Ebro River (Spain). The outcomes of this study have led to proper linking between fuzzy 219 

inference systems and parameter weighting approaches. Hore et al. (Hore et al., 2008) utilized 220 

the artificial neural network to estimate WQI by accessing waste and polluted water from 221 

industrial waste. Two algorithms, namely multilayer-perceptron (MLP) with a back-propagation, 222 

were used in this study. As a result, they found that ANN was a convincing method in WQI 223 

prediction. Lermontov et al. (Lermontov et al., 2009) used a fuzzy water quality index in order to 224 

predict WQI in Ribeira do Iguape River watershed in Brazil. They introduced a new Index as the 225 
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fuzzy water quality index (FWQI), and the results of this study showed a good correlation with 226 

the traditional calculated index. 227 

Roveda et al. (Roveda et al., 2010) evaluated fuzzy logic in a case of Sorocaba River to model 228 

WQI, and they tried to compare the estimated WQI with CETESB WQI (Companhia de 229 

Tecnologia de Saneamento Ambiental, in Brazil). They found that it is better to use this 230 

estimated method instead of CETESB. Mahapatra et al. (Mahapatra et al., 2011) evaluated the 231 

Fuzzy Inference System for estimating WQI in India by utilizing two methods of Sugeno, 232 

Takagi, Mamdani, and Kang (TSK) models. The results of this study were compared with three 233 

international WQI criteria, and it was found that the cascaded fuzzy system has precious results. 234 

Gazzaz et al. (Gazzaz et al., 2012) presented ANN to model WQI for the Kinta River in Malaysia 235 

with three categorical variables, including watercolor, water level, and weather, and 32 236 

parameters. The algorithm of ANN called quick propagation training algorithm was defined as 237 

the best algorithm to model WQI. Sinha & Saha (Sinha and (Saha), 2014) evaluated the 238 

reliability of artificial neural network and cluster analysis modeling in the case of the Hooghly 239 

River basin in India for WQI estimation. They tried to compare the results of these methods of 240 

DELPHI and CCME, and they found that the DELPHI method has the superior ability in WQI 241 

estimation rather than the CCME method. 242 

Hameed et al. (Hameed et al., 2017) investigated artificial intelligence techniques with two 243 

different algorithms, namely BPNN and RBFNN, to model WQI in the tropical region in 244 

Malaysia. They have used six water quality parameters, including DO, NH3-N, COD, SS, BOD, 245 

and pH. Results demonstrated that the RBFNN algorithm performed better than BPNN, which 246 

has higher precision. Babbar & Babbar  (Babbar and Babbar, 2017) evaluated water quality 247 

index applying techniques of data mining as flows: artificial neural networks, naive Bayes, 248 
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decision trees, k-nearest neighbors, and support vector machines. Parameters that are used to 249 

their study were pH, chlorides, DO, BOD, total coliforms total dissolved solids (TDS), sulfates, 250 

hardness, nitrates, and turbidity. They detected that the decision tree and support vector machine 251 

classifiers are the best models among the other DDMs.  252 

Kisi and Yaseen  (2019) analyzed alternative hybrid models based on grid partition and 253 

subtractive clustering models and adaptive neuro-fuzzy inference system (ANFIS) integrated 254 

with fuzzy c-means data clustering, in order to model WQI in Selangor river basin in Selangor 255 

by utilizing WQI parameters namely temperature, DO, BOD, turbidity (TU), total suspended 256 

solids (TSS), calcium (Ca), COD, and pH. The results demonstrate that in the case of accuracy, 257 

ANFIS-SC and ANFISFCM have better results in comparison to the ANFIS-GP model. Ho et al. 258 

(2019a) employed decision tree machine learning techniques accompanied by different scenarios 259 

(different inputs) for Klang river in Malaysia with six water quality parameters such as NH3-N, 260 

DO, BOD, COD, SS, and pH in order to predict WQI. The results indicate that the number of 261 

water quality parameters can be diminished as NH3-N, SS, and pH because of a less significant 262 

outcome on WQI prediction in a monitoring process.  Leong et al. (2019) outlined the use of a 263 

support vector machine (SVM) and least-square SVM in WQI modeling. The DoE approach 264 

(Malaysia formula to calculate WQI) was used and considered six variables, including DO, SS, 265 

BOD, COD, AN, and pH value. As a result, it is found that the LS-SVM model performs better 266 

than the SVM model.  267 

By reviewing relevant literature, it is observed that most of them used ANN, ANFIS, and SVM 268 

to predict WQI without considering uncertainty in models’ parameters. That is modest changes 269 

to these parameters can significantly alter the model output, making their uncertainty a serious 270 

source for predict errors. Therefore, in this study, the feasibility of estimating parameters 271 
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simultaneously with the dynamical state is investigated using EnKF by means of state space 272 

augmentation. Monitoring and reducing the noise, non-stationary, non-linearity, and complexity 273 

of the time series data can be another gap that was not taken into account in previous studies. 274 

Prior to using input time series data in the model development process, the frequency 275 

components should be resolved to enhance the accuracy of the model. Hence, ITD is a 276 

decomposition tool available to address such issues to precisely reconstruct the original time 277 

series data and give an appropriate spectral separation of sub-series. 278 

3. Case studies and available data  279 

Adequate water resources are essential for overall economic prosperity in a developing country 280 

such as Malaysia (Najah Ahmed et al., 2019). However, some areas in Malaysia are currently 281 

experiencing water shortages, even though large amounts of water reserves are available (Naubi 282 

et al., 2016). This growing need for water is due to the growth in population, urbanization, 283 

industrialization, and irrigated agriculture have dramatically increased the demand for alternative 284 

water supplies (Ho et al., 2019b). During the monsoon season, most flood-prone areas 285 

experience flooding or flash floods that cause loss of lives, damage to property, and destruction 286 

of crops. According to (Ahmed et al., 2019), due to changing weather patterns, this situation will 287 

only get worse, and Malaysia has to improve its pre-disaster management systems in order to 288 

avoid further damage and other adverse effects caused by floods in the future. 289 

Before focusing on the core of the study (developing water quality prediction model), it is 290 

necessary to provide an overview of the climate condition in the selected study area. This is due 291 

to the fact that the climate condition could be essential for the model generalization ability for 292 

future research. The climate condition for both river basins is the same as both are located in the 293 

tropical zone in Malaysia. In general, the Malaysian’s climate is affected by several regional and 294 
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global phenomena such as El Nino, Indian Ocean Dipole (IOD), and monsoons (Suhaila et al., 295 

2010). These phenomena played a vital role in the hydrological formation of the whole country 296 

and, more specifically, the extreme events of the rainfall along with the whole year. The annual 297 

rainfall is almost 2000 mm, and the highest recorded rainfall was 330 mm that has been 298 

experienced in November. On the other hand, the lowest record has occurred in June with almost 299 

100 mm (Tangang et al., 2012). 300 

Seasonally, two major monsoon regimes influenced the climate in Malaysia, namely; Northeast 301 

(NE) and Southwest (SW) monsoon patterns. The SW monsoon season that is dominated by the 302 

low-level south-westerly winds begins in May and lasts through August. On the other hand, the 303 

NE monsoon season that is controlled by the northeast wind commences in November and ends 304 

in February of the following year (Tan et al., 2019). In terms of the temperature pattern in both 305 

study areas, the maximum temperature that has been recorded during the last 40 years ranged 306 

between 32oC and 35oC, while the minimum temperature was ranged between 21oC and 25oC. 307 

From these records, it could be noticed that the narrow changes in the range of temperature, 308 

whether the maximum or the minimum ones, showed that the temperature might not play a 309 

significant influence on the water quality pattern (Palizdan et al., 2015).  310 

Recent research showed that there might not a significant change in the climate condition in 311 

Malaysia in the short and medium terms. However, it is expected that there might be a gradual 312 

change in the long-term trend changes in the rainfall and temperature patterns. In this context, in 313 

the long-term, such significant changes in the seasonal or annual rainfall and the maximum and 314 

minimum temperature could drive to changes in the water quality patterns.  This is due to the fact 315 

that such changes could influence on the flood and drought frequency and hence the availabilities 316 
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of the freshwater. Also, it has been observed that the monsoon phenomenon is the most powerful 317 

system on the climate condition in Malaysia (Soo et al., 2019). 318 

In the present study, in order to examine the proposed models’ performances, two different case 319 

studies were chosen, namely the Klang River and the Langat River. In the following subsections, 320 

details about the water resources and water quality for both rivers would be explained.  321 

3.1. The Klang River 322 

The Klang River stretches approximately 120 km through the two most populated areas in 323 

Malaysia; the State of Selangor and the Wilayah Kuala Lumpur. The river flows from the Ulu 324 

Gombak Forest Reserve to Port Klang and on into the Straits of Malacca, one of the busiest 325 

shipping lanes in the world. The Klang River basin is the country's most inhabited region, with 326 

more than four million residents. This area contains several main cities of the Selangor State and 327 

Wilayah Kuala Lumpur, such as Klang, Shah Alam, Puchong, and Petaling Jaya. The biggest 328 

seaport in Malaysia, Port Klang, is also situated on the estuary of the Klang River (Juahir et al., 329 

2004). The Klang River’s watershed covers approximately 1,288 km2 of the storage basin. This 330 

region has witnessed the country's strongest economic growth, and 35 % of the area has been 331 

built up for residential, commercial, industrial and institutional purposes. This region is also 332 

considered to be polluted as the extensive developments along the river basin due to the illegal 333 

discharge of unprocessed wastewater, as well as treatment plant and animal farming waste, 334 

which has deteriorated the water quality of the river. Figure 2 illustrates the location of the river 335 

in Malaysia and the location of the water quality monitoring stations. 336 
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 337 

 338 

Figure 2. a) Location of Klang River Catchment and b) water quality monitoring 339 

stations 340 

 341 

The Klang River serves as the primary water supply source for Selangor and Kuala Lumpur, 342 

providing nearly 1,128.4 million liters per day (DOE, 2007).  343 

The data selected for the present study were monthly water quality parameter assessment data, 344 

summarized as WQI. The six physicochemical water quality parameters used to calculate the 345 

WQI was biochemical oxygen demand (BOD), chemical oxygen demand (COD), dissolved 346 

a 

b 
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oxygen (DO), suspended solids (SS), pH and ammoniacal nitrogen (NH3-N). The data were 347 

collected from monitoring stations situated on the Klang River (Yahya et al., 2019). A total of 348 

305 data samples were accumulated for the duration between January 2005 and August 2016 for 349 

this study (Palizdan et al., 2015). 350 

3.2. The Langat River 351 

One of Malaysia’s most important rivers, the Langat River, is regarded as the primary source for 352 

agriculture, consumption, farming, and fishing in the state of Selangor (see Figure 3). The Langat 353 

River runs west across the Langat Basin to Kuala Langat from the highest point of the 1,493 m in 354 

the Titiwangsa Range. It then flows into the Straits of Malacca. It is 78 km long discharges an 355 

area of 2,350 km2. The Langat River is mainly characterized by water bodies (e.g., natural lakes), 356 

forests, agriculture, and urban residential and commercial areas. The types of forests within the 357 

catchment area are mangrove, dipterocarp, and swamp. The dominant land-use within the 358 

catchment area is for agricultural purposes.  359 

 360 
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 361 

Figure 3. Location of the Langat River Catchment 362 

Land-use practices along the banks of the river have led to the degradation of the water quality of 363 

the river (Najah et al., 2011). Research by Yahya et al. (Yahya et al., 2019) determined that the 364 

main factors contributing to differences in the quality of the Langat streamflow were the 365 

development of the wastewater treatment plants and the industrial waste (chemical effluents), as 366 

well as runoff from domestic and commercial areas.  367 

3.3. Available data 368 

In 1978 DoE established baselines to detect the water quality changes in river water quality and 369 

has since been extended to identifying pollution sources as well. Water samples are collected at 370 

regular intervals from Water samples that have been collected from designated stations for in--371 

situ and laboratory analysis to determine physicochemical and biological characteristics. Water 372 

quality monitoring activities were privatized to ASMA (Alam Sekitar Malaysia Sdn Bhd) on 1st 373 
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January 1995, both manual & automatic monitoring. In 2005, 1064 manual stations in 146 river 374 

basins were monitored (Thorough review of river basins & monitoring stations in 2004). 375 

Parameter for in-situ measurement are DO (%), DO (mg/l), Turbidity (NTU), Conductivity 376 

(uS/cm), Salinity (ppt), pH, Temperature (T). While the parameter for lab analysis are: BOD, 377 

COD, SS, NH3-N, pH, DS, TS, NO3-N, Cl, PO4-P, O&G, MBAS, E.coli, Coliform, As, Hg, Cd, 378 

Cr, Pb, Zn, Ca, Fe, K, Mg, Na [ 24 chemical and biological parameters ]. There are three types of 379 

monitoring stations that have been used by DoE to identify the water quality parameters. The 380 

first type is the baselines stations that allocated in the far upstream position of the river, which is 381 

only considered for reference and not for detecting the real water quality status of the river as the 382 

river did not affect by the water users. The second type is ambient stations used for monitoring 383 

the water quality, and their records are used to configure the change in the water quality 384 

parameters. These stations are located along with the whole river to detect the point and non-385 

point sources of pollution. While the third type of the station is the impact station. This type is 386 

used for enforcement purposes and not for the calculation of the real water quality status of the 387 

river. 388 

The data is available in, owned by DoE, and could be shared for research purposes. The data 389 

have been collected from DoE, who operates these monitoring stations for both Klang and 390 

Langat rivers, which is institute in charge to monitor the water quality for all rivers in Malaysia. 391 

In the present study, DoE (DOE, 2007), Malaysia provided the water quality records for the 392 

Langat River. The data of the water quality were recorded irregularly with respect to particular 393 

time intervals; therefore, quarterly data were instead used to expedite the study. Consequently, 394 

the present study utilized time-series water quality data (ranging from September 2002 to August 395 

2016) at several monitoring stations for the required parameters. Because this research utilized 396 
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three-monthly record data, the data reflecting the first quarter were drawn from that quarter's last 397 

month, i.e., from March. Likewise, June data reflected the results for the second quarter. 398 

On the other hand, for the last month of a specific quarter, if there were no data available, data 399 

were then taken from any of the other months within this quarter. For instance, the data 400 

representing Quarter 1 were obtained from either January or February. Similarly, data from April 401 

or May were used to reflect the data for Quarter 2. In order to ensure the development of a 402 

reliable model, it is required to utilize regular data monitoring. In this context, the proposed 403 

model in this study has been developed based on the steady acquired water quality data.  404 

The main reason for the selection of these periods (2005 to 2016 for Klang River and 2012 to 405 

2016 for Langat River) is that the monitoring program for the water quality parameters during 406 

these periods was more reliable. In fact, it is essential to develop the model relying on reliable 407 

data in order to achieve a successful model structure. In this context, it was decided to utilize the 408 

available reliable data during these periods to develop the proposed model. 409 

4. Methods 410 

This section is categorized into six parts including determination of WQI as a national index, an 411 

artificial neural network with its formulation, ensemble Kalman filter as a data assimilation 412 

technique, intrinsic time-scale decomposition method, description of ITD-based WQI prediction 413 

models and in the last part, the performance of the models was assessed. 414 

4.1. Determination of WQI  415 

As defined by the US Foundation of National Sanitation, WQI varies from 0 to 100, where high 416 

water quality results in the high value of WQI, and lower values of WQI represent the low 417 

quality of water (Said et al., 2004). In 1974, the DoE Malaysia endorsed an index to evaluate the 418 

surface water quality in Malaysia. Thoroughly, six parameters were chosen as chief water quality 419 
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variables to develop and calculate WQI, such as DO, COD, SS, NH3-N, BOD, and pH for 420 

surface water (Khan et al., 2003). These variables should be transformed into a non-dimensional 421 

parameter that the relationship for each parameter can be seen from (Gazzaz et al., 2012), which 422 

has the best-fit relations of parameters. WQI can be obtained considering the following equation 423 

(Khuan et al., 2002): 424 

 425 

��� = 0.22��	
 + 0.19���
	 + 0.16���
	 + 0.15������� + 0.16���� + 0.12����       (1) 426 

 427 

4.2. Artificial Neural Networks  428 

Artificial Neural Networks (ANNs) is one of the most fruitful and brain neurological based 429 

black-box methods in modeling environmental issues, specifically in water quality modeling 430 

(Gazzaz et al., 2015). The central aspect of ANNs is the estimation of nonlinear models with 431 

input data and resulted in the output data while using specific functions and algorithms by 432 

learning from an example (Maier et al., 2010). This model typically depends on the architecture 433 

of networks, the hidden layers, and nodes. ANN models can be categorized into varied categories 434 

according to which gradient descent model (GD) is one of the learning approaches. One of the 435 

most critical mathematical optimization methods in GD is backpropagation that is applied for 436 

learning the connection weights of algorithms in ANN models. The gradient descent model 437 

usually attempts to minimize the root-mean-square error (RMSE) by utilizing the 438 

backpropagation algorithm. As aforementioned, the ANN model influenced by the architecture 439 

of neural networks. Multi-layer perceptron is one of the most usual and popular feedforward 440 

types of ANNs architecture and functions for modeling in nonlinear occurrences (Rezaeian-441 

Zadeh et al., 2012). Single neurons titled perceptron is the basis of this network. This 442 

architecture involves three layers, including input, hidden, and output layers. The hidden and 443 
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output layers contain a specific amount of neurons, but the input layer will vary by the data 444 

dimensions. The weights (w) connecting layers are defined by training algorithms that utilize the 445 

BP algorithm. Bearing above in mind, algorithms use the Levenberg-Marquardt algorithm for 446 

their function approximations. Further information about this typical neural network architecture 447 

could be found (Taud and Mas, 2018). 448 

4.3. Ensemble Kalman filter  449 

Data assimilation is the technique which is dealt with errors in model parameters, uncertainties in 450 

the models, boundary conditions errors and etc. One of the prominent data assimilation structures 451 

is the Kalman filter, which was proposed by (Kalman, 1960) for linear systems. Ensemble 452 

Kalman filter (EnKF) was first introduced by (Evensen, 1994) as an extended Kalman filter. The 453 

application of EnKF is based on an ensemble of simulations, which can represent the distribution 454 

of the system (Johns and Mandel, 2008). Unlike the Kalman filter, EnKF can suit for nonlinear 455 

models (e.g., hydrological models). The background of this model is based on the approach of 456 

Monte Carlo, in which probability density is the representation of the state (Clark et al., 2008). In 457 

the state of ensemble data assimilation generation, two errors should be worth considering, 458 

namely internal and external error. Consider the system of a stochastic, nonlinear, general model, 459 

� and the observations (Kalman, 1960), 460 

 461 

������ = � ������!�, #����!�$ + %����!�                 (2) 462 

 463 

&'���� = (���������� + )����        (3) 464 

 465 
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where the forecast represented by ������ ∈  ,- of the system state at the time ��, the system 466 

forcing  #����!�, and the one-time step of the model showed with  � . It is compulsory to 467 

combine the measurement taken from the observation and modeled by Equation (2), to gain an 468 

optimum approximation. By using the information given by the system model Equation (3). The 469 

forecast state at the time ��, denoted by ������, is the forecast from observation time ���! to 470 

observation time �� by the following Equation, 471 

������ = � �.����!�, #����!�$        (4) 472 

 473 

where �.����!� is the modeled system state. In  ��, an observation &'���� is existed, and the 474 

investigation step restructures the model, 475 

�.���� = ������ + / &0���� −  (����������$      (5) 476 

where, 477 

/���� = 2�����(����3 (����2�����(����3 + ,$�!     (6) 478 

are the minimum variance gain and the covariance matrix of modeled error represented by  479 

2�����. The covariance in the EnKF algorithm can be estimated by randomly generated a finite 480 

number of system states. In order to  estimate �' as an initial value, an ensemble FG�, H = 1, … , J 481 

of the uncertainty is stated for randomly generated states. Original model operator causes the 482 

ensemble members to are transmitted from a one-time step to another (Karunasingha and Liong, 483 

2018), 484 

FG����� = � FG.����!�, #����!�$ + %G����!�      (7) 485 

 486 

Where, %G���� apprehensions of the noise process. This noise is a supplementary component for 487 

uncertain parts of the model to estimate the covariance between observation and modeled WQI 488 
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indices. More information and detailed mathematical background of the ensemble Kalman filter 489 

could be found at (Maxwell et al., 2018). 490 

 491 

4.4. Intrinsic Time-scale Decomposition 492 

Intrinsic Time-scale Decomposition (ITD)is a time-frequency representation presented by (Frei 493 

and Osorio, 2007) for complex and non-stationary time series hydrologic datasets. Proper 494 

Rotation Components (PRCs) are components in which the datasets are divided into them. 495 

ITD process procedures could be divided into some steps. This method has an operator L, which 496 

extracts the baseline signal from the input signal ���� that resulted in an accurate rotation and 497 

lower frequency in residuals (Frei and Osorio, 2007). In which K���� = K���� is the mean of the 498 

signal, written as K���. The proper rotation components (PRCs) are defined as (����  = �1 −499 

K� ���� which is written as (���. Then decomposed the input signal ���� as: 500 

���� =  (���� + K��� = �1 − K� ����       (8) 501 

ITD algorithm follows four steps, including: 502 

Step 1; Finding the corresponding occurrence time τk and the extreme points of input signal x(t), 503 

where k = 0, 1, 2, ⋯. Considering τ0 = 0 as the first signal. 504 

Step 2; Considering the input signal x(t) on the interval [0, τk + 2] and L(t) and H(t) as operators 505 

over the time interval [0, τk] in which the baseline-extracting operator L is defined as linear 506 

function on the interval [τk, τk + 1]. The baseline extraction operator is designed as: 507 

K���� = K��� = K� + MNOPQ�NOROPQ�ROS ����� − ���, � ∈ �T�, T�U!�,    (9)  508 

and 509 

K�U! = V W�� + �XOPQ�XO�XOPY�XO ���U! − ���Z + �1 − V���U!     (10)  510 



26 
 

Where 0 < α < 1 is a constant value and taken as fixed value of (α = ½). Linearly contraction of 511 

original signal built in order to make monotonic x(t) between the extrema points, which is 512 

necessary for PRCs. 513 

Step3; The following operator, were defined for extracting PRCs: 514 

(��� = (���� =  ���� − K��� = ���� − K���      (11) 515 

The main purpose of ITD is to integrate higher signals into several PRCs. As shown in Equation 516 

11, by subtracting the baseline from the input signal, PRCs can be attained. The advantages of 517 

ITD can be summarized in three concepts; low computational time, avoiding transient 518 

smoothing, solving the smearing in time-scale space, and constant sifting (this process is applied 519 

to data iteratively in order to generate optimum PRCs).  520 

Step4; This process of equations 9 and 10 iteratively repeated until the baseline L(t) converts to a 521 

monotonic function in which the single signal can be divided into PRCs. 522 

���� = ∑ (G��� + K�����G\! ,                                      (12) 523 

where p is the number of achieved PRCs. 524 

 525 

4.5. Description of ITD-based WQI prediction models 526 

The primary purpose of ITD-based DDMs is to predict the WQI using physicochemical 527 

parameters at two different rivers in Malaysia. The schematics of the ITD-EnKF-ANN, which is 528 

considered to predict WQI at two stations, is shown in Figure 4. Before starting three main steps 529 

of decomposition-based models, a total of physicochemical measurements and WQI over a 530 

monthly time-scale should be divided into two separate parts, calibration (a total of 75 % of data) 531 

and validation phases (the remaining 25 %), the ideal model is selected independent of the 532 

calibration stage.  533 
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 534 

Figure 4. The schematic structure of the proposed hybrid (ITD-EnKF-ANN) model integrating 535 

intrinsic time-scale decomposition (ITD) pre-processing approach with an artificial neural 536 

network (ANN) model based on the ensemble Kalman filter (EnKF). 537 

 538 

The number of the model parameters and the randomness of data is two factors which based on 539 

them, the number of data points could be calculated (Fijani et al., 2019). In this research, little 540 
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random variations of the data revealed that a reasonable model with a sufficient number of 541 

available observations could be estimated. 542 

By considering (Rezaie-Balf et al., 2019a) study, three essential steps to enhance the 543 

performance of proposed models can be followed by:  544 

Step 1: ITD procedure is used to break down the input and output datasets into several PRC and 545 

one residual components. 546 

Step 2: The GP/EnKF-ANN models are proven as WQI estimation tools to calculate the 547 

decomposed PRC and to calculate each component using the same sub-series (PRC1) and 548 

the residual component of input variables respectively. 549 

Step 3: The forecasted values of all extracted PRC and residue components using both 550 

GP/EnKF-ANN models are combined to generate the WQI. 551 

To summarize, the ITD-based DDMs (i.e., ITD-GP-ANN and ITD-EnKF-ANN) emphasize the 552 

“decomposition and ensemble” idea. The decomposition is to facilitate the predicting procedure. 553 

Whereas, the ensemble is to formulate a consensus estimating on the original datasets. In this 554 

work, for verifying and making the pattern of the extracted PRCs and residual components to 555 

reflect the estimation technique and improve the prediction process, two rivers in Malaysia (e.g., 556 

Klang and Langat) are selected. 557 

It should be mentioned that in step 2, how the ANN hybridized with a Kalman filter to predict 558 

each decomposed PRC and residuals components. In the combined approach, the state vectors 559 

are provided to the EnKF technique in which the output of the ANN will be considered as state 560 

vectors. The output of the ANN will correct by the EnKF to determine the best estimate of the 561 

analyzed state or system using the observation data. These states will have resumed all the inputs 562 

of the ANN model for the following time step. The inputs of this network have some differences 563 
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within them, which are related to feedback form loop or force. For more details, one of the 564 

hybridizations of EnKF and ANN the readers can be addressed to (Sharma and Lie, 2012). 565 

4.6. Model’s performance metrics  566 

In this study, the newly implemented hybrid ITD-EnKF-ANN vs. ITD-GD-ANN, and standalone 567 

EnKF-ANN and GD-ANN models were evaluated by several standard statistical criteria during 568 

WQI prediction. Besides common criteria such as RMSE, Nash-Sutcliffe Efficiency (NSE), and 569 

Mean Absolute Error (MAE), to assess the fidelity of hybrid proposed models below indices 570 

were applied. 571 

1. Kolmogorov-Smirnov distance (K-S distance): It measures the maximum distance D between 572 

two consecutive cumulative distribution functions (CDF) (Justel et al., 1997). 573 

]G = max|_G�!��� − _G���|                    (13) 574 

2. The ratio of RMSE to Standard Deviation (RSD): RSD metric, was first introduced by (Singh 575 

et al., 2005), which is a model evaluation metric to assess the variations between the predicted 576 

and observed WQI data. This metric is calculated based on two error metrics, namely, standard 577 

deviation (STDEV) and RMSE of the observed WQI data points. The lower value of RSD shows 578 

the higher performance of the model.  579 

,�] = ,��`�a]`b0cd = ef∑ ����0cd − ����gh�ijG\! k
lf∑ ����0cd − ���0cdmmmmmmmmmm�jG\! n  (14) 

3. Uncertainty at 95 % (U95): U95 is considered as a 95 % uncertainty confidence of the model. 580 

#op = 1.96q��a]`bi + ,��`i� (15) 
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4. Reliability of model (%): This statistical metric indicates the satisfactory state of the model’s 581 

prediction rate by the probability. 582 

,rsHtuHsH�& =  ∑ /GjG\!J × 100 % (16) 

/G = x1,   Hy�,z G̀ ≤ |�0,                     rs}r (17) 

,z G̀ = ~����gh�H� − ���0cd�H�~���0cd�H� × 100 %,   ,z G̀  ≥ 0 (18) 

5. The resilience of model (%): This indicator defines how rapidly the model forecast is likely to 583 

recover once an unqualified prediction has followed (Zhou et al., 2017). 584 

,r}HsHr��r = �100 %,   Hy �,rsHtuHsH�& = 100 %∑ ,Gj�!G\!J − ∑ /GjG\! × 100 %,             rs}r  (19) 

,G = x1,   Hy �,z G̀ > |  t��  ,z G̀U! ≤ |0,                                                      rs}r (20) 

Where _���� and _��!��� are the CDF of i interval and the previous interval (i-1). ���0cd and 585 

����gh  denote the observed and predicted values, respectively;  ����ghmmmmmmmmmm   is an average of 586 

observed values, and N is the number of the dataset. RAEi is the ith value for the data, Ki is the 587 

number of periods that the threshold value (δ) of the qualified forecast is greater than or equal to 588 

RAE value. According to the Chinese standard, the δ is set to 20% (GB/T22482, 2008). Ri is the 589 

number of periods in which model prediction is likely to transfer from unqualified into qualified 590 

prediction in the ith data (Rezaie-Balf et al., 2019a). 591 
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5. Results and discussion 592 

The result section starts with the input data screening, which is finding the correlation between 593 

them, along with determining the trend following variance estimation. Then this section 594 

continuous with results of stand-alone and hybrid models for both Klang and Langat stations. 595 

The discussion part gives information about the comparison between proposed models. This 596 

section ends with the current study limitation and suggestion for future works. 597 

5.1. Physiochemical–covariate correlation of source data 598 

The monthly WQI co-variability with the river physiochemical parameters BOD, DO, SS, COD, 599 

NH3-NL, and pH are evaluated using the Pearson coefficient, which is known as parametric 600 

correlation analysis and primary check, in order to investigate the dependence between multiple 601 

variables at the same time. In order to assess the data relationships, the correlation factor was 602 

used in which it varies from -1 to +1, where -1 showed a negative correlation, and +1 defines 603 

positive correlation. In this study, a graphical correlation matrix is plotted to show a linear 604 

dependence between two variables for both Klang and Langat stations (Figure 5). According to 605 

this matrix, the monthly WQI has a positive, statistically significant correlation with monthly DO 606 

(0.74) and pH (0.28) for Klang and DO (0.82) for the Langat River. Also, a strong negative 607 

relationship is attained from the matrix between WQI as the corresponding target and BOD (-608 

0.68) and COD (-0.62) for Klang, and all independent variables except DO for Langat river. 609 
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 610 

Figure 5. Pearson correlation matrix measures the linear relationship between each 611 

physicochemical parameters and corresponding WQI. The color scale indicates the direction of 612 

the correlation which means that purple color represents negatively correlated statistics, and 613 

orange color positively correlated statistics 614 

5.2. Monotonic trends detection of source data 615 

The monotonic trends in monthly WQI are examined by a standard nonparametric method called 616 

Spearman’s rank-order correlation coefficient, denoted by ρ, to assess the fact that how two data 617 

sets are linked to each other. In other words, the absence of trends is verified by this method in 618 

both nonlinear and linear trends (Rezaie-Balf et al., 2019c). The null hypothesis of this analyze 619 

the identical distribution and the independence of two variables, and the alternative hypothesis is 620 

the existence of decreasing or increasing trends. Considering the position order for identical 621 

values, the rank order is assigned. For instance, ρ could take -1 to +1. 622 

As proven in Table 2, correlations between modeled WQI and input (physicochemical 623 

parameters of the river) variables are estimated by the Spearman’s rank correlation test for two 624 

stations. When the P values <0.05, the confidence level for the correlation test is selected. 625 

Spearman’s rank correlation coefficients for the input variables at two stations of Klang and 626 

Langat are more than 0.5, and the confidence level (P-values) is less than 0.05. So, the null 627 
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hypothesis in which the two populations are independent is rejected at a level of 5 % of 628 

significance, and the modeled WQI is judged to be dependent on input variables. 629 

Table 2. Values of the correlation coefficient between the WQI and the physicochemical 630 

input variables 631 

 632 

** Marked correlations are significant at P > 0.05 level. 633 

 634 

5.3. Statistical analysis of variance of source data 635 

The assessment of the effects of the variables (dependent and independent) is a significant issue 636 

in testing the data. Analysis of variance (ANOVA) is one of these tests and allows the modeler to 637 

indicate whether independent variables have an influence or the effect of the interaction between 638 

these variables on the dependent variable (Lam et al., 2016). The GLM-ANOVA which stands 639 

for general linear model analysis of variance is one of the diagnostic tools and critical statistical 640 

analysis, which reduce the error variance. In this research, the significance level of 0.05 was 641 

utilized in order to recognize the statistical significance of physicochemical variables. These 642 

variables, including DO, BOD, COD, SS, pH, and NH3-NL, were selected as the independent 643 

variables in this analysis. The GLM-ANOVA was implemented on data for each variable; the 644 

results are showed their degree of freedom, the sequential sum of squares, and their contribution 645 

percentage of physicochemical properties at each station. The effect of the individual 646 

independent variable on WQI (dependent variable) was valued by defining the null hypothesis of 647 

equality of independent variances or significance test at probability level (p-values). As shown in 648 

Station Parameter 

value 

Input variable 

DO BOD COD  SS pH NH3-NL    

Klang R 0.73** -0.59** -0.78** -0.64** 0.76** -0.49** 

 Sig 0.00 0.002 0.00 0.001 0.00 0.005 

Langat R 0.87** -0.79** -0.86** -0.73** 0.84** -0.69** 

 Sig 0.00 0.00 0.00 0.00 0.00 0.00 
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Table 3, the significance of physicochemical variables was obtained from the comparison of p-649 

values with the significance level factor (0.05). All of the physicochemical variables were 650 

defined as a significant variable because of their p-value <= 0.05. The contribution of each 651 

physiochemical data was also shown in these two selected stations. For Klang station, NH3-NL 652 

(90.22%) and pH (64.82%), respectively, were defined as the highest and the lowest contributors. 653 

However, in Langat station, SS with 95.21 % and NH3-NL with 83.52 % has the highest and 654 

lowest contribution, respectively. 655 

Table 3. Analysis of variance (ANOVA) results for physicochemical variables of river 656 

Station Statistical parameters  

 
Source of 
Variation 

DF Seq. SS Computed F P-value Significance Co. (%) 

 DO 227 67671.22 2.83 0.00 Yes 89.46 
 BOD 33 6210.99 13.58 0.00 Yes 82.41 

Klang COD 82 1425.42 6.6 0.00 Yes 70.99 
 SS 176 17.86 1.54 0.005 Yes 88.04 
 pH 140 2.57 1.41 0.017 Yes 64.82 
 NH3-NL 238 93.84 2.52 0.00 Yes 90.22 
 Error 13 258.02 - - - - 
 DO 104 40865.38 1.4 0.02 Yes 87.95 
 BOD 24 3141.46 14.9 0.00 Yes 79.54 

Langat COD 50 153.43 11.26 0.00 Yes 89.5 
 SS 103 33.28 2.51 0.03 Yes 95.21 
 pH 93 3.672 4.01 0.00 Yes 94.19 
 NH3-NL 66 29.72 3.84 0.00 Yes 83.52 
 Error 116 44223 - - - - 

DF: the degree of freedom; Seq. SS: Sequential sum of squares; Co.: Contribution. 657 

5.4. Results for standalone and hybrid models 658 

This section has highlighted the results for standalone and hybrid models in two subsections for 659 

Klang and Langat stations in both calibration and validation stages. The initial attempt is to 660 

investigate which training algorithm in ANN will be suitable for the given task. Besides gradient 661 

descent that is one of the typical training algorithms, the result of another implementation with 662 

EnKF assimilation is obtained in order to consider the effect of assimilation for predicting WQI. 663 

Afterward, the pre-processing technique, ITD, integrating with the models mentioned above, is 664 
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applied in order to improve models’ accuracy. Diagnostic evaluation of the statistical error 665 

metrics, including NSE, RMSE, MAE, RSD, U95, reliability, resiliency, non-parametric 666 

Kolmogorov- Smirnov (K-S) distance statistic, and visual plots such as scatter plot, time-series 667 

plot, Taylor diagram, and error bar for predicted and measured WQI are employed to assess 668 

models’ performance. 669 

 670 

5.4.1. Klang Station 671 

According to performance measures, the prediction of well-designed hybrid model ITD-EnKF-672 

ANN vs. ITD-GD-ANN, EnKF-ANN, and GD-ANN models is numerically evaluated in this 673 

sub-section. As shown in Table 4, at the calibration stage, in terms of NSE, the accuracy of both 674 

GD-ANN and EnKF-ANN integrating the ITD approach is increased from 0.74 to 0.79 and 0.92 675 

to 0.935, respectively. By considering RMSE, the combined model errors were decreased by 45 676 

% for the ITD-GD-ANN model and 44 % for the ITD-EnKF-ANN model. In the case of MAE, 677 

ITD-EnKF-ANN (2.92) performed better than ITD-GD-ANN (3.42), and RSD explains the 678 

decrease by 0.238 and 0.206 for hybrid GD-ANN and EnKF-ANN models, respectively. 679 

Therefore, it shows the satisfactory results that hybrid models outperformed the standalone 680 

models. U95 shows that 95 % of the uncertainty confidence of the models; the results confirmed 681 

the decreasing trend in both hybrid models (ITD-GD-ANN=31.906 and ITD-EnKF-682 

ANN=31.73). Further comparison of these models by reliability and resilience percentages 683 

showed a notable increase for both models. Focusing on K-S distance between observed and 684 

modeled WQI data, the ITD-EnKF-ANN model has the lowest amount of distance (0.068), among 685 

other models for the Klang river. This shows the preference of this model in which the observed 686 



36 
 

and modeled values are closer. All the above statistics show the quicker and satisfactory WQI 687 

forecast by using ITD-GD-ANN and ITD-EnKF-ANN. 688 

Table 4. Evaluation metrics of the proposed models in the calibration and validation stages at Klang 689 

station 690 

Models Statistical error indices 
GD-ANN EnKF-ANN ITD-GD-ANN ITD-EnKF-ANN 

Total available data in the calibration stage 
NSE 0.74 0.788 0.92 0.935 

RMSE 7.97 7.21 4.31 3.97 
MAE 6.23 5.704 3.42 2.92 
RSD 0.508 0.459 0.27 0.253 
U95 34.51 33.856 31.906 31.73 

Reliability (%) 78.29 82.55 95.74 97.87 
Resilience (%) 56.66 66.09 90.17 93.42 
K-S distance 0.115 0.085 0.072 0.068 

Total available data in the validation stage 
NSE 0.51 0.71 0.682 0.81 

RMSE 10.05 7.66 8.055 6.17 
MAE 8.16 6.51 5.97 5.069 
RSD 0.69 0.532 0.559 0.42 
U95 34.403 31.95 32.33 30.69 

Reliability (%) 73.91 84.05 89.85 94.30 
Resilience (%) 77.75 90.91 85.71 91.97 
K-S distance 0.319 0.256 0.289 0.217 

 691 

 692 

Regarding results presenting in the validation stage, all the statistical indices marked that ITD 693 

based ANN model with the help of EnKF assimilation performed better than sole models. For 694 

instance, the NSE increased by 0.172 and 0.1, reliability 15.94 and 10.25 and resiliency 7.96 and 695 

1.06 for ITD-GD-ANN and ITD-EnKF-ANN respectively. The decrease in other error indices 696 

such as RMSE, MAE also reveals that the coupled models have better results in the prediction of 697 

WQI. In accordance with this, MAE has the highest decrease in values for both ITD-GD-ANN 698 

(26.83 %) and ITD-EnKF-ANN (22.13 %) models, however, for RMSE values, 19.8 %, and 699 

19.45 % deduction were noticed for coupled GD-ANN and EnKF-ANN models respectively. By 700 

considering RSD as a mathematical index, by combining the ITD algorithm with GD-ANN, this 701 



37 
 

index was decreased from 0.69 to 0.559, and by combining the ITD algorithm with EnKF-ANN 702 

models, this index decreased from 0.532 to 0.42. This shows that the error diminished, and the 703 

prediction could be more accurate. K-S statistic in the validation stage also depicts the lowest 704 

distance (0.217) for the ITD-EnKF-ANN method, which is the result of concordance between 705 

input and output data of WQI. 706 

The scatter plots between observed and the predicted WQI (Figure 6) reveal that at the 707 

calibration stage, the ITD-GD-ANN model (R2=0.92) relatively superior to standalone GD-ANN 708 

models (R2=0.74). The same results for EnKF-ANN (R2=0.81) as standalone and ITD-EnKF-709 

ANN models (R2=0.94) showed that combined models performed better than standalone models. 710 

Comparison of model accuracies in the validation stage, also the priority of coupled models 711 

(ITD-GD-ANN and ITD-EnKF-ANN), was seen. In another view of scatter plots, the regression 712 

equation, which is based on modeled and observed values of the WQI index, is found from 713 

y(Wm)=aWo+b. 714 

 715 

 716 

Figure 6. Scatter plots between the observed and the predicted value of WQI for standalone and 717 

hybrid models at Klang station in calibration (up) and validation (down) stages for all proposed 718 

models. 719 
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 720 

In this equation, Wm shows the modeled WQI, and Wo illustrates the observed WQI. The 721 

accurate model based on the values of a, b, and R2 could be selected. In this research at the 722 

calibration stage, the ITD-EnKF-ANN with a=0.864, b=6.5399, and R2=0.9432 was selected as 723 

the best model. The same analysis for the validation stage reveals that with a=0.9051, b=3.5789, 724 

and R2=0.8419, the ITD-EnKF-ANN model was selected as the accurate model for predicting 725 

WQI in Klang station. 726 

Although predicting all quantities of WQI is helpful for various practices, such as drinking, 727 

agriculture, and industry, the low and high values of this index are more crucial because of its 728 

direct impact on public health and the environment. In this regard, by considering time-series 729 

plots along with relative error plots which their x-axis showed their cumulative time (month) and 730 

y-axis for predicted monthly WQI high and low values of WQI, which is predicted by selected 731 

hybrid ITD-EnKF-ANN along with other models are analyzed (Figure 7).  732 

Error criteria (relative error) and graphical analyses were used for evaluating the proposed 733 

methods of WQI prediction for standalone (GD-ANN and EnKF-ANN) and integrated (ITD-GD-734 

ANN and ITD-EnKF-ANN) models. In the plots that relative error is calculated, the accuracy of 735 

models was analyzed, and it is shown that in the GD-ANN model, the peak values reach to one 736 

value, while for ITD-GD-ANN, most of the values are closer to zero. Besides, with EnKF-ANN, 737 

the error values fluctuate between 0.5 and -0.5, also in ITD-EnKF-ANN. The values of relative 738 

error were close to zero, and the fluctuations are extremely low. Considering time series plots 739 

and relative error plots, ITD-EnKF-ANN was found to be more suitable for WQI prediction. 740 

However, ANN, with the help of the GD algorithm, had poor accuracy and was not a reliable 741 

model. 742 
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 743 

 744 

Figure 7. The hydrographs of observed vs. predicted monthly WQI using standalone and hybrid 745 

models for calibration (solid lime) and validation (dash line) stages and relative error plot for 746 

Klang station. 747 

 748 

5.4.2. Langat Station 749 

Similar to the previous section, Table 5 exhibits the mathematical indexes in the calibration stage 750 

and validation stages for proposed models. As shown in the calibration stage, NSE value was 751 
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increased from 0.82 to 0.89 in ITD-GD-ANN and 0.87 to 0.92in ITD-EnKF-ANN in comparison 752 

with their sole-models. The error values of RMSE, MAE, and RSD were decreased by 22 %, 25 753 

%, 24 % when the GD-ANN model was combined with ITD algorithms. By comparing the 754 

uncertainty of models, ITD-EnKF-ANN (U95=41.75) performed better than ITD-GD-ANN 755 

(U95=42.38) at 95 % of confidence. In the validation stage, the same indices provide adequate 756 

proof that combines ITD-EnKF-ANN outperformed the ITD-GD-ANN models. For example, 757 

considering NSE, it is increased by 1.328 for the GD-ANN model also 0.14 for the EnKF-ANN 758 

model by a combination of ITD algorithms. By considering the error indices, RMSE, MAE, RSD 759 

were decreased by their values in coupled ITD models. In the other aspect, the lowest difference 760 

between two consecutive cumulative distribution functions (CDF) of input and output WQI data 761 

in the calibration stage for Langat station is 0.106, which is belong for ITD-EnKF-ANN model. 762 

This shows that the hybrid ITD-EnKF-ANN model performed better than the other models. The 763 

same outcome of the preference of the ITD-EnKF-ANN model with a distance of 0.217 was 764 

calculated for the validation stage. These results reveal that the ITD algorithm as a pre-765 

processing algorithm performed better while combining to DDMs.  766 

Table 5. Evaluation metrics of the proposed models in the calibration and validation stages at Langat 767 

station 768 

Models Statistical error indices 
GD-ANN EnKF-ANN ITD-GD-ANN ITD-EnKF-ANN 

Total available data in the calibration stage 
NSE 0.82 0.87 0.89 0.92 

RMSE 8.66 7.09 6.74 5.61 
MAE 7.21 5.91 5.42 4.59 
RSD 0.42 0.345 0.32 0.27 
U95 43.71 42.607 42.38 41.75 

Reliability (%) 72.73 86.36 89.77 95.45 
Resilience (%) 66.49 83.33 77.78 89.56 
K-S distance 0.159 0.148 0.125 0.106 

Total available data in the validation stage 
NSE 0.598 0.69 0.73 0.83 

RMSE 8.28 7.27 6.69 5.403 
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MAE 6.504 6.16 5.72 4.38 
RSD 0.622 0.54 0.503 0.406 
U95 30.72 29.72 29.19 28.15 

Reliability (%) 89.65 89.65 94.55 97.68 
Resilience (%) 67.58 67.58 91.48 94.15 
K-S distance 0.310 0.276 0.241 0.217 

 769 

 770 

 Figure 8 showed the scatter plot of the proposed models in order to assess the best accuracy for 771 

WQI prediction. Considering Figure 8 in detail, at the calibration stage, the correlation 772 

coefficient for ITD-GD-ANN was increased by 0.07 in comparison with stand-alone GD-ANN. 773 

Also, the coefficient of determination for ITD-EnKF-ANN increased by 0.09 compared with 774 

stand-alone EnKF-ANN. In the validation stage, the R2 for ITD-GD-ANN and ITD-EnKF-ANN 775 

were increased by 25 % and 11 % in comparison with their sole models. The outcomes from the 776 

stand-alone and combined models reveal that in both calibration and validation stages, the ITD-777 

EnKF-ANN was confirmed the best model in WQI prediction.  778 

 779 

Figure 8. Scatter plots between the observed and the predicted value of WQI for standalone and 780 

hybrid models at Langat station in calibration (upper row) and validation (lower row) stages for 781 

all proposed models. 782 

 783 
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Figure 9 depicts the time series of predicted vs. observed values of WQI calibration and 784 

validation stages. In standalone GD-ANN and EnKF-ANN models, the maximum value of 785 

relative error belongs to 61st month with RE=1 and RE=0.7, respectively. By comparing the two 786 

combined models, ITD-GD-ANN and ITD-EnKF-ANN, it is shown that the maximum value for 787 

relative error was between 0.5 and -0.5, and the error values are close to zero in ITD-EnKF-ANN 788 

model. Thus, this also reaffirms that the ITD-EnKF-ANN hybrid model has better predictive 789 

skill than the other combined and standalone models considered in this research. 790 

Furthermore, the utilization of such a modeling procedure does not only predict water quality 791 

index accurately but also can improve the water quality monitoring programs by reducing the 792 

costly experimental testing and time-consuming issues. 793 

 794 
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 795 

Figure 9. The hydrographs of observed vs. predicted monthly WQI using standalone and hybrid 796 

models for calibration (solid lime) and validation (dash line) stages and relative error plot for 797 

Langat station. 798 

5.5. Further comparison among proposed models 799 

Based on peak values of predicted monthly WQI with the observed extreme values of each 800 

station, the best models can be identified. For this aim, Table 6 demonstrates the ten highest 801 

extreme values of predicted WQI for two stations considering the GD-ANN, EnKF-ANN, ITD-802 

GD-ANN, and ITD-EnKF-ANN models. As shown in Table 6, the maximum difference between 803 

the extreme value belongs to the EnKF-ANN model while the minimum difference goes to ITD-804 
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EnKF-ANN for Klang station. Again for Langat station, the highest value for WQI observation 805 

was 93.84, while the peak values for the models were 82.506, 82.436, 84.484, and 89.538 for 806 

GD-ANN, EnKF-ANN, ITD-GD-ANN, and ITD-EnKF-ANN models, respectively. This 807 

resulted that the ITD-EnKF-ANN model outperformed other models in the view of extreme 808 

values. 809 

Table 6: Accuracy evaluation of different models for predicting extreme WQI values (Klang and 810 

Langat stations) 811 

Observed value  GD-ANN  EnKF-ANN  ITD-GD-ANN  ITD-EnKF-ANN  
Klang station 

92.86 88.252 82.528 85.916 90.471 
91.77 83.628 83.134 86.181 92.699 
90.78 86.110 81.664 76.881 91.664 
90.15 76.608 81.664 77.14 91.664 
90.13 85.3826 88.766 81.499 88.766 
90.12 85.139 78.468 81.283 88.431 
89.87 77.866 78.892 81.306 78.006 
89.42 91.660 79.195 82.079 89.152 
89.30 87.959 83.68 86.561 83.098 
89.00 87.207 80.529 84.054 86.649 

Langat station 
93.84 82.506 82.436 84.484 89.538 
92.2 91.099 83.838 91.389 86.101 
92.12 88.549 83.980 85.437 91.274 
91.85 77.995 82.551 81.692 90.269 
91.71 86.74 82.248 89.072 86.618 
90.91 84.721 82.452 86.299 85.442 
90.83 84.5 83.960 83.497 86.411 
90.37 95.478 84.063 95.396 92.93 
89.93 87.006 82.896 88.47 86.262 
87.90 77.701 81.121 79.935 83.305 

 812 

Figure 10 demonstrates the Taylor diagram, which is used to quantify the degree of 813 

correspondence between modeled and observed WQI in the tested data in terms of three primary 814 

statistics on a single diagram. It shows the RMSE, the correlation coefficient, and the standard 815 

deviation for GD-ANN, EnKF-ANN, ITD-GD-ANN, and ITD-EnKF-ANN models for both 816 

Klang and Langat stations.  817 
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 818 

 819 

Figure 10. Taylor plots indicating the correlation coefficient and standard deviation in the 820 

validation stage based on the standalone models vs. the hybrid-assimilated models for predicting 821 

monthly water quality index at two candidate study stations. 822 

 823 

Concurring with earlier results, it was evident that the ITD-EnKF-ANN model in both stations is 824 

closer to the optimum reference point when a combined visual valuation of the statistics is made. 825 

As evident from this diagram, the coupled ITD-EnKF-ANN model has a higher correlation and 826 

inversely a lower standard deviation for both stations in the prediction of WQI. However, the 827 

GD-ANN model lies much farther to the line representing the centered root-mean-square 828 

difference, while the standard deviation of the GD-ANN model remains modestly farther than 829 

other models to reference. 830 

The empirical cumulative distribution function (ECDF) was plotted at different predicting 831 

abilities (Figure 11), which predicted error of monthly WQI in the x-axis and the percentage of 832 

the distribution function in the y-axis for each model. According to the plot, it is evident that the 833 
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ITD-EnKF-ANN hybrid model was gently better than ITD-GD-ANN for WQI predicting at both 834 

stations, and both decomposed-based models were superior to the original models.  835 

Based on the percentage of errors in the minimum error bracket (i.e., from 0 to 5) for the Langat 836 

station clearly confirms that the ITD-EnKF-ANN was the most responsive model in predicting 837 

water quality index (50 %) compared to 44 % for the ITD-EnKF-ANN, 36 % for the EnKF-838 

ANN, and 29 % for the standalone GD-ANN model. Inferior performances were demonstrated 839 

when the non-ITD/DA mechanisms were utilized. Therefore, the highest performance with the 840 

lowest predicted error resulted from the GD-ANN model. The results of these ECDF plots are 841 

consistent with the subject that WQI prediction has a better result when using an ensemble 842 

Kalman filter ANN model, which is combined with ITD pre-processing techniques.  843 

 844 

 845 

 846 

 847 

 848 
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 849 

Figure 11. Empirical cumulative distribution (ECDF) of the absolute forecasted error |FE| for the 850 

ITD-EnKF-ANN model compared to the other models at Klang and Langat stations in the 851 

validation phase. 852 

 853 

5.6. Current study limitations  854 

This study consistent with the concept of water quality index modeling by using neural networks 855 

modeling, which is used the ITD pre-processing data algorithm for the first time. Despite using a 856 

standard training algorithm, namely gradient descent in this research, ensemble Kalman filter 857 

algorithm as an assimilation algorithm used in this research in order to eliminate GD algorithm 858 

drawbacks for improving the model's accuracy in terms of prediction. For more satisfaction on 859 
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the result of WQI prediction, data decomposition technique, ITD, proposed to extract 860 

input/output variables into different sub-signals in order to overcome the non-stationarity 861 

features in the time series real data. 862 

The present study has shortcomings that create an opportunity for follow-up research in the field 863 

of hydrology. Implementation of the ITD pre-processing technique integrated with EnKF-ANN 864 

is time-consuming because it produces a large number of PRCs. Follow-up studies can consider 865 

another pre-processing method to reduce computational cost or to implement ITD-EnKF-ANN 866 

all together in one main source code, at least to reduce the time of development. Another 867 

limitation through the study was the lack of meteorological data in some months for both 868 

stations, and this drawback may provide uncertainty on the prediction of water quality index. In 869 

this regard, it is suggested that future studies might use the satellite-based dataset in order to 870 

analyze the data for WQI prediction. In addition, as mentioned above, source data was limited in 871 

terms of predicting WQI and was the three-month timescale. Hence, a follow-up study could 872 

investigate the model's skill for better temporal resolution (e.g., hourly, daily, weekly, and 873 

monthly) with satellite-based prediction. 874 

 875 

6. Conclusions  876 

This paper underlined the importance of water quality modeling for human health. In this study, 877 

as the first step, a comprehensive literature review was carried out on the current state of river 878 

WQI modeling. It was found that pH and DO as the physicochemical parameters with the 95.83 879 

and 91.67, respectively, were the most influential parameters researchers considered for the 880 

studies. 881 
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Besides the GD algorithm that was initially used for finding the minimum of a function in ANN, 882 

the Ensemble Kalan Filter (EnKF) assimilation approach that is one of the best solutions to 883 

nonlinear problems, is used to merge ANN model prediction with assimilating production data at 884 

two famous polluted rivers in Malaysia, namely Klang and Langat. Considering evaluation 885 

metrics, using EnKF to predict WQI could improve the accuracy of the standalone ANN model 886 

by 39 % and 17 %, respectively, for Klang and Langat stations in terms of NSE compared with 887 

GD training algorithms. In addition, predicting error was reduced to 7.66 and 6.51 in terms of 888 

RMSE and MAE, respectively, by augmenting the state space with model parameters (using DA 889 

technique) compared to no assimilation at Klang station.  890 

As a further attempt, the performance of a newly constructed ensemble hybrid decomposition 891 

model embedded with the Intrinsic Time-scale Decomposition (ITD) as a pre-processing 892 

technique integrated with the ANN model was adopted. That is, the physicochemical time series 893 

and the corresponding target using the ITD algorithm were extracted (decomposed), resulting in 894 

improved performance of the standalone models. In this respect, the RSD and U95 values of the 895 

ITD-EnKF-ANN model for WQI estimation were reduced to 25.3 % and 5.2 %, respectively, 896 

compared with the EnKF-ANN model at Langat station.  Considering the plotted empirical 897 

cumulative distribution function (ECDF) at different predicting abilities in both stages of 898 

calibration and validation along with non-parametric statistics, namely Kolmogorov-Smirnov (K-899 

S) Distance method in Klang and Langat rivers, the hybrid assimilated ITD-EnKF-ANN 900 

performed better than the other models. 901 

Overall, the achieved results indicated that the hybrid assimilated ITD-EnKF-ANN model would 902 

be a robust approach to predict WQI on the monthly timescale since the results were favorable 903 

for both Malaysian stations. It is also can be proposed as a possible solution in order to reduce 904 
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the noise in highly nonlinear hydrological phenomena such as the prediction of streamflow, solar 905 

radiation, etc. 906 

 In order to widen the scope of the study, the ITD-EnKF-ANN model could be improved with 907 

ensemble-based uncertainty testing via a bootstrapping and the Bayesian model averaging 908 

techniques, although the proposed model had a precise prediction. One possibility for future 909 

study is to consider other DDMs such as gene expression programming, extreme learning 910 

machine, etc. for integrating with ensemble Kalman filter to perform an accurate model in the 911 

prediction of the hydrological processes (i.e., streamflow, rainfall, water stage, groundwater, 912 

etc.). 913 

With the aim of the accuracy of WQI modeling, it is better to consider more data samples and 914 

various input variables such as heavy metals, pollutants, and radioactive samples from different 915 

rivers in Malaysia. The water quality can also be affected by their background basin, so this can 916 

affect the concentration of each quality parameter. Thus, for future works, the authors suggested 917 

assessing basin effects too. Finally, it can be suggested as a potential alternative to enhance the 918 

forecasting accuracy using other pre-processing approaches, complete ensemble local mean 919 

decomposition with adaptive noise, variational mode decomposition, complete ensemble 920 

empirical mode decomposition(CEEMD), improved CEEMD, local mean decomposition 921 

(LMD), and ensemble LMD. 922 
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Highlight 1 

 2 

As a comprehensive review, pH and DO were the most influential parameters for WQI 3 

prediction. 4 

Ensemble Kalman Filter as the DA technique is applied to generate an accurate state estimation. 5 

For improving the physicochemical data to noise ratio, ITD approach hybridized with EnKF-6 

ANN. 7 

The new ITD-EnKF-ANN generally outperformed other standalone and hybrid DDMs for the 8 

prediction of WQI. 9 
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