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a b s t r a c t

Process route planning is vital for implementing energy saving and low-cost production in mechanical
processing as it can directly affect the energy consumption and the cost of mechanical product pro-
cessing. Therefore, a multiobjective optimization approach of machining center process routes to realize
energy saving and low-cost mechanical processing is proposed in this paper. To provide theoretical
support for this study, process route optimization problems of a machining center are analyzed, the
concept of workstep element is introduced to represent the features of machined parts, and a multi-
objective optimization model is established. The optimization model is solved based on the combination
of a workstep chain intelligent generation algorithm and a non-dominated sorting genetic algorithm II.
Finally, the emulsion pump case process route is used as a case study to verify the feasibility and
practicability of the proposed method. Comparison with actual data shows that with the single objective
of energy consumption and processing cost, based on the multiobjectives of energy saving and low cost
as the optimization goal, the energy consumption was 1.018 � 107 J, and the processing cost was
CNY32.65. Compared with the other two experimental results, the energy consumption and the pro-
cessing cost demonstrated the best comprehensive performances, consistent with energy saving, low
cost and sustainable production, thereby validating the established model. Furthermore, the optimiza-
tion analysis shows that the combinatorial optimization algorithm has a better solution speed and
optimization precision than the general genetic algorithm.

© 2020 Elsevier Ltd. All rights reserved.
1. Introduction

With the severity of resource consumption and environ-
mental pollution problems increasing in recent years, the green
manufacturing mode characterized by “high energy efficiency,
low pollution, and low emission” has become the focus of the
manufacturing industry (Zhai and An, 2020). According to sta-
tistics, in 2018, industrial energy consumption constituted
approximately 70% of China’s original energy consumption,
whereas manufacturing constituted approximately 85% of
China’s industrial energy consumption (Wang et al., 2019).
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Serious environmental pollution accompanies the energy con-
sumption of the manufacturing industry (Cai et al., 2019). The
traditional manufacturing process consumes a significant
amount of energy and results in serious environment pollution.
For instance, the energy consumption of a steel blank constitutes
approximately 16.1%, whereas waste water, sulfur dioxide, and
solid waste constitute approximately 8%, 8% and 16% of the in-
dustry, respectively (Lu et al., 2015). Evidently, traditional
machining methods do not satisfy the demand of sustainable
development (Ai et al., 2019). Over the lifetime of a product, six
stages are involved: product planning, product design, product
production, product transportation, product use, and product
recycling (Du et al., 2015). Environmental pollution and resource
consumption accompany each stage. However, in product pro-
cessing, resource consumption and environmental pollution are
the most serious issues; in addition, product recycling is in fact
product reprocessing. Hence, in the last few decades, studies
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Nomenclature

ae the processing width ðmmÞ
ap the processing depth ðmmÞ
a the labor cost per unit time ðRMBÞ
b the tool cost ðRMBÞ
h the efficiency of the machine tool
a the feed speed of the tool ðmm=minÞ
fz the feed per tooth ðmmÞ
l1 energy consumption weighting coefficient
l2 cost weighting coefficient
vc the processing speed ðmm=sÞ
vfmin the minimum feed speed ðmm=minÞ
n the spindle speed ðr=minÞ
AHP Analytic Hierarchy Process
ANFIS adaptive network-based fuzzy inference system
Cp the average cost of processing ðRMBÞ
Cp the normalized of cost objective function ðRMBÞ
Ea additional load energy consumption ðKJÞ
EA the total energy absorption rate
Ec cutting energy consumption ðKJÞ
Ed tool change system energy consumption ðKJÞ
Ee the total energy consumption ðKJÞ
Ee the normalized of energy consumption
Eo auxiliary energy consumption ðKJÞ

Es machine tool generalized energy storage ðKJÞ
Et worktable rotation energy consumption ðKJÞ
Eu no-load energy consumption ðKJÞ
Fi the processing feature corresponding to the

workstep
FLB front longitudinal structural internals blank
ICA imperialist competition algorithm
L the part processing length ðmmÞ
Li the path length of the tool ðmmÞ
Ni the workstep number
Nmin the minimum speed allowed ðr=minÞ
NC numerical control
NSGA-II non-dominated sorting genetic algorithm II
Pui the no-load power of workstep ðkWÞ
Pi the processing method corresponding to the

workstep
PRO process route optimization
R(i) the constraint vector
Sti the workstep of the workpiece
Ti the tool used in the i-th workstep
Tci the effective cutting time of workstep ðsÞ
Tm the processing time ðsÞ
Tc the effective processing time ðsÞ
Td the tool change time ðsÞ
To the auxiliary processing time ðsÞ

Y. Xiao, H. Zhang, Z. Jiang et al. Journal of Cleaner Production 280 (2021) 124171
targeting green environmental protection and energy saving in
product processing have gradually increased(B. H. Peng et al.,
2019).

The process route governs the entire machining process from
blanks to parts, thereby significantly affecting the energy con-
sumption, processing efficiency, processing cost, processing quality,
and other business objectives. Process route optimization is vital for
improving production efficiency, reducing production cost, mini-
mizing energy consumption, and increasing system flexibility
(Chirag et al., 2019). In the past few decades, the multi-objective
optimization of process routes has always been a hot issue for en-
terprise process designers and university researchers. A series of
advanced multi-objective optimization algorithms have been
developed for multi-objective optimization problems. Artificial
neural network optimization, multi-objective particle swarm al-
gorithm, ant colony algorithm, imperialist competition algorithm,
NSGA-II, etc. Among thesemulti-objective optimization algorithms,
NSGA-II is currently one of the most popular multi-objective ge-
netic algorithms. It reduces the bad sort genetic algorithm
complexity, with running speed, the convergence of solution set
good advantage, becomes the benchmark of performance of other
multi-objective optimization algorithms.The machining center is
the main body of the flexible manufacturing system, and its energy
consumption is a complex multidimensional problem. In the actual
machining process of parts, energy consumption is related to many
factors, including the characteristics of machine tools, process pa-
rameters, tool path, tools, processing environment, and other fac-
tors. However, in the process decision making stage of an actual
production, it is not realistic to achieve energy saving production by
changing the structure of the machine tool. Furthermore, the se-
lection of reasonable processing methods is restricted by the con-
ditions of the machine, whereas optimization is not significant (Yan
et al., 2017). As an essential decision object in parts processing, the
process route has strong operability and determines the production
efficiency significantly; furthermore, the processing cost and
2

workpiece quality are main influencing factors of electric energy
consumption in the cutting process. Therefore, processing energy
consumption and processing cost were used as optimization ob-
jectives in this study. Furthermore, a multiobjective optimization
model was established to select the optimal process route such that
manufacturing enterprise operators can make more informed
process route decisions.

2. Literature review

This section comprises three parts. The first two parts introduce
the twomost typically used methods in energy saving optimization
research and provide an evaluation analysis. The third part com-
bines the research status and research gaps of the first two parts,
introduces the research methods of process route optimization,
evaluates the latest research results and existing problems of pro-
cess route, and describes the research framework proposed herein.

2.1. Structure optimization design

The structure design of the product significantly affects the
energy consumption, which can directly affect the selection of
process route for operators. Dimension is the geometric represen-
tation of a product structure. Therefore, the shape of products must
be optimized to achieve energy saving optimization. Feng et al.
(2018) proposed a synthetical approach for the lightweight
design of rough automotive structures, with total energy absorp-
tion rate and total weight as optimization indicators to improve the
economic benefits of a product. Kitayama et al. (2016) proposed a
response surfacemethod to obtain the optimal product shape using
a simplified process route. Li et al. (2020) studied the complex
automobile shell structure, where the ant colony algorithm was
applied to design the desired surface structure and more selections
were available for the optimized process route. Yang et al. (2020)
developed the structural optimization of the PCHE model and
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performed a comparative analysis regarding the relationship be-
tween design variables and target parameters. They discovered that
the optimized structure had better processing parameters and
required less processing energy. Based on the analysis above,
studies regarding product structure optimization design oriented
toward energy consumption optimization have garnered signifi-
cant attention. However, the current product structure optimiza-
tion design focuses on model simulation and theoretical modeling,
where the constraints of processing equipment, processing auxil-
iary tools, etc. in the specific production process of products cannot
be fully considered. Additionally, the specific energy consumption
optimization value in the processing process cannot be effectively
quantified, thereby increasing the computational complexity.
Hence, the processing energy consumption in specific processing
processes must be further optimized.

2.2. Process parameters optimization

The energy consumption in the actual processing of parts is
related to many factors, including the characteristics of the ma-
chine tool, process parameters, tool path, tools, processing envi-
ronment, and other factors. Therefore, the energy consumption
changes dynamically with the processing process. Tian et al. (2019)
proposed a cutting parameter optimizationmethod considering the
wear condition of the tool. They established a multiobjective
optimization model of cutting parameters to determine the best
cutting parameters and tools as well as adopted the modified
NSGA-II algorithm to solve the optimization model. Li et al. (2019)
developed a multiobjective NC milling parameter optimization
method for NC machining, in which the low energy consumption
and high processing efficiency are regarded the optimization ob-
jectives; subsequently, they performed a comparative analysis
regarding the effects of parameters on energy consumption and
efficiency. According to Ma et al. (2020), the current milling process
optimization method is generally not applicable to the complex
cutting parameter time-varying dynamic process; therefore, they
introduced an instantaneous cutting condition and proposed a
parameter optimization method for complex end milling, where
the processing time and output were reduced. According to time
and energy consumption problems in industrial process planning,
Tian et al. (2011) proposed a new energy analysis method. They
created a multiobjective optimization model and used a hybrid
intelligent optimization algorithm combining fuzzy simulation,
neural network, and genetic algorithm to solve the expected value
model. Experiments show that the hybrid optimization algorithm is
superior to the single algorithm in terms of precision and efficiency.
Xu et al. (2020) constructed an adaptive intelligent model to esti-
mate tool wear using a neurofuzzy reasoning system using
improved particle swarm optimization. The method was proven to
be a new intelligent model that can monitor tool wear in real time.
However, from the literature review above, most of the specific
energy consumption and process parameter quantitative models
adopted data statistics, which cannot objectively reflect the effect
of the actual operation. Hence, accuracy may not be guaranteed.

2.3. Process route optimization

Process route planning directly affects the energy consumption,
processing efficiency, and cost of a workpiece. An unreasonable
process route design will significantly increase the manufacturing
cost and reduce the economic benefits of processing equipment. In
recent decades, the planning and decision making of process routes
have become a popular topic amongst process designers. Reason-
able process planning is the main approach for ensuring the
smooth processing of products (Jiang et al., 2016).H. Peng et al.
3

(2019) used the fault tree analysis method to extract the feature
factors of gear blanks and applied a relevant algorithm to optimize
the gear blank processing process route. Furthermore, an ecological
benefit-oriented process route was proposed, which improved the
speed and efficiency compared with the traditional process route.
Deng et al. (2019) studied process route optimization, regarded the
shortest processing time (high efficiency) as the optimization goal,
and conducted case verification on a refining car box. Compared
with the traditional process route, this method requires a shorter
processing time. Krishna et al. (2006) proposed a new heuristic ant
colony algorithm to search for the global optimal process route and
then constructed the optimal objective function model and verified
it. The model proved to be more efficient and faster. Salehi et al.
(2009) proposed a two-level planning approach for process route
planning. The initial stage is to establish an optimized operation
sequence and then match feasible operation resources (including
tools and machine tools) for each operation sequence. Finally, the
optimization iteration of the genetic algorithm is used to generate
the optimal process plan. Lian et al. (2012) developed an imperialist
competition algorithm to solve the process planning problem, in
which a low processing cost was regarded as the goal. He et al.
(2015) regarded a production workshop as the object, proposed
an energy saving method for a mechanical system by selecting the
appropriate processing machine tool and reducing its idle time, all
of which facilitated the investigation into the energy saving and
optimal operation method. Zhou et al. (2018) constructed a multi-
objective model to optimize a low-carbon-based process route
optimization method, which quantifies the carbon emissions of
each processing workstep and determines the minimum carbon
emissions and processing time as the objective to optimize the
process route through process bill of material(PBOM).

Based on the review above, two research gaps can be identified.
First, most of the studies above used the traditional single objective
model, such as energy consumption or processing time, to optimize
the process route, whereas the multiobjective tradeoff between
energy consumption and cost was not emphasized. Second, studies
regarding energy reduction for machining centers are rare. Hence,
this study attempts to fill these gaps. Fig. 1 shows the framework of
this study.

First, the current research methods and deficiencies pertaining
to energy saving optimization are reviewed critically, and the cur-
rent research gaps are discussed. Based on literature review, a
multiobjective optimization approach to achieve energy saving and
low cost for machining center process routes is proposed.

Second, to realize the energy saving optimization of the process
route of the machining center, a multiobjective optimization model
was constructed. By analyzing factors that affect the process route,
the concept of workstep element was introduced to construct the
energy consumption object function and the cost function. The
constraints in the actual machining process were analyzed, and a
linear weighting method was introduced to develop a multi-
objective linear optimization model.

Third, a combinatorial optimization algorithm based on the
combination of theworkstep chain intelligent generation algorithm
and NSGA-II was applied to optimize the model; all feasible
workstep chains were initially selected by creating priority con-
straints, and then NSGA-II was adopted to search and optimize
feasible workstep chains.

Fourth, an emulsion pump case is presented to verify the
feasibility of the proposed approach. The combinatorial optimiza-
tion algorithm was used to obtain the optimal solution of the
constructed multiobjective optimization model. To verify the
practicability of the model, it was compared with the single
objective optimization model. Moreover, to verify the superiority of
the combinatorial optimization algorithm, it was compared with



Fig. 1. Overall research framework.
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the traditional genetic algorithm.
Fifth, a retrospective summary of this study is presented to

comprehensively discuss the existing problems and limitations of
this study, and future studies are proposed.
3. Establishment of multi-objective optimization model of
process route

This section focuses on energy saving and low cost in the
manufacturing process of the machining center, the two objectives
the minimum energy consumption and minimum machining cost
are considered as the optimization objects, and establishes a mul-
tiobjective optimization model. The detailed process is shown in
Fig. 2. In general, the establishment of multiobjective optimization
model process can be categorized into five steps.
4

Step 1: Determine the optimization goal of the model.
Step 2: Analyze the constraints of the machining center equip-
ment performance, tool life, and other factors.
Steps 3 and Step 4: Construct the energy consumption objective
function and cost objective function.
Step 5: To facilitate the optimization solution, the constructed
multiobjective function is transformed into a single objective
using the linear weighting method, and the final multiobjective
optimization mathematical model is generated.
3.1. Problem description

The process route sequencing problem of the machining center
is affected bymany factors, including the workpiece characteristics,
machining methods, tool selection, and machining process



Fig. 2. Multiobjective optimization modeling flow chart of process route.
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constraints; therefore, the problem is complicated (Ouchida et al.,
2016). The basic idea of machining center process route
sequencing is to reasonably arrange the processing worksteps of
the workpiece. To facilitate the description of the optimization and
decision-making problem of machining worksteps, the concept of
machining workstep element is proposed to describe the features
of the processed parts. The processing information contained in
each workstep is defined as the workstep element, which is
composed of the workstep number, processing characteristics,
processing method, tool orientation, and machining plane. The
introduction of the workstep element can effectively regard the
processing route as a set of workstep elements, and each workstep
element in the set contains detailed feature information. Through
the analysis of each workstep element, researchers can perform a
better in-depth analysis of the processing route optimization.
Therefore, the workstep element can be expressed as Eq (1):

Sti ¼ðNi; Fi; Pi; Ti;DiÞ (1)

Where, Sti is the i workstep of the workpiece, Ni is the workstep
number, Fi is the processing feature corresponding to the i-th
workstep, Pi is the processing method corresponding to the i-th
workstep, Ti is the tool used in the i-th workstep, Diis the azimuth
plane where the i-th workstep is located. Subsequently, G ¼
fSt1;St2;:::; Stng is defined as the set of worksteps of a workpiece.
Therefore, the process route of theworkpiece can be represented by
Eq (2):

X¼
n
Sti;Stj;:::; Stk

o
(2)

Where, X is the sequence of worksteps from Sti to Stk, i.e., fSti;Stj;:::;
Stkg ¼ fSt1; St2; :::; Stng. When all the worksteps are arranged
5

according to certain constraints, the decision-making model of the
workstep sequencing is completed.

Additionally, the machining center sequencing planning deci-
sion must adhere to the related sequencing constraint principles.
For the different constraints, the constraint set can be categorized
into mandatory and priority constraints. In the planning decision-
making of an actual production process, the constraints between
the processing surfaces of the workpieces and the various pro-
cessing methods are analyzed. The abovementioned constraint
principles must be considered in the process workstep optimiza-
tion of machining centers based on the constraint principles, and
the related machining operations should be performed systemati-
cally. The mandatory constraints are constraints that must be
satisfied in the sorting process, which include the following: rough-
then-refine, face-first-hole, and benchmark first. The priority con-
straints are constraints that should be satisfied as much as possible
in the sorting process, including minimizing the number of work-
bench indexing and minimizing the number of machine tool
changes. Therefore, the optimization of machining center
sequencing can be regarded as the optimization of applying the
priority constraint relationship between machining processes to
the machining process set sequentially, which yields the optimal
value of the workstep function under the order of certain
constraints.

3.2. Energy consumption function

The total energy consumption of machine tool in machining
center mainly consists of cutting energy consumption Ec, no-load
energy consumption Eu, additional load energy consumption Ea,
tool change system energy consumption Ed, worktable rotation
energy consumption Et , machine tool generalized energy storage Es
and auxiliary energy consumption Eo (Altıntaş et al., 2016). As the
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generalized energy storage and other auxiliary energy consumption
of machine tools are very little affected by process sequencing, this
paper takes it as a fixed value Q , Q ¼ Es þ Eo. Therefore, the total
energy consumption Ee can be expressed as Eq (3):

Ee ¼ Ec þ Eu þ Ea þ Ed þ Et þ Es þ Eo (3)

The cutting energy consumption Ec is the useful work produced
in the process of part processing, which can be represented by Eq
(4).

Ec ¼
Xn
i¼1

Pci � Tci (4)

Where, n is the number of worksteps required to complete the part
processing, Pci is the cutting power of workstep i. Tci is the effective
cutting time of workstep i.

The total energy of machine tool transmission system EL is
composed of no-load energy consumption Eu and additional load
energy consumption Ea. The expression can be express as Eq (5):

EL ¼ Eu þ Ea ¼
Xn
i¼1

PuiTui þ b
Xn
i¼1

PciTci (5)

Where, Pui is the no-load power of workstep i, Tui is the time
consumed from the end of workstep i� 1 to the completion of
workstep i. The expressions of energy consumption Ed and Et in this
stage are as Eq (6) and Eq (7):

Ed¼
Xn�1

i¼1

Pd � Td � sðTi; Tiþ1Þ (6)

Et ¼
Xn�1

i¼1

Pt � Tt � sðDi;Diþ1Þ (7)

Where, Td and Tt are respectively the waiting time of the machine
tool under the condition of tool change and rotation; Pd and Pt are
respectively the power of the motor for tool change and the motor
for table rotation. T、D is tool code and orientation code.

sðXi;Xiþ1Þ¼
�

1;XisXiþ1
0;Xi ¼ Xiþ1

(8)

In Eq (8), when the tool number or the azimuth of the table
changes, sðXi;Xiþ1Þ is taken as 1, while when the tool number or the
azimuth of the table does not change, sðXi;Xiþ1Þ is taken as 0.

Generalized energy storage of machine tools Es, the expression
can be represented by Eq (9).

Es¼ Pst � Tst þ Pend � Tend (9)

Where, Tst and Tend are the start-up time and shutdown time of the
machine.

Auxiliary energy consumption Eo, which is described as Eq (10):

Eo ¼ Po1 � To1 þ Po2 � To2 � Po3 � To3 (10)

Where, To1, To2 and To3 are working hours of electrical control
system, lighting system and cooling system.

From the above analysis, the energy consumption function of
the machining process of the machining center can be expressed as
Eq (11):
6

Ee ¼ð1þ bÞ
Xn
i¼1

Pci � Tci þ
Xn
i¼1

PuiTui þ
Xn�1

i¼1

Pd � Td � sðTi; Tiþ1Þ

þ
Xn�1

i¼1

Pt � Tt � sðDi;Diþ1Þ þ Q

(11)

3.3. Cost function

The process cost of machining center mainly includes
machining cost, tool changing cost and other auxiliary cost-
s(Mcbrien et al., 2016). Therefore, the cost function of machining
process of machining center can be expressed as Eq (12):

Cp¼a

�
To þ Tm þ Tr

Tc
T

�
(12)

Where, in Eq (12), Tr , Tc, n, T can be express as follows

Tr ¼ Td þ
b

a
(13)

Tc ¼ L
nfzz

(14)

n¼1000vc
pD

(15)

T ¼
0
@ CvDo

vcf kz ðae=DÞqaupHBg

1
A

1=m

(16)

In Eq (12)-Eq (16), Cp is the average cost of processing a single
workpiece; To is the auxiliary processing time; Tm is the processing
time; bis the tool cost; a is the labor cost per unit time; Tc is the
effective processing time; Td is the tool change time; L is the part
processing length; vc is the processing speed; fz is the feed per
tooth; n is the spindle speed; ae is the processing width; ap is the
processing depth; Z is the number of tool teeth; D is the tool
diameter; T is the tool life; Cv, o, k, q, u, g, HB is the tool life cor-
relation coefficient.

In the machining center machining process, due to the down
and retract times of tool are quite short, the effective machining
time Tc can be approximately considered to be equal to the
machining time Tmof this procedure (Kitayama et al., 2016). The
cost objective function of the processing process can be expressed
as Eq (17).

Cp¼a

0
@Toþ pDL

1000vcfzz

0
@1þ

�
Tdþ

b

a

�0@ CvDo

vcf kz ðae=DÞqaupHBg

1
A

�1=m1
A
1
A

(17)

3.4. Constrains

As mentioned in section 3.2 and 3.3, the energy consumption
function and cost function have been established, the optimization
objectives are the minimum energy consumption and the mini-
mum processing cost respectively. However, the two objective
functions are usually constrained by the performance of machine
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tools, tool life and other factors(Wang et al., 2013). In the milling
process of CNC machining center, milling parameters mainly
include cutting speed vc, milling depth ap, milling width ae and feed
per tooth fz. As the milling depth and width are known, the multi
variables are cutting speedvcand feed per toothfz.Therefore, it is
essential to make a reasonable choice under the relevant con-
straints (Albertelli et al., 2016).

Spindle speed constraint, as shown in Eq (18).

g1ðvc; fzÞ¼
NminpD
1000

� vc � 0 (18)

Where, Nmin is the minimum speed allowed for the machine
spindle.

Feed restriction, as shown in Eq (19).

g2ðvc; fzÞ¼
vfminpD
1000zvc

� fz � 0 (19)

Where, vfmin is the minimum feed speed.
Power constraint, as shown in Eq (20).
min Fðvc; fzÞ¼min
	
l1Ee þ l2Cp


 ¼min
�
l1

Ee � Emin
Emax � Emin

þ l2
Cp � Cmin

Cmax � Cmin

�
(26)
g3ðvc; fzÞ¼
Fcvc

60� 1000
� hPmax � 0 (20)

Where,h is the efficiency of the machine tool, Pmax is the rated
power.

Torque constraint, as shown in Eq (21).

g4ðvc; fzÞ¼
FcD

2� 103
�Mmax � 0 (21)

Where, Mmax is the maximum torque that the main shaft can bear.
Tool life constraint, as shown in Eq (22).

g5ðvc; fzÞ¼ Tmin � T � 0 (22)

Where, Tmax, Tmin are the upper and lower limits of tool life
respectively.
Table 1
Priority relationships between worksteps.

S.No. Previous workstep Post workstep

1 2 1、3、4、5、6、7、8
2 4 5
3 7 6
4 8 1
3.5. Multiobjective optimization model

Since the energy consumption function and cost function of the
machining center are obtained, the corresponding parameter con-
straints have also been confirmed. Therefore, the process route
optimization is a typical constrained optimization problem(Junior
et al., 2016), and its mathematical model can be expressed as Eq
(23).

�
min Fðvc; fzÞ ¼

�
fEeðvc; fzÞ; fCP

ðvc; fzÞ
�

s:t: gi ðvc; fzÞ � 0; i ¼ 1;2;3:::;9
(23)

It is difficult to get the optimal solution of multiple objective
functions simultaneously, in order to facilitate the solution, a
weighted summation method is introduced to convert the multi-
objective function into a single objective(Tian et al., 2013), as
shown in Eq (24):
7

min
�
fEeðvc; fzÞ; fCP

ðvc; fzÞ
�¼min

�
l1fEeðvc; fzÞþ l2fCP

ðvc; fzÞ
�

(24)

Where, l1 þ l2 ¼ 1, l1 and l2 are energy consumption weighting
coefficient and cost weighting coefficient, which can be determined
by analytic hierarchy process (AHP), (Li et al., 2015) l1¼0:5,
l2¼0:5.Since the dimensions of cost function and energy con-
sumption function are different, it needs to be normalized. The
specific operations are as Eq (25).

Ee ¼ Ee � Emin
Emax � Emin

(25)

Where, Emax and Emin are the maximum and minimum energy
consumption when the single objective energy consumption
function is the optimization objective, and Cmax and Cmin are the
maximum and minimumwhen the single objective cost function is
the optimization objective. Therefore, the optimized function after
normalization can be represented as Eq (26).
4. Solving model based on combinatorial optimization
algorithm

To solve the multiobjective combination optimization problem
(Liu et al., 2013), the combination of an intelligent workstep gen-
eration algorithm and the NSGA-II is proposed. Under the principle
of processing constraints, all the feasible workstep sequencing
chains that satisfy the constraints were first obtained using the
intelligent generation algorithm of the workstep chain; subse-
quently, the NSGA-II was combined to set the relevant parameters
for a multiobjective optimization(Wang et al., 2020).
4.1. Intelligent generation algorithm of workstep chain

The intelligent workstep chain generation algorithm is based on
constraint analysis(Wand et al., 2006). First, the priority constraint
relationship between worksteps must be determined; subse-
quently, a priority relationship table betweenworkpiece processing
worksteps is constructed. Based on the table, a constraint vector
group R that must be satisfied by the sequence of the worksteps is
constructed. Finally, by constructing the constraint vector and using
the intelligent generation algorithm of the worksteps chain, a
sequence workstep chain that satisfies the constraint conditions is
obtained.

To briefly explain the operation process of the algorithm, a
feasible workstep sequence chain of a workpiece is used as an
example herein. The priority relation table of worksteps
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constructed by constraint analysis (the total number of worksteps is
8) is summarized in Table 1. The number in column one of the table
represents the number of constraint vectors, which must be satis-
fied in the workstep sorting chain. Column two is the preceding
workstep relative to column three, indicating theworkstepmust be
processed before that in column three. Column three is the poste-
rior workstep of column two, indicating the workstep that must be
processed after that in column two is completed.

The constraint vectors obtained by constructing the priority
relation table of the workstep are as follows:

R1 ¼ ½2; 1; 3; 4; 5; 6; 7; 8� R2 ¼ ½4; 5�
R3 ¼ ½7; 6� R4 ¼ ½8; 1�

Where the first column of the constraint vector is the number of the
previous workstep, and the remaining columns are the numbers of
the next worksteps. When constructing the constraint vectors,
operators can add additional constraint vectors to satisfy the pro-
cessing requirements according to the characteristics of the work-
piece. By constructing the constraint vectors and then using the
intelligent generation algorithm of the workstep chain, we can
obtain the feasible sequence chain of the process workstep. The
operation flow of the intelligent generation algorithm of the
workstep chain is shown in Fig. 3. The operation process of the
intelligent generation algorithm of the working step chain is as
follows:

First, randomly generate N free combinations of process work-
step sequence chains, which are defined as vectors S1;S2; :::;Sn.

2) Extract the sequence chain of N free combinations individually,
assuming that the extracted vector is Sk.

3) Compare each element in Sk with each element in constraint
vector group R and obtain the corresponding subscript of each
constraint vector in random vector Sk (subscript represents the
position of each element in the vector). If A ¼ [A,b,c], then
Fig. 3. Flow chart of intelligent generation algorithm of workstep chain.
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subscripts a, b, and c are 1, 2, and 3, respectively), and the
subscripts in vector group X1;X2; :::;Xm (m is the number of
constraint vectors) are assessed.

4) If the first column element of each vector in the subscript vector
group is the minimum value of the subscript vector, then the
workstep sequence vector Sk is a feasible workstep sequence
chain that satisfies the constraints. If some vector Xi in the
subscript vector group does not satisfy the condition that the
first column element should be the minimum value of the
subscript vector, it must be varied by exchanging the value of Sk
corresponding to the minimum value element of the subscript
vector Xi with the value of Xi corresponding to the first column
element of Sk, such that the workstep sequencing vector Sk
satisfies the constraint of Xi.

5) According to this, adjust Sk until it satisfies all constraints
expressed by the constraint vectors, and then output Sk.
4.2. Improved genetic algorithm

The NSGA-II adopts the fast non-dominated sorting algorithm
and the elite strategy, which can result in excellent individuals and
the original population can be preserved well. In addition, the
computational complexity of the algorithm can be reduced signif-
icantly (Liao et al., 2020).

4.2.1. Gene coding
The machining process of the workpiece comprises a sequence

of multiple worksteps; each workstep in the sequence workstep
chain is attached with the goal of optimizing energy consumption
and achieving low cost. The position of the tool and the processing
feature correspond to eachworkstep face information. Therefore, to
fully express the relevant information of a sequence workstep
chain, the gene of a chromosome should contain three parts when
coding genes. The first part is the workstep number, and the second
part is the tool number corresponding to the workstep. The third
part is the number of the azimuth plane where the processing
feature corresponding to this workstep is located. The gene coding
procedure is shown in Fig. 4.

4.2.2. Initial population
To obtain the initial population with complete information, it is

critical to determine the number of feasible sequence of worksteps
(the number of initial population), and then establish the corre-
sponding tool and azimuth information of all worksteps in each
sequence individually; subsequently, the population can be
initialized. The specific process is as follows: first, according to the
intelligent generation algorithm of the workstep chain, obtain the
initial population number N that conforms to the priority constraint
relationship; next, select a sequence from it, access the first
machiningworkstep of the sequence, match the corresponding tool
number and the number of the azimuth plane of the corresponding
machining feature for the workstep, and traverse all the worksteps
sequentially until the tool of all the worksteps in the sequence
corresponds to the corresponding tool. The information matching
of the machining features is then completed. Repeat the steps
above until all the sequences complete the matching of the work-
step information; subsequently, the initialization of the population
is completed.

4.2.3. Duplication, crossover and mutation
During gene replication, to prevent the destruction of optimal

individuals in the subsequent crossover and mutation operations,
which prevents the algorithm from searching for the global optimal
solution, the elitist retention strategy was adopted as the



Fig. 4. Gene coding.

Fig. 5. Two-point crossover process.
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replication mode of the population. To ensure the efficiency of the
algorithm and the effectiveness of the offspring chromosomes after
crossing, two crossing points were adopted in this study, and the
specific process is shown in Fig. 5.

First, two chromosomes F1 and F2 were randomly selected from
the population after replication as the parent chromosomes; sub-
sequently, two points were randomly generated in the parent
chromosome F1 as the intersections such that F1 was separated
into three parts. Next, the left and right parts of F1 were copied to
the left and right parts of the same position of the child chromo-
somal C1. Finally, the remaining parts of F1 were removed from F2.
The subgenes were copied to the middle part of C1 in the original
order to complete the creation of the offspring chromosome C1.
Using the same method, we can obtain another offspring chro-
mosome C2. This two-point crossing method can ensure that the
progeny chromosomes satisfy the priority constraint relationship
between the workstep elements, without having to adjust the po-
sition between the workstep elements.

Through the intersecting daughter chromosomes, the internal
genes will be randomly exchanged for two or more gene positions
under the constraint of a certain mutation rate to generate new
offspring. In this study, a random exchange of any two gene posi-
tions in the progeny chromosomes was applied to perform the
mutation operation. The mutation process is shown in Fig. 6.

E¼
ðTz

0

Pdt

As shown in Fig. 6, the internal genes of the new
Fig. 6. Gene muta

9

subchromosomes were exchanged, which may result in chromo-
somes that violate the priority constraint relationship vector.
Because the elements outside the intersection satisfy the constraint
conditions, only the genes between the intersections require
verification.

4.2.4. Operation parameters and termination
When the genetic algorithm is adopted to solve optimization

problems, two types of termination conditions are involved, i.e.,
those pertaining to fixed genetic iteration and constant fitness
methods. The first termination condition is to set the number of
genetic iterations at the beginning of the algorithm. Instead of
setting the number of search iterations, the second termination
condition is to terminate the calculation and output the result
when the fitness of individuals in the population does not change
or changes slightly. The first method was selected as the termina-
tion condition in this study.

5. Case study

In this section, an emulsion pump case is presented to verify the
feasibility of the proposed approach. Three views of the emulsion
pump casing are shown in Fig. 7.

5.1. Analysis of processing characteristics of emulsion pump case

The emulsion pump considered comprises 12 typical machining
features, including end face, hole, thread, and other machining
features, which were completed in 28 machining worksteps. The
tion process.



Fig. 7. Characteristic analysis of emulsion pump case.

Table 2
Part feature information table.

Feature No. Feature description Azimuth plane Feature No. Feature description Azimuth plane

F1 End face 1 F7 End face 3
F2 M16 � 1.5

Threaded hole
1 F8 M16 � 1.5

Threaded hole
3

F3 End face 2 F9 End face 4
F4 F45Through hole 2 F10 F45Through hole 4
F5 F35Through hole 2 F11 F35Through hole 4
F6 F45Through hole 2 F12 F45Through hole 4
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feature information of each azimuth plane corresponds to the
corresponding position in the three views shown in Fig. 7. The
orientation information of the 12 features of the emulsion pump is
summarized in Table 2.

5.2. Determine model related parameters

(1) Machine tool information required by the model

The relevant machine tool parameters required for the energy
consumption calculation model are shown in Table 3.

(2) Acquisition of effective cutting time n ¼ 1000vc
pD

The effective cutting time of the workstep (n ¼ 1000vc
pD ) is the
Table 3
Machine tool information required for energy consumption model.

Machine type Tool changing motor power O

Horizontal machining center (model no.: TH6350) 0.75 KW 6

10
contact processing time of the tool and the workpiece under the

processing condition of the workstep. n ¼ 1000vc
pD can be calculated

by Eq (27):

T ¼
0
@ CvDo

vcf kz ðae=DÞqaupHBg

1
A

1=m

(27)

where Li is the path length of the tool in the workstep; fi is the feed
speed of the tool in the workstep. Therefore, the effective cutting
time information corresponding to each processing workstep of the
processed pump case is summarized in Table 4. Using the feature
number F2 as an example, the position is required to process an
M16 thread, which is composed of three machining worksteps:
workstep No. 02, where the center hole is drilled; workstep No. 03,
ne tool change time Power of table transposing motor Transpose 90�time

S 2 KW 2.5S



Table 4
List of workstep element information.

Feature No. Feature info. Workstep No. Workstep info. Tool No. Work azimuth plane Effective cutting times

F1 End face 01 Milling T01 1 145
F2 M16 Thread 02 Drill the center hole T02 11

03 Drilling T03 15
04 Tapping T04 6

F3 End face 05 Milling T01 2 55
F4 F45 Through hole 06 Rough boring T05 20

07 Semi-fine boring T06 30
08 Fine boring T07 30

F5 F35Through hole 09 Rough boring T08 20
10 Semi-fine boring T09 30
11 Fine boring T10 30

F6 F45Through hole 12 Rough boring T05 20
13 Semi-fine boring T06 30
14 Fine boring T07 30

F7 End face 15 Milling T01 3 20
F8 M16 Thread 16 Drill the center hole T02 11

17 Drilling T03 15
18 Tapping T04 6

F9 End face 19 Milling T01 4 145
F10 F45 Through hole 20 Rough boring T05 20

21 Semi-fine boring T06 30
22 Fine boring T07 30

F11 F35 Through hole 23 Rough boring T08 20
24 Semi-fine boring T09 30
25 Fine boring T10 30

F12 F45 Through hole 26 Rough boring T05 20
27 Semi-fine boring T06 30
28 Fine boring T07 30
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where drilling is performed; and workstep No. 04, where tapping is
performed. The corresponding tools used were T02, T03, and T04,
the workstep orientation was 1, and the effective cutting times
were 11, 15, and 6 s, respectively.
5.3. Process route optimization

To obtain the sequencing chain of machining worksteps that
satisfy the constraints (Carvalho et al., 2017), it is critical to first
determine the priority constraint table that the emulsion pump
case must satisfy during the machining process in the machining
center. The corresponding detailed information is listed in Table 5,
which shows the actual constraint information that must be
satisfied in every working step of the emulsion pump case, and
optimization must be performed under this constraint.

To determine the start machining workstep of machining, a
constraint vector R(21) ¼ [5,1,15,19] was added manually, i.e.,
workstep 5 was set as the start machining workstep of machining.
Based on the constraint vectors above, the intelligent generation
Table 5
Constraints of priority relationships between worksteps of the emulsion pump case.

No. Preceding
workstep

Post workstep Constraint vector No. Prec
wor

1 1 2,3,4 R(1) ¼ [1,2,3,4] 11 15
2 2 3,4 R(2) ¼ [2,3,4] 12 16
3 3 4 R(3) ¼ [3,4] 13 17
4 5 6,7,8,9,10,11,12,13,14 R(4) ¼ [

5,6,7,8,9,10,11,12,13,14]
14 19

5 6 7,8 R(5) ¼ [6,7,8] 15 20
6 7 8 R(6) ¼ [7,8] 16 21
7 9 10,11 R(7) ¼ [9,10,11] 17 23
8 10 11 R(8) ¼ [10,11] 18 24
9 12 13,14 R(9) ¼ [12,13,14] 19 26
10 13 14 R(10) ¼ [13,14] 20 27
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algorithm of the workstep chain was adopted, and some feasible
worksteps sequence were generated; the detailed workstep
sequence list is summarized in Table 6.

The NSGA-II was selected to make a multiobjective process
route optimization decision for the feasible process sequencing
chain generated by the intelligent generation algorithm. The
emulsion pump case involved 12 process characteristics, and 28
process worksteps were required to complete the processing. The
process route was an ordered set of 28 process worksteps. The
coding scheme of the worksteps is summarized in Table 4. The
number of feasible worksteps that satisfy the constraints de-
termines the number of iterations that the population requires in
the genetic operation. Because many feasible worksteps satisfy the
constraints in this example, to obtain values of the iterative work-
steps that render the chain optimal or near optimal, in the
parameter decision-making of the algorithm, the range of the initial
population should be expanded to the maximum possible extent,
and the probability of crossover and mutation should be made
larger.
eding
kstep

Post workstep Constraint vector

16,17,18 R(11) ¼ [15,16,17,18 ]
17,18 R(12) ¼ [16,17,18 ]
18 R(13) ¼ [ 17,18 ]
20,21,22,23,24,25,26,27,28 R(14) ¼ [

19,20,21,22,23,24,25,26,27,28]
21,22 R(15) ¼ [20,21,22]
22 R(16) ¼ [ 21,22]
24,25 R(17) ¼ [ 23,24,25]
25 R(18) ¼ [ 24,25]
27,28 R(19) ¼ [ 26,27,28]
28 R(20) ¼ [ 27,28]



Table 6
Feasible worksteps sequencing chain.

Serial No. Generated feasible worksteps sequencing chain

1 5 / 1/19 / 26/9 / 20/2 / 15/12 / 10/16 / 21/23 / 17/18 / 13/3 / 27/28 / 24/6 / 4/25 / 14/11 / 7/8 / 2
2 5 / 15/1 / 19/12 / 13/6 / 20/9 / 21/22 / 16/7 / 10/26 / 23/8 / 24/25 / 2/28 / 11/27 / 3/14 / 17/18 / 4
3 5 / 9/6 / 15/19 / 20/21 / 10/1 / 26/27 / 22/16 / 12/2 / 13/28 / 7/17 / 23/24 / 3/18 / 14/4 / 8/11 / 25
4 5 / 19/20 / 26/1 / 6/12 / 13/15 / 7/23 / 2/9 / 21/22 / 3/16 / 24/17 / 8/10 / 4/18 / 25/28 / 14/11 / 27
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According to the analysis above, the algorithm parameters were
set as follows:

a) The number of iterations was 500.
b) The initial population was set as M ¼ 400 (obtained by

matching the corresponding tool and azimuth information
with the feasible workstep chain).

c) The cross probability was 0.8; the variation rate was 0.6.
d) The selected machining center was calculated at RMB 80/h.
e) The tool change time was 6 s, and the transposition time was

2.5 s.
f) Additionally, the multiobjective optimization result was

compared with the single objectives of energy saving and
low cost processing, separately. The comparison data are
shown in Table 7.

The algorithm convergence diagram of the energy saving and
low-cost process is shown in Fig. 8.

Fig. 8 (a) shows the average energy consumption of each gen-
eration, whereas Fig. 8. (b) shows the average processing cost of
each generation. When optimizing with the goal of energy saving
and low cost, the optimal chromosome gene expression form of the
processing sequence is shown in Fig. 9. As shown, during the entire
processing, the worktable was transposed seven times, the ma-
chine tool was changed 19 times, the energy consumption was
10184550j, the processing cost was CNY32.65, and the processing
time was 18 min and 30 s.

To verify the superiority and practicability of the combinatorial
optimization algorithm used in this study, the related programs of
the genetic algorithm and the combinatorial optimization algo-
rithm were written separately. The iterative convergence graph
obtained is shown in Fig. 10. Curve 1 is the optimization result
obtained by the typically used genetic algorithm, and curve 2 is the
optimization result obtained using the combinatorial optimization
algorithm.

As shown in Fig. 10, the convergence speed of the combinatorial
optimization algorithm is higher than that of the typical genetic
algorithm; further, the value of the objective function is smaller,
which indicates both improved problem solving speed and opti-
mization result accuracy. In addition, the optimal solution yielded
by the multiobjective optimization model can prove the effective-
ness of the optimization model, and the optimal process route can
directly guide the operator to perform adjustments according to the
optimized processing route without any additional equipment.
5.4. Results and discussions

Comparing the multiobjective optimization model proposed
Table 7
The comparison optimization results.

Optimization results Energy saving as the goal

Energy consumption/J 0.936 � 107

Cost/CNY 33.78

12
herein and the single objective optimization model, relevant con-
clusions can be drawn from Table 7, as follows:

Based on the single objective energy saving as the optimization
goal, the energy consumption was 0.936 � 107 J and the processing
cost was CNY33.78. Compared with the other two groups of
experimental results, the energy consumption value was the
smallest, which significantly improved the energy consumption
optimization of processing. However, the processing cost
increased; therefore, the economic benefits were not ideal.

Based on the single objective low cost as the optimization goal,
the energy consumption was 1.154 � 107 J, and the processing cost
was CNY31.59. Comparedwith the experimental results of the other
twogroups, the processing cost valuewas the lowest, indicating that
the processing cost for the processing process reduced significantly
reduced. However, the energy consumption for processing was the
highest, which is inconsistent with energy saving production.

Based on the multiobjectives of energy saving and low cost as
the optimization goal, the energy consumption was 1.018 � 107 J,
and the processing cost was CNY32.65. Compared with the other
two experimental results, the energy consumption and the pro-
cessing cost demonstrated the best comprehensive performances,
consistent with energy saving and low-cost production.

By comparing the combinatorial optimization algorithm adop-
ted in this study with the general genetic algorithm, it can be
conducted that the convergence speed of the combinatorial opti-
mization algorithm was higher than that of the typical genetic al-
gorithm (see Fig. 10), and the value of the objective function was
smaller, which improved the problem solving speed and the ac-
curacy of the optimization result.

The optimal sequencing gene encoding as shown in Fig. 9 was
compiled, and the optimal process route was obtained, as sum-
marized in Table 8. The workstep sequencing chain of the opti-
mized process route, the processing information of each workstep,
the processing characteristics of the parts to be processed, the
processing tools used, and the workstep orientation are summa-
rized in the table.

As summarized in Table 8, the optimal process route was ob-
tained, the worktable was rotated seven times, the cutter was
changed 19 times, and the processing surface was relatively
concentrated, which reduced the required energy and processing
cost for processing; therefore, the effectiveness of the optimization
model proposed herein was validated.
6. Conclusions and limitations

Optimizing energy reduction in mechanical processing and
reducing processing cost are important approaches for realizing a
green and sustainable manufacturing industry. Hence, this study
Low cost as the goal Energy saving and low cost as the goal

1.154 � 107 1.018 � 107

31.59 32.65



Fig. 8. Iterative convergence graph of algorithm.

Fig. 9. Optimized gene coding of workstep chain sequencing.

Fig. 10. Comparison of iterative convergence of two algorithms.
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investigated the energy saving and low cost processing of a
machining center, analyzed the underlying effects of the mecha-
nism of process route optimization on machining energy con-
sumption and processing cost, and discussed the effect of using
different algorithms on the optimization results. The conclusions
obtained were as follows:

First, based on the analyses of the operation and energy flow
characteristics of the machining system in the machining center, the
cost objective function and energy consumption objective function of
the machining center were established, and the weighted sum
method was introduced, by which a multiobjective optimization
model of the machining center process route for energy saving and
low cost was built.
13
Second, the concept of workstep element was proposed, and the
characteristics of the parts to be processed were described using
this concept. With full consideration of the priority constraints
between the workstep elements, an intelligent generation algo-
rithm for the workstep chain was proposed. A combinatorial opti-
mization algorithm based on the combination of the intelligent
generation algorithm of the workstep chain and the NSGA-II yiel-
ded the optimal decision of the multiobjective optimization model.

Third, comparing the combinatorial optimization algorithm
with the general genetic algorithm, the iteration number of the
typical genetic algorithm is 231, the iteration number of the
combinatorial optimization algorithm is 57, which indicates the
convergence speed of combinatorial optimization algorithm was
higher. In addition, the optimal solution provided by the multi-
objective optimization model can directly guide an operator to
perform adjustments according to the optimized processing route,
without any additional equipment, which is economical and
practical.

Fourth, based on the multiobjectives of energy saving and low
cost as the optimization goal, the energy consumption was
1.018 � 107 J, and the processing cost was CNY32.65. Compared
with the other two experimental results, based on the single
objective energy saving as the optimization goal, the energy con-
sumptionwas 0.936 � 107 J and the processing cost was CNY33.78,
based on the single objective low cost as the optimization goal, the
energy consumption was 1.154 � 107 J, and the processing cost was
CNY31.59. Comparison the data shows that based on the multi-
objectives of energy saving and low cost as the optimization goal,
the energy consumption and the processing cost demonstrated the
best comprehensive performances, consistent with energy saving
and low-cost production. However, several limitations of this study
should be considered.

First, owing to the complexity of the machining center system,
the aim of this study was to realize an energy saving and low cost



Table 8
Optimal workstep sequence chain information.

Processing sequence Workstep No. Processing info. Processing features Machine tool Workstep azimuth surface

1 5 Milling F3 End face T01 2
2 15 Milling F7 End face T01 3
3 19 Milling F9 End face T01 4
4 1 Milling F1 End face T01 1
5 2 Drilling center hole F2M16 Thread T02 1
6 3 Drilling F2M16 Thread T03 1
7 4 Tapping F2M16 Thread T04 1
8 20 Rough boring F10F45 Through hole T05 4
9 26 Rough boring F12F45 Through hole T05 4
10 27 Semi-fine boring F12F45 Through hole T06 4
11 21 Semi-fine boring F10F45 Through hole T06 4
12 22 Fine boring F10F45 Through hole T07 4
13 28 Fine boring F12F45 Through hole T07 4
14 23 Rough boring F11F35 Through hole T08 4
15 24 Semi-fine boring F11F35 Through hole T09 4
16 25 Fine boring F11F35 Through hole T19 4
17 16 Drilling center hole F8M16 Thread T02 3
18 17 Drilling F8M16 Thread T03 3
19 18 Tapping F8M16Thread T04 3
20 6 Rough boring F4F45 Through hole T05 2
21 12 Rough boring F6F45 Through hole T05 2
22 13 Semi-fine boring F4F45 Through hole T06 2
23 7 Semi-fine boring F4F45 Through hole T06 2
24 8 Fine boring F6F45 Through hole T07 2
25 14 Fine boring F6F45 Through hole T07 2
26 9 Rough boring F5F35 Through hole T08 2
27 10 Semi-fine boring F5F35 Through hole T09 2
28 11 Fine boring F5F35 Through hole T10 2
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optimization of the manufacturing process through a reasonable
process route, although the optimal solution solved by the model
reflected the production cost and energy consumption efficiency
to a certain extent. However, in the actual production process, it is
often necessary to consider the comprehensive effect of multi-
objective factors and decide the weight of each objective ac-
cording to the production requirements. Therefore, the approach
to comprehensively consider the effects of multiobjective factors
and realize the unified coordination and optimization of energy
consumption goals and other goals will be investigated in the
future.

Second, to obtain the optimal workstep chain and shorten the
iteration time of the algorithm, a large number of experiments
were performed in this study that pertained to the value of each
parameter of the genetic algorithm. Although the optimization
problem of the workstep chain was solved to some extent,
because of the uncertainty and subjectivity of the parameter value
during testing, the entire testing process required a significant
amount of time, which included the time required for algorithm
parameter testing and algorithm optimization iteration. This
might not affect the optimization of simple problems, but the
efficiency of this algorithm is particularly important when per-
forming more complex operations. Therefore, the efficiency of the
algorithm must be improved for solving complex optimization
problems in the future.
Credit author contribution statement

Yongmao Xiao: Conceptualization, Methodology, Software,
Data curation, Writing - original draft, preparation. Writing -
original draft.Writing - Revised draft. Hua Zhang: Methodology,
Resources, Visualization, Project administration, Funding acquisi-
tion. Zhigang Jiang: Methodology, Resources, Visualization, Vali-
dation. Quan Gu: Formal analysis, Validation. Wei Yan:
Investigation, Data curation, Funding acquisition.
14
Declaration of competing interest

The authors declare that they have no known competing
financial interests or personal relationships that could have
appeared to influence the work reported in this paper.

Acknowledgments

The authors are grateful to the financial support for this research
from the National Science Foundation, China (No. 51975432), the
project of the National Science Foundation, China (No. 51775392),
the project of the Guizhou Education Cooperation Fund Project
(No.2019KY204), and the project of the Key Laboratory of Auto-
motive Power Train and Electronics (Hubei University of Automo-
tive Technology) (No.ZDK1201804).

References

Ai, X.F., Jiang, Z.G., Zhang, H., Wang, Y., 2019. Low-carbon product conceptual design
from the perspectives of technical system and human use. J. Clean. Prod.
https://doi.org/10.1016/j.jclepro.2019.118819.

Albertelli, P., Keshari, A., Matta, A., 2016. Energy oriented multi cutting parameter
optimization in face milling. J. Clean. Prod. 137, 1602e1618.
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