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a b s t r a c t

High-power lithium-ion battery packs are widely used in large and medium-sized unmanned aerial
vehicles and other fields, but there is a safety hazard problem with the application that needs to be
solved. The generation mechanism and prevention measurement research is carried out on the battery
management system for the unmanned aerial vehicles and the lithium-ion battery state monitoring.
According to the group equivalent modeling demand of the battery packs, a new idea of compound
equivalent circuit modeling is proposed and the model constructed to realize the accurate description of
the working characteristics. In order to realize the high-precision state prediction, the improved un-
scented Kalman feedback correction mechanism is introduced, in which the simplified particle trans-
forming is introduced and the voltage change rate is calculated to construct a new endurance prediction
model. Considering the influence of the consistency difference between battery cells, a novel equilibrium
state evaluation idea is applied, the calculation results of which are embedded in the equivalent
modeling and iterative calculation to improve the prediction accuracy. The model parameters are
identified by the Hybrid Pulse Power Characteristic test, in which the conclusion is that the mean value of
the ohm internal resistance is 20.68mU. The average internal resistance is 1.36mU, and the mean
capacitance value is 47747.9F. The state of charge prediction error is less than 2%, which provides a
feasible way for the equivalent modeling, battery management system design and practical application of
pack working lithium-ion batteries.

© 2018 Elsevier Ltd. All rights reserved.
1. Introduction

Large and medium-sized Unmanned Aerial Vehicles (UAV) re-
fers to a battery that is fully charged beforehand and supplied to the
electric motor. At the same time, the battery is supplemented by an
external power source, which has the advantages of low pollution,
low noise, high energy efficiency and diversified energy sources.
Because they are suitable for the UAV application, lithium-ion
batteries are widely used due to low price and excellent cycle
performance advantages, as well as having broad prospects of the
power supply field.

The Battery-Management-System (BMS) construction method
was conducted for the real-time working state monitoring and
ang).
energy management of the lithium-ion battery packs. Vortex gen-
erators were constructed for the active thermal management in
lithium-ion battery power supply systems (Mondal et al., 2018).
Comparative analysis of lithium-ion battery resistance prediction
was realized for the BMS (Mathew et al., 2018). Water cool strategy
was studied for the thermal management system of the lithium-ion
battery pack (Li et al., 2018). Experimental investigation into the
thermal management system was conducted for lithium-ion bat-
tery modules with coupling effect by heat sheets and phase change
materials (He et al., 2018). Issues and recommendations were
analyzed for the energy management system of lithium-ion bat-
teries (Hannan et al., 2018). Impedance-based BMS was designed
for the safety monitoring of lithium-ion batteries (Carkhuff et al.,
2018). Thermal management system of lithium-ion battery mod-
ule was realized by using the micro heat pipe array (Ye et al.,
2018b). Lifetime management method was investigated for the
energy storage system of lithium-ion batteries (Won et al., 2018).
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The OCV and SOC relationship functional optimization was con-
ducted for the working state monitoring of the aerial lithium-ion
battery pack (Wang et al., 2018e). Performance analysis of the
thermal management systemwas conducted with composite phase
changematerial for lithium-ion battery packs (Wang et al., 2018j). A
novel thermal management system was constructed by using the
mist cooling method of lithium-ion battery packs (Saw et al., 2018).
Afterwards, health management systems were reviewed for
lithium-ion batteries (Omariba et al., 2018).

The Equivalent-Circuit-Modeling (ECM) analysis was conducted
by mounts of researchers. The State of Charge (SOC) dependent
polynomial ECM was investigated for the electrochemical imped-
ance spectroscopy of lithium-ion batteries (Wang et al., 2018a). The
parameter identification method study of the Splice-Equivalent-
Circuit-Model (S-ECM) was realized for the aerial lithium-ion bat-
tery pack (Wang et al., 2018c). A Partnership-for-a-New-
Generation-of-Vehicles (PNGV) modeling method together with
the State-of-Charge (SOC) prediction algorithm was studied for
lithium-ion battery pack adopted in Automated Guided Vehicle
(AGV) (Liu et al., 2018b). A mechanism identification model based
state-of-health diagnosis of lithium-ion batteries was studied for
the energy storage applications (Ma et al., 2018). A comparative
study of different ECMs was investigated for the SOC estimation of
lithium-ion batteries (Lai et al., 2018). Furthermore, another
comparative study of the reduced order ECMwas conducted for the
on-board state-of-available-power prediction of lithium-ion bat-
teries (Farmann and Sauer, 2018).

The SOC prediction is very necessary for the group working
lithium-ion batteries. And the dependent polynomial ECM was
realized for the electrochemical impedance spectroscopy of
lithium-ion batteries (Wang et al., 2018a). The error sources of the
online SOC prediction methods were also investigated (Zheng et al.,
2018c). The SOC inconsistency prediction was realized for lithium-
ion battery packs by using the mean-difference model and
Extended-Kalman-Filter (EKF) algorithm (Zheng et al., 2018b). In-
cremental capacity analysis and differential voltage analysis based
SOC and capacity prediction were conducted for lithium-ion bat-
teries (Zheng et al., 2018a). An online SOC prediction algorithmwas
proposed for lithium-ion batteries by using an improved adaptive
cubature Kalman-Filter (KF) (Zeng et al., 2018). A novel safety
anticipation estimation method was proposed for the aerial
lithium-ion battery pack based on the real-time detection and
filtering (Wang et al., 2018b). The SOC prediction was realized by
using a novel reduced order electrochemical model (Yuan et al.,
2018). A double-scale and adaptive Particle-Filter (PF) based on-
line parameter identification method was investigated for the
lithium-ion batteries (Ye et al., 2018a). Furthermore, the online
State-of-Health (SOH) prediction was implied for lithium-ion bat-
teries by the Constant-Voltage (CV) charging current analysis (Yang
et al., 2018b). A novel Gaussian processed regression model was
investigated for the SOH prediction of lithium-ion battery by using
the charging curve (Yang et al., 2018a).

Coupling SOC and SOH prediction effect was analyzed on the
mechanical integrity of lithium-ion batteries (Xu et al., 2018).
Enhanced Coulomb counting method was conducted by using the
Peukert Law and Columbic efficiency (Xie et al., 2018). An energy
management system was developed for reusing automotive
lithium-ion battery applied in smart-grid balancing (Chiang et al.,
2017). Strong tracking effect of H-Infinity Filter was experimen-
tally analyzed to realize the SOC prediction (Xia, Zhang, et al., 2018).
Online parameter identification and SOC prediction of lithium-ion
batteries were investigated by using the forgetting factor recur-
sive least squares and the nonlinear KF algorithm (Xia, Lao, et al.,
2018). The on-line life cycle health assessment was investigated
for the lithium-ion battery in EVs (Liu et al., 2018a). Online model
identification and SOC estimation were realized for the lithium-ion
battery with a recursive total least square based observer method
as stated by Wei et al. (Wei et al., 2018). The integration issues of
lithium-ion battery into packs were analyzed (Saw et al., 2016). De-
noising wavelet treatment was constructed for the SOC prediction
of lithium-ion batteries (Wang et al., 2018i) and an Unscented-
Kalman-Filter (UKF) observer was also designed for lithium-ion
battery SOC prediction (Wang et al., 2018g). An adaptive SOC pre-
diction method was proposed by us for an aeronautical lithium-ion
battery pack based on a novel Reduced-Particle-Unscented-
Kalman-Filter (RP-UKF) (Wang et al., 2018f). In addition, an inte-
grated online adaptive SOC prediction approach was proposed by
us for high-power lithium-ion battery packs (Wang et al., 2018d).
The improved SOC dependent polynomial ECMwas constructed for
electrochemical impedance spectroscopy of lithium-ion batteries
(Wang et al., 2018a) together with the influence analysis of battery
parametric uncertainties (Shoe et al., 2018).

By analyzing the online safetymonitoringmethods of lithium-ion
battery packs in large and medium-sized UAVs, the high-precision
remaining available power prediction is realized, in which the
effective State-of-Balance (SOB) evaluation is investigated as well.
Then, the safety monitoring equipment is developed for lithium-ion
battery packs, laying the foundation for the critical breakthroughs of
the reliable power supply. The charge and discharge experiments are
designed and the nonlinear parameter identification experiments
are also carried out, in which some working characteristics of the
lithium-ion battery packs can be obtained. Afterwards, the S-ECM is
introduced and the state-space equations are expressed for the
endurance prediction to improve its accuracy, which provides an
experimental basis for the practical applications, modeling simula-
tion and battery management system design.

2. Mathematical analysis

Through the experimental analysis of lithium-ion battery packs
used in the UAVs, the variation law of key factors can be obtained
and its rapid detection method is explored. The Voltage-Change-
Rate (VCR) and the RP-UKF algorithms are used to realize the on-
line accurate SOC prediction. The variation coefficient calculation
method is used to realize the reliable SOB evaluation. In order to
meet the reliable energy supply demand, the key technology
research such as parameter detection, online fault diagnosis,
charging control and safety management, is carried out to realize
the safety monitoring equipment development. Technical applica-
tion and promotion of the system anti-interference, charge and
discharge management and safety reliability enhancement are
conducted. (1) The integrated chips and digital communication
methods are introduced to explore the application of high-
precision, fast detection and anti-interference processing technol-
ogies for the voltage, current and temperature parameters. (2) By
using the application of the VCR and the RP-UKF algorithm, the on-
line high-accuracy SOC prediction is realized while reducing the
hardware cost. (3) Applying the variation coefficient calculation
idea into the equilibrium state between the lithium-ion batteries of
the pack gives an accurate characteristic evaluation. In addition, its
stable and reliable operation under complex conditions is suc-
cessfully achieved. (4) By Combining with the safety control and
alarm, charge and discharge control, communication and infor-
mation storage requirement, a BMS equipment is developed for the
UAV lithium-ion battery packs. It provides a basis of the reliable
power supply technology breakthrough.

2.1. Parameter detection and anti-interference

Large and medium-sized UAVs have high requirements for the
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power supply of lithium-ion battery packs, the internal structure of
which has large number battery monomers in series and parallel
combination characteristics. Aiming at its high-precision and
multi-channel signal detection requirements, the anti-jamming
technology is researched and a high-reliability detection scheme
is designed to realize the multi-channel high-precision detection of
key parameters such as voltage, current and temperature for the
lithium-ion battery packs. Considering the temperature gradient
influence on the detection accuracy, the signal detection and
correction methods are studied, which are suitable for different
ambient temperatures. By analyzing the noise source of the signal
detection process, the photoelectric isolation, transformer isola-
tion, grounding and other technical means are used to solve the
anti-interference problem of power supply ripple, electromagnetic
interference and violent temperature changes.

During the operation of the lithium-ion battery packs, the
detection of the external measurable parameter signal has an
inevitable error. At the same time, the noise introduced by the
discrete digital sampling and iterative calculation processing is
difficult to eliminate, which leads to the cumulative error of the
lithium-ion battery state prediction and the intelligent manage-
ment process. Considering the consistency influence over the
monomers, once the equilibrium state information is introduced
into the lithium-ion battery ECM constructing process, how these
characteristics can be reflected by using the ECM needs to be
solved. The expression of key time-varying parameter
Fig. 1. Key parameter de
characteristics, such as voltage, current and temperature, needs to
be obtained through the experimental analysis. How to describe
the correlation characteristics between time-varying parameters in
the battery pack of the perspective ECM requires in-depth studies.
The proposed S-ECMmethod can simulate the internal polarization
effect, self-discharge and charge-discharge difference of the battery
packs, which is studied to realize the model characteristic expres-
sion of the grouped working lithium-ion batteries. Furthermore,
the state-space equation is constructed to reveal the variation law
of external measurable parameters, which lays a foundation to
monitor the reliable energy state of lithium-ion battery packs.

Aiming for the large and medium-sized UAV application sce-
narios, the lithium-ion battery pack has a large number of serials
and parallel combination characteristics. In order to achieve the
high-precision, multi-channel signal detection targets, the anti-
jamming technology and detection schemes are studied. Mean-
while, the key parameter detection of lithium-ion battery is real-
ized. Based on the high integrated chip and digital communication
mechanism, the modular design is conducted to realize the high-
accuracy detection, the principle of which is shown in Fig. 1.

In order to solve the multi-channel and high-precision param-
eter detection problem of lithium-ion battery packs, the influence
of different parameters must be considered, such as: temperature
gradient change of the detection accuracy, signal detection as well
as the correction method suitable for different temperature envi-
ronments. The anti-interference problem of power supply ripple,
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electromagnetic interference and other influencing factors should
be solved, making it suitable for the complex of UAV application
scenarios. The following parameters should be analyzed: the signal
detection noise source, anti-interference ability, optical isolation,
transformer isolation technologies.

2.2. Residual power prediction and construction

According to the new idea of calculating the SOC value according
to the VCR, the SOC prediction model is constructed together with
the application of the proposed RP-UKF algorithm. And the recur-
sive operation of the residual available SOC value is realized for the
lithium-ion battery packs. Combined with the battery working
characteristic analysis of complex working conditions, the
improved S-ECM and its state-space equations are implied to
improve the calculation efficiency. The linearization process is
optimized by streamlining the PF algorithm to eliminate the esti-
mated offset and utilize the equilibrium state. The feedback
correction improves the prediction accuracy of the group working
batteries, and thus achieves the high-accuracy and online predic-
tion of the remaining available power for the lithium-ion battery
packs.

Lithium-ion battery grouping SOC prediction process is affected
by the complex monomer structure and aging degree, as well as
environmental conditions such as the temperature and humidity.
Therefore, the iterative calculation correction of multiple factors
needs to be considered in the SOC prediction process. By improving
the iterative RP-UKF calculation process, the prediction modeling
implementation mechanism is explored, and a real-time optimi-
zation model is constructed to provide an overall framework of the
SOC prediction. Using high robust KF and its nonlinear extension,
combined with the Unscented Transformation (UT) and functional
fitting approximation, the mathematical description of working
characteristics is explored for different working conditions.
Through the modification of model parameters and weighting
factors, the influence of inter-monomer imbalance on the SOC
prediction is analyzed, and an adaptive SOC prediction model is
constructed. Through the experiments, the action law of environ-
mental conditions on the prediction process can be obtained. The
typical environmental simulation experiment is used to obtain the
change law, and the correction is made to optimize and correct the
prediction results, which provides the theoretical basis of the
improvement on the SOC prediction adaptability under complex
environmental conditions. The relationship between key parame-
ters such as voltage and temperature is obtained, and the influence
law is analyzed experimentally. The iterative calculation, correction
and functional relationship optimization are used to improve the
robustness effect of the SOC prediction model.

Through the reaction mechanism analysis and working condi-
tion simulation experiments, the internal reaction process of the
lithium-ion battery is clarified, and the variation rules of current,
voltage and temperature are studied. Theworking characteristics of
different working conditions are obtained and established, together
with the relationship between the Closed Circuit Voltage (CCV),
temperature and current. Combined with the working mode
analysis under different working conditions, the basic characteristic
analyzing experiments are investigated for lithium-ion battery
packs. Through the experimental research of different magnifica-
tion, cyclic charge and discharge, the key factors can be obtained.
Based on the simulation experiments at different working condi-
tions, the output response and change trend of lithium-ion battery
pack under different working conditions can be obtained and
analyzed. The working condition influence is discussed, and the
operating characteristic curves and variation laws of different
working conditions are obtained. By using the battery ECM and
state-space equation expression, the mathematical description
methods of different working conditions are explored. Further-
more, using the high robust KF and its nonlinear extension algo-
rithm, combined with the UT and function fitting approximation,
the adaptive remaining available power prediction model is
constructed.

Based on the simulation and experimental analysis, the rela-
tionship between the remaining available electricity and SOB be-
tween the monomers can be analyzed during the group working
conditions. The model parameters and weighting factors are
modified to solve the influence of the imbalance between the
monomers on the SOC prediction. On the basis of simulation and
experimental analysis, the influence of the equilibrium state is
incorporated into the adaptive SOC prediction process by using the
mathematical SOB description. As a result, the model parameters
and weighting factors are corrected and the prediction model is
improved. The remaining available power prediction is verified by
the complex working condition experiments, which is realized
through the standard current charging, long-term shelving, inter-
mittent replenishment, rapid discharge and other experimental
research. Through the normal state, over-charge and over-
discharge simulation conditions, the experimental verification of
the remaining available power prediction is carried out under
complex conditions.

In order to improve the adaptability of the SOC prediction pro-
cess, the voltage signal is used to detect the combined VCR to
achieve the accurate SOC prediction. In the implementation pro-
cess, the intermediate parameters of UA, SOB and Rate_U are first
calculated by using the mean monomer voltage value, variation
coefficient and VCR. Afterwards, the current value IL under the in-
fluence of the complex working condition is obtained by using the
functional calculation. The obtained current parameter IL and the
equilibrium stated parameter SOB are used as input parameters,
and the proposed S-ECM model is constructed. Then, the corre-
sponding state-space equation S_E can be obtained. Finally, the
proposed real-time SOC prediction is achieved by the proposed RP-
UKF algorithm. In the SOC prediction process of the lithium-ion
battery pack, the real-time detected individual cell voltages of U1,
U2, U3, … and Un are used as the main input parameters, combined
with the input of the temperature signal T. The RP-UKF algorithm is
used for iterative calculation to obtain the SOC value. The overall
implementation structure block diagram is shown in Fig. 2.

In the above figure, the overall structure of the lithium-ion
battery state-space mathematical description is divided into three
parts: S1, S2 and S3.

In the S1 section, the inlet parameters are the individual
monomer voltages of U1, U2, U3, … and Un, and finally it is trans-
formed into the state-space equation for the mathematical
description. Themodule Avr is used to calculate the average voltage
valueUA. Themodule Volt_Rate is used to obtain the VCR parameter
Rate_U. And the module Var_Coef is used to find the inter-
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monomer balance state SOB as shown below.

UA ¼ 1
n
ðU1 þ U2 þ U3 þ/þ UnÞ (1)

Rate U ¼ hðUA1;UA2;UA3;/;UAmÞ (2)

SOB ¼ q2 ¼ 1
n

Xn
i¼1

�
Ui � UA

UA

�2

(3)

Wherein, n is the number of battery monomers in series, in
which the parallel monomers used for expansion are taken as a
single battery cell. U1, U2, U3,…, and Un are the respective monomer
voltages. U A1, U A2, U A3, …, and U Am are the UA values, which are
obtained at the first m time moments in front of the present time.
h(*) is the functional relationship of the VCR. SOB is an equilibrium
state between the internal connected battery monomers, which is
obtained by calculating the square value of the variation coefficient
q. Ui is the voltage acquisition value of the i-th battery monomer at
the present time.

In the S2 plate, themean voltage and change rate parameters are
used to obtain the estimated operating current value IL by the
following functional relationship, which will replace the measured
value to participate in the subsequent iterative calculations.

IL ¼ f ðUA;Rate UÞ (4)

In the S3 plate, the inlet parameter is the calculated current
value IL, and the balance state value SOB. In the real-time iterative
calculation process, the proposed RP-UKF algorithm is adopted. The
inlet parameters are the voltage signals of each battery cells and the
temperature, and the exit parameter is the SOC value of the group
working lithium-ion batteries. The optimized real-time iterative
calculation is used to obtain the accurate SOC value. The equivalent
model S-ECM can be introduced as shown in Fig. 3.

Through the Kirchhoff law and the SOC iterative calculation of
mathematical expression of discrete time conditions, the state-
space equation is obtained as shown in the Equation (5).

8>><
>>:
SOCðkjk�1Þ¼SOCðk�1Þ�hIhT IðkÞTs

Qn
�IsðkÞ*Ts

Qn

ULðkÞ¼ðUOC�UdÞ�ðRoþRdÞ*IðkÞ�IðkÞRp
�
1�e�Ts=RpCp

�
�IðkÞRcd

(5)

Based on the proposed RP-UKF algorithm, the simplified three-
particle and double UT treatments are performed to improve the
prediction accuracy and reduce the computational complexity.
Furthermore, a specific implementation is performed for the real-
time SOC prediction, the calculation flow of which is shown in Fig. 4.

The above calculation makes full use of the voltage signal
characteristics in the lithium-ion battery pack, and uses the char-
acteristic information covered in the voltage signal obtained by the
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Fig. 3. S-ECM equivalent model.
real-time detection instead of current signal changes to realize the
effective real-time working state expression, reducing the hard-
ware cost of the signal detection and the BMS volume. At the same
time, the method can adapt to the SOC prediction of lithium-ion
battery packs with different capacities by removing the depen-
dence on the current signal detection, which greatly improves the
adaptability of the algorithm. The ideal voltage sourceUOC is used to
indicate the OCV characteristics. UL is the terminal voltage at both
ends of the external load. The positive and negative of IL characters
the discharge and charge working conditions. The Ohm internal
resistance Ro is determined by the internal structure of the battery
and the electrolyte. The polarization internal resistance RP is the
resistance caused by the polarization effect when the positive and
negative electrodes of the batteries are chemically reacted, and CP is
the polarization capacitance. The parallel circuit of RP and CP de-
scribes the polarization process. According to the working charac-
teristics of the capacitor component, the relationship between the
current flowing through the battery polarization capacitor and its
CCV is shown in Equation (6).

IpðtÞ ¼ Cp
dUCpðtÞ

dt
(6)

It can describe the dynamic and static performance of lithium-
ion batteries, which can simulate the battery behavior accurately
under different current and temperature conditions in the charge
and discharge process. Its structure is relatively simple and has
been widely used in the dynamic modeling of power batteries.
When the battery is charged and discharged, the accumulation of
current in time causes a SOC change. Ro represents the ohm internal
resistance. IL is its load current, and UL is the terminal voltage. These
parameters need to be obtained by HPPC experiments.

The applied mathematical modeling approach is compared with
other approaches that are used in the working state estimation and
prediction process of the lithium-ion batteries. The main features
and innovations of this method compared with other approaches
are as follows: (1) A composite equivalent circuit modeling method
is proposed to accurately describe the working characteristics. (2)
Based on the improved UKF algorithm, a new model of group
working state prediction is constructed. (3) Explanatorily apply key
factors such as equilibrium state are introduced to the correction
process of SOC prediction. Through the simulation of the dynamic
auxiliary power simulation and the prediction effect analysis, the
effective characterization of the remaining power of the power
lithium battery pack is realized, in which the computational
complexity is reduced and the prediction accuracy is improved.
2.3. Reliable equilibrium state evaluation

The equilibrium state is introduced into the ECM modeling
analysis process during the SOC prediction process of the group
working lithium-ion batteries. Furthermore, these characteristics
should to be reflected off the ECM, and applied to the iterative
calculation processes of the SOC prediction for the battery packs.
Based on the mathematical description of the monomer voltage
difference, the equilibrium stated modeling and the correction
methods are developed to describe the inconsistent state between
the monomers. Furthermore, the model parameters are combined
with the weighting factors, which are embedded in the iterative
SOC calculation processes. And the iterative calculation process is
implemented with modularity to eliminate the monomer differ-
ence influence on the SOC prediction accuracy of the groupworking
lithium-ion batteries. Through the modification of model parame-
ters and weighting factors, it can make a reliable numerical eval-
uation of the equilibrium state between the lithium-ion battery
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monomers. Using the monomer voltage to achieve the inter-
monomer SOB evaluation, a novel numerical description can be
conducted. Combined with the variation coefficient calculation in
statistics, the equilibrium stated characteristic between the
monomers of the power lithium-ion battery pack is expressed.
Finally, the effect of inter-body consistency difference is described
in the correction section to eliminate the impact on the inter-
monomer inconsistency of the SOC prediction.

The lithium-ion battery packs utilize complex cascade struc-
tures to break the limitations of low voltage and small capacity of
the battery monomers. Due to the inevitable monomer difference
in the manufacturing and application process, the imbalance be-
tween the internal monomers of the battery pack occurs, which
causes safety hazards in the practical applications and affects the
accuracy of the group working SOC prediction. Therefore, it is
necessary to study the evaluation method of the equilibrium state
and apply it to the correction step of the prediction process. During
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the application of lithium-ion battery packs, the difference be-
tween monomers will increase along with time. Based on the
calculation of the variation coefficient, the evaluation and charac-
terization of the equilibrium state are realized. The implementation
idea is shown in Fig. 5.

Combined with the influence of environmental conditions, the
revised strategy is studied to describe the inconsistent state be-
tween monomers and solves the problem of constructing the
evaluation model of the equilibrium state between monomers. The
influence degree analysis of each input parameter is carried out,
and the weight preset of each parameter is realized for the evalu-
ation process, which is then used for the equilibrium state correc-
tion in the SOC prediction process. Through the modification of
model parameters and weighting factors, a reliable numerical
evaluation of the equilibrium state between the monomers is made
and applied to the correction process of the state parameters.
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2.4. Battery management equipment development

The development of supporting safety monitoring equipment
for lithium-ion battery packs embedded in large andmedium-sized
UAV is mainly realized through the state parameter detection, on-
line fault diagnosis, charging control, safety control and alarm,
communication and information storage. Furthermore, the thermal
runaway control strategy is studied together with security moni-
toring and alarm by using the intelligent management strategy and
implementation technologies. When the fault is diagnosed, the
controller is notified and the processing request is sent to com-
mand. When the threshold value is exceeded, the main loop power
is cut off to prevent high temperature and over-discharge phe-
nomenon. The system structure of BMS is shown in Fig. 6.

As can be seen from the above Figure, the safety monitoring
technologies of lithium-ion battery packs are studied for the large
and medium-sized UAVs. In addition, the remaining available po-
wer prediction model is embedded in the BMS to realize the online
accurate SOC prediction. The key technology research is conducted,
such as parameter detection, online fault diagnosis, battery safety
control and alarm, charging control. And then, the development of
supporting safety monitoring equipment is realized to ensure the
safe and reliable operation of lithium-ion battery packs. The power
lithium-ion battery pack is maintained at a good operating tem-
perature by using a heater chip and a heat sink. Based on the
functional and performance requirements of the power application,
a working state detection and analysis subsystem is designed. The
operational status detection and analysis includes the SOC predic-
tion of the power lithium battery pack to ensure its safe application
for its energy storage and energy supply processes. The data
transmission uses the digital signals with strong anti-interference
ability, and realizes real-time voltage, current and temperature
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signal detection during charging and discharging process.
Compared with other systems, the improved equivalent model
building and endurance prediction methods are introduced in our
scientific research, which is put forward considering the charac-
terization accuracy and computational complexity by using the
improved equivalent circuit modeling method together with the
RP-UKF algorithm investigation. The comprehensive SOB evalua-
tion is conducted real-timely for the internal connected battery
cells, which is implied into the iterative calculation process. The
corresponding anti-interference processing is carried out and the
correction algorithm is employed for the obtained function relation
when it is applied to the on-line state prediction process of the
safety control system for the lithium-ion battery packs.

3. Experimental analysis

3.1. Charging and discharging process

In order to get the basic working characteristics of the lithium-
ion battery packs used in the UAVs, this experiment monitors the
electricity variation in real-time. The lithium cobaltate (LiCoO2)
battery pack is selected as the experimental sample, which consists
of M cells connected in series, heating components, sampling re-
sistors, temperature sensors, sockets and combined cover. Com-
bined with the application of temperature sensors, cross-type
connectors and electronic connectors, the organic combination of
multiple components is realized. The proposed method is appli-
cable to different types of lithium-ion battery packs, and only needs
to modify the coefficient values of the functional relationships,
whichwill be obtained by parameter identification. The voltage and
current changes are analyzed for the working state monitoring
under different working conditions, and the voltage variation law
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can be obtained towards time. The relationship is shown in Fig. 7.
Firstly, 1C Constant-Current (CC) charging treatment is used for

the fast charging process of the charging phase. The voltage has a
fast rising phase, a slow rising phase, and a fast rising phase again.
When the voltage rises to the rated terminal charging voltage, the
current decreases gradually until the current drops to 0.05C when
the charging is at the end by using the CC-CV charging treatment.
Then, the lithium-ion battery pack is left for 1 h to make the in-
ternal reaction returns to the steady state. The discharge test is
conducted by 1C CC discharging.When the voltage drops to the end
discharge voltage, the discharge process is the end. In the discharge
process, thewhole figure can be divided into three parts, which are:
the voltage of the first part in the CC discharge process is rapidly
decreased. The voltage dropped rate of the second part decreases
slowly, and the voltage dropped speed of the third part is fast. The
discharge is terminated by the drop to the discharge termination
voltage. The different charge and discharge curves obtained by
controlling the current magnifications of 0.5C, 1C and 1.5C are
shown in Fig. 8.

During the discharge process of the lithium-ion battery, most of
the time is in the second part, and the length of time occupied by
the second part reflects the health state and the battery working
performance. The multiple charging characteristics are shown in
Fig. 9.

This is the voltage variation curve under different charge and
discharge current rate conditions. Its variation law is studied, and a
new method is explored for the SOC prediction. At present, the
difference seen by the naked eye is quite large and the difference is
obvious, but this is seen under the premise of large compression in
the time axis. In a short time-frame, the change will be very
insignificant. In order to obtain the voltage change rate law, the
charge curve is amplified locally. The functional change law is
observed and obtained as shown in Fig. 10.

The voltages are the same and the slopes are different. Ac-
cording to the one-to-one correspondence between the different
slopes and the discharge current, the discharge current can be
obtained. Afterwards, only voltages need to be measured to get the
current, which is then used estimate the SOC value.

3.2. OCV-SOC nonlinear parameter identification

At the room temperature of 25 �C, the lithium-ion battery was
filled and allowed to stand for 1 h by the CC-CV charging method,
and the internal reaction was returned to a stable state. The CC
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discharge was performed at a discharge rate of 1 C. When the 10%
SOC is released, it is set to stand for 30min. The cyclic operation is
performed for 10 times, and the voltage versus time curve is ob-
tained. OCV is the terminal voltage of the battery in the open state,
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which can be recorded after standing for 30min for every 10% SOC
release in the experiment. And the OCV-SOC relationship curve at
1C discharging rate is obtained as shown in Fig. 11.

The curve fitting result of the OCV-SOC relationship is shown in
Equation (7).

UOC ¼ f ðfÞ ¼ a0 þ a1fþ a2f
2 þ a3f

3 þ a4f
4 þ a5f

5 þ a6f
6

(7)

Wherein, a0¼ 22.3, a1¼32.9, a2¼�92.4, a3¼ 86.6, a4¼ 50.9,
a5¼�125.3, a6¼ 53.9.
3.3. Pulse power experimental test

The Hybrid Pulse Power Characterization (HPPC) tests are very
important, which are used commonly in the parameter identifica-
tion process. It is currently used by mounts of battery manufacture
and UAV companies to evaluate the performance of the battery
systems and modules. A single HPPC test is shown in Fig. 12.

In the first step, the lithium-ion battery is subjected to a 1C rate
CC pulse discharge 10 s, which will be set aside for 40 s in the
second step. In the third step, the lithium-ion battery is charged
with a CC pulse of 10C at a rate of 10C. In the cycle test, the lithium-
ion battery is fully charged by CC-CV charging, and the SOC value is
reduced to 90%, 80%,…, 10% by CC discharging for 40min. The HPPC
test is performed under the SOC value, and the voltage change
relationship to time can be obtained.
3.4. Model parameter identification

The test was carried out at a temperature of 25 �C to identify the
parameters in the ECM, such as the ohm internal resistance Ro, the
polarization internal resistance Rp and the polarization capacitance
Cp. Taking the SOC of 0.95 as an example, the single cycle HPPC
tested voltage response curve is obtained as shown in Fig. 13.

(1) The parameter identification of ohm internal resistance Ro is
conducted by using the following treatment. The current
changes at time t1, and the sudden changes of voltage U0 to
U1 are caused by the ohm internal resistance Ro, so its value
can be obtained by Equation (8).
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Fig. 11. OCV-SOC curve at 1C discharge rate.
R0 ¼ DU
I

¼ U0� U1
I

(8)
(2) Parameter identification of polarization internal resistance
RP can be investigated as follows. During the static stage of t3-
t4, the polarization capacitance CP is discharged through RP,
and the voltage is slowly increased to U2 by U1‘. The magni-
tude of the rise is determined by RP, so its value can be ob-
tained by using Equation (9). Wherein, I is the discharge
current.

RP ¼ DU0

I
¼ U2 � U

0
1

I
(9)
(3) Parameter identification of time constant can be investigated
as follows. The same analysis of the t3-t4 static stage, the zero
input response to the parallel RC circuit of this stage can be
implied to obtain the OCV value by using Equation (10).

UOC ¼ U1� UCP ¼ U1
�
1� e�

t
t

�
(10)

As can be known from the above Equation, U1’ and U2 can be
obtained as shown in Equations (11) and (12).

U
0
1 ¼ U0

�
1� e�

t3
t

�
(11)

U2 ¼ U0

�
1� e�

t4
t

�
(12)

Furthermore, the time constant of the simultaneous Equations
can be obtained as shown in Equation (13).

t ¼ � t4� t3

ln
�
U0�U2

U0�U 0
1

� (13)

(4) Parameter identification of the polarization capacitor CP can
be obtained, after obtaining RP, which is shown in Equation (14).

CP ¼ t

RP
(14)

According to the HPPC test data, the values of various parame-
ters are calculated, as shown in Table 1.

As can be known from the experimental data analysis, the mean
value of ohm internal resistance Ro is 20.68mU. The mean value of
the polarization internal resistance RP is 1.36mU, and the mean
value of polarization capacitance CP is 24421.7F. The ohm internal
resistance Ro does not change significantly into the discharge pro-
cess. As the SOC value decreases, there is a slightly rising process.
The polarization internal resistance RP has little change along with
the SOC value, and there is no obvious rising or falling trend.
Therefore, the average values are selected as the polarization in-
ternal resistance values. The polarization capacitance CP decreases
along with the SOC value, and it increases gradually.
3.5. The SOC prediction effect

The M-ICPXX power lithium-ion battery pack was selected as
the experimental sample, which was mainly composed of medium-
sized ICPXX lithium-ion battery cells, heating components, sam-
pling resistors, temperature sensors, sockets and composite cover.
The combination, combined with the application of temperature
sensors, cross-connectors and electrical connectors, enables the
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Table 1
The parameter value of HPPC test and calculation.

SOC R0/mU Rp/mU Cp/F Uoc/V

1 20.7 1.49 93317.1 3.4
0.9 18.6 1.16 49748.1 3.34
0.8 15.7 1.06 54440.5 3.32
0.7 17.9 1.02 56575.4 3.3
0.6 17.1 1.36 42431.6 3.296
0.5 19.55 1.21 47691.7 3.294
0.4 20.3 1.59 36294.2 3.29
0.3 23.4 1.67 34555.5 3.27
0.2 24.9 1.46 39525.8 3.25
0.1 28.6 1.59 22899.1 3.21
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organic combination of multiple components. The string XX rep-
resents the rated capacity of the lithium-ion battery pack. The
single cells are composed of a plurality of batteries connected with
parallel and confluent, which is sealed by a battery cell shell and a
single cell cover. The heating component includes a polyimide
heating film and a heating frame. During the application process of
the lithium-ion battery pack, the battery cells formed by the
respective parallel battery cells need to be cascaded in series to
meet the high voltage and large capacity requirements of the UAV
power application. According to the power demand, the number of
commonly used series lithium-ion monomers should be 6, 7, and
14. In the experimental analysis process, the lithium-ion battery
pack and its internal connected monomers were selected for the
experimental analysis. The experimental results are shown in
Figs. 14 and 15.

As can be known from the experimental data, the effective CCV
tracking and the SOC estimation can be realized under complex
working conditions.

After comparison of the results obtained by the Ah-based inte-
gral method, the error between the iterative calculated value and
the ampere-hour integral value is stable within 2.00%. It can be
seen from the experimental data shown in the figure that the
tracking error of the CCV in the complex working condition is 1.00%,
and the error between the iterative calculation value and the
ampere-hour integral value is stable within 2.00%. Experimental
data shows that this method can achieve the effective CCV tracking
and SOC prediction.
4. Conclusions

The endurance prediction of the power lithium battery pack
plays an important role in its energy and safety management,
which is an important part of the clean production and the
reasonable battery energy management will facilitate its smooth
implementation. A new endurance capability predicting method is
proposed and realized, which improves the prediction accuracy and
reduces the iterative computational complexity. The experimental
verification is conducted, combining with the theoretical analysis,
model construction, equipment development and experimental
verification. In view of the reliable energy management and safety
control objectives of lithium-ion battery pack, the battery
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equivalent modeling construction method is explored and the
adaptive residual available power prediction along with equilib-
rium state evaluation is realized. In combination with the appli-
cation scenario analysis of large and medium-sized UAVs, a safety
monitoring equipment is developed to conduct the reliable energy
management and safety controls. And weighed the complexity and
accuracy, the improved ECM has been constructed by using the
HPPC test of the parameter identification. The charge and discharge
experiments and nonlinear curve identification experiments are
carried out to analyze the partial operating characteristics of the
lithium-ion batteries, which are also used to verify the prediction
effect. It provides experimental basis of the future practical appli-
cations, modeling simulation and BMS design. In the future, the
following aspects will be further studied: (1) The equivalent
modeling methods of group working characteristics by using the
electronic components. (2) The calculation improvement on the
unscented transformation weights and the Kalman superposition
correction factor. (3) The expansion and correction strategy of the
influence parameters.
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