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Abstract

Electricity generated from forest-based biomassnsattractive source of renewable energy.
However, the cost of generating heat and/or etagtris relatively high due to the low energy
density of wood, high moisture content and variaim its quality and availability. Models have
been developed to optimize the supply chain andoedhe cost per kilowatt hour generated.
This paper focuses on incorporating uncertaintthensupply chain of such a model. The model
considers the tactical supply chain planning obwgr plant over a one-year time horizon with
monthly time steps. Uncertain parameters which chfae net profit of the power plant include
‘biomass quality,” namely moisture content and kigheating value, and ‘monthly available
biomass’ from different suppliers. Robust optimizatis used to model uncertainty in the
guality of biomass. Then a hybrid, multi-stagep¢$tastic programming-robust optimization’
model is presented in order to simultaneously iheluncertainty in biomass quality and biomass
availability. It is demonstrated that the hybrid deb takes advantage of both modelling
approaches to balance the profit estimates andréogability to various circumstances. The
model provides solution considering all instancethe uncertain parameters within the defined
sets and scenario tree. The results revealed a tmajie-off between profit and range of biomass
quality. Profit decreased by up to 23% when theas w13% variation in moisture content and
+5% change in higher heating value. The model &eldi@ biomass purchase cost that was lower
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than the current commercial costs at the powertplamplementing the model could prevent
production curtailment and undesirable fluctuatiorstorage levels which occurred in the past
due to variations in biomass availability and gayali

Keywords: Forest-based biomass, Bioenergy, Forest-basedab®supply uncertainty, Forest-
based biomass quality uncertainty, Mixed integegpmming model, Supply chain
optimization, Multi-stage stochastic model, Robygimization.



1. Introduction

In the dynamic and competitive energy market, tfamdition to renewable energy sources
presents a considerable challenge to traditionaketdoased solutions. Renewables are needed
to reduce greenhouse gas emissions and the depgnderfinite reserves of fossil fuel offer
poorer short term prospects for industry and irvmss{Gomes et al., (2013), Handler et al.,
(2014) and San Miguel et al., (2015)). Forest-basethass is a form of alternative energy
sources which provides environmental and econorarefits in area rich in forested land and
with advanced forest industries, such as in CarjBdadley, 2010). Yet, the cost of generating
heat and/or electricity from forest-based biomadls fshort of competitive with conventional
sources due to the properties of wood, such asvafergy density, high moisture content and
uncertainty in its quality and availability (Liew al., 2014).

To overcome short-comings in cost-effectiveness tantbverage forest biomass as a socially
acceptable energy, strategies to achieve the desteperation between stakeholders, decision
makers and all other players in the system mustidaentified. Barring technological
breakthroughs, modeling based on game theory hage bonsidered (for an introduction see
Perc and Szolnoki (2010), Wang et al. (2015), R2006, 2007)). The most expedient, short-
term solution is to optimize the performance of fwkest-based biomass supply chain to reduce
costs. Shabani et al., (2013) provided a reviewhefliterature on optimization models in forest
bioenergy supply chains (Shabani et al., 2013).

Uncertainty in forest bioenergy supply chains epsttly due to economic fluctuations, which
also affects other energy industries, yet additioc@mplexities exist. Fundamentally, the
characteristics of wood e.g., its non-homogeneautgre, affect the quality and fuel property of
the biomass (Bowyer et al., 2012). Seasonal vanatin quality and quantity of biomass occur
because forest residue may not be accessible thoatidhe year and its quality (especially
moisture content) changes in different seasons damohg its storage. Moreover, ensuring a
continuous supply of forest-based biomass typicatyuires multiple sources which introduces
variation in biomass quality (Gold and Seuring, P01BBeyond the quality of biomass, other
sources of uncertainty exist, such as the intemi#grecy between different forest products
sectors. When the raw material of one sector, sisolastes from lumber production, is used by

another, such as the bioenergy sector, unforeseeaiblmstances in one sector can affect the
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other sector and its supply chain. Therefore, magagncertainty is paramount when designing
supply chain optimization models. If uncertaintyig;mored, the solution of the optimization
model may be either infeasible, suboptimal or 8#rtsimas et al., 2007) and may not provide
a reliable solution (Wu et al., 2013).

In selecting the most suitable approach for moaiglvith uncertainty, one must consider i) the
characteristics of the data, ii) the source of labée data, iii) the computational effort and time
needed to solve the model, and iv) the degree mistcation that can be handled and accepted
by the users and decision makers. These approaehge from scenario analysis to more
advanced techniques such as stochastic programanmig robust optimization (Birge and
Louveaux, 1997, Bertsimas and Sim, 2003).

Stochastic programming is adequate and effectivenvthe probability distribution of uncertain

parameters is known and it is possible to defintemil scenarios. However, the stochastic
programming model is computationally intractableewhthe value of an uncertain parameter
covers a continuous range. One can manage thisdafirggy a set of scenarios derived from
discretizing the uncertainty sets, however, thaltaumber of scenarios grows exponentially
when dealing with a sequence of scenarios, e.genasio tree resulting in computationally
intractable models (Ben-Tal et al., 2000). A reviefastochastic programming optimization in

the forest industry and biomass and biofuels supgigins is provided in our previous

publication (Shabani et al. 2014). Another altaxegthowever, is to use the robust optimization
method which is attractive because it can be soéfeattively and efficiently using the current

powerful solvers if a tractable uncertainty setsedected (Ben-Tal et al., 2000). Moreover,
contrary to stochastic programming, in order tooiporate uncertainty in robust optimization

only a range of uncertain parameter (instead gintdability distribution) is required (Gabrel et

al., 2013).

Robust optimization has been used and appliedverakfields of study, such as facility location
and inventory management (Gullpinar et al., 2018/a8cet al., 2012), resource allocation and
project management (Wiesemann et al., 2012), aswl ial specific supply chain optimization
problems such as the models in the refinery ingludteiras et al., 2010). Palma and Nelson
(2009) applied the robust optimization approacthtforest industry to incorporate uncertainty

in products volume and demand to support the decisi harvest scheduling. In a second study,

4



they used robust optimization in a bi-objectivenpiag model with random objective weights
for forest planning (Palma and Nelson, 2010). Othsearchers have employed robust models in
forestry applications such as Alvarez and Vera 20& Kazemi Zanjani et al. (2010a) for
optimizing sawmill planning; Tay et al. (2013) fortegrating black liquor biorefineries for
energy production; Bredstrom et al. (2013) for plag a biofuel heating plant; and Carlsson et
al. (2014) for considering customer demand in thip and paper industry. The method used by
Kazemi Zanjani et al. (2010a), which combined ralaysimization and stochastic programming,
was of interest to us and served as a model foeldping our hybrid ‘stochastic programming-
robust optimization’ model. Their method was based the earlier definition of robust
optimization (Mulvey et al. (1995)’s definition) wdh included minimization of variations in the
model solution. The current definition of robustiopzation is based on optimizing the worst
case instead which was not used in their study.

While a few studies have considered uncertaintlyicenergy supply chains in general (Kim et
al. 2011; Chen and Fan 2012), to the best of owwlkedge, our approach in modeling
uncertainty in biomass quality and availability fiorest-based biomass to bioenergy supply
chains is novel. Based on the results of the gemgitinalysis in Shabani and Sowlati (2013),
biomass availability and quality were among the tmwmdgluencing uncertain parameters.
Previously a two-stage stochastic optimization nhagldeveloped to consider uncertainty in the
forest-based biomass availability (Shabani e2@14). Our previous work is extended here and
a hybrid model to account for uncertainties in bbibmass quality and biomass availability is
developed. Our model is constructed by first madginoisture content (MC) and higher heating
value (HHV) using a robust optimization formulatjahen, by introducing the uncertainty in
monthly available biomass with a multi-stage staticgprogramming model. It is demonstrated
how our hybrid multi-stage stochastic programmiagust optimization model has an

appropriate balance between solvability of the rhadd conservatism of the optimal solution.

The rest of this paper is structured as followsSéttion 2, the problem of optimizing a forest
biomass power plant supply chain is described.elctiBns 3 and 4, the structure and formulation
of the developed optimization models are presenkld. results are provided in Section 5 and
the main conclusions of the study are includedeatiSn 6.



2. Problem description

A brief overview of the supply chain consideredtims study is provided here, but a more

detailed explanation can be found in Shabani amd&i0(2013). Our model is based on a forest
biomass power plant in Canada. Its supply chairsists1 of several different suppliers that

provide different types of forest-based biomasthé&plant, an open storage yard for storing the
mix of biomass, and a power plant that generaesdratity. The power plant has fixed contracts
with some suppliers and consequently has to buydbkilues they produce with a fixed cost.
However, these suppliers have no obligation to pcedbiomass for the power plant when they
do not produce their main products. The rest ofstiygpliers have no long-term contract with the
power plant. The power plant has to generate enelggitricity (called the firm load) to meet its

customer’s need throughout the year. It also haoftion to generate more electricity than the
firm load (called surplus load) to sell it basedtba open market price whenever it is profitable.
The decision about whether or not to produce thpligsi load is made in the beginning of each

year and will not change during the year.

Different types of biomass including bark, sawdss$tavings and roadside logging debris are
received from different suppliers. These are thereth and kept in a storage yard until
combusted. There are two upper limits for storirgrass above which additional costs related
to hiring an extra person and an extra piece ofipegent for material handling would be
imposed. There is a lower limit at which point tpeality of biomass deteriorates because the
pile does not generate sufficient internal heatléFul985). The electricity generation at the
power plant is based on a conventional power cyateincludes a boiler, a turbine, a condenser,
a high voltage step up transformer, a solid fuehdiag system, an ash removal/handling
system, other steam cycle auxiliary pieces of ageit, multiple cyclones, and an electrostatic

precipitator.

In Shabani and Sowlati (2013), a mixed integer ha@ar model was developed to optimize the
supply chain over a one-year planning horizon wiibnthly time steps. The decision variables
of the model were the amount of biomass to purchetsee and consume from each supplier in

each month, and whether or not to generate thdusutpad. The objective function was to



maximize the profit which is the revenue from sgjlthe firm and surplus loads to the customers

minus purchase, transportation, production, stoaageash removal costs.

A number of parameters of the deterministic modesented in Shabani and Sowlati (2013) may
have variations. As previously mentioned, the dualf biomass is highly variable. Wood is a
heterogeneous material and its quality varies ffemdint parts of the tree, different species and
different periods (Demirlsa 2001 and 2003, Carlsson et al., 2009) and alfer dn different
types of biomass (e.g. bark, sawdust, shaving)titangas, 2001). Biomass quality plays an
important role in the total amount of electricitgrgrated and the cost per kilowatt hour (Saidur
et al., 2011). The other major source of unceryasté¢ms from the supply of by-products. The
suppliers to the power plant are several sawmitid a plywood mill and their production
capacity is tightly dependent on housing and lunmbarkets, making the availability of biomass
uncertain. If uncertainty in these parametersm®igd, the solution may vary significantly given
any perturbation in them and may become non-optonadven infeasible. The original mixed
integer non-linear model (Shabani and Sowlati 20483 then reformulated in Shabani et al.
(2014) into a linear model in order to be ablertdude uncertainty in biomass availability in a
two-stage stochastic optimization model. Howeuess, uncertainty in the quality of biomass was

not considered.

According to the power plant managers, it seemgutogiate to assume that biomass amount
was known for the first three months of the yead #men it could stay the same (average
scenario), increase or decrease by 20% (high orslmemarios) for each of the following three-
month intervals over the year. Moreover, sincetlal suppliers were located in the same area
and cover the same market, it was assumed thathitwege in the amount of biomass supply
would be the same for all suppliers, for instan€ghe market was promising, then all the
suppliers would have 20% increase in their producfor three months. Consequently, the total
number of scenarios over a year was calculatedaloing three supply scenarios (high, average
and low) for each three-month interval from montto3nonth 12, knowing the biomass supply
for the first three months with certainty, whichuats to 3=27. These 27 scenarios were
considered in a multi-stage stochastic optimizatioodel. The probability of occurrence was

assumed to be 1/27 for each scenario.



The probability distributions of MC and HHV weretrknown and only their possible variation
ranges were available. Different scenarios coulal@ined for MC and HHV by discretizing
their ranges. However, if these scenarios were aoedbfor different biomass types, suppliers
and months, the total number of scenarios would/drg large even with a small number of
discretized scenarios. Therefore, due to unavéihamf probability distribution of biomass
quality as well as dimensionality issue, robustrofation is used in the current study to include
the uncertainty in biomass quality into the decisioaking process. Furthermore, to include
uncertainty in both biomass quality and availapilita hybrid multi-stage stochastic
programming-robust optimization model is suggeste8ection 4. The stochastic programming
of the hybrid model has a different structure tki@a model in Shabani et al. (2014) and instead
of a two-stage stochastic programming model, airatdge stochastic optimization model is
used for including uncertainty in biomass avail&piin order to have the variations in biomass

availability according to scenarios in the decidi@e.

3. Robust optimization model

The uncertainty in biomass quality was incorporatading robust optimization, into the

previously designed linear optimization model préed in Shabani et al. (2014) model. MC and
HHV were not correlated because HHV was calculdtased on dry biomass. MC and HHV
together produce another parameter called enerlyyev8ased on the data provided by the
power plant, the range of variation in MC was 2843&ith an average of 30%, and it was 8000-
9000 BTU/Ib (4.69-5.27 MWh/ton) for HHV with an aage of 8500 BTU/Ib (4.98 MWh/ton).

The formulation of robust optimization depends ba definition of a robust solution. A robust
solution is one that must be feasible for any ration of the uncertain parameter. This approach
was originally proposed by Soyster (1973) and isvkmto be an “ultraconservative strategy”.
Ben-Tal et al. (2000) recommended less conservapygoaches by using different set of
uncertainties such as ellipsoidal uncertaintiegpdénhding on the type of the uncertainty set, the

robust optimization model could become nonlinear.

Bertsimas and Sim (2003, 2004) suggested an agprtet uses the idea of “budget of
uncertainty” to control the level of conservativeseln this method, only some of the uncertain

parameters deviate from their nominal values siamglously. Using this definition, a constraint
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is immunized against uncertainty by determiningsize of the buffer or a “protection function”
of it. This protection function is an optimizationodel itself and its dual is embedded in the
original model. Given the linearity of the originaloblem, the robust counterpart is also a linear
problem with a modified feasible region. In alltbkse methods, the solution is optimized based
on the worst case, which is the most unfavouragddization of the uncertainty. The worst case
can be selected differently, too, either from atdimumber of scenarios, such as historical data,
or continuous, convex uncertainty sets, such aghpdrons or ellipsoids. For a recent review of
robust optimization the reader is referred to Glagtral. (2013).

The classic robust optimization formulation deriviedm Ben-Tal et al. (2009) with a box
uncertainty set which is available in the AIMMS tsedre package is used. It helped to have a
tractable model providing a feasible solution ftir MC and HHV ranges. This model will
inevitably provide lower profit estimates than theterministic model because it optimizes the

worst case.

The notations of model sets, parameters and vasgadflrobust optimization model are shown in
Table 1.

Table 1: Parameters, sets, decision variableseafabust optimization model

Parameters

AshC Average ash content of biomass mixture (%)

AshHC Unit cost of handling ash ($/green ton)

BCs, Unit cost of biomass type purchased from suppligr($/green ton)

efficiency System efficiency (30%)

EVspt Energy Values of biomass type from suppliers in month ¢
(MWh/green ton)

FD ‘Firm Demand’ required to be met each year (MWh)

FP Unit price for the firm demand ($/MWh).

HHV Higher Heating Value of biomass typefrom suppliers in month
t (MWNh/dry ton)

MaxF;, Maximum available biomass from suppliem montht (green ton)




MaxS Absolute maximum storage levels (green ton)

MCs ¢ Moisture Content of biomass typepurchased from suppligrin month
t (%)

MFD, Monthly ‘Firm Demand’ in montht if surplus load is not produced
(MWh)

PC Production Cost including water, sewer and chentoats ($/MWh)

PSC Penalty cost if storage level is abd@L or SUL ($)

QRF Percent reduction in biomass quality if storagelés belowSLL (%)

Ratiog ¢ Ratio of biomass type produced in supplier in montht (%)

SD Surplus Demand that the company can optionally ywedover a year
(MWh)

SDL Storage Desired Level, the level at which a penatigt occurs for
additional equipment and additional staff (gream) to

SLL Storage Lower Limit, the level at which biomass lgyalecreases due
to insufficient time to produce internal heat (gréen)

sp Unit price for Surplus Demand ($/MWh)

SUL Storage Upper Limit, the level at which a penalbgtcis added due to
the use of additional equipment and staff as a&high fire risk (green
ton) (SUL = SDL)

TargetS Target Storage level (green ton)

TCs, Unit transportation cost from suppliein montht ($/green ton)

WH, The amount of power plant’s working hours in monthr)

I\TCS_I[,t Every value of moisture content of biomass typeurchased from
suppliers in montht (%) that belongs to an uncertainty range

1\7I\Cs,pt The positive constant perturbationM€; , ;

Y The adjustable parameter controlling the size akuainty set

Sets

Product Types of biomass @{Bark, Sawdust, Shavings, Roadside Logging
Debris (RLD)})

Suppliers List of suppliers (6{Sy, ..., S$})
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Time Time period (& {Jan, Feb, ..., Dec})

Decision Variables

Cs ¢ Amount of biomass from supplierconsumed in month(green ton)

E; Amount of electricity generated in monttfMWh)

Fo, Amount of biomass purchased from supptién montht (green ton)
Sst Amount of biomass from suppligrstored in month (green ton)

SB 1 if surplus electricity is produced in a year,tBeswise (binary)

Us ¢ A new set of auxiliary decision variables related’{, for the robust

optimization model

X; 1 if storage is higher thafDL in month t, O otherwise (binary)
Y; 1 if storage is higher thafUL in month t, O otherwise (binary)
Z; 1 if storage is lower tha$iLL in month t, O otherwise (binary)
T The objective function of the robust optimizationdel

The objective function of the robust optimizationdsl is

Min T (2)
Wherert is connected to the deterministic objective fumttas shown in Equation 2:

Profit <t (2)

The objective function of the deterministic modet¢fit) was to maximize the profit, including
revenues from selling the firm and surplus elettyrioads to the customer, if the surplus load is
produced, minus biomass procurement (purchase ramgportation) cost, ash removal cost,

storage penalty cost and production cost.

Profit = FP X FD + SP X SD X SB — ¥5(¥, BC, X Ratiog,; + TCs;) X Fy, —

Other constraints of the model are as follows:
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For suppliers with a fixed contract, the amounbioimass purchased from supplisy {n month

(t) has to be equal to the maximum available biorfrass supplier §) in month €):
Fg¢ = MaxFg, [s €{Sy, ..., S}, t €{Jan, ..., Dec}] 4)

For suppliers without a fixed contract, the amoahbiomass purchased from supplig) (n
month ¢) has to be less than or equal to the maximum abailbiomass from supplies)(in
month ¢):

Fs: < MaxF;, [s €{Ss, ..., S}, t €{Jan, ..., Dec}] (5)

The total storage level of biomass from all supplig) stored in montht{ has to be less than or

equal to the maximum storage level:
XsSst < MaxS tle{Jdan, ..., Dec}] (6)

The total storage level of biomass from all supplia the last month has to be equal to a target

storage level which is set by the power plant mamag
s Ss,pec = TargetsS (7)

The storage level of biomass received from supgéieand stored in montht) is equal to the
storage level of biomass received from suppkg¢rfd stored in previous month-{ 1) plus the
biomass purchase from supplig) (n month ¢) minus biomass consumption from suppli€x (
and stored in montht). For the first time step, the initial storagedéfor each supplier has to be

known:
SS,t == SS,t—l + FS,t — CS,t S f{S]_, ey &}, t E{Jan, saay DeC}] (8)

As mentioned earlier, the electricity productiomionth €¢) has two parts: the firm load and the
surplus load. If the surplus load is produdgdequals the total firm and surplus load over a year
multiplied by the ratio of working hours in montf) ¢livided by the total working hours in a year
(WH./ ¥« WH,). If only the firm load is produced, the electtycdemand in montht] equals to

the monthly firm load:
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WH;
XtWH;

E. = (FD + SD) x X SB + MFD; x (1 — SB) t[e{Jdan, ..., Dec}]  (9)

On the biomass side, the amount of electricity geed in month ), E;, equals the total
biomass consumption in month) (nultiplied by the total ratio of biomass type) for supplier
(s) in month ¢), the energy value of biomass typg {rom supplier §), system efficiency, and
the ratio of quality reduction factor if the stoealpvel in month ) is lower than the storage
lower level SLL). If the forest biomass pile is not high enougé,guality will reduce (a factor
(QRF) is considered in the equation) because enougrnialt heat could not be generated
(Fuller, 1985):

E;, = Z Cst X Z (Ratios, X EV, 1) X ef ficiency X (1 — QRF X Z;)
s P

f €{Jan, ..., Dec}] (10)

In Equation 10, Energy valu&¥s, ), is calculated based on the higher heating vahethe
moisture content of biomass typepurchased from supplisrin montht (HHV;, ., MCs, )
(Bowyer et al., 2007):

EVspe = HHVsp X (1 — MCsp ) [for s €{S4, ..., S}, t €{Jan, ..., Dec} andp e{Bark,
Sawdust, Shavings, Roadside Logging Debris (RLD)] (12)

If only uncertainty in moisture content is includedthe model, Equation 10 has to be replaced

by the following Equation:
E < Z Cs¢ X Z (Ratiog,,, X HHV; ¢ X (1 — MCgpy)) X ef ficiency x (1 — QRF X Z,)
s p

¥ MC, ¢ € [25,30],t €{Jan, ..., Dec}] (12)
The robust counterpart of Equation 12 is as follgse® Li and Floudas, 2012):

E; < ¥sCsp X Xp(Ratiog, X HHVg 5 X (1 — l\7lf?s_p_t ) X efficiency X (1 — QRF X Z;) +
P Uge X Zp(RatioS_p_t X HHVg ¢ X (1 — ms_p_t)) X efficiency X (1 —QRF X Z;) (13)

13



—US,t S CS,t S US,t'US,t 2 O 146

WhereU;, is a new set of decision variablelfd;f:s_p_t is the positive constant perturbation in
MC;p and y is the adjustable parameter controlling the sikzeirccertainty set. Notice that

Constraint 10 is converted to inequality in ordemntake sure it can be met for all realization of

MCsp+ The same formulation can be written for uncettain HHV, , .. When uncertainty in
both parameters is included, the teHHV . X (1 — MCs,) is replaced byEV,,.and the

formulation is written for this parameter with ttenge derived froniiHV; , . andMC; ,  ranges.

All continuous variables have to be non-negative:
FS,t’ SS,tJ CS,t’ Et 2 0 S ¢{Sl, sy %}, t E{Jan, sy DeC}] (15)

Additional constraints have to be added for theinikgdn of binary variables(,, Y; andZ;.
Moreover, Equation 8 contains the multiplication afbinary variabléZ, and a continuous
variableC;, which is non-linear and can be converted to aalir@nstraint. It can be done by
replacingZ, x s C;, with an additional continuous variable, (= 0) and additional constraints

(16, 17 and 18). M is a sufficiently large number.

Le<MXZ, t €{Jan, ..., Dec}] (16)
L <YCsy t €Jan, ..., Dec}] (17)
L2 YsCe —MX(1—1Z) { €{Jan, ..., Dec}] (18)

The model is now a mixed integer linear programn{id¢i.P) model which is solved using the
AIMMS software and CPLEX solver.

4. Hybrid multi-stage stochastic programming-robust optimization model

The scenario tree for the multi-stage stochastgm@mmming model is shown in Figure 1. The
number shown on each arch represents the rateavfgehfrom the average scenario in the
available biomass from supplisiin each stage. The scenario tree contains fogestand each

stage includes three months (Stage 1: Jan, FebMandStage 2: Apr, May, and Jun; Stage 3:
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Jul, Aug, and Sep; and Stage 4: Oct, Nov, and D&g)mentioned earlier, it is assumed that
variations in biomass availability are stationawyidg the three months in each stage. The robust
optimization model is similar to the model explalrie Section. 3. The formulation of the hybrid
model is presented here.
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Figure 1: The scenario tree for uncertainty in kagmavailability

For the hybrid model, the decision variables adexed over each scenario, too. The notations

of parameters, sets and decision variables of thii-stage stochastic model are provided in

Table 2.
Table 2: Stochastic model decision variables
Parameters
MaxFs,; | Maximum available biomass from suppliem montht for scenaria (change by
+20% in each node of the tree as shown in Figure 1)
Pr; Probability of occurrence of scenafi¢l/27) ; Pr; = 1).
Sets
Nodes Set of nodes of the Treed{N 1, ..., Nug}).
Scenarios | List of scenarios é{l 4, ..., b7}).

Decision Variables

Fs,t,i

Ss,t,i
Cs,t,i

Eti
SB,
Xt

Amount of biomass purchased from supplien montht for scenarid (green
ton).

Amount of biomass stored from supplsein montht for scenaria (green ton).
Amount of biomass consumed from suppken montht for scenarid (green
ton).

Amount of electricity generated in montfior scenaria (MWh).

1 if surplus electricity is produced in a year,tBeswise for scenario(Binary)
Binary variable, 1 if; . ; is higher than the desired storage le&l) in montht
for scenaria.

Binary variable, 1 iS5, ; is higher than the upper storage lin§U{) in montht
for scenaria.

First stage binary variable, 19§ ; is less than lower storage limRI(L) in month

t for scenaria.

The objective function is to maximize the expeqteafit of all scenarios:
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Mint 19

(Ei Pri X PT'Ofiti) <7 (20)
WhereProfit; equals revenues minus costs as shown in Equation 2

Profit; = FP X FD + SP X SD X SB; — Y (¥ BCs, X Ratiog, + TCs;) X Fyp; —

Y AShHC X AShC X Y,gCsyi — Xe PSC X (Xp; + Yy;) — (WC + ChC + SC) X X, Ey; (21)
Subiject to:

Foei = MaxFg,; s[e{Sy,....S}, t €{Jan,...,.Dec},i €{l 4, ..., b7}] (22)
Foei < MaxF, ; S[€{Ss,...,Sg}, t €{Jan,...,Dec},i €{l, ..., ki}] (23)
YsSsti < MaxS [t €{Jan,...,Dec},i €{l 1, ..., b7}] (24)
Y5 Sspeci = TargetS i[€{l 1, ..., l27}] (25)
Ssti= Sst—1it Fsei— Cspi F €{S4,...,.S}, t €{Jan,...,Dec},i €{l 4, ..., 7}] (26)
E.; = (FD + SD) x ZZVM*/’; X SB; + MFD, x (1 — SB;)

[t €e{Jan, ..., Decli €{ly, ..., b7}l  (27)

E,; < Ys(Z,Ratiogy X HHV e X (1 — MCy 1)) X C 50y X (1- QRF X Z,;) ef ficiency

[VMC;,,.€[25,30] andt €{Jan,...,Dec},i €{l4, ..., b3}l  (28)
Fs,t,i’Ss,t,i’Cs,t,i»Et,i >0 .E‘ E{Sl, vy %}, t E{Jan, vy DEC},i E{| Ly eens |27}] (29)

Equation 30 implies the non-anticipatively conisii® related to the multi-stage stochastic

programming model.
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Fs,t.i = Fs,t,i’ v 9Os,ti = Ss,t,i’1 sti = Cs,t,i’

[s €{S4, ..., S}, t €{Jan,...,Dec},i,i’ €l 4,...,I1o7t (i #i')| ¢, i,i" are on the same node={N ;,
.ovs Nag}]

(30)

Equation 30 indicates that for each node shownhendecision tree in Figure 1, the decision
variables on biomass purchase, storage and consuminatve to be the same for each month and

the scenarios that are related to that node.

The hybrid model is also a mixed integer lineargpaonming (MILP) model which is solved
using the AIMMS software and CPLEX solver.

5. Results
Robust optimization model

The robust optimization model was solved with d#fe ranges oMCs , . andHHV; , ;values to
assess the variations in the solution when thertaingy set was widened and the results are as
shown in Table 3. Various ranges were utilized beeaa solution for all possible instances will
likely be too conservative a solution. The optimprafit was achieved using the averagé; , .
(30%) and averagdHV; . (8500 BTU/Ib) and amounted to $15.64 Million CABs the range

of MC variations widens from 2% to 10%, using theerageHHV; ¢, the optimum profit
decreases from $15.07 M to $13.13 M. Alternativeiging the averagdCs . of 30% in the
model, as the range 8HV; , ; variation is expanded from 200 BTU/Ib (0.12 MW)do 2000
BTU/Ib (1.17 MWh/ton), the optimum profit reduce®rm $15.15 M to $13.58 M. When both

parameters vary at the same time, the result becanwe conservative with more severe

reduction in profit to $11.97 M fdiHV;, €[8100 BTU/Ib, 8900 BTU/Ib] andMC; , :E[26%,

34%]. In the extreme ranges, the model is infeasibl

Table 3: Profit ($ Million) for different ranges ®fC; , ;andHHV; ,; used in the robust
optimization model
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30(Ave.) 29-31| 28-32| 27-33 26-34 25-35
8500 (BTU/Ib) (Ave.)
15.64 15.07| 1461 14.13 13.64 13.13
[4.98 (MWh/ton)]
8400-8600 (BTU/Ib)
15.15 14.72| 14.24) 13.76 13.25 12.71
[4.92-5.04 (MWh/ton)]
8300-8700 (BTU/Ib)
14.78 14.34| 13.76] 13.36 12.82 12.29
2 | [4.86-5.10 (MWh/ton)]
>
T |8200-8800 (BTU/Ib) _
I 14.39 13.95| 13.36) 1294 12.39 Infeasible
[4.81-5.16 (MWh/ton)]
8100-8900 (BTU/Ib) _
13.99 13.46| 13.05 1250 11.97 Infeasible
[4.75-5.22 (MWh/ton)]
8000-9000 (BTU/Ib) ) ) _
13.58 13.05| 12.50 12.07 Infeasible Infeasile
[4.69-5.27 (MWh/ton)]
16 -
®
15 - u °
_ A d . e HHV: 8500 BTU/Ib
é " f ; = ° mHHV: 8400-8600 BTU/Ib
é} ® . ; : ° AHHV: 8300-8700 BTU/Ib
% 13 - ® o 5 : ° ®HHV: 8200-8800 BTU/Ib
& ® S 2 : & HHV: 8100-8900 BTU/Ib
12 A e . @HHV: 8000-9000 BTU/Ib
11 : : : : : : .
30% 20-31%  28-32%  27-33%  26-34% = 25-35%

M oiscur e Content Range

Figure 2: Solution of the robust optimization mofteldifferent ranges of moisture content and
higher heating value (HHV)

Figure 2 shows the model solution (profit) for diént variation ranges ®C, . andHHV ;.

Despite the conservative nature of the robust mdtel decisions were feasible for ranges of
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MC and HHV. Another case where the decision vagialbf biomass purchase, storage and
consumption for the first three months were setngisaverage MC and HHV values
(MCs,=30% andHHV; , ,=8500 BTU/Ib) is explored. For the remainder of ttear, different
values for MC and HHV (any ranges showed in Tahl@ard modeled. It is observed that the

model became infeasible whafC , andHHV; , ; varied from their average values, a scenario

that is highly likely to occur in reality.
Figures 3 and 4 show the optimum biomass storagdecansumption levels in different months
based on the results of the robust optimization ehadth HHV, ,. € [8100 BTU/Ib, 8900

BTU/Ib], with MC; , . € [26%, 34%] and a deterministic model. The robustnoigation model

prescribes higher storage level compared to therm@tistic model for most of the months and
higher consumption level in all months. The constiomplevel was higher due to the lower than

average energy value of biomass used in the rapiishization model.

10C -
90 A
80 A
70 -
60 -
50 A
40 A
30 H = == Robust Optimization
20 A
10 ~

0

Storage Level (Green Ton)

Deterministic

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Def

Figure 3: The optimum storage level in differentntins from the robust optimization model
with HHV; , . €[8100BTU/Ib, 8900 BTU/Ib] andMC; , ; € [26%, 34%)], and the deterministic

model
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Figure 4: The optimum biomass consumption levelifferent months from the robust
optimization model witHHV; , . €[8100 BTU/Ib, 8900 BTU/Ib] andMC; ;,  €[26%, 34%)], and

the deterministic model

Hybrid Model

Results of the hybrid model for three combinatiafdMC and HHV ranges are provided in
Table 4. The profit from the hybrid model is slightower (0.8-1.0%) than that of the robust
optimization model, suggesting more conservatingéacies of the hybrid model. The reduction
in profit increases as the range of variation deses. It should be noted that for the average
values of HHV and MC, the profit is $15.64 M foetleterministic model and $15.33 M for the
stochastic programming model. For ranges wider thiav , . €[8200 BTU/Ib, 8800 BTU/Ib]

and MCs ,,; €[27%, 33%], the hybrid model is infeasible.

Table 4: Profit for different ranges of MC (%) aH#lV (BTU/Ib) used in the robust
optimization and hybrid models. The final colummresponds to the ‘difference’ in profit

predicted by the robust optimization solution (ftjofersus the hybrid model.

MCspt HHV;prange Robust optimization Hybrid model  Difference
range (%) (BTU/Ib) profit($M) profit ($M) ($M)
27-33 8200-8800 12.94 12.83 0.11
28-32 8300-8700 13.76 13.64 0.12
29-31 8400-8600 14.72 14.59 0.13
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Despite lower profit, the hybrid model providesdide solutions for all scenarios of monthly
available biomass and all instances of MC and Hid\Vaiselected range. It means that for
variations in MC and HHV, as well as changes in bi@mass availability, the hybrid model
provides a solution for which the storage leveld W& within the acceptable levels and the
electricity demand will be met every month. Thisattee is crucial for the power plant
considering that previous variation in biomass iyaand supply resulted in production
curtailment and low/ high biomass storage levelsthBextremes for storage are undesirable:
high storage levels increase the risk of fire aadehadditional costs for the power plant and low
storage levels result in low quality biomass.

In terms of the conservatism of the models, therdahistic optimization model provided a
solution that had 15% higher profits than the dcplanning by the power plant. Including
uncertainty made the optimization model more robbst provided consistently lower profit
estimates. However, even with uncertainty includeat, model predicted higher profits than
what was achieved by the actual planning in thegugwant. For instance, in 2011, the actual
total biomass cost of the power plant was $11.0Tkble 5 shows the biomass purchase cost
from the hybrid model for different ranges of MCdaHHV, where it can be seen that only for
the widest range of variations, the purchase ckigher than $11.0 M. More importantly, this
solution is feasible for all realization within #e ranges. For narrower variation ranges, the
biomass purchase cost from the hybrid model is talwan the actual power plant cost, which
means cost savings for the power plant, while, et $ame time, preventing production

curtailment and excess storage.

Table 5: Biomass purchase cost for different ram@4C (%) and HHV (BTU/Ib) used in the

hybrid model
MCs pirange (%) HH\,;range (BTU/Ib) Hybrid model —
biomass purchase cost ($M)
27-33 8200-8800 11.4
28-32 8300-8700 10.6
29-31 8400-8600 9.7
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6. Conclusions

To the best of our knowledge, this is the firstdgtihat incorporates uncertainties in biomass
availability as well as biomass quality into thepgly chain optimization modeling. This is
achieved by developing a hybrid multi-stage stottbaiebust optimization model. Uncertainty

in biomass quality was modeled using the robustnopation model, while uncertainty in

biomass availability was considered using the nruifipe stochastic optimization model. The

hybrid model provided consistently more consengatimd more stable solutions compared to the

previous deterministic model. The hybrid model gasl higher profit predictions compared to

the actual power plant’s real profit. At the sanmet the hybrid model was solvable for all

scenarios of biomass availability and all instarmmfdsiomass guality. This means that even when

biomass availability and quality change during ykar, the model will determine the amount of
biomass to purchase, keep in storage and use lmneacth to maximize the annual profit, while
meeting the electricity demand and preventing ifirseht or excess storage levels. Our hybrid

model is of utility to a forest-based biomass pogenerating plant in order to optimize profits,

while avoiding production curtailment and other esidable conseguences resulted from

fluctuation in storage. The future research shaatgand the model's focus from a purely

economic objective to include environmental andaaspects as well.
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Highlights:

- A robust optimization model is developed to consider uncertainty in biomass quality
- A hybrid model is developed to aso include uncertainty in biomass availability

- Thesupply chain profit of aforest-based biomass power plant is maximized

- Therobust and hybrid models provided feasible solutions considering all variations



