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Abstract 

Electricity generated from forest-based biomass is an attractive source of renewable energy. 
However, the cost of generating heat and/or electricity is relatively high due to the low energy 
density of wood, high moisture content and variations in its quality and availability. Models have 
been developed to optimize the supply chain and reduce the cost per kilowatt hour generated. 
This paper focuses on incorporating uncertainty in the supply chain of such a model. The model 
considers the tactical supply chain planning of a power plant over a one-year time horizon with 
monthly time steps. Uncertain parameters which impact the net profit of the power plant include 
‘biomass quality,’ namely moisture content and higher heating value, and ‘monthly available 
biomass’ from different suppliers. Robust optimization is used to model uncertainty in the 
quality of biomass. Then a hybrid, multi-stage, ‘stochastic programming-robust optimization’ 
model is presented in order to simultaneously include uncertainty in biomass quality and biomass 
availability. It is demonstrated that the hybrid model takes advantage of both modelling 
approaches to balance the profit estimates and the tractability to various circumstances. The 
model provides solution considering all instances of the uncertain parameters within the defined 
sets and scenario tree. The results revealed a major trade-off between profit and range of biomass 
quality. Profit decreased by up to 23% when there was ±13% variation in moisture content and 
±5% change in higher heating value. The model achieved a biomass purchase cost that was lower 
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than the current commercial costs at the power plant. Implementing the model could prevent 
production curtailment and undesirable fluctuation in storage levels which occurred in the past 
due to variations in biomass availability and quality.  

Keywords: Forest-based biomass, Bioenergy, Forest-based biomass supply uncertainty, Forest-
based biomass quality uncertainty, Mixed integer programming model, Supply chain 
optimization, Multi-stage stochastic model, Robust optimization.  
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1. Introduction 

In the dynamic and competitive energy market, the transition to renewable energy sources 

presents a considerable challenge to traditional market-based solutions. Renewables are needed 

to reduce greenhouse gas emissions and the dependency on finite reserves of fossil fuel offer 

poorer short term prospects for industry and investors (Gomes et al., (2013), Handler et al., 

(2014) and San Miguel et al., (2015)). Forest-based biomass is a form of alternative energy 

sources which provides environmental and economic benefits in area rich in forested land and 

with advanced forest industries, such as in Canada (Bradley, 2010). Yet, the cost of generating 

heat and/or electricity from forest-based biomass falls short of competitive with conventional 

sources due to the properties of wood, such as a low energy density, high moisture content and 

uncertainty in its quality and availability (Liew et al., 2014).  

To overcome short-comings in cost-effectiveness and to leverage forest biomass as a socially 

acceptable energy, strategies to achieve the desired cooperation between stakeholders, decision 

makers and all other players in the system must be identified. Barring technological 

breakthroughs, modeling based on game theory have been considered (for an introduction see 

Perc and Szolnoki (2010), Wang et al. (2015), Perc (2006, 2007)). The most expedient, short-

term solution is to optimize the performance of the forest-based biomass supply chain to reduce 

costs. Shabani et al., (2013) provided a review of the literature on optimization models in forest 

bioenergy supply chains (Shabani et al., 2013).  

Uncertainty in forest bioenergy supply chains exist partly due to economic fluctuations, which 

also affects other energy industries, yet additional complexities exist. Fundamentally, the 

characteristics of wood e.g., its non-homogeneous nature, affect the quality and fuel property of 

the biomass (Bowyer et al., 2012). Seasonal variations in quality and quantity of biomass occur 

because forest residue may not be accessible throughout the year and its quality (especially 

moisture content) changes in different seasons and during its storage. Moreover, ensuring a 

continuous supply of forest-based biomass typically requires multiple sources which introduces 

variation in biomass quality (Gold and Seuring, 2011). Beyond the quality of biomass, other 

sources of uncertainty exist, such as the interdependency between different forest products 

sectors. When the raw material of one sector, such as wastes from lumber production, is used by 

another, such as the bioenergy sector, unforeseeable circumstances in one sector can affect the 
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other sector and its supply chain. Therefore, managing uncertainty is paramount when designing 

supply chain optimization models. If uncertainty is ignored, the solution of the optimization 

model may be either infeasible, suboptimal or both (Bertsimas et al., 2007) and may not provide 

a reliable solution (Wu et al., 2013).  

In selecting the most suitable approach for modelling with uncertainty, one must consider i) the 

characteristics of the data, ii) the source of available data, iii) the computational effort and time 

needed to solve the model, and iv) the degree of sophistication that can be handled and accepted 

by the users and decision makers. These approaches range from scenario analysis to more 

advanced techniques such as stochastic programming and robust optimization (Birge and 

Louveaux, 1997, Bertsimas and Sim, 2003).  

Stochastic programming is adequate and effective when the probability distribution of uncertain 

parameters is known and it is possible to define potential scenarios. However, the stochastic 

programming model is computationally intractable when the value of an uncertain parameter 

covers a continuous range. One can manage this by creating a set of scenarios derived from 

discretizing the uncertainty sets, however, the total number of scenarios grows exponentially 

when dealing with a sequence of scenarios, e.g. a scenario tree resulting in computationally 

intractable models (Ben-Tal et al., 2000). A review of stochastic programming optimization in 

the forest industry and biomass and biofuels supply chains is provided in our previous 

publication (Shabani et al. 2014). Another alternative, however, is to use the robust optimization 

method which is attractive because it can be solved effectively and efficiently using the current 

powerful solvers if a tractable uncertainty set is selected (Ben-Tal et al., 2000). Moreover, 

contrary to stochastic programming, in order to incorporate uncertainty in robust optimization 

only a range of uncertain parameter (instead of its probability distribution) is required (Gabrel et 

al., 2013).  

Robust optimization has been used and applied in several fields of study, such as facility location 

and inventory management (Gülpınar et al., 2013, Solyali et al., 2012), resource allocation and 

project management (Wiesemann et al., 2012), and also in specific supply chain optimization 

problems such as the models in the refinery industry (Leiras et al., 2010). Palma and Nelson 

(2009) applied the robust optimization approach to the forest industry to incorporate uncertainty 

in products volume and demand to support the decision of harvest scheduling. In a second study, 
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they used robust optimization in a bi-objective planning model with random objective weights 

for forest planning (Palma and Nelson, 2010). Other researchers have employed robust models in 

forestry applications such as Alvarez and Vera (2011) & Kazemi Zanjani et al. (2010a) for 

optimizing sawmill planning; Tay et al. (2013) for integrating black liquor biorefineries for 

energy production; Bredström et al. (2013) for planning a biofuel heating plant; and Carlsson et 

al. (2014) for considering customer demand in the pulp and paper industry. The method used by 

Kazemi Zanjani et al. (2010a), which combined robust optimization and stochastic programming, 

was of interest to us and served as a model for developing our hybrid ‘stochastic programming-

robust optimization’ model. Their method was based on the earlier definition of robust 

optimization (Mulvey et al. (1995)’s definition) which included minimization of variations in the 

model solution. The current definition of robust optimization is based on optimizing the worst 

case instead which was not used in their study.  

While a few studies have considered uncertainty in bioenergy supply chains in general (Kim et 

al. 2011; Chen and Fan 2012), to the best of our knowledge, our approach in modeling 

uncertainty in biomass quality and availability in forest-based biomass to bioenergy supply 

chains is novel. Based on the results of the sensitivity analysis in Shabani and Sowlati (2013), 

biomass availability and quality were among the most influencing uncertain parameters. 

Previously a two-stage stochastic optimization model is developed to consider uncertainty in the 

forest-based biomass availability  (Shabani et al. 2014). Our previous work is extended here and 

a hybrid model to account for uncertainties in both biomass quality and biomass availability is 

developed. Our model is constructed by first modeling moisture content (MC) and higher heating 

value (HHV) using a robust optimization formulation, then, by introducing the uncertainty in 

monthly available biomass with a multi-stage stochastic programming model. It is demonstrated 

how our hybrid multi-stage stochastic programming-robust optimization model has an 

appropriate balance between solvability of the model and conservatism of the optimal solution.  

The rest of this paper is structured as follows. In Section 2, the problem of optimizing a forest 

biomass power plant supply chain is described. In Sections 3 and 4, the structure and formulation 

of the developed optimization models are presented. The results are provided in Section 5 and 

the main conclusions of the study are included in Section 6.   
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2. Problem description  

A brief overview of the supply chain considered in this study is provided here, but a more 

detailed explanation can be found in Shabani and Sowlati (2013). Our model is based on a forest 

biomass power plant in Canada. Its supply chain consists of several different suppliers that 

provide different types of forest-based biomass to the plant, an open storage yard for storing the 

mix of biomass, and a power plant that generates electricity. The power plant has fixed contracts 

with some suppliers and consequently has to buy the residues they produce with a fixed cost. 

However, these suppliers have no obligation to produce biomass for the power plant when they 

do not produce their main products. The rest of the suppliers have no long-term contract with the 

power plant. The power plant has to generate enough electricity (called the firm load) to meet its 

customer’s need throughout the year. It also has the option to generate more electricity than the 

firm load (called surplus load) to sell it based on the open market price whenever it is profitable. 

The decision about whether or not to produce the surplus load is made in the beginning of each 

year and will not change during the year.  

Different types of biomass including bark, sawdust, shavings and roadside logging debris are 

received from different suppliers. These are then mixed and kept in a storage yard until 

combusted. There are two upper limits for storing biomass above which additional costs related 

to hiring an extra person and an extra piece of equipment for material handling would be 

imposed. There is  a lower limit at which point the quality of biomass deteriorates because the 

pile does not generate sufficient internal heat (Fuller, 1985).  The electricity generation at the 

power plant is based on a conventional power cycle and includes a boiler, a turbine, a condenser, 

a high voltage step up transformer, a solid fuel handling system, an ash removal/handling 

system, other steam cycle auxiliary pieces of equipment, multiple cyclones, and an electrostatic 

precipitator.  

In Shabani and Sowlati (2013), a mixed integer non-linear model was developed to optimize the 

supply chain over a one-year planning horizon with monthly time steps. The decision variables 

of the model were the amount of biomass to purchase, store and consume from each supplier in 

each month, and whether or not to generate the surplus load. The objective function was to 
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maximize the profit which is the revenue from selling the firm and surplus loads to the customers 

minus purchase, transportation, production, storage and ash removal costs.  

A number of parameters of the deterministic model presented in Shabani and Sowlati (2013) may 

have variations. As previously mentioned, the quality of biomass is highly variable. Wood is a 

heterogeneous material and its quality varies in different parts of the tree, different species and 

different periods (Demirbaş, 2001 and 2003, Carlsson et al., 2009) and also differ in different 

types of biomass (e.g. bark, sawdust, shavings) (Lehtikangas, 2001). Biomass quality plays an 

important role in the total amount of electricity generated and the cost per kilowatt hour (Saidur 

et al., 2011). The other major source of uncertainty stems from the supply of by-products. The 

suppliers to the power plant are several sawmills and a plywood mill and their production 

capacity is tightly dependent on housing and lumber markets, making the availability of biomass 

uncertain. If uncertainty in these parameters is ignored, the solution may vary significantly given 

any perturbation in them and may become non-optimal or even infeasible. The original mixed 

integer non-linear model (Shabani and Sowlati 2013) was then reformulated in Shabani et al. 

(2014) into a linear model in order to be able to include uncertainty in biomass availability in a 

two-stage stochastic optimization model. However, the uncertainty in the quality of biomass was 

not considered.  

According to the power plant managers, it seemed appropriate to assume that biomass amount 

was known for the first three months of the year and then it could stay the same (average 

scenario), increase or decrease by 20% (high or low scenarios) for each of the following three-

month intervals over the year. Moreover, since all the suppliers were located in the same area 

and cover the same market, it was assumed that the change in the amount of biomass supply 

would be the same for all suppliers, for instance, if the market was promising, then all the 

suppliers would have 20% increase in their production for three months. Consequently, the total 

number of scenarios over a year was calculated by having three supply scenarios (high, average 

and low) for each three-month interval from month 3 to month 12, knowing the biomass supply 

for the first three months with certainty, which equals to 33=27. These 27 scenarios were 

considered in a multi-stage stochastic optimization model. The probability of occurrence was 

assumed to be 1/27 for each scenario.  
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 The probability distributions of MC and HHV were not known and only their possible variation 

ranges were available. Different scenarios could be obtained for MC and HHV by discretizing 

their ranges. However, if these scenarios were combined for different biomass types, suppliers 

and months, the total number of scenarios would be very large even with a small number of 

discretized scenarios. Therefore, due to unavailability of probability distribution of biomass 

quality as well as dimensionality issue, robust optimization is used in the current study to include 

the uncertainty in biomass quality into the decision making process. Furthermore, to include 

uncertainty in both biomass quality and availability, a hybrid multi-stage stochastic 

programming-robust optimization model is suggested in Section 4. The stochastic programming 

of the hybrid model has a different structure than the model in Shabani et al. (2014) and instead 

of a two-stage stochastic programming model, a multi-stage stochastic optimization model is 

used for including uncertainty in biomass availability in order to have the variations in biomass 

availability according to scenarios in the decision tree. 

3. Robust optimization model  

The uncertainty in biomass quality was incorporated, using robust optimization, into the 

previously designed linear optimization model presented in Shabani et al. (2014) model. MC and 

HHV were not correlated because HHV was calculated based on dry biomass. MC and HHV 

together produce another parameter called energy value. Based on the data provided by the 

power plant, the range of variation in MC was 25-35% with an average of 30%, and it was 8000-

9000 BTU/lb (4.69-5.27 MWh/ton) for HHV with an average of 8500 BTU/lb (4.98 MWh/ton).  

The formulation of robust optimization depends on the definition of a robust solution. A robust 

solution is one that must be feasible for any realization of the uncertain parameter. This approach 

was originally proposed by Soyster (1973) and is known to be an “ultraconservative strategy”. 

Ben-Tal et al. (2000) recommended less conservative approaches by using different set of 

uncertainties such as ellipsoidal uncertainties.  Depending on the type of the uncertainty set, the 

robust optimization model could become nonlinear.  

Bertsimas and Sim (2003, 2004) suggested an approach that uses the idea of “budget of 

uncertainty” to control the level of conservativeness. In this method, only some of the uncertain 

parameters deviate from their nominal values simultaneously. Using this definition, a constraint 
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is immunized against uncertainty by determining the size of the buffer or a “protection function” 

of it. This protection function is an optimization model itself and its dual is embedded in the 

original model. Given the linearity of the original problem, the robust counterpart is also a linear 

problem with a modified feasible region. In all of these methods, the solution is optimized based 

on the worst case, which is the most unfavourable realization of the uncertainty. The worst case 

can be selected differently, too, either from a finite number of scenarios, such as historical data, 

or continuous, convex uncertainty sets, such as polyhedrons or ellipsoids. For a recent review of 

robust optimization the reader is referred to Gabrel et al. (2013).  

The classic robust optimization formulation derived from Ben-Tal et al. (2009) with a box 

uncertainty set which is available in the AIMMS software package is used. It helped to have a 

tractable model providing a feasible solution for all MC and HHV ranges. This model will 

inevitably provide lower profit estimates than the deterministic model because it optimizes the 

worst case.  

The notations of model sets, parameters and variables of robust optimization model are shown in 

Table 1. 

Table 1: Parameters, sets, decision variables of the robust optimization model  

Parameters  

��ℎ� Average ash content of biomass mixture (%) 

��ℎ�� Unit cost of handling ash ($/green ton) 

���,	 Unit cost of biomass type 
 purchased from supplier � ($/green ton) 

���
�
���� System efficiency (30%)  

���,	,� Energy Values of biomass type 
  from supplier �  in month � 
(MWh/green ton) 

�� ‘Firm Demand’ required to be met each year (MWh) 

�� Unit price for the firm demand ($/MWh). 

����,	,� Higher Heating Value of biomass type 
  from supplier �  in month 

�	(MWh/dry ton) 

�����,� Maximum available biomass from supplier � in month � (green ton) 
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���� Absolute maximum storage levels (green ton) 

���,	,� Moisture Content of biomass type 
 purchased from supplier � in month 

� (%) 

���� Monthly ‘Firm Demand’ in month �  if surplus load is not produced 

(MWh) 

�� Production Cost including water, sewer and chemical costs ($/MWh) 

��� Penalty cost if storage level is above ��� or ��� ($)  

� � Percent reduction in biomass quality if storage level is below ��� (%) 

 ��
!�,	,� Ratio of biomass type 
 produced in supplier � in month � (%) 

�� Surplus Demand that the company can optionally produce over a year 

(MWh) 

��� Storage Desired Level, the level at which a penalty cost occurs for  

additional equipment and additional staff (green ton) 

��� Storage Lower Limit, the level at which biomass quality decreases due 

to insufficient time to produce internal heat (green ton) 

�� Unit price for Surplus Demand ($/MWh) 

��� Storage Upper Limit, the level at which a penalty cost is added due to 

the use of additional equipment and staff  as well as high fire risk (green 

ton) (��� ≥ ���) 

#�$%��� Target Storage level (green ton) 

#��,� Unit transportation cost from supplier � in month � ($/green ton) 

&�� The amount of power plant’s working hours in month � (hr) 

MC) *,+,, Every value of moisture content of biomass type 
  purchased from 

supplier � in month � (%) that belongs to an uncertainty range  

MC- *,+,, The positive constant perturbation in MC*,+,,  
. The adjustable parameter controlling the size of uncertainty set 

Sets 

�$!/0�� Types of biomass (p∈ {Bark, Sawdust, Shavings, Roadside Logging 

Debris (RLD)})  

�0

2
�$� List of suppliers (s∈{S1, …, S8}) 
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#
3� Time period (t	∈	{Jan, Feb, ..., Dec}) 

Decision Variables 

��,� Amount of biomass from supplier � consumed in month � (green ton) 

�� Amount of electricity generated in month � (MWh) 

��,� Amount of biomass purchased from supplier � in month � (green ton) 

��,� Amount of biomass from supplier � stored in month � (green ton)  

�� 1 if surplus electricity is produced in a year, 0 otherwise (binary) 

��,�  A new set of auxiliary decision variables related to ��,� for the robust 

optimization model 

4� 1 if storage is higher than ��� in month t, 0 otherwise (binary) 

5� 1 if storage is higher than ��� in month t, 0 otherwise (binary) 

6� 1 if storage is lower than ��� in month t, 0 otherwise (binary) 

7 The objective function of the robust optimization model 

The objective function of the robust optimization model is  

Min 7                                                                                                                                             (1) 

Where 7 is connected to the deterministic objective function as shown in Equation 2:  

�$!�
� ≤ 7                                                                                                                                     (2) 

The objective function of the deterministic model (�$!�
�) was to maximize the profit, including 

revenues from selling the firm and surplus electricity loads to the customer, if the surplus load is 

produced, minus biomass procurement (purchase and transportation) cost, ash removal cost, 

storage penalty cost and production cost.  

�$!�
� = �� × �� + �� × �� × �� − ∑ >∑ ���,	 ×  ��
!�,	,� + #��,�	 ? × ��,��,� −
∑ ��ℎ�� × ��ℎ� × ∑ ��,��� − ∑ ��� × @4� + 5�A� − @&� + �ℎ� + ��A × ∑ ���                    (3)    

Other constraints of the model are as follows: 
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For suppliers with a fixed contract, the amount of biomass purchased from supplier (�) in month 

(�) has to be equal to the maximum available biomass from supplier (�) in month (�): 

��,� = �����,�                                                         [� ∈{S1, …, S4}, � ∈{Jan, …, Dec}]            (4) 

For suppliers without a fixed contract, the amount of biomass purchased from supplier (�) in 

month (�) has to be less than or equal to the maximum available biomass from supplier (�) in 

month (�): 

��,� ≤ �����,�                                                         [� ∈{S5, …, S8}, � ∈{Jan, …, Dec}]            (5) 

The total storage level of biomass from all suppliers (�) stored in month (�) has to be less than or 

equal to the maximum storage level: 

∑ ��,� ≤ �����                                                                                   [� ∈{Jan, …, Dec}]            (6) 

The total storage level of biomass from all suppliers in the last month has to be equal to a target 

storage level which is set by the power plant managers.  

∑ ��,BCD = #�$%����                                                                                                                      (7)  

The storage level of biomass received from supplier (�) and stored in month (�) is equal to the 

storage level of biomass received from supplier (�) and stored in previous month (� − 1) plus the 

biomass purchase from supplier (�) in month (�) minus biomass consumption from supplier (�) 
and stored in month (�). For the first time step, the initial storage level for each supplier has to be 

known:  

��,� =	��,�FG + ��,� − ��,�                                               [� ∈{S1, …, S8}, � ∈{Jan, …, Dec}]      (8) 

As mentioned earlier, the electricity production in month (�) has two parts: the firm load and the 

surplus load. If the surplus load is produced, �� equals the total firm and surplus load over a year 

multiplied by the ratio of working hours in month (�) divided by the total working hours in a year 

(&��/∑ &��� ). If only the firm load is produced, the electricity demand in month (�) equals to 

the monthly firm load: 
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�� = @�� + ��A × IJK
∑ IJKK

× �� +���� × @1 − ��A                            [� ∈{Jan, …, Dec}]      (9) 

On the biomass side, the amount of electricity generated in month (�),  ��, equals the total 

biomass consumption in month (�) multiplied by the total ratio of biomass type (
) for supplier 

(�) in month (�), the energy value of biomass type (
) from supplier (�), system efficiency, and 

the ratio of quality reduction factor if the storage level in month (�) is lower than the storage 

lower level (���). If the forest biomass pile is not high enough, its quality will reduce (a factor 

(� � ) is considered in the equation) because enough internal heat could not be generated 

(Fuller, 1985):  

�� =L ��,��
×L @ ��
!�,	,� × ���,	,�	

A × ���
�
���� × @1 − � � × 6�A 

                                                                                                                 [� ∈{Jan, …, Dec}]    (10) 

In Equation 10, Energy value (���,	,�), is calculated based on the higher heating value and the 

moisture content of biomass type 
 purchased from supplier � in month � (����,	,� , ���,	,� ) 
(Bowyer et al., 2007):   

���,	,� = ����,	,� × @1 − ���,	,�A     [for � ∈{S1, …, S8}, � ∈{Jan, …, Dec} and 
 ∈{Bark, 

Sawdust, Shavings, Roadside Logging Debris (RLD)]                                                              (11)  

If only uncertainty in moisture content is included in the model, Equation 10 has to be replaced 

by the following Equation:  

�� ≤L ��,��
×L @ ��
!�,	,� × HHV*,+,, ×	@1	 −	MC) *,+,,A	

A × ���
�
���� × @1 − � � × 6�A 

                        [∀ MC) *,+,, ∈ [25,30], � ∈{Jan, …, Dec}]                                                            (12) 

The robust counterpart of Equation 12 is as follows (see Li and Floudas, 2012): 

�� ≤ ∑ ��,�� × ∑ @ ��
!�,	,� × HHV*,+,, ×	@1	 − MC- *,+,,	A	 A × ���
�
���� × @1 − � � × 6�A +
ψ∑ ��,�� × ∑ @ ��
!�,	,� × HHV*,+,, ×	@1	 −	MC- *,+,,A	 A × ���
�
���� × @1 − � � × 6�A   (13) 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

14 

 

−	��,� 	≤ 	��,� 	≤ 	��,�, ��,� ≥ 	0                                 																                                                  (14) 

Where ��,�  is a new set of decision variables, MC- *,+,,  is the positive constant perturbation in 

MC*,+,,  and ψ is the adjustable parameter controlling the size of uncertainty set. Notice that 

Constraint 10 is converted to inequality in order to make sure it can be met for all realization of 

MCs,p,t. The same formulation can be written for uncertainty in HHV*,+,,. When uncertainty in 

both parameters is included, the term HHV*,+,, × @1 −MC*,+,,A  is replaced by EV*,+,,and the 

formulation is written for this parameter with the range derived from HHV*,+,, and MC*,+,, ranges. 

All continuous variables have to be non-negative:   

��,� , ��,�, ��,�, �� ≥ 0                                               [� ∈{S1, …, S8}, � ∈{Jan, …, Dec}]            (15) 

Additional constraints have to be added for the definition of binary variables 4� , 5�  and 6� . 
Moreover, Equation 8 contains the multiplication of a binary variable 6�  and a continuous 

variable ��,� which is non-linear and can be converted to a linear constraint. It can be done by 

replacing 6� × ∑ ��,��  with an additional continuous variable (�� ≥ 0) and additional constraints 

(16, 17 and 18). M is a sufficiently large number.  

�� ≤ � × 6�                                                                                            [� ∈{Jan, …, Dec}]     (16) 

�� ≤ ∑ ��,��                                                                                              [� ∈{Jan, …, Dec}]     (17) 

�� ≥ ∑ ��,� −� × @1 − 6�A�                                                                   [� ∈{Jan, …, Dec}]     (18) 

The model is now a mixed integer linear programming (MILP) model which is solved using the 

AIMMS software and CPLEX solver.   

4. Hybrid multi-stage stochastic programming-robust optimization model 

The scenario tree for the multi-stage stochastic programming model is shown in Figure 1. The 

number shown on each arch represents the rate of change from the average scenario in the 

available biomass from supplier s in each stage. The scenario tree contains four stages and each 

stage includes three months (Stage 1: Jan, Feb, and Mar; Stage 2: Apr, May, and Jun; Stage 3: 
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Jul, Aug, and Sep; and Stage 4: Oct, Nov, and Dec). As mentioned earlier, it is assumed that 

variations in biomass availability are stationary during the three months in each stage. The robust 

optimization model is similar to the model explained in Section. 3. The formulation of the hybrid 

model is presented here.  
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Figure 1: The scenario tree for uncertainty in biomass availability  

For the hybrid model, the decision variables are indexed over each scenario, too. The notations 

of parameters, sets and decision variables of the multi-stage stochastic model are provided in 

Table 2. 

Table 2: Stochastic model decision variables 

Parameters  

�����,�,S Maximum available biomass from supplier � in month � for scenario 
 (change by 

±20% in each node of the tree as shown in Figure 1) 

�$S Probability of occurrence of scenario 
 (1/27) (∑ �$SS = 1). 

Sets  

  

Nodes Set of nodes of the Tree (n∈{N 1, …, N40}). 

Scenarios List of scenarios (i∈{I 1, …, I27}). 

Decision Variables 

��,�,S			 Amount of biomass purchased from supplier � in month � for scenario 
  (green 

ton).  

��,�,S			 Amount of biomass stored from supplier � in month � for scenario 
 (green ton). 

��,�,S	    Amount of biomass consumed from supplier � in month � for scenario 
  (green 

ton).  

��,S			    Amount of electricity generated in month � for scenario 
 (MWh). 

��S			   1 if surplus electricity is produced in a year, 0 otherwise for scenario 
 (Binary) 

4�,S			 Binary variable, 1 if ��,�,S is higher than the desired storage level (���) in month � 
for scenario 
. 

5�,S			 Binary variable, 1 if ��,�,S is higher than the upper storage limit (���) in month � 
for scenario 
. 

6�,S			 First stage binary variable, 1 if ��,�,S is less than lower storage limit (���) in month 

� for scenario 
. 

The objective function is to maximize the expected profit of all scenarios:  
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�
�	7                                                                                                                                           (19) 

@∑ �$SS ×	�$!�
�SA ≤ 7                                                                                                              (20) 

Where �$!�
�S equals revenues minus costs as shown in Equation 21: 

�$!�
�S = �� × �� + �� × �� × ��S − ∑ >∑ ���,	 ×  ��
!�,	,� + #��,�	 ? × ��,�,S�,� −
∑ ��ℎ�� × ��ℎ� × ∑ ��,�,S�� − ∑ ��� × >4�,S + 5�,S?� − @&� + �ℎ� + ��A × ∑ ��,S�           (21) 

Subject to: 

��,�,S = �����,�,S                              [� ∈{S1,…,S4}, � ∈{Jan,…,Dec}, 
 ∈{I 1, …, I27}]         (22) 

��,�,S ≤ �����,�,S                              [� ∈{S5,…,S8}, � ∈{Jan,…,Dec}, 
 ∈{I 1, …, I27}]         (23) 

∑ ��,�,S ≤ �����                                                        [� ∈{Jan,…,Dec}, 
 ∈{I 1, …, I27}]         (24) 

∑ ��,BCD,S = #�$%����                                                                            [
 ∈{I 1, …, I27}]         (25)  

��,�,S =	��,�FG,S + ��,�,S − ��,�,S              [� ∈{S1,…,S8}, � ∈{Jan,…,Dec}, 
 ∈{I 1, …, I27}]      (26) 

��,S = @�� + ��A × IJK
∑ IJKK

× ��S +���� × @1 − ��SA  

[� ∈{Jan, …, Dec}, 
 ∈{I 1, …, I27}]      (27) 

��,S 	≤ 	∑ @∑  ��
!�,	,� × ����,	,� × @1 − ��) �,	,�A	 A × �	�,�,S × @1–� � × 6�,SA	���
�
�����                                                          

[∀��) �,	,�∈[25,30] and � ∈{Jan,…,Dec}, 
 ∈{I 1, …, I27}]       (28) 

��,�,S, ��,�,S , ��,�,S , ��,S ≥ 0               [� ∈{S1, …, S8}, � ∈{Jan, …, Dec}, 
 ∈{I 1, …, I27}]           (29) 

 Equation 30 implies the non-anticipatively constraints related to the multi-stage stochastic 

programming model.  
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��,�,S = ��,�,SU , ��,�,S = ��,�,SU, ��,�,S = ��,�,SU        

[� ∈{S1, …, S8}, � ∈{Jan,…,Dec}, 
, 
V ∈{I 1,…,I27} ( 
 ≠ 
V)|  �, 
, 
V are on the same node � ∈{N 1, 

…, N40}]  

 (30) 

Equation 30 indicates that for each node shown on the decision tree in Figure 1, the decision 

variables on biomass purchase, storage and consumption have to be the same for each month and 

the scenarios that are related to that node.  

The hybrid model is also a mixed integer linear programming (MILP) model which is solved 

using the AIMMS software and CPLEX solver.   

5. Results 

Robust optimization model   

The robust optimization model was solved with different ranges of MC*,+,, and HHV*,+,,values to 

assess the variations in the solution when the uncertainty set was widened and the results are as 

shown in Table 3. Various ranges were utilized because a solution for all possible instances will 

likely be too conservative a solution. The optimum profit was achieved using the average MC*,+,, 
(30%) and average HHV*,+,, (8500 BTU/lb) and amounted to $15.64 Million CAD. As the range 

of MC variations widens from 2% to 10%, using the average HHV*,+,, , the optimum profit 

decreases from $15.07 M to $13.13 M. Alternatively, using the average MC*,+,, of 30% in the 

model, as the range of HHV*,+,, variation is expanded from 200 BTU/lb (0.12 MWh/ton) to 2000 

BTU/lb (1.17 MWh/ton), the optimum profit reduces from $15.15 M to $13.58 M. When both 

parameters vary at the same time, the result becomes more conservative with more severe 

reduction in profit to $11.97 M for HHV*,+,,∈[8100 BTU/lb, 8900 BTU/lb] and  MC*,+,,∈[26%, 

34%]. In the extreme ranges, the model is infeasible.  

Table 3: Profit ($ Million) for different ranges of MC*,+,,and HHV*,+,, used in the robust 
optimization model  

  MCs,p,t (%) 
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  30(Ave.) 29-31 28-32 27-33 26-34 25-35 

H
H

V
s,

p,
t 

8500 (BTU/lb) (Ave.) 

[4.98 (MWh/ton)] 
15.64 15.07 14.61 14.13 13.64 13.13 

8400-8600 (BTU/lb) 

[4.92-5.04 (MWh/ton)] 
15.15 14.72 14.24 13.76 13.25 12.71 

8300-8700 (BTU/lb) 

[4.86-5.10 (MWh/ton)] 
14.78 14.34 13.76 13.36 12.82 12.29 

8200-8800 (BTU/lb) 

[4.81-5.16 (MWh/ton)] 
14.39 13.95 13.36 12.94 12.39 Infeasible 

8100-8900 (BTU/lb) 

[4.75-5.22 (MWh/ton)] 
13.99 13.46 13.05 12.50 11.97 Infeasible  

8000-9000 (BTU/lb) 

[4.69-5.27 (MWh/ton)] 
13.58 13.05 12.50 12.07 Infeasible Infeasible 

 
 
 

 
 

Figure 2: Solution of the robust optimization model for different ranges of moisture content and 
higher heating value (HHV) 

 
 

Figure 2 shows the model solution (profit) for different variation ranges of MC*,+,, and HHV*,+,,. 
Despite the conservative nature of the robust model, the decisions were feasible for ranges of 
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MC and HHV. Another case where the decision variables of biomass purchase, storage and 

consumption for the first three months were set using average MC and HHV values 

(MC*,+,,=30% and HHV*,+,,=8500 BTU/lb) is explored. For the remainder of the year, different 

values for MC and HHV (any ranges showed in Table 3) are modeled. It is observed that the 

model became infeasible when MC*,+,, and HHV*,+,, varied from their average values, a scenario 

that is highly likely to occur in reality.  

Figures 3 and 4 show the optimum biomass storage and consumption levels in different months 

based on the results of the robust optimization model with HHV*,+,,  ∈	 [8100 BTU/lb, 8900 

BTU/lb], with MC*,+,, ∈	 [26%, 34%] and a deterministic model. The robust optimization model 

prescribes higher storage level compared to the deterministic model for most of the months and 

higher consumption level in all months. The consumption level was higher due to the lower than 

average energy value of biomass used in the robust optimization model.  

 

Figure 3: The optimum storage level in different months from the robust optimization model 
with HHV*,+,, ∈[8100 BTU/lb, 8900 BTU/lb] and  MC*,+,, ∈	[26%, 34%], and the deterministic 

model  
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Figure 4: The optimum biomass consumption level in different months from the robust 

optimization model with HHV*,+,, ∈[8100 BTU/lb, 8900 BTU/lb] and  MC*,+,, ∈[26%, 34%], and 

the deterministic model 

Hybrid Model   

Results of the hybrid model for three combinations of MC and HHV ranges are provided in 

Table 4. The profit from the hybrid model is slightly lower (0.8-1.0%) than that of the robust 

optimization model, suggesting more conservative tendencies of the hybrid model. The reduction 

in profit increases as the range of variation decreases. It should be noted that for the average 

values of HHV and MC, the profit is $15.64 M for the deterministic model and $15.33 M for the 

stochastic programming model. For ranges wider than HHV*,+,, ∈[8200 BTU/lb, 8800 BTU/lb] 

and  MC*,+,, ∈[27%, 33%], the hybrid model is infeasible.  

 

Table 4: Profit for different ranges of MC (%) and HHV (BTU/lb) used in the robust 

optimization and hybrid models. The final column corresponds to the ‘difference’ in profit 

predicted by the robust optimization solution (profit) versus the hybrid model. 

MCs,p,t 

range (%) 

HHVs,p,t range 

(BTU/lb) 

Robust optimization 

profit($M) 

Hybrid model 

profit ($M) 

Difference 

($M) 

27-33 8200-8800 12.94 12.83 0.11 

28-32 8300-8700 13.76 13.64 0.12 

29-31 8400-8600 14.72 14.59 0.13 
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Despite lower profit, the hybrid model provides feasible solutions for all scenarios of monthly 

available biomass and all instances of MC and HHV in a selected range. It means that for 

variations in MC and HHV, as well as changes in the biomass availability, the hybrid model 

provides a solution for which the storage levels will be within the acceptable levels and the 

electricity demand will be met every month. This feature is crucial for the power plant 

considering that previous variation in biomass quality and supply resulted in production 

curtailment and low/ high biomass storage levels. Both extremes for storage are undesirable: 

high storage levels increase the risk of fire and have additional costs for the power plant and low 

storage levels result in low quality biomass.  

In terms of the conservatism of the models, the deterministic optimization model provided a 

solution that had 15% higher profits than the actual planning by the power plant. Including 

uncertainty made the optimization model more robust, but provided consistently lower profit 

estimates. However, even with uncertainty included, our model predicted higher profits than 

what was achieved by the actual planning in the power plant. For instance, in 2011, the actual 

total biomass cost of the power plant was $11.0 M. Table 5 shows the biomass purchase cost 

from the hybrid model for different ranges of MC and HHV, where it can be seen that only for 

the widest range of variations, the purchase cost is higher than $11.0 M. More importantly, this 

solution is feasible for all realization within these ranges. For narrower variation ranges, the 

biomass purchase cost from the hybrid model is lower than the actual power plant cost, which 

means cost savings for the power plant, while, at the same time, preventing production 

curtailment and excess storage.   

 

Table 5: Biomass purchase cost for different ranges of MC (%) and HHV (BTU/lb) used in the 

hybrid model  

 

MCs,p,t range (%) HHVs,p,t range (BTU/lb) Hybrid model –  

biomass purchase cost ($M) 

27-33 8200-8800 11.4 

28-32 8300-8700 10.6 

29-31 8400-8600 9.7 
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6. Conclusions  

To the best of our knowledge, this is the first study that incorporates uncertainties in biomass 

availability as well as biomass quality into the supply chain optimization modeling. This is 

achieved by developing a hybrid multi-stage stochastic-robust optimization model. Uncertainty 

in biomass quality was modeled using the robust optimization model, while uncertainty in 

biomass availability was considered using the multi-stage stochastic optimization model. The 

hybrid model provided consistently more conservative and more stable solutions compared to the 

previous deterministic model. The hybrid model yielded higher profit predictions compared to 

the actual power plant’s real profit. At the same time, the hybrid model was solvable for all 

scenarios of biomass availability and all instances of biomass quality. This means that even when 

biomass availability and quality change during the year, the model will determine the amount of 

biomass to purchase, keep in storage and use in each month to maximize the annual profit, while 

meeting the electricity demand and preventing insufficient or excess storage levels. Our hybrid 

model is of utility to a forest-based biomass power-generating plant in order to optimize profits, 

while avoiding production curtailment and other undesirable consequences resulted from 

fluctuation in storage. The future research should expand the model’s focus from a purely 

economic objective to include environmental and social aspects as well. 
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Highlights:  

- A robust optimization model is developed to consider uncertainty in biomass quality 
- A hybrid model is developed to also include uncertainty in biomass availability  
- The supply chain profit of a forest-based biomass power plant is maximized 
- The robust and hybrid models provided feasible solutions considering all variations 


