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a b s t r a c t

The infrastructure sector is associated with a large proportion of total greenhouse gas emissions,
including the emissions from the production of materials and the construction of infrastructure assets, as
well as use phase and end of life emissions. Largely due to the direct control the sector has over pre-use
phase emissions, a number of carbon calculator tools for the sector focus exclusively on these sources.
However, a recognised limitation with considering only parts of the whole life cycle is the risk of burden
shifting, e.g. reducing material input emissions but increasing emissions in the use or end of life phases.
Despite recognition of this problem in principle, there are very few empirical studies which explore the
risk and impacts of burden shifting within the infrastructure sector, or construction sector more broadly.
This paper addresses the gap in the existing literature by exploring the possibility of burden shifting
occurring due to the use of an embodied carbon calculator. The analysis shows that burden shifting will
occur for some actions aimed at reducing embodied carbon, but not others, e.g. in Decision Case 4, an
initial saving of 5,810 tCO2e during construction was offset by increased use phase emissions in as little
as six years. In order to support the use of embodied carbon calculators we propose a number of heu-
ristics to identify cases where burden shifting may occur, and therefore where a whole-of-life assessment
is needed. We also suggest that the infrastructure sector is in a learning process in terms of carbon
measurement, and that over time there should be a transition from embodied carbon calculators to
whole-of-life assessment, and from whole-of-life attributional life cycle assessment to consequential
carbon assessment methods.
© 2019 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license

(http://creativecommons.org/licenses/by/4.0/).
1. Introduction

The infrastructure sector is associated with a large proportion of
total economy-wide greenhouse gas emissions. In the United
Kingdom (UK), emissions attributed to the built environment were
349 MtCO2e in 2014 (UK GBC, 2018), representing just over half of
the UK's current emissions (HM Treasury, 2013). These emissions
include those from the construction of infrastructure assets, as well
as the operational/use and end of life phases of the assets. Given the
scale of emissions, policy-makers and the sector itself have iden-
tified the need to manage and reduce these emissions. For example,
the UK Government published the Infrastructure Carbon Review in
2013 (HM Treasury, 2013), setting out a road map for reducing
emissions from the sector. In turn, the sector has accepted the need
to reduce emissions and has produced a carbon management
on).

r Ltd. This is an open access article
standard, PAS 2080 (BSI, 2016), which specifically focuses on
infrastructure. More recently, the Infrastructure and Projects
Authority (2017) and the UK Government (HM Government,
2017) have released reports highlighting the importance of clean
growth and the role of infrastructure in helping the UK meet its
emission reduction targets. Similar reports have been developed in
other parts of the world, for example the International Institute for
Sustainable Development's Low-Carbon Innovation for Sustainable
Infrastructure report for the European Union (Wuennenberg and
Casier, 2018), and in China's most recent 5-year plan low carbon
infrastructure is featured as a key area for climate change mitiga-
tion (CPC, 2015).

As the infrastructure sector embarks on developing carbon
management practices it is necessary, as highlighted in PAS 2080, to
measure and benchmark carbon emissions. One of the main
quantification methods for informing carbon management prac-
tices and decision-making is life cycle assessment (LCA), which
models the environmental impact of a product or asset throughout
under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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its life cycle (ISO, 2006). BS 15978 (BSI, 2011) for ‘Sustainability in
Construction Works’ separates a building's life cycle into four
stages: the product stage (A 1-3) which includes raw material
extraction, transportation and manufacturing; the construction
stage (A 4-5) which finishes with the completion of the asset; the
use stage (B 1-7) which includes operational energy, maintenance
and repair; and finally the end of life stage (C 1-4) which includes
decommissioning and disposal of materials.

LCA or ‘carbon footprinting’ tools are progressively being
developed and adopted by the infrastructure sector, and examples
include the UK Environment Agency's Carbon Planning Tool
(Environment Agency, 2016), Highways England's Carbon Emis-
sions Calculator (Highways England, 2016), the Rail Safety and
Standards Board's (RSSB) Rail Carbon Tool (RSSB, 2015), and asPECT,
a tool developed by a consortium from the UK highways sector
(Wayman et al., 2012). Similar tools have been developed outside
the UK, for example Athena's Eco Calculator for North America
(Athena, 2018) and the Swedish Transport Agency's (STA) Kli-
matkalkyl tool (Trafikverket, 2016), whilst Mott Macdonald's Car-
bon Portal (Mott Macdonald, 2016) and Atkins' Carbon Critical
Knowledgebase (Atkins, 2010) are designed for global use. The
choice of system boundary is of great importance in making sure
that the study is fit for purpose (Tillman et al., 1994). The tools
above, summarised in Table 1, vary in terms of the life cycle stages
they include, i.e. the production, construction, use, and end of life
stages. The UK GBC (2017) is flexible as to the boundary used in the
preparation of an LCA, either cradle-to-completed construction
which encapsulates A1 to A5 of BS 15978, or a cradle-to-grave
assessment which takes a whole-of-life approach. One of the rea-
sons why a cradle-to-completed construction approach may be
adopted is that contractors or developers feel they have direct
control over the materials used within an infrastructure asset, and
how the asset is built, but have limited control over how an asset is
used on completion. A further reason is that many datasets only
include cradle-to-gate emissions (Sansom and Pope, 2012) making
it challenging to model the use phase and end of life phases of
infrastructure projects, whereas it is relatively straightforward to
measure embodied emissions.

This situation, i.e. the use of tools which do not encompass a
whole-of-life approach, is potentially problematic as it can give rise
to the problem of ‘burden shifting’, which occurs when improve-
ments in one part of the life cycle result in counter-acting or
negative impacts elsewhere. Indeed, the avoidance of burden
shifting is one of the foundational reasons for adopting a life cycle
approach:

The core reason for taking a life cycle perspective is that it allows
identifying and preventing the burden shifting between life
cycle stages or processes that happens if efforts for lowering
environmental impacts in one process or life cycle stage unin-
tentionally create (possibly larger) environmental impacts in
other processes or life cycle stages. (Bjorn et al., 2018, p. 12).
Table 1
Non-exhaustive summary of available carbon calculators for infrastructure projects.

Developer Tool

Environment Agency Carbon Planning Tool
Highways England Carbon Emissions Calculator
RSSB Rail Carbon Tool
UK highways sector asPECT
Athena Eco Calculator
STA Klimatkalkyl Tool
Mott Macdonald Carbon Portal
Atkins Carbon Critical Knowledgebase
1.1. Terminology

An important contextual issue to address before proceeding
with the empirical study of burden shifting and ‘embodied carbon’
calculators, is to provide some clarity on the terminology used, as
the term ‘embodied’ is used in different ways by different practi-
tioners, standards, and scholars. On one hand, the Infrastructure
Carbon Review (HM Treasury, 2013, p. 7) states that ‘embodied
carbon refers to the emissions associated with the creation of an
asset’ but does not mention maintenance and end of life emissions.
On the other hand, RICS (2012, p. 3) state embodied emissions are
‘emissions associated with energy consumption and chemical
processes during the extraction, manufacture, transportation, as-
sembly, replacement and deconstruction of construction materials
or products’. Other industry reports, e.g. WRAP (2011) and the UK
GBC (2017) straddle the fence stating that embodied emissions
are associated with the building of an asset but may also include
maintenance, deconstruction and end of life if required.

Within the academic literature, similar ambiguity can be found
in the definitions and interpretations of embodied emissions (Ibn-
Mohammed et al., 2013). Moncaster and Song (2012, p. 28) define
embodied energy as that ‘used during the manufacture of the
building materials and components, in transporting these to site,
and during the construction process itself’ but add that it can also
‘include the energy needed for refurbishment and replacement of
components during the lifetime of the building and that used in the
demolition, waste and reprocessing at the end of life stage’. Some
(e.g. Dixit et al. (2010) and Goggins et al. (2010)) have further
broken-down the term into ‘initial’ embodied emissions, during the
build phase of the asset, and ‘recurring’ embodied emissions to do
with maintenance and refurbishment of the asset during its life-
time. As such, there are a number of case studies regarding
embodied emissions which have differing boundaries, with some
(e.g. Iddon and Firth, 2013) measuring cradle-to-gate emissions,
others (e.g. Monahan and Powell, 2011) cradle-to-site emissions,
and others (e.g. Biswas, 2014)measuring cradle-to-grave emissions.
For clarity, for the remainder of this paper we will refer to
embodied emissions as cradle-to-completed construction emis-
sions, with the use phase, maintenance and end of life accounted
for separately.

On a further point of terminology, we use ‘construction’ to
encompass both buildings and infrastructure, with ‘infrastructure’
referring to man-made structures and facilities that provide ser-
vices for society (e.g. roads, sewerage, water and waste manage-
ment systems, energy generation and distribution, communication
systems etc.).
1.2. Aims and objectives

Given the use of carbon calculators within the infrastructure
sector which do not encompass a whole-of-life approach, and
which therefore in principle give rise to the risk of burden shifting,
Region Life cycle stages measured

UK Cradle-to-grave
UK Cradle-to-gate þ construction
UK Cradle-to-completed construction, use optional
UK Cradle-to-grave, no use phase
North America Cradle-to-gate/grave
Sweden Cradle-to-gate, with operation and maintenance
Worldwide Cradle-to-grave
Worldwide Cradle-to-completed construction, use optional
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an important research question is whether there are real-world
situations in which burden shifting is likely to arise for infrastruc-
ture projects. This paper aims to explore the potential for burden
shifting from the use of embodied carbon calculators in the infra-
structure sector, and to develop measures to help mitigate that risk.

The remainder of the paper is structured as follows: Section 2
provides an overview of the LCA literature on infrastructure and
construction more broadly, and the issue of burden shifting, and
shows that there are surprisingly few studies in this area; Section 3
sets out the methodological approach used in the paper; Section 4
sets out the results from the cases explored; Section 5 discusses the
implications of the results, and proposes a number of heuristics for
identifying situations where burden shifting may occur; and Sec-
tion 6 concludes and suggests areas for further research.

2. Literature review

The intention of this review is to provide a brief overview of
the literature on LCA and burden shifting, with a particular focus
on infrastructure (and construction more broadly). Given the
extent of literature on LCA in infrastructure there are a surpris-
ingly few research articles that explicitly discuss infrastructure
and burden/problem shifting in a substantive and relevant sense.
Of those that do, some investigate the potential of burden
shifting between environmental impact categories (Del Borghi
et al., 2013; Laurent et al., 2012), whilst others study the risk of
burden shifting between different life cycle stages. For example,
Zhang and Xu (2015) show that only measuring embodied carbon
emissions on hydropower projects omits indirect emissions after
construction, meaning the projects were not as efficient as first
assumed.

Within the construction literature several articles have dis-
cussed how best to reduce embodied carbon emissions, whether
through choice of materials (e.g. Purnell and Black, 2012), or
different construction techniques (Du and Karoumi, 2013). Russell-
Smith and Lepech (2015) develop a framework to aid the reduction
of cradle-to-gate emissions but warn that the framework may miss
important environmental issues by omitting use and end of life
phases. H€afliger et al. (2017) modelled the variations in emissions
from four structures when using different system boundaries, and
found that two of the structures showed similar emissions if
measuring cradle-to-gate or cradle-to-grave, whereas two struc-
tures increased emissions significantly when measuring whole-of-
life emissions. This suggests that burden shifting is possible in
some, but not all cases.

In terms of the findings from the studies on buildings and
burden shifting, there appears to be a mixed picture as to whether
or not burden shifting is likely to occur. Several authors (Stephan
et al., 2012; Basbagill et al., 2013; Cabeza et al., 2014) highlight
the potential risk of burden shifting through the choice of materials
or location of the building, and the risk of burden shifting un-
derpins Pomponi and Moncaster's (2016) criticism that half the
studies they reference do not take a whole-of-life approach. How-
ever, of the few studies that do explicitly look at burden shifting,
Hacker et al. (2008) found that the choice of building materials did
lead to burden shifting, while Monahan and Powell (2011) found
little difference in operational emissions, implying no burden
shifting effect. Huberman and Pearlmutter (2008) found increases
in use phase emissions (caused by material substitution), but not
enough to offset the reductions in embodied emissions over a 50-
year period. These studies, which all relate to the construction of
housing, therefore present a mixed picture in terms of the risk of
burden shifting, and therefore support the motivation for the cur-
rent research, i.e. to further extend the existing evidence on this
issue.
To finish, we find it interesting that although the number of LCA
studies related to infrastructure is likely to be larger than the
number of studies for buildings, there appears to be an absence of
any comprehensive review articles for infrastructure LCAs
(although there are review articles for specific types of infrastruc-
ture, e.g. utility-scale wind power (Dolan and Heath, 2012)). This
stands in contrast to the number of review articles for LCA studies
on buildings (e.g. Abd Rashid and Yusoff, 2015; Anand and Amor,
2017; Buyle et al., 2016; Cabeza et al., 2014; Sharma et al., 2011).
Although beyond the scope of the present paper, an area for future
researchwould be a comprehensive literature review of LCA studies
related to infrastructure.

3. Methodology

In order to explore the risk of burden shifting from the use of
embodied carbon calculators we adopted a case study approach,
and applied an embodied carbon calculator to a number of decision
cases, which were intended to reduce the embodied emissions of a
large infrastructure project in the UK. A case study research design
specifically looking at a single project (Bryman, 2008) is sufficient
for establishing the possibility of burden shifting effects, and for
informing the choice of heuristics for identifying that risk, but will
not support inferences about the probability of burden shifting.

The carbon calculator selected for the study was the Carbon
Infrastructure Transformation (CIT) Tool, which applies emissions
factors to quantity data for the materials used in infrastructure
projects (i.e. a ‘bill of quantities’), and is representative of many of
the embodied carbon calculators available in the market. The
selected case study infrastructure project was a high-speed rail
project, as data were available from an industry partner for a
number of design decisions aimed at reducing embodied emissions
(i.e. data for the bill of quantities, with and without specific design
decisions). A high-speed rail project was also considered of interest
as a number of high-profile infrastructure projects of this type are
currently in development (e.g. HS2 in the UK, and HSR in Califor-
nia). The case study design decisions selected were:

Decision Case 1: Reducing the thickness of a diaphragmwall (d-
wall). A 40m deep d-wall was reduced from a thickness of
1200mme1000mm.

Decision Case 2: Replacing sections of d-walls with secant piling.
On the retain cut, 80% of two 500m long sections of d-walls were
replaced with secant piling which use less material to produce and
are quicker to erect.

Decision Case 3: Using an alternative method to excavate and
build the outer shell of a ventilation shaft. Here four 1200mm thick
d-walls were replaced with a 300mm sprayed wall circular shaft.

Decision Case 4: Reducing the diameter of the train tunnel. The
single-tracked, 10 km tunnel diameter was reduced from 9.3m to
8.2m. This led to a reduction in the quantity of concrete, reinforcing
bars, and earthworks.

The reduction in embodied emissions from each of the design
decisions was calculated using the CIT Tool, in order to simulate the
information a client, designer or contractor would have if using an
embodied carbon calculator to inform their decision-making. We
then explored whether any of the decisions were likely to give rise
to burden shifting effects, i.e. whether there are likely to be coun-
teracting increases in emissions elsewhere in the life cycle. For
Decision Cases 1 and 2, the methodology in Inui et al. (2011) was
followed, which assumes that the retaining structures are left in
place at the end of their 120 year designed lifetime, and that no
maintenance work is required during their service life. This was
corroborated by the design team for the high-speed rail project, and
it was concluded that there are unlikely to be burden shifting ef-
fects from Decision Cases 1 and 2. For Decision Case 3, the internal
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structure of the ventilation shaft is unchanged by the design de-
cision, and as a result the emissions during operation, use, main-
tenance and end of life would be identical to the baseline scenario.
For Decision Case 4 however, the change in tunnel diameter would
be expected to influence the air resistance to trains travelling
through the tunnel, and therefore increase energy consumption
during the use phase. As a result of this, Decision Case 4 was taken
forward for further analysis, to estimate the potential magnitude of
the burden shifting effect. The details of this analysis are provided
in the section below.
3.1. Decision case 4 e use phase calculations

The diameters of the baseline tunnel and the low-carbon design
tunnel were 9.3m and 8.2m respectively, and both were 10 km,
straight, single-track tunnels.

An Alstrom AVG high-speed train was selected to model the use
phase energy consumption for the tunnels, as it has been described
as the most economic high-speed train in terms of energy con-
sumption and maintenance, and is therefore a likely model to be
used in practice (Alstrom, 2017). To understand the effect the
tunnel would have on resistance, the ‘in field’ rolling resistance of
the train was calculated using the Davis equation for rolling resis-
tance as a quadratic function of velocity (Hansen et al., 2017)
(Equation (1)), as used in a similar study by Bosquet et al. (2014). A
is the train-specific constant resistance factor (kN), B is the train-
specific linear resistance factor (kNh/km), C is the train-specific
quadratic resistance factor (kNh2/km2) and v is the train's veloc-
ity. The train specific values for the Alstrom AVG were taken from
Network Rail (2009) and Asplan Viak AS (2012).

Rolling resistance ¼ Aþ Bvþ Cv2 (1)

The next stage was to determine the increased resistance for the
train travelling through the tunnel. This was derived using an
adapted form of the Davis equation for measuring resistance in
tunnels, as used by Novak (2006) (Equation (2)), where tf is the
tunnel factor which is the ratio (�1) of tunnel drag to open-air drag.
This is calculated using several factors, of which the blockage ratio
of the train in the tunnel is the most important, but the train type,
train length and tunnel length are also considered (Novak, 2006).

Tunnel resistance ¼ Aþ Bvþ tfCv2 (2)

Tunnel factors for tunnel diameters of 9.3m and 8.2m were
taken from Lukaszewicz and Andersson (2009). Using these, the
increased resistance for the two tunnels over the ‘in field’ rolling
resistance, and the increased energy that would be required for
trains to go through each tunnel, were calculated. The energy
Table 2
Summary of train and tunnel specific data.

Train e Alstrom AVG Value

Seating Capacity 650 per
Maximum Speed 300 km
Length 250m
Energy Consumption 0.033 k
Energy Consumption per km 21.45 k
Train-specific Constant Resistance Factor (A) 6.54260
Train-specific Linear Resistance Factor (B) 0.01063
Train-specific Quadratic Resistance Factor (C) 0.00047

Tunnel Value

Tunnel Factor (Tf) e Reduced Diameter Tunnel 2.38
Tunnel Factor (Tf) e Reference Tunnel 1.96
consumption was calculated to be 1.73 and 2.05 times higher for
the baseline tunnel and the reduced diameter tunnel respectively,
over the general ‘in field’ energy consumption. As such, the energy
consumption increased to 37.14 kWh/km for the baseline tunnel
and 44.01 kWh/km for the reduced diameter tunnel. A summary of
the input data for calculating the train's energy consumption is
provided in Table 2.

The carbon emissions for electric-powered trains depends on
the grid emission factor, and to forecast UK grid emissions into the
future the Department for Business, Energy and Industrial Strat-
egy's (BEIS) long-run grid-average, generation-based, electricity
emission factors were used. This is the same dataset used by the
Department for Transport (DfT) in their forecasts, although the 1.5%
uplift used by DfT only includes transmissions and distribution
(T&D) losses, and does not include emissions associated with up-
stream life cycle stages. According to the 2017 conversion factors
from BEIS (2018), the emissions from T&D losses and upstream
activities is ~21%. As such, the BEIS long-run grid-average factors
were adjusted upwards using this uplift factor.

Regarding the trains in the tunnel, there were three key vari-
ables: the number of trains passing through the tunnel each day;
the train's speed through the tunnel; and the grid emission factor.
Three scenarios weremodelled in order to test the sensitivity of the
potential burden shifting effect to different assumptions for the
number and speed of trains, and the grid emission factor. Scenario
1, a central estimate, assumed 260 trains per day going through the
tunnel and an average speed through the tunnel of 250 km/h, and
the adjusted BEIS grid factors were used. Scenario 2 was a lower
estimatewith 230 trains per day, an average speed of 200 km/h, and
a 10% increase to the emission factors. Scenario 3 was an upper
estimate with 290 trains per day, an average speed of 300 km/h,
and a 10% decrease to the emission factors. These three scenarios
were modelled over a 120 year period, which is the expected life-
time of the tunnel.

Finally, a number of limitations and assumptions should be
highlighted. First, the use of the rail line does not change over the
time period. With time, high-speed rail could become more pop-
ular if it is cheaper and quicker than other forms of transport, but
conversely new technology, such as Hyperloop (2018) could limit
the use of high-speed rail. In the future the speed and capacity of
the trains could be improved, which would have an impact on the
projected emissions. Another assumption was that train efficiency
does not change. If trains were to become much more efficient, the
use phase emissions would be lower compared to embodied
emissions (and the potential burden shifting effect would be
reduced). Finally, it is assumed that the UK will meet its 2050 tar-
gets set out in the Climate Change Act of 2008, which is the basis for
the BEIS forecast grid emission factors (and a higher average grid
Reference

sons Network Rail (2009)
/h Network Rail (2009)

Network Rail (2009)
Wh/seat-km Network Rail (2009)
Wh/train km Network Rail (2009)
5 kN Asplan Viak AS (2012)
56 kNh/km Asplan Viak AS (2012)
17 kNh2/km2 Asplan Viak AS (2012)

Reference

Lukaszewicz and Andersson (2009)
Lukaszewicz and Andersson (2009)



Table 3
Results for embodied emissions saving for four decision cases.

Decision case Reference emissions (tCO2e) ‘With change’ emissions (tCO2e) Reduction in embodied emissions (tCO2e)

1. Reducing thickness of D-wall 5,260 3,350 1,910
2. Replacing D-wall with secant piling 22,080 13,850 8,230
3. Alternative method of excavation 6,140 2,360 3,780
4. Reduction in diameter of tunnel 43,220 37,410 5,810

Table 4
Results for embodied and use phase assessment for the tunnel decision with net change in emissions for each scenario highlighted in bold.

Reference (larger) tunnel (tCO2e) Reduced diameter tunnel (tCO2e) Change in emissions (tCO2e)

Scenario 1 Embodied 43,220 37,410 �5,810
Use phase 168,120 199,190 þ31,070
Total 211,340 236,600 þ25,260

Scenario 2 Embodied 43,220 37,410 �5,810
Use phase 128,140 150,380 þ22,240
Total 171,360 187,790 þ16,430

Scenario 3 Embodied 43,220 37,410 �5,810
Use phase 212,140 252,840 þ40,700
Total 246,360 290,250 þ34,890

D.J. Jackson, M. Brander / Journal of Cleaner Production 223 (2019) 739e746 743
emission factor would increase the potential burden shifting
effect).

4. Results

Table 3 presents the results for embodied carbon emissions
(calculated using the CIT Tool) measured in tonnes of carbon di-
oxide equivalent (tCO2e) for the four decision cases. As shown, all
four cases show a reduction in embodied emissions, i.e. a design
team or contractor using the CIT Tool would be justified in imple-
menting the proposed reduction measures, based on the informa-
tion provided. For Decision Cases 1-3, no changes in the use or end
of life phases were identified, and therefore it is assumed that there
is no burden shifting effect and the Tool correctly identifies the
emission reduction opportunity. However, in Decision Case 4, use
phase electricity consumption is expected to increase.

The results for the embodied and use phase emissions for De-
cision Case 4 are presented in Table 4, and show that choosing the
smaller tunnel in order to reduce embodied emissions is expected
to increase overall emissions. For example, in Scenario 1 emissions
would increase by 25,260 tonnes CO2e over the 120 year assumed
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increase in emissions, indicating that the effect is robust to different
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In addition to the overall change in emissions it is also important
to consider the temporal distribution of emissions, particularly
with decisions that have impacts over a long period of time
(Brander, 2017; Krezo et al., 2016). With the reduced diameter
tunnel there is an initial reduction in emissions as ‘up-front’
embodied emissions are reduced by the decision to build a smaller
tunnel, but then that emissions ‘benefit’ is eroded over time as the
higher use phase emissions accumulate. From a decision-maker's
perspective it is useful to understand that the carbon benefit from
reduced embodied emissions is short-lived: for example, for Sce-
nario 1, it would only take eight years of operation for the smaller
tunnel to have higher total emissions (as shown in Fig. 1). The
switching point (from reduction to increase) in emissions would
occur after thirteen years for Scenario 2 and six years for Scenario 3.
As this switching point occurs so early in the operational phase of
the tunnel, scenarios that depended on major changes that could
happen in the future, for example, faster or more efficient trains, or
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changes to passenger habits, were not considered as although these
may decrease the use phase emissions the initial burden shifting
could not be overturned.
5. Discussion

5.1. Recommendations

The results show that embodied carbon calculators can suc-
cessfully identify emission reduction opportunities in some, but not
all, cases (which tallies with the mixed picture on burden shifting
for buildings identified in the literature, e.g. H€afliger et al. (2017)). A
question then arises whether only whole-of-life assessments
should be used, or whether there is an appropriate role for
embodied carbon calculators? As mentioned in the Introduction,
one apparent reason that a number of existing tools focus on
embodied carbon is that it is often difficult to model the use and
end of life phases, and imposing a requirement for whole-of-life
assessment may be onerous and dis-incentivise the infrastructure
sector from engaging in carbon management practices.

A possible solution to this problem is to combine the use of
embodied carbon calculators with a set of heuristics or ‘rules-of-
thumb’ for identifying when burden shifting effects are more likely
to occur, and therefore when the use of an embodied carbon
calculator would need to be supplemented with a whole-of-life
approach. This heuristics approach has been suggested for other
aspects of life cycle assessment, notably for situations when attri-
butional LCA is likely to miss significant market-mediated effects,
and therefore when a consequential LCA is required (Rajagopal,
2017). Fig. 2 sets out an initial set of questions or heuristics that
practitioners can use to identify the risk of burden shifting.
Fig. 2. Flowchart of suggest
Applying these questions to the decision case of the rail tunnel,
the answers would be: 1. Yes, there are reasons for expecting a
change in use phase emissions; 2. The change is expected to lead to
an increase in use phase emissions; 3. The magnitude of the change
could be large compared to the size of the reduction in embodied
emissions, and therefore warrants a whole-of-life assessment. This
indicates that the use of an embodied carbon calculator, together
with this simple set of heuristics, would effectively identify cases
with a risk of burden shifting. However, it is worth noting that there
is a remaining limitation with this approach, namely that using an
embodied carbon calculator would still miss the identification of
emission reduction opportunities in the later life cycle stages (even
though negative burden shifting can be avoided). In the absence of
information on the use and end of life phases of an infrastructure
project, a design team or contractor will not be able to make
informed decisions aimed at reducing emissions within these life
cycle stages, and therefore for the project as a whole.

Broadening the discussion on burden shifting further, we offer
the observation that concern with burden shifting, which is
acknowledged as one of the underpinning motivations for a whole-
of-life approach (Bjorn et al., 2018; ISO, 2006), is also effectively the
underpinning motivation for using consequential rather than
attributional LCA. Consequential LCA aims to quantify the total
change in impacts caused by a decision (Ekvall and Weidema,
2004), while attributional LCA quantifies the impacts that occur
within a normatively defined inventory boundary (UNEP and
SETAC, 2011), with the boundary often defined in terms of the
processes that are physically used within the life cycle of a product.
Awidely recognised limitationwith attributional LCA is that it does
not necessarily capture all the changes caused by a decision (Plevin
et al., 2014), and therefore can result in burden shifting, i.e. impacts
ed heuristic guidelines.
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may be reduced within the normatively defined assessment
boundary, but increase elsewhere. A notable example is bioenergy
policy, which may reduce emissions from the processes directly
used in the life cycle of fuels, but increase emissions elsewhere in
the system through indirect land use change (Searchinger et al.,
2008)) or material displacement effects (Brander, 2017).

The hierarchy of sophistication from embodied emissions cal-
culators to whole-of-life assessment, and from whole-of-life attri-
butional LCA to consequential methods, maps onto evolution of
capacity for carbon measurement within industry sectors. The
infrastructure sector, and indeed many other sectors, are currently
in a learning process with regards to carbon measurement and
management. The use of embodied carbon calculators may be
appropriate given the current level of capacity, but as skills and
capacity develop there should be a transition to using whole-of-life
methods, and from whole-of-life attributional methods to conse-
quential methods, which aim to fully capture the changes caused by
decisions. As a recommendation to software developers, this
transition should be planned for within the structure of tools
currently in development.

5.2. Implications for practice and theory

Themajor implication of this research for practice is to highlight
that care is needed when using embodied carbon calculators. For
example, the Carbon Trust (2014) suggest that low temperature
asphalt could significantly reduce emissions, although the claim
only takes account of emissions during road construction without
determining changes in the use phase. Here we have shown that
burden shifting is a real risk that practitioners must consider, and
the heuristic guidelines developed indicate how the risk of burden
shifting can be minimised. With the formulation of normative rules
recognised as a form of theory development (Suddaby, 2014), the
theoretical contribution of this paper is the formulation of these
heuristics.

5.3. Limitations and future research

It should be noted that the present study has focused exclusively
on greenhouse gas emissions, while a further form of burden
shiftingmay occur between impact categories (Laurent et al., 2012),
e.g. a decision may reduce greenhouse gas emissions but increase
biodiversity loss etc. A further area for development is therefore the
formulation of heuristics for addressing this form of burden shift-
ing, or the inclusion of other impact categories within decision-
support tools.

As alluded to by H€akkinen et al. (2015), planning must begin
during the design stage of a project to achieve the best low-carbon
solutions. As shown in our results, this planning must also give
consideration to the use and end of life of the asset. However,
accurately calculating emissions in these phases will be difficult as
it relies on suppliers giving their emissions data during the plan-
ning phase of a project, which they may be reluctant to do before a
contract of work is awarded. As such, future research should
explore how collaboration can be achieved between clients, con-
tractors and their supply chains so that collectively low-carbon
designs can be implemented. As well as the technical issues asso-
ciated with quantifying changes in emissions, we recognise that
there are also social, organisational, and institutional barriers to the
adoption of carbonmanagement practices within the infrastructure
sector. The interplay of carbon calculation tools, such as the CIT tool,
with these barriers should also be the subject of future research.
Finally, another opportunity for future research is to develop a
comprehensive literature review of LCA studies related to infra-
structure, as this literature appears to be dispersed across different
journals and research communities, which suggests there may
useful new insights from taking a holistic overview.

6. Conclusions

The infrastructure sector is developing and using embodied
carbon calculators in order to manage emissions associated with
infrastructure projects, but this gives rise to the possibility of
burden shifting. Although the possibility of burden shifting is
widely recognised in principle, there is very little empirical
research on the issue, either generally or specifically in relation to
infrastructure projects. In order to address this research gap, the
current study explores the possibility of burden shifting for a
number of decision cases related to a high-speed rail project in the
UK, and finds that in some cases the use of an embodied carbon
calculator correctly identifies emission reduction opportunities, but
in other cases the use of such tools may result in burden shifting.

In order to address this problemwe propose a number of simple
heuristics, which can be employed alongside the use of embodied
carbon calculators. We also suggest that over time (as skills and
capacity for carbon measurement increase) there should be a
transition from relatively simple embodied emissions calculators to
whole-of-life assessment, and fromwhole-of-life attributional LCA
to consequential methods, as such methods aim to capture all
changes in emissions caused by a decision, and therefore fully
address the problem of burden shifting.
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