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Abstract  21 

The use of biomass wastes for biochar production is a promising waste management option, 22 

and biochars can be potentially applied in the food waste recycling industry to produce value-23 

added chemicals. In this study, an advanced Sn-functionalised biochar catalyst was 24 

synthesised via a novel solvent-free ball milling protocol to facilitate the isomerisation of 25 

glucose to fructose. Raw wood biomass (W) and its derived biochars pyrolysed at low (LB, 26 

400 °C) and high (HB, 750 °C) temperatures were investigated as catalyst supports. The 27 

interactions between Sn and the carbonaceous supports were related to the surface chemistry 28 

of the catalysts. The raw W had a functional group-enriched surface, which provided more 29 

active sites for anchoring Sn, resulting in higher metal loading on the support compared to 30 

LB and HB. The annealing temperature was another critical factor determining the amount 31 

and speciation of loaded Sn. Catalytic conversion experiments indicated that SnW annealed 32 

at 750 °C exhibited the best fructose yield (12.8 mol%) and selectivity (20.2 mol%) at 160 °C 33 

for 20 min. The catalytic activity was mainly determined by the quantity and nature of active 34 

Sn sites. This study elucidated the roles of the carbon support and its surface chemistry for 35 

synthesising biochar-supported catalysts, highlighting a simple and green approach for 36 

designing effective solid catalysts for sustainable biorefineries.  37 

Keywords: solvent-free synthesis; heterogeneous catalysis; engineered biochar; metal-carbon 38 

interactions; sustainable waste management.  39 
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1. Introduction 40 

The increase in biomass waste generation (e.g., forestry/agricultural and food wastes) has 41 

posed a critical environmental challenge calling for a sustainable solution. As suggested by 42 

various laboratory and pilot tests, the conversion of biomass into biochars is a promising 43 

waste management option, which is potentially superior to conventional treatments, such as 44 

landfill disposal and open burning with low energy transformation efficiency that burdens the 45 

environment (Ok et al., 2015). Biochar production costs only 3-6% of the commercial 46 

activated carbon (Jung et al., 2019), and it has the benefits of tuneable properties and easy 47 

manufacture, which are advantageous for carbonaceous material engineering and green 48 

chemistry. Besides environmental remediation (Cho et al., 2019; Ruan et al., 2019) and novel 49 

material synthesis (Wang et al., 2019), emerging applications of engineered biochars recently 50 

have been explored in green biorefineries (Xiong et al., 2017).  51 

Glucose is a six-carbon sugar that can be derived from biomass—e.g., starch-rich bread and 52 

rice wastes (Yu et al., 2018; Cao et al., 2018). It undergoes isomerisation to form fructose 53 

that can be further converted into a wide variety of platform chemicals and energy 54 

derivatives, which reduce the dependence on fossil fuels and mitigate carbon emissions (Zhu 55 

et al., 2016a; Xiong et al., 2019; Chen et al., 2017). Glucose isomerisation can be catalysed 56 

by Lewis acids (e.g., Sn4+, Al3+) or Brønsted bases (i.e., OH-). Lewis acids facilitate the ring-57 

opening of glucose and promote isomerisation via an intramolecular C2-C1 hydride shift (Hu 58 

et al., 2017; Caratzoulas et al., 2014), while Brønsted bases catalyse an O2-O1 hydrogen 59 
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transfer (Chen et al., 2018).  60 

Solid Lewis acid catalysts can be synthesised via the impregnation of metals on 61 

graphite/graphene oxide and carbon nanotubes (Xiao et al., 2017; Yu et al., 2019b). Biochars 62 

emerge as an attractive alternative supporting material in view of the low production cost and 63 

favourable eco-friendliness (Yu et al., 2019a; Yang et al., 2019a). Previous research has 64 

focused on the physicochemical properties of carbon-based catalysts (e.g., porosity, 65 

morphology, acid-base properties) (Qin et al., 2019; Wan et al., 2019), yet seldom explored 66 

the interactions between carbon support and adsorbed species that could determine the Lewis 67 

acidity of catalysts. It has been proposed that metal-support interactions can take place via 68 

charge transfer, surface complexation, and other mechanisms (Qiang et al., 2007; Sun et al., 69 

2019), which may facilitate high loading rates and homogeneous distribution of active sites 70 

(Zhukovskii et al., 2000). The binding of metals to biochar can be improved by enriching its 71 

structural surface defects (e.g., terraces, steps, and kinks) (Lobos et al., 2016). However, it is 72 

uncertain how metal speciation and surface chemistry vary with the metal-biochar interaction, 73 

and whether adverse effects (e.g., inactive species formation) can be avoided. In this study, 74 

we prepared Sn-impregnated biochars that provide a good opportunity to investigate the 75 

relationship between catalytic activity and metal-support interactions. Sn has been suggested 76 

to be an outstanding Lewis acid catalyst in heterogeneous and homogeneous systems in 77 

biorefinery studies (Bermejo-Deval et al., 2014; Yu et al., 2018).  78 

In conventional catalyst synthesis, the use of solvents is often indispensable to facilitate 79 
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dispersion and mixing for better contact between the loading materials and support 80 

(Rightmire et al., 2016). As for greener protocols, mechanochemical technology, such as ball 81 

milling, is based on the direct mixing of materials under solvent-free conditions, which 82 

allows for simple and safe operation with potential industrial applicability (James et al., 2011; 83 

Takacs, 2018). The shear forces and powerful extrusion in ball milling can activate the 84 

catalyst support surface by reducing the particle size and creating new defects, which would 85 

alter the surface chemistry—e.g., functionality, hydrophobicity, and polarity (Zhang et al., 86 

2019). Ball milling has been applied to modify graphene, carbon nanotubes, and metal–87 

organic frameworks (Kathryn et al., 2013; Franco et al., 2017; Ouyang et al., 2016; Lin et al., 88 

2017), while its utilisation for functionalising the biochars is still in its infancy and deserves 89 

investigation to develop sustainable biochar-based catalysts. 90 

This study aims to synthesise a series of Sn-functionalised biochars (SnBCs) as Lewis acid-91 

type heterogeneous catalysts using ball milling. Their catalytic activity was evaluated for the 92 

isomerisation of glucose to fructose in water under microwave heating, an important reaction 93 

in biomass waste upcycling for the synthesis of value-added chemicals. Three different 94 

carbon-based supports were studied: wood biomass (W, not pyrolysed) and low- and high-95 

temperature wood biochar (LB and HB, respectively), which were pyrolysed at 400 and 750 96 

°C, respectively. The role of the physicochemical properties of the carbonaceous supports 97 

and effect of metal-support interactions induced by different annealing temperatures on the 98 

fructose yield and selectivity were studied. The environmental sustainability of the proposed 99 
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SnBC catalyst was evaluated by recycling and metal leaching tests.  100 

 101 

2. Materials and Methods 102 

2.1.Materials 103 

Wood waste is a significant waste stream and prospective feedstock in biorefineries 104 

(Hassan et al., 2019). Mixed wood waste in the form of sawdust (< 2 mm), which was 105 

collected from the Industrial Centre at the Hong Kong Polytechnic University, was used as 106 

the carbon precursor, in view of its good performance in our recent studies of biochar-based 107 

catalysts (Yang et al., 2019a; Yu et al., 2019a). The wood biomass was air-dried at 60 °C 108 

overnight until its weight appeared to be constant. SnCl4·5H2O (98%, Sigma-Aldrich) was 109 

used as the Sn source. For sample preparation, catalysis reactions, and calibration of the 110 

analyser, the chemicals of analytical grade were used as received. 111 

Wood biomass and its two derived biochars were used as bio-based support for the 112 

synthesis of SnBCs. Biochars were produced via slow pyrolysis under nitrogen purging (150 113 

mL min−1). Wood biomass was subjected to pyrolysis at 400 and 700 °C for 2 h in a Carbolite 114 

tubular furnace to obtain LB and HB, respectively. The prepared support was composited 115 

with SnCl4·5H2O at a weight ratio of 10:1 using a planetary ball mill (DECO-PBM-AD-116 

0.4L). Approximately 5 g of material was added to a 100 mL Teflon jar that contained 100 g 117 

of balls and was operated at 900 rpm for 2 h in air. The rotation direction was changed every 118 

10 min. The energy consumption for ball milling was estimated as 0.5 kWh, considering the 119 
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instrument power of 0.25 kW and a milling time of 2 h. The resultant samples were then 120 

annealed at 500, 750, or 900 °C under N2 and were labelled as SnXY, where X is the support, 121 

and Y is the catalyst annealing temperature. All solid catalysts were stored in vials for 122 

subsequent experiments. 123 

2.2.Characterisation of SnBC catalysts 124 

Thermochemical changes were monitored in the range of room temperature to 1000 °C at a 125 

heating rate of 10 °C min−1 in Ar atmosphere using a Thermo plus EVO2 (Rigaku) 126 

thermogravimetric analysis (TGA) instrument. The morphology, structure, and surface 127 

composition of the samples were analysed using a VEGA3 XM (TESCAN) field-emission 128 

scanning electron microscopy (SEM) apparatus equipped with an energy dispersive 129 

spectroscopy (EDS) system. The crystalline textural features were recorded using a SmartLab 130 

(Rigaku) X-ray diffraction (XRD) device using Cu Kα radiation (1.5460 Å). The porosity 131 

parameters were evaluated using N2 adsorption–desorption isotherms, which were collected 132 

utilizing an ASAP 2020 (Micromeritics) surface area and porosity analyser. Micro-Raman 133 

spectroscopy (Renishaw) was carried out using a light source with an excitation wavelength 134 

of 532 nm. The ratios of the intensities of the D and G peaks (1350 and 1590 cm−1) (ID/IG) of 135 

all samples were calculated using their Raman spectra (Igalavithana et al., 2018).    136 

Surface chemistry and metal speciation were evaluated using a Frontier (PerkinElmer) 137 

Fourier transform infrared (FTIR) spectroscopy instrument and a K-Alpha (Thermo Fisher 138 

Scientific) X-ray photoelectron spectroscopy (XPS) device. The FTIR and XPS spectra were 139 
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manipulated using the OMNIC and XPSpeak41 software programmes, respectively. 140 

The total amount of Sn loaded onto each catalyst was determined using an FMX36 141 

SPECTROBLUE inductively coupled plasma mass spectrometer after the samples were 142 

completely digested using aqua regia, according to the modified United States Environmental 143 

Protection Agency Method 3051A. 144 

2.3.Glucose isomerisation to fructose over SnBC catalysts 145 

The glucose isomerisation process was conducted in batches following the protocol 146 

previously described in the literature (Yang et al., 2019a). In brief, 0.5 g of glucose, 0.25 g of 147 

SnBCs, and 10 mL of deionised water were added to a 100 mL vessel and were stirred until a 148 

homogeneous mixture was obtained. The vessel was sealed and heated at 160 °C for 20 min 149 

in an ETHOS UP (Milestone) microwave reactor in air (ramp time of 5 min). The catalyst 150 

dosage and catalytic test settings were mainly based on the preliminary experiment and were 151 

intended to achieve discernible differences in catalytic activity and selectivity between 152 

different synthesised catalysts, which may not be optimal. Future efforts should be made in 153 

that direction. The liquid products were collected, filtered, and diluted with deionised water 154 

by a factor of four before being subjected to high-performance liquid chromatography 155 

(HPLC) analysis. The details for analytical conditions and calculation of product yield and 156 

selectivity are shown in SI.  157 

 158 

3. Results and Discussion 159 
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3.1.Characteristics of biochar-supported Sn catalysts prepared via ball milling 160 

The synthesis of the SnBC catalysts consisted of two steps: (1) the uniform dispersion of 161 

the Sn source onto the supporting materials (HB, LB, and W) using ball milling; and (2) the 162 

activation of the Sn-support mixture at different annealing temperatures. Each Sn-support 163 

composite without annealing was subjected to TG-DTA to investigate its heat-induced 164 

transformation (Fig. 1). The significant decrease in mass (7.13%) of the SnHB sample at 165 

100–200 °C could be attributed to the volatilisation of the surface-free SnCl4 (Freiser, 1959), 166 

which was absent from the TGA patterns of SnLB and SnW. This suggests the weak 167 

interaction between Sn and HB after ball milling. As illustrated in Table 1, the O/C ratios of 168 

both LB and W were higher than that of HB because the latter lost more O-containing 169 

functional species during the high-temperature treatment (Yang et al., 2018). The surface O-170 

containing groups could act as active sites for anchoring Sn. At 230–500 °C, the SnW and 171 

SnLB samples exhibited a major mass decay of 53.5% and 11.5%, respectively. Significant 172 

mass loss (~75%) in this temperature range was also noted in the TGA pattern of the raw W 173 

(Yu et al., 2019a). This could be attributed to the thermal decomposition of the 174 

lignocellulosic fraction of W and degradable carbon moieties remaining in the partially 175 

pyrolysed LB (Igalavithana et al., 2017). At temperatures above 500 °C, the mass changes of 176 

all samples became minor considering the plateaus in the DTG curves (Fig. 1b). 177 
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 178 

Figure 1. (a) Thermogravimetric analysis and (b) differential thermogravimetric analysis 179 
curves of SnW, SnLB, and SnHB obtained after milling different supporting materials with 180 
SnCl4·5H2O (without annealing).  181 

In general, the FTIR spectra of W and LB and their derivative samples presented stronger 182 

absorption at 1000-1750 cm-1 than those of HB and its derivatives (Fig. 2a-c). This is in a 183 

good agreement with the higher O/C ratios for W and LB that implied more abundant 184 

functional groups on their surfaces (Table 1). Ball milling with Sn (without annealing) 185 

resulted in an increased broad band at 3400 cm-1 that represents the O-H stretching, possibly 186 

due to the formation of new surface defects in oxygen-containing atmosphere (Li et al., 187 

2020). The largely preserved O functionalities and new defects on the supporting materials 188 

may enhance the interaction with Sn via surface complexation. The XRD patterns of the raw 189 

and ball-milled samples were similar and displayed amorphous characteristics (Figs. 2d–f), 190 

suggesting that ball milling may not provide sufficient energy for converting the Sn precursor 191 

(SnCl4) to crystalline minerals. After annealing at 500 oC, SnO2 could be observed, and it 192 

further transformed to metallic Sn at the high temperatures of 750 and 900 oC. The formation 193 

of metallic Sn (2θ = 30.64°, 32.02°, and 44.91°) was more significant in the SnW750 and 194 
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SnW900 samples than in the annealed SnLB and SnHB samples, suggesting the stronger 195 

carbothermal reduction capacity of W that could release more reducing gases (H2, CO) during 196 

thermal treatment (Sikarwar et al., 2016).  197 
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Table 1. Physicochemical characteristics of supporting materials and synthesised samples.  198 

 BET 
surface area 

t-plot micropore  
surface area 

t-plot external  
surface area Pore volume Average  

pore diameter O/C ID/I G 

 m2 g−1 cm3 kg−1 nm  

HB 179.8 123.9 55.9 49.6 4.54 0.04 0.56 
LB 85.4 53.7 31.8 35.4 6.45 0.15 0.82 
W 0.73 0.02 0.71 7.64 38.0 0.71 - 

        

SnHB 3.07 0.01 3.06 99.9 53.1 0.09 0.58 
SnHB500 65.6 31.9 33.7 40.6 9.81 0.08 0.79 
SnHB750 382.7 311.7 71.0 73.5 6.33 0.07 0.82 
SnHB900 137.9 59.5 78.5 114.4 5.40 0.07 0.96 

  

      

SnLB 2.86 0.01 2.85 34.1 45.6 0.20 0.84 
SnLB500 44.7 7.99 36.7 58.2 11.8 0.09 0.79 
SnLB750 125.2 73.2 52.0 103.0 8.29 0.07 0.82 
SnLB900 110.9 53.4 57.5 89.0 8.74 0.04 0.97 

  

  - -  - 

SnW 0.33 0.01 0.32 8.10 43.8 0.54 - 
SnW500 50.6 11.6 39.0 16.6 5.21 0.13 0.63 
SnW750 131.0 72.6 58.4 85.0 5.58 0.08 0.81 
SnW900 138.2 79.9 58.3 79.6 5.32 0.13 0.91 

BET - Brunauer–Emmet–Teller; O/C - oxygen/carbon ratio; ID/IG - ratio of the intensities of the D and G Raman peaks; W - wood biomass, LB 199 
and HB - biochars pyrolysed at low (400 °C) and high (750 °C) temperature, respectively; SnW, SnLB, and SnHB - Sn-functionalised samples; 200 
500, 750, and 900 are the annealing temperatures. 201 

 202 
203 
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 204 

Figure 2. (a–c) Fourier transform infrared spectra and (d–f) X-ray diffraction patterns of 205 
synthesised samples, where W is wood biomass; LB and HB are biochars pyrolysed at low 206 
(400 °C) and high (750 °C) temperature, respectively; SnW, SnLB, and SnHB are Sn-207 
functionalised samples; and 500, 750, and 900 °C are the annealing temperatures. 208 

 209 

The SEM-EDS images reaffirmed the incorporation of Sn species in the W, LB, and HB 210 

supporting materials after ball milling and annealing (Fig. 3). The proportion of Sn followed 211 

the same order for the quantity of O-containing functionalities – W > LB > HB (Table 1). 212 

Surface Sn content of approximately 10 wt% was observed in SnW, which was equivalent to 213 

the initial Sn dosage. However, the SnLB and SnHB presented much lower surface Sn 214 

contents than the Sn loading amount: 2.64 and 1.24 wt%, respectively. Carbon supports (W) 215 

(a) 

(b) 

(c) 

(d) 

(e) 

(f) 
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featuring larger amount of sp3 carbons (high ID/IG ratio) and more hydrophilic surface (high 216 

O/C ratio) can present higher affinity for Sn precursor, leading to higher possibility of 217 

forming Sn complexes during the ball milling process (Table 1).   218 

 219 

After annealing at 500 °C, the Sn dot contour profiles of all samples were analogous to the 220 

catalyst shape (Fig. 3). However, further increasing the annealing temperature led to a 221 

decrease in Sn dot intensity and different Sn distribution patterns. In particular, the clusters of 222 

Sn dots can be observed in SnW750/900. Calculations using the XRD results and Scherrer 223 

equation confirmed that nanosized metallic Sn particles were formed in SnHB750 (20.7 nm) 224 

and SnLB750 (28.5 nm), whereas microsized metallic Sn particles were observed in SnW750 225 

(269 nm). The higher surface Sn concentration in SnW possibly induced metal agglomeration 226 

to larger particles during the annealing process, which became more severe as the annealing 227 

temperature increased (Fig. 3). Hence, selecting the appropriate starting materials is critical 228 

for the preparation of carbon-based catalysts via the ball milling process, because their 229 

properties (particularly for surface functional groups and carbonisation degree) play a key 230 

role in determining the extent of metal loading, speciation, morphology, and distribution.  231 

 232 
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 233 

Figure 3. Scanning electron microscopy images and energy dispersive X-ray spectroscopy Sn 234 
mapping results of synthesised samples, where SnW, SnLB, and SnHB are Sn-functionalised 235 
wood biomass (W) and biochars pyrolysed at low (400 °C) and high (750 °C) temperatures, 236 
respectively (LB and HB respectively); 500, 750, and 900 °C are the annealing temperatures.   237 

 238 

It was noted that when Sn salt was milled with the supports, the surface area and average 239 

pore size significantly decreased (Table 1), possibly due to pore blocking by the introduced 240 

Sn (Baca et al., 2008). However, the porosity of all ball-milled samples could be developed 241 

after annealing, as a result of new pore formation and partial volatilisation of carbon moieties 242 
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and surface-adsorbed Sn. This effect was more noticeable when the annealing temperature 243 

increased from 500 to 750 °C, whereas the samples annealed at 900 °C displayed only small 244 

increases or even a decrease in porosity. The ID/IG ratios of all samples increased as the 245 

annealing temperature increased, implying that more defects were formed and possibly 246 

facilitated catalytic conversion. However, the O/C ratio, which is also an index for surface 247 

hydrophobicity (Yang et al., 2019b), showed little dependence on the annealing temperature 248 

(Table 1). 249 

 250 

3.2.Important role of initial support materials for catalytic conversion 251 

When the SnBC samples annealed at 500 °C were used as catalysts (160 °C, 20 min; Fig. 252 

4), the fructose yield was negligible regardless of the support materials and despite their 253 

higher amounts of total Sn (e.g., > 100 mg g−1 Sn for SnW500) compared to those annealed at 254 

750 and 900 °C. This indicated that the catalytic activity strongly depended on the 255 

availability of active Sn sites rather than the total surface Sn content. At a low annealing 256 

temperature, some thermal-sensitive volatiles, such as CO2 and Cl2, would be generated via 257 

decomposition (Sikarwar et al., 2016), reacting with the loaded Sn to form chemically inert 258 

SnO2, which is inactive towards the glucose isomerisation (Yu et al., 2018). Previous studies 259 

reported that the tetra-coordinated Sn4+ sites would be the major contributors for catalysing 260 

glucose isomerisation, rather than the octahedral-coordinated Sn4+, such as SnO2, which 261 

exhibited poor Lewis acidity (Dijkmans et al., 2015). 262 

 263 
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 264 

 265 

Figure 4. Fructose yield and selectivity obtained from microwave-assisted glucose 266 
isomerisation tests over different synthesised catalysts (conversion conditions: 160 ºC for 20 267 
min in water), where HMF, LA, FA, and LG are 5-hydroxymethylfurfural, levulinic acid, 268 
formic acid, and levoglucosan, respectively; SnW, SnLB, and SnHB are Sn-functionalised 269 
wood biomass (W) and biochars (LB and HB) pyrolysed at low (400 °C) and high (750 °C) 270 
temperatures, respectively; and 500, 750, and 900 °C are the annealing temperatures.   271 

 272 

For the samples produced using HB, SnHB900 achieved a higher fructose yield and 273 

selectivity than SnHB750 (Fig. 4), despite the lower BET surface area of the former (Table 274 

1). The XRD patterns indicated that a metallic Sn phase was formed after annealing at 750 °C 275 

or above (Figs. 2d–f), revealing the occurrence of a redox reaction at the interface region via 276 

electron transfer between the adsorbed metal and carbon support. This carbothermal 277 

reduction could activate the inactive Sn species (SnO2) during high-temperature annealing. 278 

The presence of Sn-Sn4+@C was probably relevant for the superior catalytic activity (Section 279 

3.3). It is noteworthy that the catalytic activity of the Sn-functionalised biochar catalysts was 280 

affected by the choice of initial supporting materials, i.e., SnW750 and SnW900 were the 281 

most active (Fig. 4). The metal-support interactions could be the decisive factor for 282 
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controlling the catalytic activity of the Sn-functionalised biochar catalysts prepared by ball 283 

milling. 284 

 285 

3.3.Effect of annealing temperature on catalytic conversion 286 

 Fig. 4 indicates that the annealing temperature was an important parameter, and heating at 287 

750 or 900 °C was essential for the formation of active Sn on the ball-milled biochar 288 

catalysts. To elucidate the valence states of the Sn dopants in the biochar catalysts, the XPS 289 

spectra in the vicinity of Sn 3d were deconvoluted into three subpeaks (Figs. 5a–c), 290 

corresponding to Sn4+, Sn2+, and Sn0 (Zhu et al., 2016b). The results indicated that the 291 

binding energies of the two characteristic peaks of Sn 3d (Sn 3d5/2 and Sn 3d3/2) of SnW750 292 

and SnW900 shifted towards the higher energy region compared to the reference values. This 293 

shift often is associated with the occurrence of strong metal-support interactions and partial 294 

reduction of SnO2 to metallic Sn (Ma et al., 2011). Therefore, increasing the annealing 295 

temperature could promote the electron-donor effect between the metal and carbon support, 296 

thereby enriching the d-electron density of Sn 3d (Pino et al., 2014).  297 

 298 
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 299 

Figure 5. X-ray photoelectron spectroscopy (XPS) (a–c) Sn 3d and (d–f) O 1s spectra of Sn-300 
functionalised biochar catalysts (SnW500, SnW750, and SnW900) prepared at three 301 
representative temperatures (500, 750, and 900 °C, respectively) using wood biomass (W) as 302 
supporting material. Ratios were calculated from the XPS results using their atomic numbers.  303 

 304 

At the lowest annealing temperature, the Sn species in SnW500 mainly consisted of tin 305 

oxides—i.e., SnO2 and SnO—and were chemically inert and exhibited little catalytic capacity 306 

despite the large amount of Sn. The ratio of [Sn4+]/([Sn2+]+[Sn0]) increased from 0.65 to 1.01 307 

as the annealing temperature increased from 500 to 900 oC. It appears that the interconversion 308 

of the multiple valence states of Sn species (Zhong et al., 2014) could induce the formation of 309 

(f) 

(e) 

(d) 

(c) 

(b) 

(a) 
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active tetra-coordinated Sn4+ (Fig. 6), possibly accounting for the superior catalytic 310 

performance of SnW900 (Fig. 4). In addition, the annealing process would facilitate the 311 

substitution of the metal in the carbon matrices, thereby inducing distortion and defects in the 312 

biochar catalysts owing to the larger ionic radius of Sn4+ compared to that of C. This could be 313 

reflected by the increasing ID/IG ratio as the annealing temperature increased (Table 1), which 314 

may also contribute to the increased catalytic activity.  315 

 316 

 317 

Figure 6. Schematic diagram for the transformation of Sn-biochar catalysts. 318 

 319 

The O 1s XPS signals were deconvoluted into three peaks at 530.2, 531.3, and 533.1 eV 320 

(Figs. 5d–f), which were ascribed to three types of O species: lattice O, O vacancies, and 321 

chemisorbed O species, respectively (Jung et al., 2012). The content of lattice O decreased 322 

from 16.5 to 5.5% as the annealing temperature increased from 500 to 900 oC. This could be 323 

caused by the replacement of carbon atom with a lower valence metal (e.g., Sn2+) leading to 324 

charge compensation in the catalysts. The surface [O]/[Sn] ratio of SnW500 was 5.84, which 325 

was lower than those for SnW750 (20.1) and SnW900 (23.8), suggesting that the Sn 326 



21 

 

speciation varied with annealing temperatures (Farahani et al., 2014). While the XPS valance 327 

band pattern of SnW500 exhibited four sub-bands at 0-20 eV (Fig. 7), they disappeared from 328 

the spectra of SnW750 and SnW900 with a new C 2s peak emerging (Zatsepin et al., 2016). 329 

The BET surface areas of SnW750 and SnW900 were 159% and 173% higher than that of 330 

SnW500, which may be partly ascribed to the surface etching of the carbon support in the 331 

presence of Sn (Yu et al., 2019c). The annealing temperature not only affected the 332 

transformation of active Sn species but also influenced the surface chemistry and structure of 333 

the biochar catalysts, and thereby their catalytic performance. 334 

 335 

 336 

 337 

Figure 7. X-ray photoelectron spectroscopy valence band spectra of Sn-functionalised wood 338 
biomass (W)-based catalysts annealed at 500, 750, and 900 °C: SnW500, SnW750, and 339 
SnW900, respectively.               340 

 341 

3.4.Evaluation of recyclability of SnBC catalysts prepared by ball milling  342 
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The adsorption tendency by the SnBC catalysts was investigated. The SnBC catalysts 343 

adsorbed only a trivial amount of sugars (Table 2), which was favourable for the rapid 344 

separation of catalysts after conversion, similar to the commonly used heterogeneous acid 345 

catalysts, such as Amberlyst-15 and sulfonated biochar (Hafizi et al., 2016; Cao et al., 2018).  346 

 347 

Table 2. Adsorption properties of ball-milled Sn-biochar catalysts towards glucose and 348 
fructose (initial concentration was 0.5 g/10 mL, and equilibrium was reached in 30 min at 349 
room temperature). 350 

Catalyst 
Adsorbed capacity of chemicals 
per gram of catalyst (mg g−1) 

Glucose Fructose 

SnHB500 1.35 1.12 

SnHB750 1.72 2.01 

SnHB900 0.17 0.44 

SnLB500 1.83 1.72 

SnLB750 0.89 1.23 

SnLB900 0.85 1.34 

SnW500 0.08 0.14 

SnW750 1.47 1.84 

SnW900 1.05 1.28 
 351 

For the reusability test, the SnBC catalysts were separated and recovered by filtration after 352 

each reaction cycle. The liquid fraction was used to analyse the product distribution, and the 353 

solid fraction was sonicated with deionised water four times before the subsequent re-use. 354 

During the first recycling experiment, the fructose yield decreased from ~13 to 4 mol% for 355 

SnW750 and SnW900, which remained nearly constant in the second and third runs (Fig. 8). 356 

The XRD results (Fig. S1) indicated that SnO2 emerged after the reaction; in accordance, the 357 

XPS spectra (Fig. S2) showed an increased Sn4+ content of 77% for the RSnW750. In 358 

addition, the leaching test (Fig. S3) showed ~20% Sn leaching in the first cycle for both 359 

SnW750 and SnW900 catalysts, which was consistent with the SEM-EDS mapping showing 360 

a decreased surface Sn content (Fig. S4). The total Sn content remained almost constant in 361 
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the next three cycles (Fig. S3). Therefore, the reduced catalytic performance may be 362 

associated with the transformation of active Sn species to inactive species and with Sn 363 

leaching. The chemical transformation of the SnBC catalysts deserves future studies to 364 

improve the recycling performance under hydrothermal conditions. From a long-term 365 

perspective, the advantages of the ball milling process for biochar-supported catalyst 366 

synthesis should be demonstrated via life cycle analysis and techno-economic assessment. 367 

Fair comparison can be carried out when energy use in ball milling and solvent use in 368 

conventional protocols are evaluated using the same metrics, e.g., environmental impacts and 369 

costs.    370 

 371 

 372 
Figure 8. Reusability tests of (a) SnW750 and (b) SnW900 for glucose isomerisation to 373 
fructose (three reaction cycles: C1–C3 were conducted under the same catalytic conditions at 374 
160 °C for 20 min), where HMF, LA, FA, Fru, and LG are 5-hydroxymethylfurfural, 375 
levulinic acid, formic acid, fructose and levoglucosan, respectively; and SnW750 and 376 
SnW900 are Sn-functionalised wood biomass (W)-based catalysts annealed at 750 and 900 377 
°C, respectively.  378 

  379 

4. Conclusions 380 

We proposed an effective and green approach for upcycling wood waste into Sn-381 

functionalised biochar catalysts by solid mixing Sn source with biomass/biochar support 382 
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under solvent-free conditions in a ball mill. The SnBC catalysts were evaluated in terms of 383 

production of fructose from glucose, which is an important step in the valorisation of food 384 

waste for value-added chemical synthesis. The results indicated that different 385 

biomass/biochar supports and annealing temperatures significantly influenced the catalytic 386 

performance of SnBCs because of the variations in Sn loading rate, metal speciation, and 387 

surface chemistry. The catalysts prepared from functional group-rich biomass (SnW750 and 388 

SnW900) presented more effective glucose-to-fructose isomerisation than SnLBs and SnHBs. 389 

An intensive annealing process facilitated the formation of active Sn species, leading to 390 

higher catalytic activity. Understanding the metal-support interactions is the key to designing 391 

cost-effective biochar catalysts serving sustainable biorefineries, which is a promising option 392 

for wood waste management. 393 

 394 
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For Table of Contents Use Only  570 

The Sn-functionalised catalyst synthesised by ball milling shows effective catalytic activity 571 

for glucose isomerisation. 572 

 573 

 574 

 575 

 576 



Highlights: 

• Sn-functionalized biochar catalysts were synthesized via solvent-free ball milling. 

• The sustainable biochar catalysts promoted glucose-to-fructose isomerization.  

• Supporting materials and annealing temperatures determined catalytic activity.  

• Metal-support interactions governed Sn loading and its speciation. 
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