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Photovoltaic power generation is greatly affected by weather conditions while the photovoltaic power
has a certain negative impact on the power grid. The power sector takes certain measures to abandon
photovoltaic power generation, thus limiting the development of clean energy power generation. This
study is to propose an accurate short-term photovoltaic power prediction method. A new short-term
photovoltaic power output prediction model is proposed Based on extreme learning machine and
intelligent optimizer. Firstly, the input of the model is determined by correlation coefficient method.
Then the chicken swarm optimizer is improved to strengthen the convergence. Secondly, the improved
chicken swarm optimizer is used to optimize the weights and the extreme learning machine thresholds
to improve the prediction effect. Finally, the improved chicken swarm optimizer extreme learning ma-
chine model is used to predict the photovoltaic power under different weather conditions. The testing
results show that the average mean absolute percentage error and root mean square error of improved
chicken swarm optimizer - extreme learning machine model are 5.54% and 3.08%. The proposed method
is of great significance for the economic dispatch of power systems and the development of clean energy.

© 2019 Elsevier Ltd. All rights reserved.
1. Introduction

China’s energy demand has grown rapidly as a big energy
consuming country. A large amount of fossil fuel consumption has
brought serious environmental problems to China, such as China
facing serious smog problems (Zhang et al., 2019; Xiong et al.,
2019). This is imperative to develop clean energy in order to solve
this thorny problem. Especially, photovoltaic (PV) energy power
generation has received the attention of the Chinese government
with the continuous advancement of technology. To this end, the
Chinese government has formulated relevant policies to promote
the development of clean energy power generation. According to
the 13th Five-Year development plan of clean energy made by
China energy administration, the power plant will maintain an
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annual average installed capacity of 20e23 GW, which is not sub-
ject to the index (Guo et al., 2019).

Traditional power grid scheduling is based on reliable power
supply and predictable load. The reliability of power grid operation
can be improved by regulating the power supply side and the po-
wer consumption side (Li et al., 2018). However, PV power gener-
ation is random, intermittent and fluctuant under the influence of
weather and environment (Seyedmahmoudian et al., 2018;
Monfared et al., 2019; Sanchez-Sutil et al., 2019). These character-
istics of PV power generation will have a negative impact on the
stable operation of power system. When large-scale PV power is
integrated into the grid, the generation side will be uncontrollable,
which will have a negative impact on the grid’s power generation
plan (Menezes et al., 2018). At this time, the grid will adopt “PV
power curtailment” measure to reduce the impact of PV power
generation on the grid, thus limiting the development of clean
energy power generation (Hernandez et al., 2018). The more ac-
curate the PV power forecasting is, the less PV power limitationwill
occur in the grid, which greatly improves the development and
utilization of clean energy, thereby reducing the economic losses to
c power using improved chicken swarm optimizer - Extreme learning
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Nomenclature variables

P Connection weight between hidden layer and input
layer

D Connection weight between hidden layer and input
layer

M Samples
A Input quantity
B Output quantity
Xð ,Þ Activation function
O Network output
K Hidden layer output
Kþ Moore-Penrose generalized inverse
ε Infinitesimal
BL Learning coefficient
randm Random number between 0 and 1
GL Random number between 0 and 2
Z Position
Cip Cosine inertia weight
z Pre-mutation particle
l Cauchy mutation operator
z* Mutated particle
R2 Decision coefficient

Acronyms list
PV Photovoltaic
SVM Support vector machine
AI Artificial intelligence
ANN Artificial neural network
AR Autoregressive
MA Moving average
ARMA Autoregressive moving average
DBN Deep belief network
BP Back propagation
CSO Chicken swarm optimizer
ICSO Improved chicken swarm optimizer
GPR Gaussian process regression
GA Genetic optimizer
SVR Support vector regression
RMSE Root mean square error
ELM Extreme learning machine
SLFN Single-hidden layer feed forward neural network
PSO Particle swarm optimizer
WOA Whale optimizer
MAPE Mean absolute percentage error
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PV owners caused by power limitation, and increasing the return
on investment of PV power plants. Therefore, it is necessary to
accurately predict PV power generation, and it has important value
to develop the clean energy power generation technology.

In terms of PV power prediction, the specific time scale, the PV
power forecasting can be divided into four types: medium-term
and long-term prediction (days or weeks), short-term prediction
(hours or one day), ultra-short-term prediction (1min or a few
minutes). Ultra-short-term PV power prediction is mainly used for
real-time dispatching of power grid; short-term PV power fore-
casting is mainly used to assist the dispatch sector to formulate
daily generation plans and economic dispatching plans; medium
and long-term PV power output forecasting is mainly used for the
maintenance of PV power field and operation management of PV
power plants (Han et al., 2019a,b; Lin et al., 2018; Izgi et al., 2012).
Because short-term PV power prediction is of great significance for
the power sector to arrange reasonable daily power generation
plans, achieve efficient economic dispatch and promote the
development and utilization of clean energy, it has become a cur-
rent research hotspot.

At present, the main research methods for PV power prediction
can be divided into two types: prediction methods based on sta-
tistical analysis models and prediction methods based on artificial
intelligence (AI) models (Raza et al., 2016). The two methods can
achieve the prediction of PV power, but the prediction principles of
the two methods are very different. The prediction method based
on statistical analysis model can forecast the next stage of PV power
generation according to historical data of PV power generation.
There are three kinds of statistical regression models: autore-
gressive moving average (ARMA)model, autoregressive (AR) model
and moving average (MA) model (Xie et al., 2018, Wang et al.,
2018a,b). Data-driven AI model is trained with historical data,
and then the trained model is used to predict PV power. The main
AI models commonly used in PV power prediction are artificial
neural network (ANN), support vector machine (SVM), extreme
learning machine (ELM) (Lin and Pai, 2016; Nespoli et al., 2019; Zhu
et al., 2017).

Because PV power is greatly influenced by climate conditions,
Please cite this article as: Liu, Z.-F et al., Prediction short-term photovoltai
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PV power output has strong non-linearity. Statistical analysis
model uses historical data to further predict the development trend
of power output. The statistical analysis model has a large deviation
while the PV power changes greatly. Compared with statistical
analysis model, AI model has stronger ability of non-linear map-
ping. For example, SVM, ELM and other models have been applied
to the field of PV power prediction. Among them, the ELM model
has been widely used in the forecasting field due to its strong
generalization ability and nonlinear prediction ability. Because the
super parameters (weight values and threshold values) in ELM
model have a great influence on the prediction results, how to
optimize the super parameters of ELM model is the key problem.
Therefore, it is necessary to propose an appropriate optimizer. In
this study, improved chicken swarm optimizer (ICSO) is combined
with ELM to optimize the super parameters of ELM. ICSO-ELM
model is proposed for PV power prediction. ICSO-ELM model is
used to predict the PV power under cloudy, sunny and rainy
weather conditions respectively. At the same time, compared with
many existing models, the superiority of the proposed model is
verified. The contributions of this study are as follows:

(1) The CSO optimizer has been improved to propose the ICSO
optimizer.

(2) The input of the model is determined by correlation coeffi-
cient method.

(3) The ICSO-ELM model is proposed to forecast the short-term
PV power under three specific weather conditions.

(4) Accurate PV forecasting can effectively help the power grid
dispatching department to make various power dispatch
schedules and promote the development and utilization of
clean energy.
2. Literature review

In practical applications, when PV power affects the stable
operation of the system, the power sector will take “PV power
curtailment” measures to control the impact of PV power on the
c power using improved chicken swarm optimizer - Extreme learning
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stability of power grid, which will limit the development of clean
energy. Through short-term PV power prediction, the efficient
economic dispatching plan and daily generation plan for the power
sector are formulated to reduce the restrictive measures of PV po-
wer generation, thus promoting the development of clean energy.
Therefore, short-term PV power prediction is very necessary and is
of great significance to the development and utilization of clean
energy. At present, scholars have proposed many short-term
photovoltaic power forecasting methods. Generally, these
methods can be divided into three kinds: time series prediction
model, artificial intelligence (AI) model and hybrid model based on
time series and AI model. Based on historical meteorological data
and power data, the time series model establishes the mapping
relationship between them, and predicts power by the mapping
relationship. The nonlinear fitting ability of the time series model is
poor, andwhen the prediction period is longer, therewill be greater
prediction error. Therefore, the model is suitable for ultra-short-
term PV power prediction. Autoregressive (AR) model and autore-
gressive moving average (ARMA) model are two common time
series models. Bacher et al. (2009) presented an online short-term
PV forecasting method. Firstly, the PV power was normalized.
Secondly, the adaptive linear time series model was used to predict
the PV power. Since traditional ARMA model cannot consider
climate information, climate information has an impact on
improving model prediction accuracy. To this end, Li et al. (2014)
previously proposed a generalized ARMA model that took into ac-
count climate information and used these climate information as
input to the model.

Compared with the time series model, more and more scholars
begin to pay attention to AI model and hybrid model. Based on the
deep belief network (DBN) and the ARMA model, Xie et al. (2018)
proposed a hybrid model to forecast short-term PV power. Firstly,
time series were decomposed into high frequency components and
low frequency components. Then DBN model was used to predict
the high frequency components, ARMA model was used to predict
the decomposed low frequency components, and finally the pre-
dicted components were synthesized into the final results. Li et al.
(2019a,b), Bouzerdoum et al. (2013), Eseye et al. (2018) and
VanDeventer et al. (2019) used SVM to predict short-term PV po-
wer, and optimizer was used to optimize the super parameters of
SVM to reduce the influence of super parameters on the prediction
effects. Since the SVM solves the support vector by means of
quadratic programming, when the number of samples is large, the
training time of the SVM is long. Artificial neural network (ANN) is
widely used in short-term PV forecasting because of its strong fault
tolerance and strong non-linear mapping ability. Based on ANN and
analog integration, Cervone et al. (2017) proposed a combined
method to forecast PV power. Dolara et al. (2015) proposed a
combined model based on ANN and clear sky curve of PV power
station. ELM is developed based on feedforward neuron network
(FNN). The ELM model does not need to adjust the weight and
threshold in the training process. It has the characteristics of fast
training speed and strong generalization ability, and has a good
application prospect (Huang et al., 2006; Guner et al., 2019).

The ELM model can effectively solve complex nonlinear
regression problems, so it is used for irradiance prediction and PV
power output prediction. Han et al. (2019a,b) proposed a prediction
method based on ELM model considering the characteristics of PV
power fluctuation. Firstly, the seasonal characteristics of PV output
power fluctuating with time were analyzed. Then, the PV output
power was predicted by the ELM model. Hossain et al. (2017) used
the extreme learning machine (ELM) to predict the short-term PV
power. The test results show that compared with support vector
Please cite this article as: Liu, Z.-F et al., Prediction short-term photovoltai
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regression (SVR) and ANN, ELM model has higher prediction ac-
curacy. Liu et al. (2018) and Ni et al. (2017) combined ELM model
with other methods to predict short-term PV power. This combi-
nation method can avoid the defects of a single model, which is
relatively complex and has high computational cost. The core of
ELM is how to select hyper-parameters, which will affect the pre-
diction accuracy of ELM model. At present, the main method
adopted by scholars is to optimize super parameters through
intelligent optimizer. For example, genetic optimizer (GA), whale
optimizer (WOA) and particle swarm optimizer (PSO) are used to
optimize the super parameters of ELM model (Xue et al., 2018; Li
et al., 2019a,b; Wang et al., 2019). The improved chicken swarm
optimizer (ICSO) is used to optimize the super parameters of the
ELM model to improve the prediction effect. At present, the pro-
posed models have achieved good prediction results. The R2 of the
SARIMA-SVM model proposed by Bouzerdoum et al. (2013) is
99.08%; the average MAPE of the HIMVO-SVM model is 5.12% (Li
et al., 2019a,b); the RMSE of the GA-SVM model is 11.22%
(VanDeventer et al., 2019); the MAPE of the WT-PSO-SVM model
proposed by Eseye et al., (2018) is 4.2%; the average RMSE, MAPE
and R2 of ICSO-ELMmodel are 5.54%, 3.08% and 99.32% respectively
for three different weather conditions. Compared with the pro-
posed models, the ICSO-ELM model has advantages in prediction
effect and fitting accuracy.
3. Prediction model of PV power

3.1. The principle of extreme learning machine

The single-hidden layer feed forward neural network (SLFN) has
the characteristics of simple structure and fast convergence. SLFN is
used in prediction, classification, pattern recognition and other
fields. However, SLFN has the disadvantages of slow training speed,
sensitivity to learning rate. The ELM is a new type of SLFN. The
connection weight between the hidden layer and the input layer is
randomly determined. The threshold of hidden layer neurons is
also randomly determined (Hossain et al., 2017).

ELM is faster and more generalizable than other predictive
models (Li et al., 2019a,b; Liu et al., 2018). The SLFN consists of three
layers. And three layers are connected by neurons. The input layer
has e neurons, the output layer has t neurons and the hidden layer
has v neurons. The threshold value of hidden layer neurons is
q ¼ ½q1; q2; :::; qv�T . The connection weight between hidden layer
and input layer is P, and the connection weight between output
layer and hidden layer is D.

P¼

2
664
p11 p12 / p1e
p21 p22 / p2e

« «
pv1 pv2 / pve

3
775
v�e

D ¼

2
664
d11 d12 / d1t
d21 d22 / d2t

« «
dv1 dv2 / dvt

3
775
v�t

(1)

Supposed there are M samples. A represents the input quantity
and B represents the output quantity.

A¼

2
664
a11 a12 / a1M
a21 a22 / a2M

« «
ae1 ae2 / aeM

3
775
e�M

B ¼

2
664
b11 b12 / b1M
b21 b22 / b2M

« «
bt1 bt2 / btM

3
775
t�M

(2)

Xð ,Þ is the activation function and O is the network output.
c power using improved chicken swarm optimizer - Extreme learning
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O ¼ ½o1;o2;/;oM�t�M

where oj ¼

2
6664
o1j
o2j
«

otj

3
7775 ¼

2
66666666664

Xv
i¼1

di1X
�
piaj þ qi

�
Xv
i¼1

di2X
�
piaj þ qi

�
«Xv

i¼1

ditX
�
piaj þ qi

�

3
77777777775
t�1

ðj ¼ 1;2;/;MÞ

(3)

The hidden layer activation function uses the sigmoid function,
and its calculation equation is as follows.

XðaÞ¼ 1
1þ e�a (4)

Simplify equation (4) to KD ¼ OT .
Where K is the hidden layer output. The equation is as follows.

K¼

2
664
Xðp1a1 þ q1Þ Xðp2a1 þ q2Þ / Xðpva1 þ qvÞ
Xðp1a2 þ q1Þ Xðp2a2 þ q2Þ / Xðpva2 þ qvÞ

«
Xðp1aM þ q1Þ Xðp2aM þ q2Þ / XðpvaM þ qvÞ

3
775
M�v

(5)

As Xð ,Þ is infinitely differentiable, p and d are arbitrarily
selected, and the values do not change during the training.

min
D

���KD� OT
��� (6)

The solution of D is as follows.

D̂¼KþOT (7)

where Kþ is the Moore-Penrose generalized inverse of K.
3.2. Chicken swarm optimizer (CSO)

Meng et al. (2014) proposed the CSO optimizer. The CSO opti-
mizer is a group intelligent optimizer that simulates the hierar-
chical system and the foraging behavior of the chicken swarm. The
optimizer divides chickens into groups. Every group includes a
cock, several hens and a few chicks. In the CSO optimizer, the
following rules are used to simulate the behaviors of the flock (Shi
et al., 2018).

(1) There are several subpopulations in the chicken population.
Each subpopulation includes a cock, multiple hens and
chicks. Cocks have the strongest foraging ability and domi-
nate the flock. The hen’s foraging ability is the second, and
the chick’s foraging ability is the worst.

(2) The flocks are classified according to fitness values. A few of
chickens with good fitness values are selected as cocks and a
few of chickens with poor fitness are selected as chicks. The
remaining chickens are selected as hens. The hens are arbi-
trarily added to a subgroup. Chicks and mother hens are
randomly selected.

(3) The mother-child relationship and leadership relationship
remain unchanged under a specific hierarchy. But as the
chicks grow, these states are updated every G time (G is the
update time, which is a certain value).
Please cite this article as: Liu, Z.-F et al., Prediction short-term photovoltai
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(4) Hens follow the roosters in their group to forage, and can
steal food from other chickens. The chicks follow the hens
and look for food around the hens.

When solving an optimization problem, the position of each
chicken represents a feasible solution. Because each chicken has
different foraging capabilities, different chickens have different
update strategies. Assuming that the search space of chickens is d,
there are N chickens in total. There are Nc chicks, Nh hens and Nr

cocks. At time t, Zti;jðj¼ 1; 2;/; d; i¼ 1; 2;/;NÞ represents the
position of the ith chicken in the jth dimension.

The update equation of the ith rooster is as follows.

Ztþ1
i;j ¼ Zti;j þ Zti;j*randn

�
0; s2

�

s2 ¼

8>><
>>:

1 Se�Si

exp
�
Se�Si
jSi þ εj

�
Se < Si

(8)

where randnð0; s2Þ represents the Gaussian distribution.
Seðe2½1; Nr�; iseÞ indicates a cock other than the ith cock. ε is
infinitesimal, ensuring that the denominator is not 0.

The update equation of the ith hen is as shown in Equation (9).

Ztþ1
i;j ¼ Zti;j þ p1*randm*

�
Ztr1;j � Zti;j

�
þ p2*randm*

�
Ztr2;j � Zti;j

�
8>><
>>:

p1 ¼ exp
�

Si � Sr1
adsðSi þ εÞ

�

p2 ¼ ðSr2 � SiÞ
(9)

where randm represents a random number between 0 and 1. r1 is
the cock in the group where the ith hen is located. r2ðr1sr2Þ is the
cock in the other group.

The equation for updating chick particles is as follows.

Ztþ1
i;j ¼ Zti;j þ GLðiÞ*

�
Ztm;j � Zti;j

�
(10)

where Ztm;j is the mother chicken followed by the ith chick; GL
represents a random number between 0 and 2.
3.3. Improved chicken swarm optimizer

The traditional CSO optimizer has poor global search and local
search capabilities when dealing with more complex problems. To
solve this problem, this study improves the CSO optimizer and
strengthens the global and local search capabilities of the CSO
optimizer. In the CSO optimizer, the cock dominates the flock and
has the strongest foraging ability. When the cock in the flock is
caught in a local optimum and causes the whole flock to fall into
local optimum. The cosine inertia weight Cip is introduced to
strengthen the local search ability of cock particles.

The optimal particle learning part is introduced in the chick
particle position update equation in order to expand the search
range of chick particles. The search range of the flock is gradually
narrowing at the later stage of iteration. Cauchy mutation operator
is introduced to enhance the diversity of population in the later
stage of iteration.

After introducing the cosine inertia weight, the position update
equation of the ith cock particle is as follows.
c power using improved chicken swarm optimizer - Extreme learning
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Ztþ1
i;j ¼ Cip*Zti;j þ Zti;j*randn

�
0; s2

�

Cip ¼ Cipmin þ ðCipmax � CipminÞ*cos
�
p*

t
T

� (11)

where Cipmin ¼ 0:3, Cipmax ¼ 0:8.
During the whole iteration process, the cock particles first

globally search and then locally search. The local and global search
ability of cock particles are improved by cosine inertia weight Cip.

After improvement, the position update equation of the ith chick
is as follows.

Ztþ1
i;j ¼ Zti;j þ GLðiÞ*

�
Ztm;j � Zti;j

�
þ BLðiÞ*

�
Ztbest;j � Zti;j

�
BLðiÞ ¼ expðSbest � SiÞ

(12)

where BL is the learning coefficient; Sbest is the best particle in the
flock.

The chick particles not only learn from the hen particles around
them, but also learn from the best particle in the flock. The search
range of the chick particle can be enlarged by learning from the best
particle, which can avoid the chick particle falling into the local
optimum to some extent.

In the later stage of population search, the flock is more likely to
fall into the local optimal value. Therefore, the current iteration
number exceeds 90% of the total number of iterations and the
Cauchy mutation operation is introduced. The diversity of chicken
flocks can be increased by mutating populations. Cauchy mutation
operator has more mutation ability compared with normal distri-
bution, which can expand the search range of population. The
calculation process of Cauchy mutation operator is as follows.

z* ¼ zþ l*CauchyðtÞ (13)

where z is the pre-mutation particle; z* is the mutated particle;
CauchyðtÞ is the Cauchy distribution randomvariable; l controls the
variation intensity of the Cauchy mutation operator.
3.4. Establishment of ICSO-ELM prediction model

At present, the commonly used forecasting methods are SVM
model, ARMA model and BP model and so on. The SVM model has
strong nonlinear mapping ability, but the SVMmodel is suitable for
small samples, so the SVM model is more used to forecast ultra-
short-term PV power. The ARMA model is based on statistical
regression. When the PV power is greatly affected by weather
conditions, the prediction error of the ARMA model is larger. The
gradient descent method adopted in BP model leads to slow
training speed and sensitivity to the choice of learning rate.
Comparedwith these traditional predictionmodels, ELMmodel has
faster learning speed and stronger generalization ability.

Improving the prediction accuracy of the short-term PV power
prediction model has positive significance for realizing economic
dispatch and promoting the development of clean energy genera-
tion technology. However, the connection weight D and the
threshold q in the ELM are randomly selected. If the values are not
properly selected and directly affect the prediction effect of the
ELM. Therefore, the optimizer is needed to optimize the super pa-
rameters of the ELMmodel, the performance of the optimizer has a
great influence on the prediction accuracy of the ELM model.

Compared with the traditional optimizers, ICSO optimizer has
stronger convergence ability and has a greater impact on improving
the prediction effect of ELM model. In this study, ICSO is used to
optimize D and q. The optimal D and q of ELM are obtained by ICSO
Please cite this article as: Liu, Z.-F et al., Prediction short-term photovoltai
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optimizer, which improves the prediction accuracy of ELM. The
prediction process of ICSO-ELM model is illustrated in Fig. 1 and
explained as follows:

(1) Determine PV power output samples.
(2) Normalize sample data.
(3) Initialize parameters of ICSO optimizer.
(4) Update the position of each particle according to the location

update strategy.
(5) ICSO optimizer is used to optimize the super parameters of

ELM model.
(6) The trained model is used to predict the PV power output.
(7) Evaluate the predictive effect.

4. Influencing attributes of PV power output

4.1. Analysis of PV power output curves in sunny, rainy and cloudy
weather

The PV power output is greatly affected by the weather condi-
tions. Different weather conditions have different effects on PV
power output. So the PV power output is unstable. The experi-
mental data of this study is from the Desert Knowledge Australia
Solar Centre (DKASC). DKASC is a demonstration facility for com-
mercial solar technology in the central region of Australia. The
sunny weather power output data of August 14, 2016, the cloudy
weather power output data of December 1, 2016 and the rainy
weather power output data of August 15, 2016 are selected to plot
the PV output power curve. The study period of the PV power
historical data is 8:00e17:00, which is counted every 5min. The
amount of sunlight in other periods is small, so it is not in the
statistical range.

Fig. 2 indicated the fluctuation of power output curve in sunny
weather is smaller than that in rainyweather. In sunnyweather, the
output power increases with the increase of illumination intensity
from 8:00 to 13:00. The PV power output reaches its maximum at
about 13:00. After 13:00, the output power decreases with the
decrease of illumination intensity as time goes on.

In rainy weather and cloudy weather, the power output curves
of PV power generation system do not show a cycle trend. There is
no specific law of power output in rainy weather, and the fluctua-
tion of power output curves in rainy and cloudyweather are greater
than that in sunny weather.

4.2. The influence of different meteorological elements on PV power
output

The radiation intensity, relative humidity, wind speed and
temperature affects the PV power output. Because of the influence
of these meteorological elements, PV power has the characteristics
of instability and intermittence. But each meteorological element
has different influence on the PV power output.

This study uses correlation coefficient method to analyze the
influence of meteorological elements. The relationship curves be-
tween output power and wind speed, temperature, relative hu-
midity and radiation intensity are drawn based on the historical
data of April 13, 2016. The relationship between the meteorological
elements and the power is shown below.

Fig. 3 indicated the fluctuation trend of wind speed curve is not
close to that of output power curve. And the fluctuation of wind
speed curve is greater. In practical applications, the dust on the PV
panels will affect the conversion efficiency of the PV system, higher
wind speed can remove non-cohesive dust from PV panels, which
can improve power output (Jaszczur et al., 2019; Styszko et al.,
2019; Hernandez et al., 2019). There is little correlation between
c power using improved chicken swarm optimizer - Extreme learning
clepro.2019.119272
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Fig. 2. The PV power output curves.
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temperature and power. The relative humidity and power show a
negative correlation, while the relative humidity decreases with
the increase of output power. The illumination intensity and power
show positive correlation and strong correlation. The output power
increases with the increase of illumination intensity, and decreases
with the decrease of illumination intensity.

The Pearson correlation coefficient b is used to calculate the
influence of each meteorological element on the power.

bX;Y ¼
Q
P

XY �PXYffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Q
P

X2 � ðPXÞ2
q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Q
P

Y2 � ðPYÞ2
q (14)

When jbj is close to 1, there is a stronger correlation between the
two attributes; when jbj is close to 0, there is a weaker correlation
between the two attributes. Generally, the range of values in Table 1
is used to indicate the strength of correlation.

The correlation coefficient between output power and wind
speed, temperature, relative humidity and radiation intensity are
calculated. The results are showed in Table 2.

Table 2 presented the radiation intensity and power show the
strongest correlation, reaching 0.9963. Two attributes are exceed-
ingly more association according to Table 1. The relative humidity
and power show a negative correlation, which is �0.1771. Tem-
perature and output power are weakly correlated. Wind speed and
power are strongly correlated.
c power using improved chicken swarm optimizer - Extreme learning
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Fig. 3. Relationship curves.

Table 1
Relevant degree judgment.

jbj Degree of association

0.0e0.2 Exceedingly less or no association
0.2e0.4 Less association
0.4e0.6 Moderate association
0.6e0.8 More association
0.8e1.0 Exceedingly more association

Table 2
Correlation coefficient between output power and various
influencing attributes.

Attributes b

Wind speed 0.6494
Temperature 0.2757
Relative humidity �0.1771
Radiation intensity 0.9963

Z.-F. Liu et al. / Journal of Cleaner Production xxx (xxxx) xxx 7
This analysis found that the temperature, radiation intensity and
wind speed have great effect on the power output, and the relative
humidity has little effect on the power output. Therefore, the
Please cite this article as: Liu, Z.-F et al., Prediction short-term photovoltai
machine model, Journal of Cleaner Production, https://doi.org/10.1016/j.j
radiation intensity, wind speed and temperature are taken as pre-
dictive model input, and the PV power is taken as predictive model
output(See. Table 3).

5. Simulation experiment and experimental data analysis

5.1. Optimizer performance analysis

The test functions are used to test the optimization effect of ICSO
optimizer in 30-dimensional and 100-dimensional. The optimiza-
tion effects of PSO, WOA, ICSO and CSO optimizers are compared.
The PSO optimizer is a classical evolutionary optimizer. Mirjalili
et al. (2016) proposed the WOA optimizer. The WOA optimizer is
a new bionic intelligent optimizer. All simulations in this study use
unified equipment to make the experimental results more reliable.

The parameters of the four methods are as follows.
Table 4 presented the population size N of the four optimizers is

10*d (d is the dimension), and maximum number of optimizations
is 500.The acceleration attributes Z1 and Z2 of PSO optimizer are
1.494 and the weight C is 0.729. In WOA optimizer, parameter B is
used to restrict the constant coefficients in logarithmic helix form,
which is taken as 1 in this study. In the CSO and ICSO optimizers,
the state update interval G is 5. And cocks, hens, and chicks account
c power using improved chicken swarm optimizer - Extreme learning
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Table 3
Function range and optimal value (Yang et al., 2019; Wang and Song, 2019).

M Equations Range Optimum

Sphere M1 ¼Pm
l¼1u

2
l

[-100, 100] 0

Schwefel
M2 ¼Pm

l¼1julj þ
Ym
l¼1

julj
[-10, 10] 0

Rotated hyper-ellipsoid M3 ¼Pm
l¼1ð

Pl
j¼1ujÞ2 [-100, 100] 0

Griewank
M4 ¼ 1

4000

Xm

l¼1
u2l �

Ym
l¼1

cos
�
ulffiffi
t

p
�
þ 1

[-600, 600] 0

Zakharov
M5 ¼

Xm
l¼1

u2l þ ð0:5*
Xm
l¼1

ðl*u2l ÞÞ
2

þ ð0:5*
Xm
l¼1

ðl*u2l ÞÞ
4

[-100, 100] 0

Rastrigin M6 ¼Pm
l¼1ðu2l � 10 *cosð2p *ulÞ þ 10 *mÞ [-5.12, 5.12] 0
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for 30%, 50%, and 20% of the population size. The test results of the
four methods are shown as Table 5.

The running speed of PSO program is the fastest among the four
optimizers, and each optimization takes the least time. However, by
comparison, it is found that the convergence effect of PSO optimizer
is poor. For six test functions, PSO does not converge to the global
optimum, whether in 30 or 100 dimensions. The analysis results
show that the optimization effects of PSO and CSO optimizers
become worse with the increase of dimension of standard test
function, which indicates that the convergence stability of CSO and
PSO optimizers is poor. The WOA optimizer converges to the global
optimal value for M4 and M6.
Table 4
Parameters of PSO, WOA, CSO and ICSO.

Method Setting parameters

PSO N ¼ 10*d, T ¼ 500, Z1¼ Z2¼ 1.494,C¼ 0.729
WOA N ¼ 10*d, T ¼ 500,B ¼ 1
CSO N ¼ 10*d, T ¼ 500,G ¼ 5, Nr ¼ 0.3*N, Nh ¼ 0.5*N, Nc ¼ 0.2*N
ICSO N ¼ 10*d, T ¼ 500,G ¼ 5, Nr ¼ 0.3*N, Nh ¼ 0.5*N, Nc ¼ 0.2*N

Table 5
Comparison of optimization results.

M Optimizer Optimum
30d/100d

Worst valu
30d/100d

M1 PSO 9.16e-06/9.78 5.66e-04/30
WOA 2.86e-115/5.63e-124 5.88e-109/1
CSO 9.94e-30/0.11 1.62e-27/35
ICSO 0/0 0/0

M2 PSO 0.63/15.29 2.16/20.22
WOA 1.93e-66/3.59e-69 2.23e-62/2.
CSO 7.35e-23/3.87e-15 3.75e-22/1.
ICSO 0/2.00e-323 0/3.26e-320

M3 PSO 16.21/1.31eþ03 86.23/5.48e
WOA 9.68eþ02/2.00eþ05 1.01eþ04/4
CSO 15.50/9.27eþ02 335.77/1.65
ICSO 0/0 0/0

M4 PSO 1.71e-04/1.17 0.06/1.47
WOA 0/0 0/0
CSO 0/0.09 0/0.85
ICSO 0/0 0/0

M5 PSO 1.33e-04/46.97 0.14/136.93
WOA 1.33e-39/5.11eþ03 1.16e-25/1.
CSO 1.16e-21/78.50 1.17e-19/2.
ICSO 0/0 0/0

M6 PSO 21.88/135.26 69.64/296.9
WOA 0/0 0/0
CSO 0/2.22e-05 0/4.74e-04
ICSO 0/0 0/0

Please cite this article as: Liu, Z.-F et al., Prediction short-term photovoltai
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The optimization effect of the WOA optimizer does not change
significantly, which shows that the stability of the WOA optimizer is
higher. However, with the increase of the dimension, the computa-
tional cost of the WOA optimizer increases significantly. At 100 di-
mensions, program running time of the WOA optimizer is almost
twice that of the CSO and ICSO optimizers for the standard test
functionsM1,M2,M4,M5 andM6. The runningtimeofWOAoptimizer
is three times faster than the PSO optimizer forM1,M2,M5 andM6.

This analysis found that the optimization effect of ICSO opti-
mizer is the best. For the standard test functions M1, M3, M4, M5
and M6, the optimization results of the ICSO optimizer are all 0 in
both 30-dimensional and 100-dimensional. For the standard test
function M2, in the 30-dimensional, the optimization result of the
ICSO optimizer is 0; in the 100-dimensional, although the optimi-
zation result of the ICSO optimizer is not 0, the convergence ac-
curacy is still the highest compared to the other three optimizers.
When the test dimension increases, the optimization result of the
ICSO optimizer does not change significantly, which indicates that
the optimization stability of the ICSO optimizer is higher. By
comparing the data in the table, the ICSO optimizer has the higher
convergence accuracy and convergence stability.
e Average value
30d/100d

Average running time/s
30d/100d

.64 2.21e-04/19.07 11.84/40.87

.81e-116 6.27e-110/1.86e-117 17.53/1.33e þ 02

.48 2.81e-28/10.99 16.55/58.36
0/0 19.37/67.41

1.57/18.23 12.43/42.62
51e-64 3.56e-63/5.73e-65 23.13/1.72e þ 02
49e-08 1.90e-22/6.21e-09 17.35/60.71

0/6.97e-321 20.47/73.18

þ03 40.60/2.33eþ03 39.05/340.64
.02eþ05 4.61eþ03/2.93eþ05 48.07/4.62e þ 02
eþ03 181.12/1.30eþ03 37.27/2.82eþ02

0/0 48.89/4.23eþ02

0.02/1.28 14.48/53.10
0/0 20.24/1.52e þ 02
0/0.42 19.63/69.72
0/0 18.31/83.49

0.02/79.73 15.48/53.65
53eþ04 1.18e-26/1.16eþ04 19.72/142.24
06eþ02 2.68e-20/1.37eþ02 18.63/82.03

0/0 21.84/80.18

7 48.55/208.18 13.32/48.46
0/0 17.88/1.35e þ 02
0/1.82e-04 16.41/59.82
0/0 19.12/68.05
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5.2. Prediction of short-term photovoltaic power output under
different weather conditions

The output power of PV system is different due to different
weather conditions. Three experimental samples from DKASC are
used in this study. The study period of the output power is from
8:00 to 17:00. Statistics are taken every 5min.

The PV power is predicted by the ICSO-ELM predictionmodel. At
the same time, classic models such as BP neural network, support
vector machine (SVM) and Gaussian process regression (GPR)
model are used as comparison models.

The mean absolute percentage error (MAPE) and root mean
square error (RMSE) are used to evaluate the prediction effect of
prediction models. Decision coefficient (R2) is used to judge the
fitting degree.

RMSE¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPM
i¼1

�
ĝi � gi

�2
M

vuuut
(15)
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Fig. 4. Prediction resul
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MAPE¼ 1
M

 XM
i¼1



ĝi � gi




gi
*100

!
(16)

R2 ¼ ðMP gĝ �P ĝ
P

gÞ2�
M
P�

ĝi
�2 � �ĝi�2��MP ðgÞ2 �P ðgÞ2� (17)

where the actual value is g and the predicted value is ĝ .
The decision coefficient R2 of the model is a very common sta-

tistical information in regression analysis. The lower bound of R2 is
0 and the upper bound is 1. When the decision coefficient R2 is 0,
the model is completely unpredictable. When the decision coeffi-
cient R2 is 1, the model can perfectly predict the target variable.

Firstly, the ICSO-ELM model is tested by using the sunny
weather power output data during 2016.10.9e13. The power output
data of 2016.10.9e12 is selected as the training set, and the PV
power of 2016.10.13 is used as the test sample. The prediction re-
sults of the ICSO-ELM, CSO-ELM, BP, SVM and GPR models are
shown in Fig. 4.

The prediction curves of power output of the ICSO-ELM, CSO-
ELM, BP, SVM and GPR models for the sunny weather during
t curves on sunny day
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2016.10.10e16 are presented in Fig. 4 (a). The prediction curves of
the five models can basically reflect the changing trend of the PV
power curve. Analysis of the data in Fig. 4 (b) shows that the pre-
diction error of the BP model in the early stage of prediction is
larger, and the relative error exceeds 20%; the prediction errors of
the four other models in the prediction medium are controlled at
[-10%, 10%]; the prediction errors of the BP, GPR and SVMmodels at
the end of the forecast fluctuate greatly, and the prediction error of
the SVM model is nearly 30%.

The relative error histograms are obtained to more clearly
analysis the magnitude of the prediction errors of the five predic-
tion models, showed in Fig. 5.

Fig. 5 showed the interval distribution of the relative errors of
the five prediction models. The prediction relative errors of the
CSO-ELMmodel and the ICSO-ELMmodel are mainly distributed in
the [-2%, 2%]. The relative error values of CSO-ELMmodel and ICSO-
ELM model in the [-2%, 2%] account for 85.18% and 91.66% of the
total test samples. The prediction relative errors of the SVM model,
the BP model and the GPRmodel are mainly distributed in the [-5%,
5%]. The relative error values of SVM model, BP model and GPR
model in the [-2%, 2%] account for 59.63%, 47.71% and 72.47% of the
total test samples. Through error interval analysis, it is found that
the prediction errors of CSO-ELM and ICSO-ELM models are lower.

Secondly, the ICSO-ELM model is tested by using the cloudy
weather during 2016.11.27e2016.12.01. The power output data
during cloudy weather of 2016.11.27e2016.11.30 is selected as the
training set, and the power data from 2016.12.01 is used as the test
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sample. The test results of the CSO-ELM, ICSO-ELM, SVM, BP and
GPR models are shown in Fig. 6.

This study finds the prediction errors of SVM, BP and GPR
models are large in the early stage of prediction by comparing the
predictive curves in Fig. 6 (a). The fitting effect of the predictive
curves of the five models and the actual power output curve in the
middle stage of prediction is higher, and the predictive curves of BP
and GPRmodels in the late stage of prediction deviate from the true
value curves. Through analysis, it is found that the prediction curve
of the ICSO-ELM model can still reflect the trend of the actual po-
wer output curve in cloudy weather. The prediction errors in
Fig. 6(b) increase significantly compared with the relative error
values in Fig. 4(b). In the later stage of prediction, the forecasting
errors of GPR model and BP model increase significantly, and the
maximum prediction error of GPR model exceeds 100%, indicating
that the model’s prediction stability is poor for cloudy weather.

Fig. 7 shows the distribution histogram of the relative errors of
the five models in cloudy weather.

The result found that the prediction error intervals of the five
models in Fig. 7 increased compared with the histogram in Fig. 5.
The relative error values of CSO-ELM, ICSO-ELM, SVM, BP and GPR
models in the [-2%, 2%] account for 39.44%, 51.37%, 22.93%, 17.43%
and 10.09% of the total test samples. The number of relative error
values predicted by the five models in the range of [-2%, 2%] further
decrease. Compared with the proportion of the relative error in the
interval [-2%, 2%] in Fig. 5, the proportion of the relative error in the
interval [-2%, 2%] in Fig. 5 is reduced by 45.74%, 40.29%, 36.70%,
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rval
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rval
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(a) Predicted power output curves on cloudy day
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30.28% and 62.38%. This is due to the quasi-periodic characteristics
of PV power in clear weather, and the irregularity of power output
in cloudy weather increases. It shows that compared with the
prediction errors in sunny weather, the prediction errors of the
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models in cloudy weather increase.
Finally, the ICSO-ELMmodel is tested by using the rainy weather

during 2016.9.24e28. The power output data during rainy weather
of 2016.9.24e27 is selected as the training set, and the power data
from 2016.9.28 is used as the test set. The prediction curves of the
CSO-ELM, ICSO-ELM, SVM, BP and GPR models are shown in Fig. 8.

The PV power output curve has the characteristics of large
fluctuation during rainy days. The prediction curves of the five
models basically reflect the fluctuation trend of the actual power
output curve. It can be seen from the local enlargement that the
fitting degree between the blue curve and the black curve is the
highest. At the sixteenth sample point, the SVM, BP and GPRmodels
have large prediction errors, which is due to the uncertainty of
power output in rainy days.

Similar to cloudy weather, the prediction errors of the five
models increase relatively on rainy day. In Fig. 8(b), the prediction
stability of the five models is higher in the middle and late stages of
prediction, but the prediction stability of the CSO-ELM, SVM, BP and
GPRmodels is poor in the early stage of prediction. Fig. 9 shows the
distribution histogram of the relative errors of the five models in
rainy day.

The result found that the prediction error intervals of the five
models in Fig. 9 further increased compared with the histograms in
Figs. 5 and 7. The relative error values of CSO-ELM, ICSO-ELM, SVM,
BP and GPR models in the [-2%, 2%] range account for 17.33%,
22.01%, 12.84%, 11.01% and 12.44% of the total test samples. The
proportion of the relative error in the interval [-2%, 2%] in Fig. 9 is
reduced by 22.11%, 29.36%, 10.09%, 6.42% and 2.35% compared with
the proportion of the relative error in the interval [-2%, 2%] in Fig. 7.
The randomness of power output in rainy weather is greater than
the randomness of power output in sunny and cloudy weather.
Therefore, the prediction errors of five models further increase.
2 4 6 8 10
val

2 4 6 8 10
rval

15 20 25 30 35 40
val

Relative error histogram of SVM model

30 40 50 60
val

Relative error histogram of BP model

60 80 100 120
rval

Relative error histogram of GPR model

ntage on cloudy days.

c power using improved chicken swarm optimizer - Extreme learning
clepro.2019.119272



Z.-F. Liu et al. / Journal of Cleaner Production xxx (xxxx) xxx12
The test results of the CSO-ELM, ICSO-ELM, SVM, BP and GPR
models are assessed by evaluation indicators. The evaluation re-
sults are shown in Table 6. Table 6 compared the RMSE and MAPE
values of each model in different weather conditions. Compared
with sunny weather, the RMSE and MAPE obtained in rainy and
cloudy weather are relatively larger. The RMSE values and the
MAPE values of the ICSO-ELM model are the smallest whether it is
rainy, cloudy or sunny. For three different weather conditions, the
average RMSE value of CSO-ELM, ICSO-ELM, SVM, BP and GPR
models are 6.51%, 5.54%, 10.83%, 13.10% and 14.35%. For three
different weather conditions, the RMSE of ICSO-ELM model is the
smallest, which indicates that the predictive stability of ICSO-ELM
is higher.

The MAPE obtained in cloudy and rainy weather is significantly
higher than the MAPE obtained in sunny weather. Because the PV
power output curve has uncertainty and randomness in rainy and
cloudy weather, which increases the prediction error of the model.
For three different weather conditions, the average MAPE values of
CSO-ELM, ICSO-ELM, SVM, BP and GPR models are 3.67%, 3.08%,
6.08%, 7.70% and 8.45%. By comparing the average MAPE of each
model, it is found that the MAPE value of the ICSO-ELM model is
smaller, indicating that the ICSO-ELM model maintains high
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prediction accuracy under three weather conditions.
For the evaluation index R2, the R2 obtained in sunny weather is

significantly higher than the R2 in cloudy weather and rainy
weather. For three different weather conditions, the average R2 of
CSO-ELM, ICSO-ELM, SVM, BP and GPR models are 99.13%, 99.32%,
98.59%, 97.72% and 97.78%. The R2 of the ICSO-ELM model is higher
than the other fourmodels, indicating that the ICSO-ELMmodel has
a strong fitting effect on the output power under three different
weather conditions.
6. Concluding remarks

In order to reduce the PV power curtailment rate and realize the
economic dispatch of the power system, improving the accuracy of
short-term PV power output prediction is an urgent subject to be
studied. Therefore, the ICSO-ELM is modeled to forecast PV power
in this study. The test results show that the prediction effect of
ICSO-ELM model is better than CSO-ELM, SVM, BP and GPR model.
And the main contributions of this study are as follows:

(1) The ICSO-ELM model is firstly proposed to predict the short-
term photovoltaic power.
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(2) The operating and management efficiency of photovoltaic
power station can be improved by accurate prediction of
photovoltaic power.

(3) For three different weather conditions, the average RMSE
value and the average MAPE value of ICSO-ELM model are
5.54% and 3.08%. The average MAPE values of CSO-ELM,
ICSO-ELM, SVM, BP and GPR models are 3.67%, 3.08%,
6.08%, 7.70% and 8.45%; the average MAPE values of CSO-
ELM, ICSO-ELM, SVM, BP and GPR models are 3.67%, 3.08%,
6.08%, 7.70% and 8.45%. The result indicates that the ICSO-
ELM model has a better forecasting effect.

(4) The operating and management efficiency of photovoltaic
power station can be improved by accurate prediction of
Table 6
Evaluation of the prediction effects of five models.

Weather Model RMSE/% MAPE/% R2/%

Sunny weather CSO-ELM 4.43 1.51 99.61
ICSO-ELM 2.84 0.85 99.84
SVM 6.96 1.93 99.48
BP 9.01 2.86 98.59
GPR 5.24 1.57 99.62

Cloudy weather CSO-ELM 8.06 3.09 99.30
ICSO-ELM 7.19 2.51 99.45
SVM 15.58 5.76 97.55
BP 20.06 8.10 95.90
GPR 27.12 13.93 95.97

Rainy weather CSO-ELM 7.04 6.42 98.50
ICSO-ELM 6.60 5.89 98.68
SVM 9.94 10.54 98.76
BP 10.24 12.15 98.66
GPR 10.71 9.85 97.94

Please cite this article as: Liu, Z.-F et al., Prediction short-term photovoltai
machine model, Journal of Cleaner Production, https://doi.org/10.1016/j.j
photovoltaic power. And by accurately predicting PV power,
the measures of abandoning solar can be reduced and the
development of clean energy can be promoted.

Although this study predicts the short-term PV power under
three weather conditions, there are still many extreme weather
conditions (such as haze, ice and snow) that are not taken into
account. In the future, we should study the PV power prediction
under extreme weather conditions and improve the stability of the
prediction model.
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